Youssef Hamidi

Permanent URI for this collectionhttps://hdl.handle.net/10657.1/2318

Image

Dr. Youssef Hamidi is an Assistant Professor of Mechanical Engineeringat University of Houston-Clear Lake. He has more than 17 years of academic experience at three different universities, with positions ranging from research assistant to assistant professor to associate professor. Prior to joining the University of Houston-Clear Lake team, Dr. Hamidi worked as a senior research associate at the University of Oklahoma. He also has more than 20 years of industrial experience..

Browse

Recent Submissions

Now showing 1 - 8 of 8
  • Item
    Dispersion Characterization of Nanoclay in Molded Epoxy Disks by Combined Image and Electron Microbeam Analysis
    (Journal of Engineering Materials and Technology, 2008) Hamidi, Youssef
    The state of nanoclay dispersion in a molded epoxy disk and its effects on the thermo-mechanical properties of the resulting nanocomposite are analyzed. A commercially available nanoclay, Cloisite® 25A, is mechanically mixed at 2wt.% with EPON 815C epoxy resin. The epoxy/clay compound is then mixed with EPI-CURE 3282 curing agent by a custom made molding setup and injected into a disk shaped mold cavity. Upon completion of curing, nanoclay dispersion is quantified using Cameca SX50 Electron Microprobe Analyzer (EMPA) on a sample cut along the radius of the composite disk. Dispersion of nanoclay clusters larger than 1.5μm are analyzed by digital image processing of scanning electron micrographs taken radially along the sample, whereas dispersion at smaller scales is quantified by compositional analysis of clay via wavelength dispersive spectrometry (WDS). Digital images of the microstructure indicate that amount of nanoclay clusters that are larger than 1.5μm remain approximately constant along the radius. However, size analysis of nanoclay clusters revealed that they are broken down into finer clusters along the radius, possibly due to high shear deformation induced through-the-thickness during mold filling. Compositional analysis by WDS signified that approximately 0.4wt.% of the nanoclay is dispersed to particles smaller than 1.5μm which are not visible in micrographs. Tensile and three-point bending tests are conducted on additional samples cut from the molded disks. Except for slight reduction in flexural strength, up to 9.5% increase in tensile strength, stiffness and flexural modulus are observed. Glass transition temperature is determined under oscillatory torsion and observed to increase by 4.5% by the addition of nanoclay.
  • Item
    Effect of Nanoclay Content on Void Morphology in Resin Transfer Molded Composites
    (Journal of Thermoplastic Composite Materials, 2008) Hamidi, Youssef
    Effects of nanoclay content on morphology and spatial distribution of voids in resin transfer molded nanoclay/E-glass/epoxy composite disks are investigated. Closite®25A nanoclay loads of 2, 5, and 10wt% are mixed by sonication with a low-viscosity epoxy resin prior to filling the mold cavity containing 13.6% E-glass preform by volume. A disk without nanoclay is also molded. Once the molded composites are cured, voids on radial composite samples are evaluated via microscopic image analysis. The addition of nanoclay is found to result in a significant increase in the apparent viscosity of the clay-epoxy mixture, thus increasing the molding pressure. Void occurrence is observed to increase considerably with increasing nanoclay content, from 2.1% in the composite without nanoclay to 5.1 and 8.3% in the composites molded with 5 and 10wt% nanoclay, respectively. However, the composite with 2wt% nanoclay yields the lowest void content of 0.7%. Voids are observed to be, in average, smaller after the addition of nanoclay at all nanoclay concentrations. Presence of nanoclay in the impregnating resin induces at least 60% reduction in voids located inside fiber tows, which are trapped by the fluid front motion during impregnation. Irregularly shaped voids are also observed to decrease with increasing nanoclay content. A nonuniform void content and morphology is observed radially, which seems to be affected by the flow kinematics as well as possible breakdown and filtration of clay clusters.
  • Item
    Filtration and Breakdown of Clay Clusters During Resin Transfer Molding of Nanoclay/Glass/Epoxy Composites
    (Journal of Composite Materials, 2008) Hamidi, Youssef
    Dispersion of nanoclay clusters during resin transfer molding of nanoclay/glass/epoxy disks is investigated. In addition to a center-gated disk containing only 14% glass fibers, three nanocomposite disks are fabricated with the addition of 2, 5 or 10 wt% Cloisite® 25A nanoclay. The spatial distribution of nanoclay clusters along the radial axis of the nanocomposite disks are characterized at two length scales. Clusters larger than 1.5 μm are characterized by performing image analysis on the SEM micrographs whereas smaller nanoclay clusters are identified by wavelength dispersive spectrometry. Results obtained from image analysis indicate that nanoclay clusters are filtered out by as much as 50% in the flow direction by the glass fiber preforms. In addition, increasing nanoclay content led to higher filtration, suggesting that cluster formation is more prominent at higher nanoclay loadings. Cluster size distribution analyses revealed that the outer edges of the disks, on average, contain finer nanoclay particles. For instance, the outer edge of the nanocomposite with 2% clay contains 22% more small nanoclay clusters compared to center of the disk. Glass transition temperature, Tg, of four specimens obtained from each molded disks is characterized under oscillatory shear. Glass transition temperature of the samples are shown to increase with the nanoclay content, yielding a 40% higher Tg at 10% nanoclay loading compared to glass/epoxy composite without clay. Increasing glass transition temperature with increasing nanoclay content may be an indication of intercalation of nanoclay within the epoxy matrix.
  • Item
    Effect of Fiber Content on Void Morphology in Resin Transfer Molded Composites
    (Journal of Engineering Materials and Technology, 2009) Hamidi, Youssef
    Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5%, 20.5%, and 27.5% fiber volume fractions. Voids are evaluated by microscopic image analysis of the samples obtained along the radius of these disk-shaped composites. The number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5 voids/mm2 to 9.5 voids/mm2 as fiber content is increased from 13.5% to 27.5%. Similarly, void volume fraction decreased from 3.1% to 2.5%. Increasing fiber volume fraction from 13.5% to 27.5% is found to lower the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move toward the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding but generally to liquid composite molding processes.
  • Item
    Fast Recovery of Non-Fickian Moisture Absorption Parameters for Polymers and Polymer Composites
    (Polymer Engineering and Science, 2016) Hamidi, Youssef
    Moisture absorption is known to detrimentally affect the mechanical integrity and durability of polymeric materials. Consequently, accurately characterizing the moisture diffusion into these materials is critical when predicting their service life behavior. The hindered diffusion model (HDM), that is, Langmuir-type absorption, has been widely used to successfully describe both Fickian and anomalous absorption behavior of polymeric materials. In this article, proper use of both exact and approximate solutions of the HDM model is illustrated on two material systems: nanoclay/epoxy composites and thin epoxy laminates. A parameter recovery technique, based on a modified version of the steepest descent search, is shown to accurately recover all absorption parameters simultaneously from experimental data. The absorption behavior predicted by the recovered parameters is then validated by long-term absorption data not used in the recovery process. The errors induced by approximate solutions are observed to be material-dependent and could be substantially larger compared to the exact solution. In addition, a novel method to computationally accelerate the recovery of the absorption parameters is proposed. The new technique uses the approximate absorption parameters as the initial guess. It is shown that this approach substantially reduces the computational effort by decreasing the number of iterations without compromising from accuracy. POLYM. ENG. SCI., 2016.
  • Item
    Accurate Characterization of Moisture Absorption in Polymeric Materials
    (SPE Plastics Research Online, 2017) Hamidi, Youssef
    The importance of using the exact solution of the hindered diffusion model is demonstrated on experimental data from a nanoclay/epoxy composite.
  • Item
    Performance of Glass Woven Fabric Composites with Admicellar-Coated Thin Elastomeric Interphase
    (Composites Interfaces, 2017) Hamidi, Youssef
    Adequate stress transfer between the inorganic reinforcement and surrounding polymeric matrix is essential for achieving enhanced structural integrity and extended lifetime performance of fiber-reinforced composites. The insertion of an elastomeric interlayer helps increase the stress-transfer capabilities across the fiber/matrix interface and considerably reduces crack initiation phenomena at the fiber ends. In this study, admicellar polymerization is used to modify the fiber/matrix interface in glass woven fabric composites by forming thickness-controlled poly(styrene-co-isoprene) coatings. These admicellar interphases have distinct characteristics (e.g., topology and surface coverage) depending on the surfactant/monomer (S/M) ratios used during the polymerization reaction. Overall, the admicellar coatings have a positive effect on the mechanical response of resin transfer molded (RTM), E-glass/epoxy parts. For instance, ultimate tensile strength (UTS) of composites with admicellar sizings improved 50 to 55% over the control desized samples. Interlaminar shear strength (ILSS) also showed increases ranging from 18 to 38% over the same control group. Interestingly, the flexural properties of these composites proved sensitive to the type of interphase formed for various admicellar polymerization conditions. Higher surface coverage and film connectedness in admicellar polymeric sizings are observed to enhance stress transfer at the interfacial region.
  • Item
    Process Induced Defects in Liquid Molding Processes of Composites
    (International Polymer Processing, 2017) Hamidi, Youssef
    Liquid Composite Molding (LCM) processes are cost efficient manufacturing alternatives to traditional autoclave technology for producing near-net shape structural composite parts. However, process induced defects often limit wider usage of LCM in structural applications. Thorough knowledge of these defects, as well as their formation mechanisms and prevention techniques, is essential in developing improved LCM processes. In this article, process induced defects in liquid molding processes of composites, categorized into preform, flow induced and cure induced defects, are reviewed. Preform defects are further presented as fiber misalignment and fiber undulation (waviness and wrinkling). The respective causes, detrimental effects, and possible prevention methods of these defects are presented. Thereafter, flow induced defects are classified as voids and dry spots. Dry spot formation mechanisms in LCM processes and available prevention techniques are summarized. In addition, void formation mechanisms, adverse effects on composite properties, and removal techniques are presented. Cure induced defects include microcracks, void growth and geometrical distortions (warpage and spring-in). Each of these defects are discussed along with their underlying causes as well as their control and reduction schemes.