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ABSTRACT

PARTICLE INTERACTIONS IN COMPACT OBJECTS AND THE EARLY

UNIVERSE

Faiz Khan

University of Houston-Clear Lake, 2021

Thesis Chair: Samina Masood, PhD

We show there is an effect of an extremely large magnetic field in highly dense media

that has not been explored in prior work. We discuss the renormalizability of QED

in such a medium. These extreme situations are found in the exotic environment

of compact objects, especially neutron stars. It is found that the renormalization

constants of QED are significantly modified in stellar media due to an additional B

dependent term that appears due to the very high magnetic field in a highly dense star.

The newly computed renormalization constants can be used as effective parameters

of QED to study the particle processes in hot and dense stars with a strong magnetic

field. We propose to use modified parameters to analyze astrophysical data and

investigate the structure and composition of stars.
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INTRODUCTION

Since the dawn of time, humans have been fascinated and inspired by the move-

ment of the heavens [17]. The amount of information coming from astrophysical

phenomenon often leads us into a reformulation of our assumptions and knowledge

to match the observations. This continues to be a source of inspiration for scien-

tists. The nature of theory building is such that we can make a prediction about

physical evolution, and then later build experiments in order to test and obtain proof

for theoretical results. Scientifically, the interest we wish to demonstrate here is the

unreasonable effectiveness of making predictions based on known data, in order to

bring our understanding and theory building into the present environment.

Throughout this work stellar objects are treated essentially as laboratories [42].

Our goal is to predict and elaborate on the composition of stellar objects and explain

how observations can eventually influence our theories. This is especially due to the

limitations of working with such extremes on Earth. In many cases, the instruments

that are within our engineering capacity on the planet are vastly more primitive

in energy scales than what we can already find in nature. We briefly review the

idea of compact stellar objects, our research interest in them and what we can gain

from making predictions about these relatively unknown masses in the sky. With

appropriate data we can generalize and make conclusions about observations that

inform our future theories. Primarily our aim is to understand the interior regions of

superdense stars with high magnetic fields.

Compact stellar objects such as black holes, neutron stars, white dwarfs and

related stellar entities are those that have high mass relative to their total radius or

the area and volume swept out by this radius, essentially equating them as extremely

dense conglomerations of matter. With respect to a general understanding, these
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entities are the remnants of stellar evolution, and found at the end of a regular

star lifecycle. This provides a justification that the gravitational pressure exceeds

the internal pressure from thermonuclear reactions causing a collapse of the stellar

material into a very small area. This collapse causes stellar interiors to have very

high temperature and density. Degeneracy pressure from nuclei is what sustains the

radius of neutron stars and white dwarfs [50]. In the case of neutron stars, they are

theorized to have a highly magnetic interior core, which has not been studied in the

context of particle propagation.

This may seem archaic at first glance, but it is absolutely relevant to our discussion.

At a broad generalization, we must probe physics at the fringe of our understanding

to develop more accurate theories.

The interiors of these stars have a great deal of scientific value in the form of the-

ory. Knowing the dynamics of compact stars, we can safely admit that we understand

particle behavior at an extreme place in the universe. For example, particle acceler-

ators are specified and built every 30 to 50 years [21] in hopes of achieving greater

and greater energies in the cross-section or collision area between particles. Given

there already exists a laboratory in the early universe that contains these particle

interactions, and there are measurements we are able to make about this laboratory,

it makes sense that we might look to the skies in order to understand more of our

world from what we see in the sky.

Specifically, the compressed nature of these objects implies that all four of the

fundamental interactions are at work within the interiors of these stars. The energies

involved in the interactions, as this is a stellar remnant, means not only are they

energies frankly unattainable on Earth but also so enormous as to possibly giving us

clues regarding the state of the early universe and unified theories of interaction as
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well. This, predominantly, is our motivation for researching this particular extreme

of the stars.

We will find that, with the help of our high powered telescopes located on Earth

and in orbit, we know a few properties of compact stellar objects, such as luminosity,

temperature, and the magnetic field at the surface. It is our job as scientists to make

predictions about what we cannot yet observe, such as the interior properties, in

order to better understand the nature of how these objects form and evolve over time.

We note that our understanding of these objects is still limited, due to our ability

to obtain observations or having a dearth of scientific equipment readily available to

observe their properties. For this reason it is instructive to develop theories of interior

dynamics based on current findings in the hope that future observations will readily

verify theoretical results.

We show that the temperature, chemical potential and strong magnetic field of a

star have a significant effect on the properties of propagating particles in the star. We

utilize finite temperature field theory (FTD) in order to develop an understanding of

renormalization constants in such extreme media. Simulations are run to suggest that

not only is this change significant but may explain future observations of compact

objects that report very high magnetic fields, such as neutron stars [12]. We discuss

first the dynamics of stars in Chapter 1. After the introduction of mathematical

techniques of phase transitions, statistical mechanics and quantum field theories in

Chapter 2, we discuss the finite temperature and density formalism in Chapter 3, and

then the renormalization of quantum electrodynamics in this formalism. In Chapter

4 we calculate the effect of magnetic fields on quantum electrodynamics parameters

and then study the application of these results in compact stars.
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CHAPTER 1

STELLAR DYNAMICS

1.1 Stellar Evolution

There is not much that can be discussed about compact objects without a description

of stellar evolution, which can give us an understanding of how these objects start

and end up in the state they are in.

According to Kippenhahn et al. [27], an initially homogeneous compressible gas

larger than the Jeans instability radius is gravitationally unstable. The Jeans instabil-

ity is a change away from equilibrium of internal gas pressure and gravitational forces

of the stellar material, such that a gravitational collapse occurs. At these scales the

gas is modeled as free-fall collapse of a homogeneous sphere, a classical calculation.

This results in a hydrostatic core which is externally buffered by a still-collapsing

region. As temperature and pressure continue to increase in the core of the gas, the

hydrostatic core becomes unstable and the core itself begins to collapse. This gen-

erally is when the gas cloud is referred to as a protostar, with a large reduction in

radius and increase in temperature.

If the star has not yet reached the temperature for nuclear reactions, collapse

continues in the core until nuclear reactions dominate. This protostar then eventually

undergoes nucleosynthesis and is called a zero-age main sequence star (ZAMS), and

the Carbon-Nitrogen-Oxygen (CNO) and proton-proton (p-p) chain reactions (ppI,

ppII, ppIII) follow in this environment.

The proton-proton or PP chain is a reaction between hydrogen atoms (protons)

into deuterium and then a following reaction where the deuterium reacts with another

hydrogen atom to form helium and some energy released as a photon. Originally
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Figure 1.1. Protostar evolution into zero-age main sequence (ZAMS) stars, 1 (left)
and 60 solar masses (right). The time evolution begins on the right, as compression
intensifies the protostar approximates the ZAMS lifecycle curve. Kippenhahn et al.
[27]

calculated by Hans Bethe in 1939, he won the Nobel Prize for his discovery of the

ppII branch that one of the foundational reactions in the processes underlying stellar

nucleosynthesis [7] [8].

1H + 1H = D + e+ + νe (1.1)

2H + 1H = T + γ (1.2)

The processes called pp1,pp2,pp3 generate other isotopes of helium and further energy

in the form of neutrinos and photons.

The CNO cycle is the other dominant process in stars, that have different by-

products but release varying amounts of energy. The kinds of processes occurring in

stars can be determined from the observed energy spectrum. Generally this will result

in the PP chain being a regular process at lower temperatures (T ∼ 107K) and the

CNO cycle being the more widespread process up to the order of T ∼ 107K. While we

have covered hydrogen burning reactions, it is worth noting that both carbon burning

and helium burning also contribute to the energy, however it is not pertinent to our
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Figure 1.2. The amount of energy obtained from the burning of hydrogen in a
zero-age main sequence star from the center of the star (m/M). The left is the energy
production at the core. The dot-dash line is a ZAMS star, dashed at 6.2× 109 years,
dotted at 8.2 × 109 years and 11.2 × 109 years for the solid line. Kippenhahn et al.
[27]

work. The dynamics of a main sequence star generally occur from the loss of hydrogen

as the various burning processes take place in the star. The energy generation changes

as less hydrogen is available over time, and with it the mass and radius of the star.

An HR diagram (Hertzsprung-Russell) [45] can very clearly show the evolution

of a star. A star’s luminosity is graphed against its surface temperature, based on

observations. As more hydrogen is consumed the star becomes brighter, thus the HR

diagram also serves as a window into understanding the stellar evolution of stars.

The main sequence line on an HR diagram allows us to estimate where a star is in

its lifecycle.

Further burn cycles are completed for helium, carbon, oxygen and other by-

products of hydrogen burning processes in a cyclical way until our understanding

is dominated entirely by computer models of stellar evolution and observation in-

stead of theory. Computer models suggest that as heavy elements build up in the

6



Figure 1.3. An Hertzsprung-Russell (HR) diagram that shows the typical evolution
of a zero age main sequence star. We graph the temperature versus relative luminosity.
A hotter star implies more nuclear fusion is occurring in the core. Kippenhahn et al.
[27]

core, electron capture occurs and the heavy elemental core contracts. Stellar evo-

lution allows stars to move from the main sequence by affecting size, and density.

The chains of thermonuclear reactions and heavy element production are related to

the density of matter under pressure. Neutrinos that are opaque to the outer shell

begin to add pressure resulting in a supernova explosion which can cause the star to

explode, leaving behind a black hole or a compact object such as a neutron star.

From this we should begin to understand why and how it is important to study

stellar objects, and not only that but how it leads us to more accurate, physical

theories. Our specific goals imply that we want to study how various properties

change, such as charge or mass, as well as the properties of propagating particles in

the interior of the star, in order to better apply our findings and our understanding

of the lifecycle of stars.
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1.2 Black Holes, White Dwarves and Neutron Stars

White dwarves are one of the end products of main sequence stars with masses of

the order of our Sun and radii of the order of the Earth. They are made of electrons

that exert a degeneracy pressure from the Pauli exclusion principle, which states that

no particles with half-integer spin can occupy the same quantum state, in order to

maintain their size, and radiate energy left over from the supernova that created it.

Since white dwarves are supported by the pressure of electrons obeying the Pauli

exclusion principle, Chandrasekhar was able to obtain a mass-radius relationship

by solving an hydrostatic equation using a white dwarf equation of state and show

that a very specific limit exists, later named after Chandrasekhar himself. The Chan-

drasekhar limit, MCh ≤ 1.4M� [13] is an important discovery in the study of compact

objects. It is the theoretical limit of the mass of a white dwarf that, when exceeded,

can result in gravitational instability leading to a collapse into a black hole or neu-

tron star. The exact equation for the Chandrasekhar limit was originally derived by

Subrahmanyan Chandrasekhar in 1930 and is given by [13]

MCh = 2.018

√
6

8π

(
hc

G

)3/2
1

m2
Hm

2
w

(1.3)

Where G is the gravitational constant, mH is the hydrogen mass, h is the Planck

constant, c is the speed of light, and mw is the average mass of the star in units of

electron mass.

Both neutron stars and white dwarves can become unstable if they accrete too

much mass due to the Chendreshenkar limit, and when this happens the gravitational

energy increases. General relativity tells us this can sustain itself cyclically such that

at some point the cycle is inverted and nothing can escape the area inside a region

called the Schwartzchild radius [50]. These are called black holes. Black holes can

also produce relativistic jets as matter accretes [37] around the Schwartzchild radius
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and ”falls” inwards. As the matter falls into the black hole, it loses energy in the

form of high energy particles. Black holes have enormous masses several times larger

than the mass of our sun generally.

Neutron stars were proposed initially by Lev Landau in 1932 (although there is

some debate [55] on those records), anticipating their existence as a transition from

a main sequence star to a neutron-dominant star through a supernova explosion.

Generally neutron stars are of the order of the solar mass, M� where the mass is

compressed into a sphere of radius around 10km, which is little more than 6 miles.

This is an extreme level of compression and density, which provides physicists with

an enormous opportunity experimentally and theoretically to understand the physics

of these extremely compact objects. We intend to treat neutron stars as our stellar

laboratories for the duration of the work for the reasons outlined above. As mentioned,

neutron stars are created during stellar evolution, normally at the end of several

stages of stellar collapse [10] [8]. Similar to white dwarves, degeneracy pressure from

neutrons is the pressure that sustains the structure of the star. Generally, neutron

stars are considered to be structured in four layers and an atmosphere, which do not

have clear boundaries but rather blend into one another. The exact density profile,

that is, the composition and ratios of particles in the core of neutron stars, is currently

unknown. Despite this, there are still theoretical models that have been proposed,

one of them is shown in Figure 1.4, from Haensel et al.

1.2.1 Interior Structure of Neutron Stars

While the nucleons of a neutron star come from iron imparted to the star in the

supernova explosion, the atmosphere of a neutron star is composed of a plasma en-

velope [24]. With a surface temperature of ≈ 106K, the structure of a neutron star

9



Figure 1.4. Diagram that shows the interior structure of a neutron star. This dia-
gram shows the interior contains several layers of varying intensity, the outer envelope,
inner crust and so on. The interior structure of stars has implications regarding a
stars dynamics and equation of state. Image taken from Haensel et al. [24]
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envelope is expected to have layers in depth and density as shown in Figure 1.4,

beneath which are the outer and inner crusts of the star. A plasma is considered

as a fluid where a major fraction of the fluid is ionized and the electrons are free in

the mixture. This normally happens when a sufficient temperature is reached, con-

sidering a regular example of excessive heating of a fluid in a tube. Plasma is also

considered an additional phase of matter apart from solid, liquid and gas, due to its

high conductivity and peculiar interactions with electromagnetic fields.

One of the key functions of this outer envelope is thermal insulation, which can

be modified in the presence of a strong magnetic field greater than 1011 Gauss. An

electron-positron plasma has a phase which is used to calculate properties of the

material, such as baryon number density, Coulumb interaction strength, and polar-

ization ε of the gas. The ions that compose the envelope are non-relativistic in the

atmosphere. So, according to plasma physics we treat this layer as a fully ionized

dense plasma [24]. The pressure of this gas can be shown to be responsible through

the effect of electron degeneracy pressure.

Relativistic electrons in thermodynamic equilibrium are described using Fermi-

Dirac statistics

f(E − µe, T ) =
1

exp((E − µe)/kT ) + 1
(1.4)

=
∞∑
n=0

(−1)n exp{−nβ(E − µe)} (1.5)

while they are moving with relativistic energies. Here and throughout this work,

β = 1/kT . The number density can then be computed by integrating over phase

11



Figure 1.5. An equation of state graphed against exact values for the density versus
pressure for a degenerate electron gas Haensel et al. [24]

space

ne = 2

∫
f(E − µe, T )

d3p

(2π)3
(1.6)

= 2

∫ ∞∑
n=0

(−1)n exp{−nβ(E − µe)}
d3p

(2π)3
(1.7)

For strongly degenerate electron gases an accurate approximation for the pressure

can be found by setting T=0, and the description for white dwarves and neutron star

envelopes can be regarded as being dominated by the effects of strongly degenerate

matter, as can be seen in Figure 1.5. For ultra relativistic and non-relativistic limits

the pressure is given by [24]

P = Kρ1+1/n (1.8)

where K is a constant and n is the polytropic index, n = (1 − γ)K + γ, where γ is

the ratio of heat capacities at constant volume and constant pressure. This is also

the equation of state plotted in Figure 1.5. While there are intermediate areas of
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the plasma where the density is far less than the fully dense case, computational

techniques have allowed for the interpolation of the dense equation of state in order

to predict the effects and properties of the plasma at lower densities.

The outer crust is an area where heavy elements are found, normally expected in

a structure resembling a crystal or lattice. The equation of state is based on a pure

neutron gas at very high density. Neutron drip, where a structure of heavy nuclei is

disfavored over a neutron superfluid is between the inner and outer crusts. Further

than that we expect the superfluid to be dominating the interior structure, and many

equations of state and neutron star models have hypothesized what could lie at the

innermost core of the star [11].

Neutron drip is an important concept as we move closer to the core, as mentioned

[11]. In general, when a particle process between nuclei such as protons and neu-

trons take place, energy is either required or released in order for the reaction to

be energetically viable. There are certain combination numbers of nucleons (that is,

neutrons and protons) that when another nucleon is acquired, it immediately decays.

The number of nucleons required before such a spontaneous emission occurs is called

either the neutron or proton drip line. This ”drip line” is a boundary where imme-

diate emission of a proton or neutron takes place, in some sense the limit of stability

of an atomic nucleus to take on another proton or neutron.

In neutron star cores, this becomes important, as the process of inverse beta decay

takes hold and relativistic electrons combine with protons to produce a neutron and

electron antineutrino

p+ e− → n+ ve

If this process did not occur, nuclei would get infinitely large, however, due to strong

Coulomb interactions between nuclei, fission occurs at a mass number A=56 (total
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number of protons and neutrons) [50]. Because of relativistic electrons and inverse

beta decay, more neutrons exist than protons in these nuclei and the strong Coulomb

interactions play less of a role (due to the lack of charge). At a critical density

where Coulomb interactions become less dominant due to the neutron to proton

ratio, ∼ 4× 1011g cm−3, neutron drip occurs and neutrons leak out of the nuclei due

to instability of the particle interaction [50]. This causes free neutrons to exist with

electrons and nuclei as we move closer to the center, and the pressure of the system

at higher density occurs from these neutrons obtaining their lowest energy level from

the Pauli exclusion principle.

1.2.1.1 Superfluidity

Superfluidity is a quantum phenomena that occurs in fluids causing them to have

frictionless flow. This can result in infinitely rotating vortices in the fluid and generally

complex quantum behavior. Regarding superfluids, due to the energies involved in

neutron star interiors, neutrons and protons exist in a superfluid state as mentioned.

This can lead to some interesting physical phenomena such as neutron vortices which

can affect for example, pulsar timing and indeed may be an explanation for pulsar

glitches. Superconductivity, where fermions carry electric current with little to no

resistivity under a critical temperature is also a phenomena related to superfluidity.

Near neutron drip we find that the fluid of free electrons forms into a superfluid

by forming Cooper pairs [49]. Since the total spin of a Cooper pair is 0 or 1, and

integral, the Pauli Exclusion principle need not be obeyed and the system becomes

bosonic. The neutron pairs that condense into the ground state is what composes the

superfluid in the neutron star [11] [44]. In this state quantum hydrodynamics must

be used in order to understand the dynamics of the vortices produced. Quantum

hydrodynamics is the study of quantum systems using an alternative formulation of
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Schrodinger’s equation, using hydrodynamic quantities such as flow velocity and mass

density. Further complexifying the issue is the possibility of strong magnetic fields.

At this stage we will defer to the existing literature [44] [38] [39] which includes a

detailed discussion of magnetohydrodynamics for those interested, as the area is a

very interesting area of research however not especially pertinent to our discussion.

1.3 Equations of State (EoS)

There is a lot of theoretical work in search of correct equations of state for compact

objects. An accurate equation of state can yield a mass-radius relation using general

relativity. We use equations of state in order to understand the relationship between

density and pressure inside white dwarves and neutron stars. These equations of state

are guided by experiment but are developed theoretically. One of the first studies in

this direction was the derivation of the equation of hydrostatic equilibrium for a

neutron star by Tolman, Oppenheimer and Volkoff [40]. After this research headed

towards finding an EoS for dense nuclear matter that included nuclear and baryonic

interactions, with an eye towards different possibilities such as the case of neutron

stars that are composed of different phases of nuclear matter.

Since there is some uncertainty in the density profiles of neutron stars, it allows

researchers to speculate on possible physical processes taking place inside neutron

stars, which is discussed by Alvarez-Salazar and Quimbay [4]. Alvarez-Salazar et al.

analyzed various density profiles from different equations of state and applied cooling

models in order to better understand the physical processes going on inside the stars.

Specifically, they numerically calculated the neutrino and photon luminosities based

on cooling models, compared them to experiment and drew conclusions about the

dominant processes in neutron stars.
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Figure 1.6. Graphs of density in relation to the center of a neutron star for different
equations of state. The result shown here was obtained from the computational
analysis and subsequent paper of Alvarez-Salazar [4].
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1.3.1 Neutrinos and Stars

In the 1930s, Wolfgang Pauli postulated that a massless particle needed to exist to

conserve lepton number and momentum, he called it the ”neutrino”. Hans Bethe

had theorized that neutrinos were produced in the Sun during their thermonuclear

reactions. The Homestake experiment in the 1960s really was the first to give birth

to neutrino astronomy and of course detect neutrinos from the Sun as well. This

in turn allowed for scientists to determine the specifics of fusion processes which in

turn allowed major developments in stellar evolution theory to occur. The observed

neutrinos during experiment differed by a significant fraction, and to account for this

explanation of neutrino oscillation was proposed.

In beta decay, neutral fermionic particles called neutrinos are needed to conserve

lepton number, momentum and energy. While originally proposed as massless, we

now understand neutrinos have a small nonzero mass. Additionally, neutrinos come

in three flavors, or species, the electron neutrino, muon neutrino and tau neutrino. It

is also known that neutrinos created with a specific flavor may oscillate or transform

into another flavor spontaneously. Neutrinos have antiparticles called antineutrinos,

which are the right-handed chirality partners in the electroweak theory of the regular

neutrinos, which are left-handed massless neutrinos. Neutrinos interact with the weak

interaction only and belong to a class of particles called lepton.

Neutrino oscillation is the process that allows for one flavor of neutrino to change

into another mid-flight, and there is currently much research focused on this phe-

nomena. Despite there being a suitable explanation for this discrepancy, it cannot

be accommodated in the standard electroweak model of particle physics described

as SU(2) × U(1), and thus extensions have been proposed to the Standard Model

in order to find a way to converge experiment with theory. Since neutrinos do not
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interact strongly with matter or the electromagnetic field, they give us a large amount

of information of the source, and where to find large concentrations of high energy

particles.

1.3.2 Neutrino Emission via URCA/mURCA

It is well established that after a supernova explosion and during the birth of a neutron

star, very quickly a neutron star will cool through the emission of neutrinos that are

produced in the star by various leptonic processes and nuclear reactions.

The neutrino emission processes depend on the composition and location in the

star, but generally e−e+ annihilation, plasmon decay and electron synchrotron all

contribute to the neutron star cooling from neutrino emission [22]. There are two

major types of cooling scenarios for neutron stars, enhanced and standard scenarios.

For each, there is a respective Urca process that is theorized as the main source of

energy loss, the Modified Urca (MUrca) and direct Urca (DUrca) processes. In the

neutron star core, the Urca reactions are considered to be much more dominant in

terms of emissivity than on the crust. The Urca reaction proceeds by the semi-leptonic

decays or scattering processes caused by the weak decay are,

B1 → B2 + e− + ν̄e (1.9)

B2 + e− → B1 + νe (1.10)

where B1 and B2 are baryons (usually neutrons or protons), e− the electron and νe

the electron-neutrino, corresponding to beta decay and is the most common process

in the case of the neutron star. This is a charged weak current interaction [44]. There
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is another important reaction called the modified Urca process

B1 + C → B2 + C + e− + ν̄e (1.11)

B2 + C + e− → B1 + C + νe (1.12)

As the process involves the neutrino, this is a weak interaction process, as the

neutrino only interacts weakly. The weak interaction in general is involved in nuclear

decay processes, and the range of the weak force is generally limited to subatomic

distances less than the diameter of a proton. Particles that obey the Pauli exclusion

principle such as electrons and neutrinos are involved in the weak interaction and

exchange force-carrying intermediate vector bosons, the charged W and neutral Z

particles. The W boson is involved in charged current interactions and the Z boson

is involved in neutral current interactions [46]. The modified Urca process is not a

higher order process but one that becomes dominant in stars with lower densities,

specifically in superfluid outer crusts. Both reactions radiate energy away from the

star via neutrino emission. Density profiles are used to numerically estimate various

properties of the neutron star and neutrino emissivities.

Similarly, while we know neutrinos play a role in cooling, we do not know the

exact matter composition and thermodynamic properties of neutron stars, which is

why equations of state are needed to express the relationship between pressure and

density. Neutrino emissivity needs to be calculated for each equation of state for

every region, so techniques needed to be developed in order to estimate the amount

of cooling based on possible emissivity rates.

1.3.3 Constraints on the Equations of State

Due to the nearly unlimited theoretical models that can be constructed, the very

fundamental way to construct valid equations of state is by using observational state
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Figure 1.7. Convergence of the Hulse-Taylor pulsar mass over time. The error bars
are at the 2σ confidence interval. Notice that the bars virtually disappear around the
year 2000.

from various methods [36]. Most of the techniques employed today are focused on

reducing the uncertainty in the mass and radius of neutron stars, otherwise known

as the mass-radius relation.

In a binary system such as a neutron star and white dwarf binary, we can obtain

accurate results for the masses due to general relativity. The effect from the star

spinning is also incorporated if one of the stars is a pulsar for even greater accuracy.

For isolated neutron stars thermal emission from X-rays remains the best way to

determine the radii of neutron stars. NICER, the Neutron star Interior Composition

Explorer, is a NASA project that seeks to generate precision measurements of neutron

stars, in order to put limits on their mass and radii. The project determines the size

of a star using X-ray timing and lightcurve analysis, as well as X-ray beam properties.
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Figure 1.8. An image of the Neutron star Interior Composition Explorer (NICER)
Source: NASA

This method is more complicated than using a neutron star in a binary, but it remains

possible using computational techniques to infer the mass-radius relation.

In addition to the above equations of state are constrained by observation of

short and long pulsar timing, including submillisecond pulsars, the observation of

burst neutrinos from Supernova 1987A and pulsar glitches, which are long and short

disturbances in pulsar timing.

1.3.4 Magnetars, Pulsars and Strange Quark Stars

Pulsars are rotating neutron stars that give off electromagnetic signals at timed inter-

vals, detected first in 1967 and originally predicted to exist in the 1930s. Depending

on the type of radiation, pulsars may emit radio, X-ray or gamma rays. Due to

the complex interactions in the atmospheric plasma, a magnetosphere that is present

above the atmosphere can produce and emit electromagnetic radiation as particles

from the underlying plasma are accelerated in the magnetic fields. This is thought to
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be the mechanism of the electromagnetic emissions from at least some type of pulsars.

Most known neutron stars are radio pulsars [24], and radiowave emission from these

stars are captured by radio telescopes with high precision allowing a pulsar’s period

to be established with very high accuracy.

As discussed, the atmospheric plasma allows for rich dynamics of the magneto-

sphere to take place. Generally these surface fields are strong, on the order of (on the

surface) 1011− 1013 Gauss. Magnetars are neutron stars with a super-strong rotating

magnetic field on the order of B ∼ 1014 − 1015 Gauss. Currently, not too much is

known about the cause of these neutron stars with super-strong magnetic fields, but

observations have linked X-ray pulsars that are not in a binary system to neutron

stars that emit irregular short gamma ray bursts (soft gamma repeaters, or SGRs)

as potentially the same class of object as their magnetic fields should be of the same

order of magnitude [24].

A theorized type of compact star called a Quark star has been proposed as a pos-

sible end product of stellar evolution as well. In general, quarks are a fundamental,

bound particle combined to form composite particles such as protons and neutrons,

which are considered very stable, as baryonic matter is part of the everyday experi-

ence. For example, the neutron has a lifetime around 10 minutes, and the possibility

of proton decay is still under theoretical investigation. The neutron and proton con-

sist of up and down quarks, however there are other quarks such as the strange,

charm, top and bottom quark that compose other, relatively unstable particles. As

discussed, after neutron star cores have been under sufficient pressure, the individual

neutrons will go through a phase transition from hadronic matter into a quark-gluon

plasma (QGP), a phase where the quarks are asymptotically free [43] under very high

density and pressure due to gravitational forces. In this state of matter, via the weak-

interaction, a significant portion of the down quarks in the QGP turn into strange
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quarks, which at sufficient density and pressure is more stable than regular baryonic

matter at temperatures and densities near our everyday experience. This ”strange

matter” is hypothesized to exist at some or all neutron star cores, and currently is

only theoretical, as there has not been any observable evidence yet for the existence

of strange quark or strange matter, at any temperature or density [24].

As can be seen, the various aspects of compact stellar objects implies that we

will need some mathematical formalism in order to use theory to understand and

interpret experimental data and make predictions about unknowns. To that measure

we will employ many body field theory techniques in order to make various estimates

for neutron star interiors in conditions that were explained, that is, at the very dense

and high temperature regimes. Without question we would anticipate the predictions

made will lead us onto a more accurate equation of state for inner core of the star,

which in turn will provide us with a way to verify our results using measurement

techniques defined earlier. Although the instrumentation may not currently exist

to verify the results, further development of methodology will allow us to either

experimentally favor or disfavor the hypothesis that our predictions support. The

following chapter intends to elaborate on the mathematical techniques that are used

in the development of our predictions. The results that then follow may clarify the

dynamics of compact stellar cores and give rise to more certainty in correct models

of the equation of state of neutron stars.

In the rest of this work we elaborate on mathematical preliminaries and study

the propagation of particles in stellar media. We use the renormalization parameters

of quantum electrodynamics (QED) in order to do this in hot and dense media with

strong magnetic fields. Neutron stars allow us to investigate this regime and the

properties of charged leptons in this medium. The next two chapters develop the
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necessary mathematical framework to understand these calculations to, especially,

find properties of electrons in neutron stars.
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CHAPTER 2

MATHEMATICAL FRAMEWORK

2.1 Introduction

As we continue to ask the question of how we intend to obtain predictions of highly

condensed states, it makes sense to discuss the mathematical framework which helps

to make such predictions. We deal with, in the case of neutron stars, a highly com-

pressed and condensed form of matter where countably many baryons are smashed

so tightly the densities in this space rivals the densities found in an atomic nucleus.

These extremes, like we have mentioned, will require us to move outside the typical

toolset a researcher is familiar with, and many-body physics techniques which are

commonly used in condensed matter theory and applications will become very useful

in order to tackle problems of prediction in the case of equations of state of these

compact stellar objects.

Many Body Physics (MBP) deals with finding the dynamics of bodies more than

two [14] [15]. As is well understood, certain three body problems can be reduced

to a two body problem, especially gravitationally. The nature of the system under

study implies that we will need to apply a consistent framework that also adheres

to the principles of quantum mechanics, as the objects under study are individual

particles like baryons and leptons. Additionally there is no real upper bound on the

number of bodies that need to be modeled, so it is fair to say we are not restricted

to search for methods of just a three or four body solution, but in fact a very large

number. Because of this we rely heavily on statistical methods, the understanding of

phase transitions and spin statistics. Many of the methods thus inevitably share some

features with statistical mechanics, and may be familiar. The difference in our case is
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normally the inclusion of quantum mechanics and relativity since we deal with high

energy due to extremely high temperatures and pressures due to gravitational forces.

This approach is what we intend to use throughout this work, and specifically theories

of the field under finite temperature and density (FTD), which will be elaborated on

in the next chapter.

In general we seek to apply many body theory to stellar systems in order to find

equations of state of the physical system that fit observational results. As mentioned,

we wish to incorporate the effects of spin statistics, field theories and phase tran-

sitions in order to find physically valid results. It is worth noting that there are

non-relativistic methods (Bethe-Brueckner-Goldstone expansion) to solving nucleon-

nucleon interactions, which involve a perturbation around the ground state at low

energies, but since the relativistic effects are assumed to be important to us we will

neglect a proper treatment of non-relativistic methods and merely acknowledge them

here [44].

2.2 Phase Transitions and Distribution Functions

In this section we will elaborate, at a high level, upon a general model of phase

transitions, the Ising model, and the exact solutions of the model developed by Ernst

Ising, to apply these ideas in neutron stars [5] [51] [28].

2.2.1 Phase Transitions

A general problem in thermodynamic functions is the problem of phase transitions.

Normally, at some given point (called a critical point) for one of the dynamical vari-

ables, we encounter singularities or infinities and the thermodynamic functions ”blow
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up”. There are many examples of phase transitions, such as condensation of gases,

ferromagnetism and superconductivity in materials, etc. which give ample motiva-

tion towards finding a possible model to develop a framework to understand these

phenomena, especially common in dense stars such as neutron stars, which we have

been discussing.

Generally, we primarily deal with systems where we neglect interactions between

particles for simplicity. The study of phase transitions however requires that we

dispense with that simplification, since many transitions, such as condensation or

ferromagnetism, emerge from the basis of inter-particle cooperation, meaning particles

of a system cooperate to exhibit transitions between states. It is reasonable to say,

that in an N-particle system, the number of interactions will grow very large, and

assumptions must be made in order to solve the problem.

Primarily, we assume that the most significant inter-particle interactions emerge

from a particles’ nearest neighbors, and the contribution from further neighbors is not

very significant. From this assumption we can use a set of lattice points to represent

our system, only taking into account the interparticle interactions of a particles’

nearest neighbors. This model can describe many different phase transitions, and one

of the first developed was for ferromagnetism called the Ising model, and is described

below.

The Ising Model Let us assume there exists a lattice of N molecules each having

a magnetic moment µ and is able to take on two different orientations in space. Such

a system can attain 2N possible configurations. If we immerse our lattice within a

magnetic field B then the possible total energy E will be based on the intermolecular

interactions of the lattice and the lattice’s interactions with the magnetic field. If we

use statistical theory we can find a partition function, which will then allow us to
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Figure 2.1. Arrangement of N molecules in a 1-D lattice, otherwise known as an
Ising chain. Image from Pathria Beale [5]

obtain the expectation value of the magnetization of the lattice M̄(B, T ) as a function

of the magnetic field and temperature. In the absence of magnetic fields, we might

find a non-zero magnetization for certain critical temperatures, and in that case we

would say that our model exhibits spontaneous magnetic phase transitions, which is

what the Ising model hopes to show. Our model must also account for the interactions

between neighboring particles, we do this by assuming a certain inter-particle energy

Kij ± Jij where Kij is the Coloumb interaction energy between spins and Jij is the

exchange energy (a purely quantum mechanical effect resulting from the symmetric

exchange of particles with same spin). The difference between the energy of a pair

of parallel and antiparallel spins is ε(↑↑)− ε(↑↓) = −2Jij. This implies that ε(↑↑) is

energetically favored if Jij > 0, and ε(↑↓) is favored if Jij < 0. The former allows for

ferromagnetism, and the latter antiferromagnetism.

This allows us to write the total interaction energy as

E = constant− J Σσiσj

where σ denotes the spin of the particle (being +1 or -1) and the sum is over all nearest

neighbors of a particle, i < j to avoid double counting in neighbor interactions. In
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practice we write the Hamiltonian of this system as

H{σi} = −J
∑
ninj

σiσj − µB
∑
i

σi

This equation says the Hamiltonian of the set of particles σi is equal to the exchange

energy plus (minus) the interaction of the particle with an external field B. Develop-

ing the Hamiltonian allows us to write the partition function of the system

QN(B, T ) =
∑
σ1

∑
σ2

...
∑
σN

exp(−βH{σi})

The rest of the thermodynamics of the system follows:

A(B, T ) = −kT ln(QN)

U(B, T ) = kT 2 ∂

∂T
ln(QN)

C(B, T ) =
∂U

∂T

M̄(B, T ) = −
(
∂A

∂B

)
T

Where M̄(0, T ) would allow us to determine whether the system has a spontaneous

net magnetization. If this is nonzero at some critical temperature Tc then the system

would be ferromagnetic at T < Tc and anti-ferromagnetic for T > Tc.

Exact Solution in 1D We now investigate solutions of the Ising model in one

dimension. The reason for this simple treatment is two-fold, first, this was the model

that Ising himself solved in 1925, and second, there are certain physical phenomena

that this simple model applies to such as adsorption on a protein chain, so it is

instructive and physical to examine the model in 1D. The approach we will use is

not what Ising used but instead we will utilize matrix methods in order to obtain

the final solution. We begin by replacing the particle lattice discussed in the last

section with a closed endless structure, essentially a loop with particles dotted along
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the chain, as shown below. This structure is beneficial as it automatically allows for

easier computation of the nearest neighbors and removes the effect of particles at the

’edge’ of the lattice.

We write our Hamiltonian in the same manner as previously discussed, except our

sum over nearest neighbors instead is a sum from 1 to N, and spin interactions are

calculated only for the particle immediately in front of the current particle:

HN{σi} = −J
N∑
i=1

σiσi+1 −
1

2
µB

N∑
i=1

(σi + σi+1)

Where σN+1 = σ1. Lets say we can write the partition function as a sum over spins

of some product of matrices:

QN(B, T ) =
∑
σ1=±1

...
∑

σN=±1

〈σ1| P̂ |σ2〉 〈σ2| P̂ |σ3〉 ...

〈σN−1| P̂ |σN〉 〈σN | P̂ |σ1〉

Where P̂ is an operator defined as

P̂ =

eβ(J+µB) e−βJ

e−βJ eβ(J−µB)


Due to the continuous completeness relation

∫
|σi〉 〈σi| = 1, the summations in QN

collapse to give a very simple relation, which we can further simplify using the rules

of matrix algebra:

QN(B, T ) =
∑
σ1=±1

〈σ1| P̂N |σ1〉

= Tr(P̂N)

= λN1 + λN2
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We see that the formulation of the Ising model in matrix mechanics allows for a very

simple expression of the partition function, namely that the partition function is equal

to the trace of the operator matrix to the Nth power. This yields two eigenvalues

raised to the Nth degree, as we expect.

We can find these eigenvalues by solving the eigenvalue equation which is obtained

from the determinant:

|P̂ | =

∣∣∣∣∣∣∣
eβ(J+µB) − λ e−βJ

e−βJ eβ(J−µB) − λ

∣∣∣∣∣∣∣ = 0

We obtain the following characteristic quadratic equation:

λ2 − 2λeβJ cosh(βµB) + 2 sinh(2βJ) = 0

which can be solved easily to give us the eigenvalues of the operator matrix:λ1

λ2

 =

eβJ cosh(βµB) + {e−2βJ + e2βJ sinh2(βµB)}1/2

eβJ cosh(βµB)− {e−2βJ + e2βJ sinh2(βµB)}1/2


Which is a standard result in statistical mechanics. We can assume that λ2 will be less

than λ1, since the second term in λ2 is subtracted, so as N gets large the contribution

to the partition function QN for large N is ≈ λN1 . Thus we can conclude

ln(QN(B, T )) ≈ N ln(λ1)

= N ln eβJ cosh(βµB)±

{e−2βJ + e2βJ sinh2(βµB)}1/2

The rest of the thermodynamics can be derived from the Helmholtz free energy,

A(B, T ) = −NJ −NkT ln cosh(βµB)

+ e−4βJ + sinh2(βµB)
1/2
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Such as the average energy and magnetization

U(B, T ) = −T 2 ∂

∂T

(
A

T

)
= −NJ − NµB sinh(βµB)

e−4βJ sinh2(βµB)

1/2

+

2NJe−4βJ

[cosh(βµB) + e−4βJ + sinh2(βµB)
1/2

]{e−4βJ + sinh2(βµB)}1/2

M̄(B, T ) = −
(
∂A

∂B

)
T

=
Nµ sinh(βµB)

{e−4βJ + sinh2(βµB)}1/2

We can see from this that as B approaches 0, M̄ also approaches 0, showing that

spontaneous magnetization is not possible for finite T. However, at T=0, sinh(∞) = 1

and M̄ = Nµ which shows there is a theoretical phase transition at Tc = 0 and a

spontaneous magnetization occurs for the system at this temperature. Despite this,

the phase transition at Tc = 0 is only theoretical, as an actual temperature this is not

attainable by any system.

The last section presented an exact solution to the Ising model in broad terms in

one dimension. The model has been extended to two and three dimensions, however

the techniques used to solve the three dimensional case are not exact and instead

numerical techniques are used to obtain a solution. While we do not go into detail

here about the solution of the Ising model in 2-D, we note the derivation involves

the assumption of the existence of a square lattice (as opposed to an infinite chain),

graph theory to enumerate the lattice, and dual transformations in order to obtain a

model where the limit between high and low temperature lattices meet.

The subject of the Ising model and phase transitions generally is more involved

mathematically and exact analytical solutions are almost impossible. Therefore, the

majority of solutions in the modern day use numerical methods such as Monte Carlo,
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instead of seeking exact solutions. Most of the analysis (which we omitted) of the

1-D model involves mean-field theory which is inaccurate [5].

2.2.2 Distribution functions

Much has been said about the dependence of our results in the high temperature

and density regimes, which will include later discussion on propagators modified by

spin statistics functions, nF and nB, Fermi-Dirac and Bose-Einstein statistics. Thus

it may be worthwhile to present a brief review to understand the significance in the

context of statistical mechanics. The kinetic theory of gases, where particles in a

Figure 2.2. Graph of Maxwell-Boltzmann distribution. Huang [25]

gas are much smaller than the volume in which they are contained, non-interacting

amongst themselves, and there are a large number of them to justify a statistical

treatment, gives classical results that we are familiar with, such as the ideal gas law,

PV = NT (and kB = 1), where pressure P, volume V, the number of molecules N

and temperature T are related (it can also be written in terms of the gas constant
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R and moles n, PV = nRT ). It is relevant to ask given the fundamental equation

of thermodynamics, E = TS - PV + µN, where S is the entropy, µ is the chemical

potential, if there is a distribution that encapsulates the probability of each particle

in a particular energy state.

Maxwell-Boltzmann (MB) statistics allows us to calculate the expected value of

the number of particles N in a particular energy microstate Ei. Derived from classical

statistical mechanics, the expression is

N̄m = gie
β(µ−Ei) (2.1)

Where gi is the number of states that have a particular energy level Ei, to account for

degeneracy, and β = 1/T . As this is classically derived, there is no attempt to treat

particles as indistinguishable, as quantum mechanics tells us. In fact the assumption

of these statistics is such that switching two particles is a new, unique configuration,

which is a classical idea inherently. It is worth noting that there is no way to account

for spin in the statistics, so there is no real hope of extending this idea into quantum

mechanics. The distribution function for Maxwell Boltzman statistics is a probability

distribution of the various energies of particles of the system, is usually written as a

function of average velocity or momentum < p >

f(~p) =
( 1

2πmT

)3/2
e−

~p2

2mT (2.2)

is called the Maxwell-Boltzmann distribution. In the grand canonical ensemble, which

is a statistical model that assumes a system is in equilibrium with a heat bath and

particle reservoir such that the system can exchange energy and the number of par-

ticles, we can derive quantum statistics of indistinguishable particles. There are two

basic forms of spin statistics. Bosons can accumulate in any number of particle energy

states without limit, in contrast to fermions, which may only occupy one energy state
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Figure 2.3. Average number of particles per energy level in a Fermi-Dirac distribu-
tion. Huang [25]

per particle. Bose-Einstein statistics are given as

N̄b =
gi

eβ(Ei−µ) − 1
(2.3)

And the Fermi-Dirac statistics for fermions as

N̄f =
1

eβ(Ei−µ) + 1
(2.4)

Where gi is set to 1 since only one particle can be assigned one energy state as

a fermion (obeying the Pauli exclusion principle). As temperature increases and

particle density decreases, both the Fermi-Dirac and Bose-Einstein statistics recover

the classical Maxwell-Boltzmann distribution.
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Figure 2.4. Average number of particles per energy level compared amongst all
three distributions. Creative Commons

2.3 Lagrangian Formalism

Our Lagrangian density is represented as L = L(φ,∇φ, dφ
dt
, ~x, t), depending on a

scalar field φ = φ(~x, t), the position coordinate ~x, time t and the derivatives of φ with

respect to the time and position.

Hamilton’s Principle states that for monogenic systems the variation in the total

action integrated from t1 → t2 is zero, or stationary value, for the motion. We can

restate Hamilton’s Principle for this continuous system as:

δI = δ

∫ t2

t1

∫
Ld3xdt = 0

Where we vary only φ and its derivatives similar to a discrete system. The varia-

tion of φ at the endpoints is zero at t1 and t2. and the corresponding Euler-Lagrange
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equations are derived from Hamilton’s principle as

∂L
∂φ
− d

dxµ

(
∂L
∂ ∂φ
∂xµ

)
− d

dt

(
∂L
∂ φ
∂t

)
= 0

Where we sum over µ = 1...4, which is used as a dummy index. This Lagrangian

formalism for vector fields in four dimensional space is a straightforward generalization

of the above Lagrangian theory, with more use of tensor notation for simplicity. We

can use summation to describe the vector field φρ as ρ indicates the component of

the field. In electromagnetism, components of a 4-vector field, where the derivative

of φρ with respect to the continuous coordinates is noted with a comma and another

subscript, and ρ = 1...4 can be expressed as:

ηρ,ν ≡
dηρ
dxν

ηi,µν =
d2ηi

dxµdxν

Using this notation our Lagrangian density is a function of the vector field, and the

derivatives of the field with respect to the continuous coordinates:

L = L(ηρ, ηρ,ν , x
ν)

Where Hamilton’s principle can be written as an integral over four dimensional space,

also known as ’minimizing the action’:

δI = δ

∫
L dxµ = 0

The variation of the φρ at the boundary of the surface is zero, and we define a

parameterized φρ such that φρ(x
ν ;α) = φρ(x

ν ; 0) + αξ(xν) where ξ is well behaved

and go to zero at the boundary of the surface. We set the derivative of dI
dα

to zero to

get the extremum:

dI

dα
=

∫
∂L
∂φρ

∂φρ
∂α

+
∂L
∂φρ,ν

∂φρ,ν
∂α

dxµ = 0
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And then integration by parts is used again to obtain

dI

dα
=

∫ [
∂L
∂φρ
− d

dxµ

(
∂L
∂φρ,ν

)]
∂φρ
∂α

dxµ +∫
d

dxµ

(
∂L
∂φρ,ν

∂φρ
∂α

)
dxµ = 0

Where the last integral goes to zero since it can be transformed by a divergence

theorem into an integral over a bounding surface, which is zero by our assumption

that the variation is zero at the boundary of the surface.

dI

dα
=

∫ [
∂L
∂φρ
− d

dxµ

(
∂L
∂φρ,ν

)]
∂φρ
∂α

dxµ = 0

Thus we are only left with the term in brackets, and since the variation is arbitrary

the coefficient must be equal to zero:

d

dxµ

(
∂L
∂φρ,ν

)
− ∂L
∂φρ

= 0

These are the generalized Euler-Lagrange equations for vector fields in four dimen-

sional space. The index µ,ρ runs over µ,ν = 1, 2, 3, 4 [23]. Thus, for a given La-

grangian, such as the electromagnetic Lagrangian density,

L =
−1

16π
FαβF

αβ − JαAα (2.5)

We may use the Euler-Lagrange equations to obtain the equations of motion for

electromagnetism,

1

4π
∂βFβα = Jα (2.6)

Where Fαβ = ∂αAβ − ∂βAα is the electromagnetic tensor, Jα = (ρ,~j) is the four-

current with J0 being the charge density and Ji over i = 1, 2, 3 being the current

density and the components of Aα = (φ, ~A) are the electric potential φ and vector

potential ~A. Historically, the theory of electromagnetism was developed as a theory
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of fields, as elastic disturbances of some invisible medium. Now we have recreated the

formulation used in a terse way, with the assistance of tensor notation and the Euler-

Lagrange equations. While these fields are not stressed much in the development of

classical electrodynamics [26] [56], the formulation has wide application in quantum

theories, as will be discussed.

2.4 Quantum Field Theory

Originally, dynamical interactions in quantum mechanical processes were described

in terms of electron fields, with positrons being the holes created due to the absence

at some part of the electron field . Richard Feynman was able to show in several

landmark papers that we may be able to treat this problem using Greens functions as

solutions of the relativistic form of Schrodinger’s equation. His clever intuition paved

the way for a graphical description of quantum processes that we use today. The

contributions of Feynman and many other physicists developed into some of the most

accurate predictions of any physical theory, the theory of quantum fields, and modern

quantum electrodynamics (QED). Here we describe some of the most relevant points

in order to motivate our continuing discussion.

2.4.1 Klein-Gordon equation

Relativity in quantum mechanics was included by developing the Schrodinger’s equa-

tion in 4-dimensional space. Oskar Klein and Walter Gordon published their Klein-

Gordon equation describing spinless relativistic particles, and the possibility of a rela-

tivistic equation describing particles with spin begun to emerge. To obtain the Klein-

Gordon equation, which is a relativistic equation, we start with the non-relativistic
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equation for the energy of a free particle (it should be noted from here we take

~ = c = k = 1)

H = KE + PE =
p2

2m
+ V

First quantization leads us to the Schrodinger’s equation, from non-relativistic quan-

tum mechanics

Ĥψ = Êψ =
p̂2

2m
ψ (2.7)

As a note, time dependence is accounted for via the energy operator:

Ê = i
∂

∂t
(2.8)

and the momentum operator is proportional to the del operator

p̂ = −i~∇ (2.9)

The Schrodinger’s equation is not relativistically invariant, so the natural place to

start this process is the energy-momentum relation and substitute the first quantized

quantities for momentum and energy:

E2 = p2 +m2 → E = ±
√
p2 +m2 (2.10)

Eψ = ±
√
p2 +m2ψ (2.11)

i
∂ψ

∂t
= ±

√
(−i∇)2 +m2ψ (2.12)

Using the square of the energy, E2 = p2 + m2 as the operator we wish to work with

instead, we obtain a slightly different relation for energy conservation(
∂2

∂t2
−∇2

)
ψ +m2ψ = 0 (2.13)

This equation is applicable to both real and complex fields. Finally, by using the

d’Alembert operator, 2 ≡ 1
c2

∂2

∂t2
−∇2, we can rewrite the Schrodinger’s equation into
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the Klein Gordon equation,

(2 +m2)ψ = 0 (2.14)

Solutions to the KG equation are covariant, however include negative and positive

energies, which are interpreted as particle and antiparticle solutions. The probability

density of the KG equation can be both positive and negative, something that is

corrected by Paul Dirac in 1928.

2.4.2 Dirac equation

In the 1920s, there was a search to find a way to include spin-statistics in the rela-

tivistic Schrodinger’s equation while still describing all the behavior understood from

experiment at the time, such as the model of the hydrogen atom, including such phe-

nomena such as fine splitting. Dirac was interested in finding an equation that was

first order in space and time, in order to correct the issue of negative probabilities

from the KG equation.

His search concluded with the equation named after him, the Dirac equation, a

relativistic equation describing the Fermi statistics of spin-1/2 particles such as the

electron as well as accounting for all of the known phenomena of the hydrogen atom,

such as fine splitting, as well as having a positive definite probability density.

Dirac rewrote the D’Alembertian as a product of two, four-termed equations,

each term having a coefficient that was a matrix. In this way Dirac was able to

see it was possible to have the Schrodinger equation that was first order in space

and time. The realization that a set of matrices satisfy this equation was the key

insight into determining the usual form of the Schrodinger’s equation that not only

incorporated relativistic effects, but also spin. The Dirac equation is written using
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Einstein notation as

iγµ∂µψ −mψ = 0 (2.15)

Where γµ are known as the gamma matrices, and are written as follows:

γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


iγ1 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


(2.16)

iγ2 =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


iγ3 =



0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0


(2.17)

It is worth noting the Dirac equation has positive definite probability density and its

solutions are written in matrix notation, called Dirac spinors.

2.4.3 Second Quantization

To connect the dots we note that the KG equation for massless fields 2ψ = 0 is

satisfied by the general solution

ψ(x, t) =

∫
d3p

(2π)3
(ap(t)e

−i~p·~x + a∗p(t)e
i~p·~x) (2.18)

With the ap(t) satisfying the equation of motion for a harmonic oscillator,

(∂2
t + ~p · ~p)ap(t) = 0

From non-relativistic quantum mechanics we know the analysis of the quantum har-

monic oscillator is easiest by using annihilation and creation operators. Similarly, by
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promoting the ap(t) and ap(t)
∗ to operators and integrating we obtain the Hamiltonian

of the theory as

H =

∫
d3p

(2π)3
|~p|
(
a†pap +

1

2

)
(2.19)

The commutation relations of the theory being similar to the quantum harmonic

oscillator ([a, a†] = 1)

[ak, a
†
p] = (2π)3δ3(~p− ~k) (2.20)

where the 2π factors are conventional. The creation operator a†p creates particles with

momentum p from the vacuum

a†p |0〉 =
1√
2|~p|
|~p〉 (2.21)

The inner product of two separate one-particle states, and identity operator, are

〈p|k〉 = 2|~p|(2π)3δ3(~p− ~k) (2.22)∫
d3p

(2π)3

1

2|~p|
|~p〉 〈~p| = 1 (2.23)

With the factors (2π)3 and 1
2|~p| added by convention. We can check this,

|k〉 =

∫
d3p

(2π)3

1

2|~p|
|p〉 〈p|k〉 =

∫
d3p |~p〉 δ3(~p− ~k) = |k〉 (2.24)

In this way we have quantized the fields leading to the naming of this process sec-

ond quantization. Our quantum field solution to the massless KG equation is now

operator-valued and written as [47]

ψ(x) =

∫
d3p

(2π)3

1√
2|~p|

(ape
−i~p~x + a†pe

i~p~x) (2.25)

2.4.4 Feynman Diagrams, Rules and Probabilities in QFT

There is a somewhat substantial change in notation as we move from Classical Fields

to Quantum Fields, as is required when analyzing phenomena from condensed matter
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systems such as neutron stars. The main quantities we analyze under these theories

are scattering cross sections, otherwise known as the rate at which particles are pro-

duced in the same cross-sectional area. The nature of inclusion of relativistic effects

implies that not only do particles scatter, but particles may be created or destroyed

at certain energies due to the exchange of energy in any collision.

The differential cross section dσ
dΩ

can be given in terms of a parameter called

the scattering amplitude, f(θ, φ), and is defined as the number of particles that

are scattered in an area swept by the solid angle dΩ. This is made clear when

defining Jinc as the incident flux or incident particle current density. The scattering

amplitude f(θ, φ) is the probability amplitude of the scattered spherical wave in the

scattering process. The wave function in the scattering process is given by ψ(~r) =

ei
~k0·~r + f(θ, φ)eikr/r, with f again being the scattering amplitude, also known as the

form factor or structure function. Thus, the differential cross section can be written

as:

dσ(θ, φ)

dΩ
=

1

Jinc

dN(θ, φ)

dΩ
= |f(θ, ψ)|2 (2.26)

We will frequently be attempting to determine quantities related to the differential

cross section, includingM, a dimensionless quantity that is an amplitude proportional

to the scattering amplitude (eg. dσ
dΩ
∼ |M|2).

For all QED processes, we cannot exactly determine M, instead, we sum a per-

tubation series and cutoff the series at some appropriate term that is small enough

to be ignored in order to obtain a result. The method of obtaining these series is

through the summing of various possible orders of perturbative expansions of virtual

loops.

These terms in the expansion can be given a pictorial representation, commonly

known as Feynman diagrams, invented by Richard Feynman in a series of papers on
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quantum electrodynamical interactions. These diagrams make complex perturbative

interactions much easier to describe, visually, as well as making the resulting notation

especially compact and intuitive.

Diagrams such as these are thus the description of a particle exchange, and our

sought-after quantity M is composed of the addition of several of these exchanges.

The exact rules for constructing Feynman diagrams vary with the theory, and these

rules allow for one to read the terms in each diagram, which in turn allows for an

approximation of M.

Fermion propagator
i(/p+m)

p2−m2+iε

Boson propagator
−igµν
p2+iε

Vertex iQeγµ

External Leg Fermions incoming us(p), outgoing ūs(p)

External Leg anti-Fermions incoming νs(p), outgoing ν̄s(p)

External Photons incoming εµ(p), outgoing ε∗µ(p)

Table 2.1. Feynman rules for QED.

Figure 2.5. Vacuum polarization Feynman diagram describing one loop self-
interactions in QED.
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Feynman diagrams represent a transition from an initial state to a final state

due to an interaction. In Figure 2.5, electron positron pairs are created on very

short timescales as the photon propagates through the vacuum. The photons are

represented by the wavy external lines, and the electron-positron pairs are represented

by the middle loop. The interaction probability M can be read from the diagram

using the Feynman rules of QED [47]:

iM = e2ε2∗µ ε
1
ν

∫
d4k

(2π)4
tr

[
γµ

i(/p+ /k +m)

(p+ k)2 −m2 + iε
γν

i(/k +m)

k2 −m2 + iε

]
(2.27)

Where we integrate over all momenta and take the trace to sum over possible spin

states.

We may now discuss some of the Feynman rules in QED, listed in Table 2.1.

For wavy photon lines, our propagator is represented using −igµν
p2+iε

, where gµν is the

Minkowski metric tensor. The internal loop lines representing the spin-1/2 particles

are represented by the fermion propagator
i(/p+m)

p2−m2+iε
. The square of the matrix element

M2 represents the interaction probability. In this way we can compute such quantities

as the effect of vacuum polarization in QED [6] [9].

2.4.5 Renormalization

Renormalization is an essential part of an acceptable quantum field theory and can-

cellation of infinities is required to find measurable parameters of the theory [3] [2] .

Broadly, renormalization is the process of removing infinites so that a finite quantity

may be established and the theory is meaningful. A related idea is regularization,

which allows us to control infinities by introducing a cutoff parameter into the theory.

The idea of introducing a cutoff was not always well-accepted, and historically it has

been viewed with some skepticism [48].
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Regularization From classical physics, we have the mass-energy of the electromag-

netic field

mem =

∫
1

2
E2dV (2.28)

This integral evaluates to q2/(8πr), however it is clear that as r → 0 the quantity

becomes quickly infinite. The mass-energy for the electromagnetic field becomes the

electron mass for re ≈ 2.8 × 10−15 m, which informs us that the theory lacked some

kind of intuition to allow the electron to become a point particle. Restricting the

theory to a finite, non-zero radius is thus one kind of regularization. It hides our

ignorance about scales of physics we do not fully comprehend, and yet still gives us

the opportunity to use the theory practically.

Figure 2.6. A number of possible Feynman diagrams generated from the electron
propagator at one loop.

Renormalization is required in quantum field theory (QFT) in order to obtain finite

quantities from integrals where interaction probabilities are calculated, as stated ear-

lier. Early physicists noted that there were many divergences in the calculation of

perturbation series’ of various processes in quantum electrodynamics (QED).

For example, in the electron’s propagation, it may interact with radiation virtu-

ally and gives self-energy corrections. These produce ”loops” in Feynman diagrams,

and to calculate the outcomes of this process one has to integrate over all possi-
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ble combinations of interactions, including radiative corrections at different orders of

the perturbation series. These Feynman diagrams (which are terms in a perturba-

tion series) usually diverge, and a new prescription had to be developed to tame the

infinities.

As an example of how these infinities might arise, for meson-meson scattering, we

have a matrix element proportional to

M∝
∫ ∞

0

d4k

(2π)4

1

k2 −m2 + iε

1

(K − k)2 −m2 + iε
(2.29)

∝
∫ ∞

0

d4k

k4
(2.30)

Which is very clearly a source of a logarithmic divergence. In quantum electrodynam-

ics, infinities tend to come up in the mass and charge of the electron, as well as the

normalization factor of the field, Z−1
2 . Since we could observe these quantities and

observe finite values, the solution was to separate the Lagrangian of the theory into

finite contributing terms and divergent terms, and then collect and integrate such

that the divergent terms would cancel each other out.

There are many techniques for the regularization of singularities that lead to renor-

malization of the theory. We will only discuss one of the most common techniques,

called dimensional regularization [57] as an effective process to remove singularities

in vacuum theories.

Dimensional Regularization

The idea behind this regularization scheme is to perform a Wick rotation and then

evaluate the integral in d dimensions. Consider a divergent integral like above,

I =

∫
d4k

(2π)4

1

(k2 − c2 + iε)2
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Now rotating by substitution t = iτ into Euclidean space and evaluating the integral

in d dimensions,

I(d) = i

∫
ddEk

(2π)d
1

(k2 + c2)2

∝
∫ ∞

0

dk kd−1

(k2 + c2)2

∝ 1

2
cd−4

∫ 1

0

dx(1− x)d/2−1x1−d/2

∝ Γ(
4− d

2
)

Where in the second to last step we use the substitution k2 + c2 = c2/x and in the

last step we recognized the integral is in the form of a Beta function, thus can be

easily evaluated.

As we approach d→ 4 we see the result approaches infinity, but now our integral

is parameterized by a regulation variable d. This technique can be combined with

renormalization such that the regulation parameter cancels out of the final result. In

this way the objective is to parameterize infinite quantities, we have succeeded, and

the process of regularization is complete [57].

I =
i

(4π)2

[
2

4− d
− log(c2) + log(4π)− γ +O(d− 4)

]
(2.31)

This process, while initially not fully understood as being mathematically rigorous,

had produced results but caused the physics community to be skeptical of the validity

of such approaches. It was not much later, until Wilson [54], that renormalization

techniques were proven to be mathematically consistent, and quantum field theories

became accepted as rigorous.
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CHAPTER 3

FINITE-TEMPERATURE FIELD THEORY

3.1 Finite Temperature and Density Statistical Corrections

We have previously developed quantum electrodynamics in a vacuum. Now we incor-

porate the statistical properties of the medium to study the properties of propagating

particles. Statistical effects from a medium such as temperature and density could

have significant effects from vacuum theories and this is something we wish to prove.

Specifically, in the early universe, it is assumed the hot and dense media is effec-

tively a heat bath as a statistical medium of stars. In order to understand particle

propagation in astrophysical environments, we should consider that particle prop-

erties are modified due to extreme conditions, and extend quantum field theories

to incorporate statistical effects, thereby including high temperature and chemical

potential [32].

By incorporating statistical effects in quantum electrodynamics, we should be able

to model particle propagation in a heat bath, which resembles the state of the early

universe or the cores of some of the most compact objects that inhabit the current

universe, such as neutron stars. The heat bath, as a reminder, is essentially a closed,

large pool of hot and dense particles at thermodynamic equilibrium.

Unfortunately, there is a difficulty with straightforward generalization of quantum

electrodynamics to finite temperature and density, and that is the problem of the heat

bath. By choosing the rest frame of the heat bath, we break Lorentz invariance in the

theory [20] and work to re-establish the co-variance. The imaginary-time formalism is

a 4-dimensional generalization of quantum field theory described in Euclidean space

where time is imaginary and spatial coordinates are real. We can include the effect of
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temperature and chemical potential of the heat bath on the propagating particles in

a medium. However this formalism has the side-effect of giving infinities for certain

temperatures. An alternate formalism, the real-time formalism, has certain advan-

tages that helps to prove order-by-order cancellation of divergences and allows us to

obtain finite quantities [53]. So we cannot leave out a discussion of the advantages

and disadvantages of either formalism.

Additionally, after deriving the theory in the real-time formalism, we must undergo

a renormalization scheme in order to obtain finite quantities from the integration of

matrix elements. This is necessary in order to obtain propagators that are finite and

thus finite interaction probabilities. The program of quantum electrodynamics at

finite temperature is at this point basically complete and we can begin to establish

and discuss quantities such as the fermion self-energy.

Two obvious limits are elected for discussion, T � me, and T � me. Since the

temperature in neutron star cores are of the order T ∼ me ∼ 1010K and the center

of a typical hot star is on the order of T ∼ 106 − 107K [20], the T � me case seems

relevant for most of the universe except for extreme media, such as the quark-gluon

plasma of the early universe or the centers of the most compact stellar objects, an

area which previously discussed is quite unknown. In that sense the T � me case

should be considered not only relevant but extremely interesting from the perspective

of particle propagation.

However, for extremely dense systems, the inclusion of density effects and chemical

potential of particles is required, and the treatment follows lines similarly to the above

for the limits T � µ and T � µ.
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3.2 Real and Imaginary time propagators

As we have established the utility of the real time formalism, we present the results

of real-time formalism that we use for the rest of this paper, and also the results of

the imaginary time formalism for comparison.

The spinless Greens function at finite temperature for the photon in imaginary

time is given by Dolan and Jackiw [16] [20],

Dµν(x) =
2

β

∑
n

∫
d3k

(2π)3
e−i(knt+

~k · ~x)Dβ(k) (3.1)

Where the sum is over discrete n = 0,±1,±2, ...±∞. For a non-interacting field,

Dµν(k) =
−igµν
k2
n − ~k2

(3.2)

With kµ = (kn, ~k) and kn = 2πn
−iβ and β = 1/T . We can see here the time component

k0 = iT2πn is imaginary, as expected. It is worth noting that in Equation 3.1 we

have a sum over an infinite number of k-modes. This sum is what is problematic, and

which we will soon see, is not present in the real-time formalism. The transformation

from the imaginary to real time boson propagator is an application of Wick’s rotation

and analytically continuing the periodic boundary conditions of the imaginary time

propagator to obtain the real-time propagator

D̃µν(k) = −gµν
(

i

k2 + iε
+

2π

eβE − 1
δ(k2)

)
(3.3)

= −gµν
(

i

k2 + iε
+ nB2πδ(k2)

)
(3.4)

Where E = (~k2 + m2)1/2 and kn = 2πn
β

. The important difference is not only that

the summation over n is removed, but the additional term in the propagator which

incorporates the effects of Bose-Einstein statistics (nB) explicitly. This additional
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term is another one of the nice properties of the real time formalism. We now present

the results for fermions. In imaginary time the Greens function is given as

Sβ(x) =
1

−iβ
∑
n

∫
d3p

(2π)3
e−ikxSβ(p) (3.5)

With the definitions the same as above except, kn = (2n+1)π
−iβ . Here we have the

imaginary-time fermion propagator as

Sβ(p) =
i

/p−m
=
i(/p−m)

p2 −m2
(3.6)

Where /p = γµpµ, and the fermion propagator in real-time is

S̃β(x) =
i

/p−m
− 2π

eβE + 1
(/p+m+ iε)δ(p2 −m2) (3.7)

=
i

/p−m
− nF2π(/p+m+ iε)δ(p2 −m2) (3.8)

We have not yet included the effects of density, but the dependence on temperature

and particle distribution is now apparent in both cases, as Equation 3.4 and 3.8

depend on the distribution functions nB and nF respectively. The Feynman rules

for QED at finite temperature will stay the same, apart from these propagators. For

those interested the derivation of these results, Dolan and Jackiw [16] is recommended

for the calculational details.

Real Time versus Imaginary time Finite temperature and density effects are

two parallel approaches to incorporate statistical background effects, both having

their own advantages and disadvantages. The most obvious difference which was

discussed earlier with the most relevance for finite temperature theory is [53] the

covariance of the real-time approach at finite T and the removal of infinities due to

the lack of infinite sums in the real-time formalism. Additionally, the imaginary time
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formalism has periodic boundary conditions which restricts its temperature range.

This restriction is not present in the real-time formalism. Another briefly touched

upon advantage of the real-time approach is the separation of terms in the propagator

into a zero and non-zero temperature component [19]. This can make comparison

of quantities and subsequent analysis between T = 0 and T 6= 0 cases relatively

straightforward. For these reasons we intend to utilize the real-time formalism for

the rest of this work.

These results help us understand contextually how it is possible to obtain a quan-

tum field theory at finite temperature, the link due to Wick’s rotation and analytic

continuation makes such theories possible [57][47]. From this point renormalization

techniques are applied, Feynman diagrams and their associated rules can be devel-

oped, and our theory is complete. The details of this prescription are summed up in

[29] [52] [20] [16]. We will build upon this foundation in order to make our contri-

bution to QFT at FTD by incorporating the effect of strong magnetic fields in the

subsequent chapter.

3.3 Electron Self-Energy and FTD Renormalization

With the basics of the theory established, we can continue to calculating quantities

of interest. The electron interacts with itself as it propagates through the vacuum,

causing divergent Feynman diagrams to be generated at T=0. In order to re-calculate

the effect of the electron self-energy at T 6= 0, we follow a similar process but utilize

the modified propagators to determine the matrix element, renormalize the theory

and calculate the renormalized mass, wavefunction and electron charge constants. We

begin with the electron self-energy (Figure 3.1) at zero-temperature. The Lagrangian
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Figure 3.1. Electron self-energy. Peskin and Schroeder [41]

of this theory [20] is

L = ψ̄0(x)(i /∇−m0)ψ0(x) (3.9)

Where m0 is our un-renormalized electron mass. Using our Feynman rules from stan-

dard QED given in Table 2.1, the matrix element of the self-interaction is determined

from the diagram as

Σ(p) = ie2

∫
d4k

(2π)4

gµν

k2

γµ(/p− /k +m)γµ

k2 − 2p · k + p2 −m2
(3.10)

Evaluation is done using dimensional integration in order to obtain a result parame-

terized by 1/ε

Σ(p) =
−α
4π

[m0 − (/p−m0)]

(
3

ε
− 4

)
+ ... (3.11)

1

ε
=

2

d− 4
+ γ − ln(4π) + ln

(
m2
)

(3.12)

and d is the number of dimensions, γ is the Euler-Mascheroni constant. The propa-

gator 1
/p−m0−Σ(p)

is redefined in such a way to cancel any infinities after regularization,

by introducing a constant Z2 depending on the regularization parameter 1/ε. This
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parameter will drop out of the final result,

G(p) =
Z2

/p−m0 − δm0

(3.13)

δm0 =
−α
4π

(
3

ε
− 4

)
mR (3.14)

Z2 =

(
1− α

4π

(
3

ε
− 4

))−1

(3.15)

Our Lagrangian can now be rewritten using these renormalization constants δm0 and

Z2,

L = Z2( ¯ψR(x)(i /∇−mR)ψR(x) + ¯ψR(x)δm0ψR(x) (3.16)

ψR(x) = Z
−1/2
2 ψ0(x) (3.17)

Where mR = m0 + δm is the observed or renormalized mass of the electron, ψR(x)

is the renormalized wavefunction, dm is the mass renormalization constant, and Z2

is the wavefunction renormalization constant. This standard treatment of the self-

energy will be modified when incorporating the effect of the heat bath. The photon

propagator is modified in a heat bath to be

Dµν(k) = gµν

(
−i

k2 + iε
− 2πδ(k2)nB(k)

)
(3.18)

Where nB(k) = 1
eβk−1

, the Bose-Einstein distribution function. If we re-calculate the

self-energy using the modified propagator we see the benefit of the real-time formalism

Σ(E, ~p) = ΣT=0(E, ~p) + Σβ(E, ~p) (3.19)
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As the self-energy is split into a T = 0 term and β or non-zero T term. ΣT=0 is given

above. The second term is found to be

Σβ(E, ~p) =
α

4π2
[IA(/p−mR)+ (3.20)

/I
∣∣
/p=mR

+ /L
∣∣
/p=mR

(p2 −m2
R) + ...)] +O(exp(−m/T )) (3.21)

IA = 8π

∫
dk

k
nB(k) (3.22)

Iµ = 2

∫
d3k

k0

nB(k)
(k0, ~k)

Epk0 − ~p · ~k
(3.23)

Lµ = − 1

Ep

∫
d3k nB(k)

(k0, ~k)

(Epk0 − ~p · ~k)2
(3.24)

Ep =
√
p2 +m2

R (3.25)

Where in the low-temperature case (T � me) the rest of the series is suppressed on

the order exp(−m/T ). The mass shift in this limit is found to be

δmβ =
παT 2

3m
(3.26)

The details of this result are found in [19]. For the T � m case the renormalized

fermion propagator must be included in the self-energy calculations. The full expres-

sion for the renormalized mass for all T is given as

m2
phys = m2 +

2παT 2

3
+

α

2π2
m2JA(p) +

4α

π

∫ ∞
0

l2dl

El
nF (El) (3.27)

JA =

∫
d3l

El
nF (El)

[
1

EpEl +m2 − ~p ·~l
− 1

EpEl −m2 + ~p ·~l

]
(3.28)

Where nF (E) = 1
eβE+1

. It is important to note the energy dependence in the last two

terms of Equation 3.27, which drop out for low T. The renormalization constant of
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the wave function is found to be

Z−1
2 = Z−1

2 (T = 0)− 2α

π

∫
dk

k
nB(k) +

απT 2

3E2
+ JA −

J0
B

E
(3.29)

JµB =

∫
d3l

El
nF (El)

[
(Ep + El, ~p+~l)

EpEl +m2 − ~p ·~l
− (Ep − El, ~p+~l)

EpEl −m2 + ~p ·~l

]
(3.30)

The full calculations of which are included in [20] [19]. The constants m2
phys and Z−1

2

can also be written in terms of Masood’s abc functions in the limit T � m,

m2
phys = m2

(
1 +

6α

π
b(mβ)

)
+

4α

π
mTa(mβ) +

2απT 2

3

(
1− 6

π2
c(mβ)

)
(3.31)

Z−1
2 = Z−1

2 (T = 0)− 2α

π

∫
dk

k
nB(k)+ (3.32)

απT 2

3E2

(
1− c(mβ) +mβa(mβ)

)
− 5α

π
b(mβ) (3.33)

Where Masood’s abc functions in the limit T � m only are,

a(mβ) = ln
(
1 + e−mβ

)
(3.34)

b(mβ) =
∞∑
n=1

(−1)nEi(−nmβ) (3.35)

c(mβ) =
∞∑
n=1

(−1)n

n2
e−nmβ (3.36)

Where Ei(x) is the exponential integral, again. When discussing the limit T � m

Masood’s abc functions are very small due to the exponential and we have, approxi-

mately in this limit [2],

m2
phys ' m2 +

2παT 2

3
(3.37)

Z−1
2 ' Z−1

2 (T = 0)− 2α

π

∫
dk

k
nB(k) +

απT 2

3E2
(3.38)

58



To compute the renormalization of the QED vertex, we must calculate the vacuum

polarization matrix element to first order (See Figure 2.5 where we have taken the

upper internal leg momentum as k − p ) and dimensionally regularize,

iΠµν(p) = ie2

∫
d4k

(2π)4
tr

[
γµ

(/k − /p+m)

(k − p)2 −m2 + ε
γν

i(/k +m)

k2 −m2 + iε

]
(3.39)

=
α

π
(−p2gµν + pµpν)

1

3ε
+ ... (3.40)

Where again 1
ε

is our regularization parameter. The vertex correction also requires

contributions from other diagrams, the results of those corresponding computations

are simply stated (details can be found within [20]) as

M total
µ (T = 0) = Z−1

2 Z
−1/2
3 (M (0)

µ +MSE
µ +MCT

µ +MV
µ +MV P

µ ) (3.41)

= −eRū(p′)

(
γµ − i

α

2π
σµνq

ν 1

2mR

)
u(p) (3.42)

Where the renormalized electron charge is defined eR = e0Z
1/2
3 ≈

(
1− α

6πε

)
for T=0.

Renormalization at T � m gives us the same result , so there is no significant

contribution to charge renormalization at low temperature [20]. At high temperature

T � m, we find that

Z3 = 1 +
e2

6

1

m2β2
(3.43)

Thus the constant scales as T 2

m2 . This of course implies the possibility of significant

modifications to observables at high enough temperatures, such as the early universe

or compact stellar interiors. For the exact calculations we refer to Ahmed and Masood

[1].

It is worth it to mention why these specific cases T � m and T � m are examined.

This scenario for T � m corresponds to the temperatures of the early universe around

1 second after the Big Bang. Additionally, this regime is important because most of
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the current universe exists in this regime, such as stellar cores. Conversely, there

are some stars which are very hot, as well as the very early universe that require

us to calculate T � m in order to fully understand the complete dynamics of the

universe. For that reason we have to explore both limits. However, that does not yet

incorporate the effects of density and particle exchange. For a thorough analysis of

the early universe and stellar interiors, we will need to understand how the effects of

density play a role, which is the subject of the next section.

3.4 Incorporation of density effects

In our analysis we neglected to include the effects of a dense medium, which is nec-

essary for the understanding of environments such as compact stellar media or the

early universe. If we wish to incorporate density effects, and then subsequently check

the limits where T � µ and T � µ, we can modify the distribution functions to

incorporate this effect. Density implies some kind of mass per unit volume, and for

QED our intermediary particle is the photon which is massless, the Bose-Einstein

distribution function remains unmodified as

nB(k) =
1

eβk0 − 1
(3.44)

Where again β = 1/T . The positron(+) and electron(-) Fermi-Dirac distribution

functions are modified with a chemical potential µ

nF (E ± µ) =
1

eβ(E±µ) + 1
(3.45)

Recalculation of the renormalized constants gives us modifications due to density

effects, which are written in terms of the I, J integrals, which are given in terms

of the a′b′c′d′ and a′′b′′c′′d′′ functions, relevant only in the limit of temperature and
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chemical potential µ > T

m2
phys(T,±µ) = m2

0(T = µ = 0) +
2παT 2

3
+ (3.46)

4α

π2
m2

∫ ∞
m

dEl
El

nF (El ± µ) +
4α

π

∫ ∞
0

l2dl

El
nF (El ± µ) (3.47)

Z−1
2 (T, µ) = Z−1

2 (T = µ = 0)− (3.48)

α

4π

[
IA −

I0

E
− 4π

E2
I1 − 12πI2 −

πE2

2
I3

]
(3.49)

Z3(T, µ) ∼= 1 +
2e2

m2π2

[
J1 +

1

4

[
m2 +

ω2

3

]
J2 −

1

4
m4J3

]
(3.50)

Where for Z−1
2 we use either I ′1, I

′
2, I
′
3 for the electron,

I ′1(T, µ) =

∫ ∞
m

E dEnF (E − µ) =
µ2

2

(
1− m2

µ2

)
− a′(mβ, µ)

β
− c′(mβ, µ)

β2
(3.51)

I ′2(T, µ) =

∫ ∞
m

dE

E
nF (E − µ) = ln

µ

m
+ b′(mβ, µ) (3.52)

I ′3(T, µ) =

∫ ∞
m

dE

E3
nF (E − µ) =

1

2m2

(
1− m2

µ2

)
− 1

4µ2
+
nF (µ−m)

m2
+ (3.53)

β

m

e−β(µ−m)

(1 + e−β(µ−m))2
+ d′(mβ, µ) (3.54)
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The corresponding a′b′c′d′ functions in this limit are given as

a′(mβ, µ) = µ ln 2−m ln 1 + e−β(µ−m) (3.55)

b′(mβ, µ) =
∞∑
n=1

(−1)ne−nβµEi(nmβ) (3.56)

c′(mβ, µ) =
π2

12
+
∞∑
n=1

(−1)ne−nβ(µ−m) (3.57)

d′(mβ, µ) =
∞∑
n=1

(−1)n
(nβ)2

2

(
ln
µ

m
− 1

2nβµ
+ Ei(nmβ)

)
(3.58)
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and I1, I2, I3 for the positron,

I1(T, µ) =

∫ ∞
m

E dEnF (E + µ) =
a′′(mβ, µ)

β
− c′′(mβ, µ)

β2
(3.59)

I2(T, µ) =

∫ ∞
m

dE

E
nF (E + µ) = b′′(mβ, µ) (3.60)

I3(T, µ) =

∫ ∞
m

dE

E3
nF (E + µ) =

nF (µ−m)

m2
+ (3.61)

β

m

e−β(µ+m)

(1 + e−β(µ+m))2
+ d′′(mβ, µ) (3.62)

The corresponding a′′b′′c′′d′′ functions in this limit are given as

a′′(mβ, µ) = m ln 1 + e−β(µ+m) (3.63)

b′′(mβ, µ) =
∞∑
n=1

(−1)ne−nβµEi(−nmβ) (3.64)

c′′(mβ, µ) =
∞∑
n=1

(−1)ne−nβ(µ+m) (3.65)

d′′(mβ, µ) =
∞∑
n=1

(−1)n
(nβ)2

2
e−nβµEi(−nmβ) (3.66)

Where Ei(x) is the exponential integral, Ei(x) =
∫ x
−∞

dt e−t

t
.
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For Z3 the Ji are averaged over the distribution function for both ±µ thus we

have the same function for both positrons and electrons,

J1(T, µ) =
1

2

∫ ∞
m

E dE[nF (E + µ) + nF (E − µ)] (3.67)

=
1

2

[
µ2

2

(
1− m2

µ2

)
− a(mβ, µ) + a′(mβ, µ)

β
− c(mβ, µ) + c′(mβ, µ)

β2

]
(3.68)

J2(T, µ) =
1

2

∫ ∞
m

dE

E
[nF (E + µ) + nF (E − µ)] (3.69)

=
1

2

[
ln
µ

m
+ b(mβ, µ) + b′(mβ, µ)

]
(3.70)

J3(T, µ) =
1

2

∫ ∞
m

dE

E3
[nF (E + µ) + nF (E − µ)] (3.71)

=
1

2

[
1

2m2

(
1− m2

µ2

)
− 1

4µ2
+
nF (µ+m) + nF (µ−m)

m2
+ (3.72)

β

m

[
e−β(µ−m)

(1 + e−β(µ−m))2
+

e−β(µ+m)

(1 + e−β(µ+m))2

]
+ d′(mβ, µ) + d(mβ, µ)

]
(3.73)

It is worth a second mention that the primed integrals are for the electron only, and

the unprimed integrals for the positron. The full details of obtaining these quantities

can be found in [35]. As mentioned earlier, the main significance is of the limit

µ > T > m , since this is the limit in which superdense media like neutron stars exist

at. In the case of µ � m � T we recover the classical limit, with the primed and

double-primed abc functions going to zero, and the positron I integrals as well.
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3.5 Calculating JA

To give a flavor for the calculational details , we can show the result of JA using some

simple integration techniques. Starting from [2] Eq 2.2,

JA =

∫
d3l

El
n±F

[
1

EpEl +m2 − ~p ·~l
− 1

EpEl −m2 + ~p ·~l

]
(3.74)

=

∫ 2π

0

dφ

∫ ∞
0

∫ 1

−1

l2 dl

El

dµ

1
n±F

[
1

EpEl +m2 − plµ
− 1

EpEl −m2 + plµ

]
(3.75)

=
−2π

p

∫ ∞
0

l dl

El
n±F

(
ln

[
EpEl +m2 − pl
EpEl +m2 + pl

]
+ ln

[
EpEl −m2 + pl

EpEl −m2 − pl

])
(3.76)

=
−2π

p

∫ ∞
0

dEl n
±
F

(
ln

[
1 + 2m2p

m2El

1− 2m2p
m2El

])
(3.77)

≈ −2π

p

∫ ∞
0

dEl n
±
F

(
4m2p

m2El

)
(3.78)

≈ −8π

∫ ∞
0

dEl
El

n±F (3.79)

Where we use the assumption that El � m and l dl ≈ El dEl to first order. We use

cos(θ) = µ as an integration variable in the second step, Taylor expand ln(1 + x) in

powers of m
E

, and the integral identity∫ 1

−1

dx

A+Bx
=

1

B
ln

(
A+B

A−B

)
(3.80)

for evaluation in the next one. The approximation (for El � m) is also used,

l = (m2 − E2
l )

1/2 ' El

(
1− m2

2E2
l

)
(3.81)
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3.5.1 Calculating JB and J0
B/E

Similarly, We can use related techniques to find J0
B/Ep, another integral used in these

FTD calculations. For example, in [2] we have the parts of the self energy calculations,

Σ(p) = A(p)Eγ0 −B(p)p · γ − C(p) (3.82)

A(p) =
α

4π2
(IA + I0/E − JA + J0

B/E) (3.83)

B(p) =
α

4π2
(IA + I · p/p2 − JA + JB · p/p2) (3.84)

C(p) =
α

4π
m(IA − 2JA) (3.85)

where JB is given in Donoghue et al. [20] as

~JµB =

∫
d3l

El
nF

[
(Ep + El, ~p+~l)

EpEl +m2 − ~p ·~l
− (Ep − El, ~p+~l)

EpEl −m2 + ~p ·~l

]
(3.86)

If we are attempting to compute A(p) then we will need JA , IA, I0 and J0
B/E. Now

we compute the latter quantity,

J0
B/Ep =

1

Ep

∫
d3l

El
nF (El)

[
Ep + El

EpEl +m2 − ~p ·~l
− Ep − El
EpEl −m2 + ~p ·~l

]
(3.87)

=
2π

Ep

∫
l2dl

El
nF (El)

∫ 1

−1
dµ

[
Ep + El

EpEl +m2 − plµ
− Ep − El
EpEl −m2 + plµ

]
(3.88)

=
2π

Ep

∫
l2dl

El
nF (El)

[
Ep + El
−pl

ln

[
EpEl +m2 − pl
EpEl +m2 + pl

]
− Ep − El

pl
ln

[
EpEl −m2 + pl

EpEl −m2 − pl

]]
(3.89)

≈ −8πb+ 8πT 2

E2
p

c+
8πTM
E2
p

a (3.90)
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In this calculation we use l dl ≈ El dEl, integrals from Appendix A in [34], and

the integral∫ 1

−1

dµ

[
A+

B+ + C−µ
− A−
B− + C+µ

]
= (3.91)

=
A+

C−
ln

(
B+ + C−
B+ − C−

)
− A−
C+

ln

(
B− + C+

B− − C+

)
(3.92)

where A± = Ep ± El, B± = EpEl ± m2 and C± = ±pl. The approximation (for

El � m) is also used,

l = (m2 − E2
l )

1/2 ' El

(
1− M

2

2E2
l

)
(3.93)

3.6 Renormalization at FTD with magnetic field B

Finally, we are prepared to move on to the contribution of magnetic field properties in

such media. Considering that it is accounted by observation that the highest magnetic

fields have been noted in neutron stars (and especially magnetars) we should find it

worthwhile to consider the analysis of particle propagation under finite temperature

and density with a magnetic field. This treatment will cover cases eB
m
> m > T and

eB
m
> T > m in order to determine the properties of such stellar media extensively.

To give an example, let us say we wish to integrate contributions from a magnetic

field B into a quantum field theory at finite temperature and density [30] [31] for

a certain observable such as the electron mass. The results can then be applied

to equations of state for compact objects such as neutron stars in order to make

predictions of a star’s structure.

First we acknowledge that electrons obey Fermi-Dirac statistics (Section 2.2.2)

which allow us to model the energy distribution of a system of electrons, where the

67



number of electrons in a given energy level l is given by

nF (El) =
1

e(El−µ)/kT + 1
(3.94)

Next we make a substitution of El =
√
m2 + eB(2l + 1) where we’ve added a mag-

netic field contribution to the energy from a quantization of charged particles in a

magnetic field, otherwise known as Landau levels.

Recall that the renormalization constant for the electron mass is given by [18] [2]

m2
phys = m2 +

2παT 2

3
+

α

2π2
m2JA(p) +

4α

π

∫ ∞
0

l2dl

El
nF (El) (3.95)

Where the JA integrand is another term proportional to En. Evaluating the integrals

approximately we find a solution and can obtain a renormalized mass in the presence

of a magnetic field at finite temperature and density.∫ ∞
0

l2dl

El
nF =

∫ ∞
0

l2dl

El

1

e(El−µ)/kT + 1
(3.96)

=

∫ ∞
0

l2dl√
m2 + eB(2l + 1)

1

e(
√
m2+eB(2l+1)−µ)/kT + 1

(3.97)

≈ − eB +m2

(eB/kT )3
+ ... (3.98)

In leading order we see a sign change in the result due to the magnetic field, which

might imply a renormalized mass that is lighter instead of heavier under these cir-

cumstances. By using a slightly different notation,

mphys ' m

(
1 +

δm

m

)
(3.99)

δm

m
' − 2α

πm2

eB +m2

(eB/kT )3
+
παT 2

3m2
+

α

4π2
JA(p) + ... (3.100)

To first order, we can see that the renormalized mass now depends on the magnetic

field B. This gives some idea that the magnetic field might produce changes in renor-
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malization constants at some intensity of the magnetic field. We will investigate this

situation more fully in the next chapter.
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CHAPTER 4

CALCULATION OF MAGNETIC FIELD CONTRIBUTION

During the computation of perturbative corrections to the QED parameters, in-

tegrals over the energy play a crucial role in the computation of background effects.

Here we elaborate on the computational details as well as present our own work as

an investigation of the magnetic field effects at finite temperature and density.

4.1 Electron mass in presence of magnetic field

One of the self energy integrals for the electron shows up as a correction to the electron

mass, ∫
p2dp

nF
E

(4.1)

which was originally evaluated in [2]. In order to add a correction to the self energy

due to the presence of a magnetic field, we modify the evaluation of this integral.

Specifically, we make a transformation such that E2 is defined as

E2 = p2 +m2 + eB(2k + 1)

Where we have included a magnetic field contribution to the energy of the electron,

eB(2k+ 1), where k corresponds to the Landau level here. This modifies the fermion

distribution function n±F (E,±µ) through its dependence on the particle energy E

n±F (E,±µ) =
1

eβ(E±µ) + 1
(4.2)

=
∞∑
n=0

(−1)nenβ(E±µ) (4.3)

where β = 1/T , and µ is the chemical potential, as before. We expanded nF as a

geometric series in the last step.
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We borrow the integrals directly from Masood [32] to evaluate Equation 4.1. For

a simple case of k = 0, our electron energy becomes

E2 = p2 +m2 + eB (4.4)

= p2 +M2 (4.5)

with the use of a substitution M2 = m2 + eB. By rewriting the integrand totally

in terms of the energy, we can solve the integral, Equation 4.1, by a substitution of

variables p→ E and get∫
p2dp

nF
E

=

∫
E

(
1− M

E

2)1/2

n±F (E,±µ) dE (4.6)

We now have a series written entirely in terms of energy, where we utilize the binomial

theorem and discard higher order terms in the infinite series giving∫
p2dp

nF
E

=

∫
Ep

(
1− M

E

2)1/2

n±F (E,±µ) dE (4.7)

=

∫
E dE n±F −

M2

2

∫
dE

E
n±F +

3M4

8

∫
dE

E3
n±F + ... (4.8)

Making the substitution M2 = m2 + eB in those integrals from [32] we find,∫
E dE n±F =

c(Mβ,±µ)

β2
+
M
β
a(Mβ,±µ) (4.9)

∫
dE

E
n±F = b(Mβ,±µ) (4.10)

∫
dE

E3
n±F = β2h(Mβ,±µ) (4.11)

71



Given that the abc functions modified to incorporate a magnetic field are

a(Mβ,±µ) = ln
(
1 + e−β(M±µ)

)
(4.12)

b(Mβ,±µ) =
∞∑
n=1

(−1)ne∓nβµEi(−nβM) (4.13)

c(Mβ,±µ) =
∞∑
n=1

(−1)n

n2
e−nβ(M±µ) (4.14)

h(Mβ,±µ) = −
∞∑
n=1

(−1)n
[
β2n2

2
Ei(−nβM) + nβ

e−nβM

M

]
e∓nβµ (4.15)

We can substitute back into 4.8 to find that∫
p2dp

nF
Ep

=

∫
Ep dEp n

±
F −
M2

2

∫
dEp
Ep

n±F +
3M4

8

∫
dEp
E3
p

n±F (4.16)

=
c(βM,±µ)

β2
+
M
β
a(βM,±µ) (4.17)

− m2 + eB

2
b(βM,±µ) +

3(m2 + eB)2

8
β2h(βM,±µ) (4.18)

These results are valid for T > µ. This puts us in a nice position to calculate the

limit where eB
m
> T > m > µ and T > µ > m > eB

m
. Our final solution to the integral

being∫
p2dp

nF
Ep

=
1

β2

∞∑
n=1

(−1)n

n2
e−nβ(M±µ) +

M
β
ln(1 + e−β(M±µ)) (4.19)

− M
2

2

∞∑
n=1

(−1)ne∓nβµEi(−nβM) (4.20)

− 3M4

8
β2

∞∑
n=1

(−1)n
[
β2n2

2
Ei(−nβM) + nβ

e−nβM

M

]
e∓nβµ (4.21)
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Plugging this result back into the renormalized mass [2],

m2
phys = m2 +

2

3
απT 2 +

α2

2π2
M2JA(p) +

4α

π

∫ ∞
0

p2dl
nF
E

(4.22)

= m2 +
2

3
απT 2 − α2

2π2
M28πb(βM,±µ) (4.23)

+
4α

π

[
c(βM,±µ)

β2
+
M
β
a(βM,±µ) (4.24)

− m2 + eB

2
b(βM,±µ) +

3(m2 + eB)2

8
β2h(βM,±µ)

]
(4.25)

Where JA ≈ −8πM
2

m2 b(βM,±µ) [32].

4.1.1 Taylor expansion of Masood’s functions

It is worthwhile to show the direct dependence on a magnetic field B of Masood’s

abc functions through a Taylor expansion. Given M =
√
m2 + eB(2k + 1), to first

order, we can show the dependence on a magnetic field B,

a(βM,±µ) = ln(1 + e−β(M±µ))

= e−β(M±µ) − e−2β(M±µ)

2
+
e−3β(M±µ)

3
− ...

≈ 1− β
(
m
(

1 +
eB(2k + 1)

2m2

)
± µ

)
= 1− eβB(2k + 1)

2m
− βm∓ βµ

Similarly,

c(βM,±µ) =
∞∑
n=1

(−1)n

n2
exp

{
−nβ

(
m

√
1 +

eB(2k + 1)

m2
± µ

)}

≈
∞∑
n=1

(−1)n

n2

[
1− neβB(2k + 1)

2m
− nβm∓ nβµ

]

73



Where we have used the expansions,

ln(1 + x) = x− x2

2
+
x3

3
− ...

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ ...

√
1 + x = 1 +

x

2
− x2

8
+
x3

16
+ ...

It is worth mentioning that the B-dependent term in the final result requires multi-

plication by certain factors in order for the overall quantity to remain unit-less. Now,

we wish to discuss some of the relevant limits to the regime of neutron stars.

4.2 Evaluation at Limits

By factoring out m from M =
√
m2 + eB we obtain a expression that is useful for

evaluation of the limits,M = m
√

1 + eB
m2 , where we evaluate the electron mass when

eB � m2 and eB � m2, where comparisons here are made in the unit MeV2. Of

course, when B is very small, eB
m2 � 1, and we have m

√
1 + eB

m2 ' m and m2
phys and the

existing results are all reproduced (for all Landau levels) as m
√

1 + eB
m2 (2k + 1) ' m

in the limit eB
m2 � 1. The most relevant limits for neutron stars are when eB � m2

and µ > T , to be further discussed. For eB � m2 a significant correction to the

electron mass occurs, since eB
m2 >> 1, we have, by the binomial theorem and the

neglect of higher order terms,

M = m

√
1 +

eB

m2
' m

(
1 +

1

2

eB

m2
+

3

8

(eB)2

m4
+ ...

)
(4.26)

' m

(
1 +

1

2

eB

m2

)
(4.27)

' 1

2

eB

m
(4.28)

74



Replacing this we find that m2
phys is modified to become, with higher order corrections

included and a Landau level k = 0 as,

m2
phys = m2 +

2

3
απT 2 − α2

2π2

(eB)2

4m2
8π b

(
β

2

eB

m
,±µ

)
(4.29)

+
4α

π

[
c(β

2
eB
m
,±µ)

β2
+

eB

2mβ
a

(
β

2

eB

m
,±µ

)
(4.30)

− (eB)2

8m2
b

(
β

2

eB

m
,±µ

)
+

3(eB)4

27m4
β2h

(
β

2

eB

m
,±µ

)]
(4.31)

To extend our results across all Landau levels for eB � m2, we simply restore k in

the substitution eB
m2 → eB

m2 (2k + 1). This leaves the eB � m2 case unchanged, while

the eB � m2 case is now,

M = m

√
1 +

eB

m2
(2k + 1) ' 1

2

eB

m
(2k + 1) (4.32)

Giving us a m2
phys result for all Landau levels when eB

m2 >> 1,

m2
phys = m2 +

2

3
απT 2 − α2

2π2

(eB(2k + 1))2

4m2
8π b

(
β

2

eB

m
(2k + 1),∓µ

)
(4.33)

+
4α

π

[
c(β

2
eB
m

(2k + 1),∓µ)

β2
+
eB(2k + 1)

2mβ
a

(
β

2

eB

m
(2k + 1),∓µ

)
(4.34)

− (eB(2k + 1))2

8m2
b

(
β

2

eB

m
(2k + 1),∓µ

)
(4.35)

+
3(eB(2k + 1))4

27m4
β2 h

(
β

2

eB

m
(2k + 1),∓µ

)]
(4.36)

We can see from this expression that the renormalized electron mass now depends

clearly on B, the magnetic field. Simulation will suggest to us whether this dependence

is significant. To conclude, in the limit eB
m
> T > m > µ we see a dependence on

the magnetic field arise, and in the limit T > µ > m > eB
m

we see existing results

reproduced Masood [2].
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4.2.1 Renormalization Constants

We are now in a position to give the renormalization constants with magnetic field

modifications. As eB
m
� m reproduces existing results we will only need to discuss

the case where eB
m
� m. By defining mphys = m(1 + δm

m
) we substitute the results

from above to obtain the mass renormalization constant,

δm

m
=
απT 2

3m2
− (eB(2k + 1))2

4m4

2α2

π
b

(
β

2

eB(2k + 1)

m
,±µ

)
(4.37)

+
2α

πm2

[
c(β

2
eB(2k+1)

m
,±µ)

β2
+
eB(2k + 1)

2mβ
a

(
β

2

eB(2k + 1)

m
,±µ

)
(4.38)

− (eB(2k + 1))2

8m2
b

(
β

2

eB(2k + 1)

m
,±µ

)
(4.39)

+
3(eB(2k + 1))4

27m4
β2 h

(
β

2

eB(2k + 1)

m
,±µ

)]
(4.40)

The wave-function renormalization constant becomes, in the limit eB � m2,

Z−1
2

(
β

2

eB(2k + 1)

m
,µ

)
' Z−1

2 (T = µ = 0) (4.41)

− (eB(2k + 1))2

4m4

2α

π
b

(
β

2

eB(2k + 1)

m
,∓µ

)
(4.42)

− 5α

π
b̃

(
β

2

eB(2k + 1)

m
,µ

)
(4.43)

− 2
αT 2

πE2

[
c̃

(
β

2

eB(2k + 1)

m
,µ

)
− π2

6
(4.44)

−mβã
(
β

2

eB(2k + 1)

m
,µ

)]
(4.45)
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Where the ãb̃c̃ give the net contributions of Masood’s abc functions over the positron

and electron,

ã(Mβ, µ) =
1

2

[
a(Mβ, µ)− a(Mβ,−µ)

]
(4.46)

b̃(Mβ, µ) =
1

2

[
b(Mβ, µ)− b(Mβ,−µ)

]
(4.47)

c̃(Mβ, µ) =
1

2

[
c(Mβ, µ)− c(Mβ,−µ)

]
(4.48)

The correction to Z3, the electron charge renormalization constant [1] will become

Z3 = 1− 8m2e2

(eB(2k + 1))2π2

[
1

β2
c̃

(
β

2

eB(2k + 1)

m
,µ

)
(4.49)

− eB(2k + 1)

2mβ
ã

(
β

2

eB(2k + 1)

m
,µ

)
(4.50)

− 1

4

(
(eB(2k + 1))2

4m2
+
ω2

3

)
b̃

(
β

2

eB(2k + 1)

m
,µ

)]
(4.51)

4.3 Renormalization Constants for Various B Ranges

However, in order to fully understand neutron stars, we must incorporate density

effects such that µ > T and examine eB
m
> µ > T > m, as well as µ > T > m > eB

m
.

Estimates suggest T ∼ 70 MeV and µ ∼ 300 MeV in certain circumstances, so these

are physically relevant parameters estimated from observation. For the magnetic field,

we could have anywhere from eB
m
∼ 1−500 MeV, so these calculations might apply to

some of the most magnetic objects in the universe. Recall from the previous chapter

that [35] we use the I and J integrals in the limit µ > T (I ′1, I
′
2, I
′
3 for the electron,
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and unprimed I for the positron),

δm

m
(T, µ) ' παT 2

3m2
− 2α

π
I2 +

2α

πm2

[
I1 −

m2

2
I2 −

m4

8
I3

]
(4.52)

Z−1
2 (T, µ) = Z−1

2 (T = µ = 0)− (4.53)

α

4π

[
IA −

I0

E
− 4π

E2
I1 − 12πI2 −

πE2

2
I3

]
(4.54)

Z3(T, µ) ∼= 1 +
2e2

m2π2

[
J1 +

1

4

[
m2 +

ω2

3

]
J2 −

1

4
m4J3

]
(4.55)

Now we modify the I and J integrals to support a magnetic field B, where eB
m
� m

and M' eB(2k+1)
2m

in this limit

I ′1(T, µ,B) =
µ2

2

(
1− (eB(2k + 1))2

4m2µ2

)
− a′(Mβ, µ)

β
− c′(Mβ, µ)

β2
(4.56)

I ′2(T, µ,B) = ln

(
2mµ

eB(2k + 1)

)
+ b′(Mβ, µ) (4.57)

I ′3(T, µ,B) =
2m2

(eB(2k + 1))2

(
1− (eB(2k + 1))2

4m2µ2

)
− (4.58)

1

4µ2
+

4m2nF (µ− eB(2k+1)
2m

)

(eB(2k + 1))2
+ (4.59)

2mβ

eB(2k + 1)

e−β(µ−M)

(1 + e−β(µ−M))2
+ d′(Mβ, µ) (4.60)
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The corresponding a′b′c′d′ functions in this limit are given as

a′(Mβ, µ) = µ ln 2− eB(2k + 1)

2m
ln

(
1 + e−β(µ− eB(2k+1)

2m
)

)
(4.61)

b′(Mβ, µ) =
∞∑
n=1

(−1)ne−nβµEi(n
eB(2k + 1)

2m
β) (4.62)

c′(Mβ, µ) =
π2

12
+
∞∑
n=1

(−1)ne−nβ(µ− eB(2k+1)
2m

) (4.63)

d′(Mβ, µ) =
∞∑
n=1

(−1)n
(nβ)2

2

(
ln

[
2mµ

eB(2k + 1)

]
− (4.64)

1

2nβµ
+ Ei

[
n
eB(2k + 1)

2m
β

])
(4.65)
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and I1, I2, I3 for the positron,

I1(T, µ) =
a′′(Mβ, µ)

β
− c′′(Mβ, µ)

β2
(4.66)

I2(T, µ) = b′′(Mβ, µ) (4.67)

I3(T, µ) =
4m2nF (µ− eB(2k+1)

2m
)

(eB(2k + 1))2
+ (4.68)

2mβ

eB(2k + 1)

e−β(µ+
eB(2k+1)

2m
)

(1 + e−β(µ+
eB(2k+1)

2m
))2

+ d′′(Mβ, µ) (4.69)

The corresponding a′′b′′c′′d′′ functions in this limit are given as

a′′(Mβ, µ) =
eB(2k + 1)

2m
ln

(
1 + e−β(µ+

eB(2k+1)
2m

)

)
(4.70)

b′′(Mβ, µ) =
∞∑
n=1

(−1)ne−nβµEi(−neB(2k + 1)

2m
β) (4.71)

c′′(Mβ, µ) =
∞∑
n=1

(−1)ne−nβ(µ+
eB(2k+1)

2m
) (4.72)

d′′(Mβ, µ) =
∞∑
n=1

(−1)n
(nβ)2

2
e−nβµEi(−neB(2k + 1)

2m
β) (4.73)
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Where Ei(x) is the exponential integral, Ei(x) =
∫ x
−∞

dt e−t

t
, as before. The Ji become

J1(T, µ,B) =
1

2

[
µ2

2

(
1− (eB(2k + 1))2

4m2µ2

)
− a′′(Mβ, µ) + a′(Mβ, µ)

β
− (4.74)

c′′(Mβ, µ) + c′(Mβ, µ)

β2

]
(4.75)

J2(T, µ,B) =
1

2

[
ln

2mµ

eB(2k + 1)
+ b′′(Mβ, µ) + b′(Mβ, µ)

]
(4.76)

J3(T, µ,B) =
1

2

[
2m2

(eB(2k + 1))2

(
1− (eB(2k + 1))2

4m2µ2

)
− 1

4µ2
+ (4.77)

nF (µ+ eB(2k+1)
2m

) + nF (µ− eB(2k+1)
2m

)

m2
+ (4.78)

2mβ

eB(2k + 1)

[
e−β(µ− eB(2k+1)

2m
)

(1 + e−β(µ− eB(2k+1)
2m

))2
+

e−β(µ+
eB(2k+1)

2m
)

(1 + e−β(µ+
eB(2k+1)

2m
))2

]
+ (4.79)

d′(Mβ, µ) + d′′(Mβ, µ)

]
(4.80)

For µ � T > m > eB
m

the classical limit is obtained, so we do not discuss it too

deeply. Simulations will suggest whether eB
m
> µ > T > m or µ > eB

m
> m > T is the

more significant limit, which is the subject of the next section.

4.4 Calculation of QED Renormalization Constants

For convenience we review the limits in which discussion is most relevant to our work.

The Superdense Limit (µ > T ) The next limit we must discuss is the superdense

limit, where µ > T > m � eB
m

, where density and temperature are high and the
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electron mass low.

δm

m
(T, µ) ' παT 2

3m2
− 2α

π
I±2 +

2α

πm2

[
I±1 −

m2

2
I±2 −

m4

8
I±3

]
(4.81)

Z−1
2 (T, µ) = Z−1

2 (T = µ = 0)− (4.82)

α

4π

[
8π

∫ ∞
0

dk

k
nB(k) +

4

3

π3T 2

E2
− 4π

E2
I±1 − 12πI±2 −

πE2

2
I±3

]
(4.83)

Z3(T, µ) ∼= 1 +
2e2

m2π2

[
J1 +

1

4

[
m2 +

ω2

3

]
J2 −

1

4
m4J3

]
(4.84)

The functions I±1,2,3 and J1,2,3 are given in the appendix of [35]. The magnetic field in

this limit, µ > eB
m
> T � m, and µ > T > eB

m
� m for high density and temperature

with non-negligible magnetic field B, have results of which were given and discussed

in Section 4.3.

The Classical Limit (µ > m) The limit µ > m > T is as mentioned the classical

limit, the regime of our lab frame, where temperature is less than the electron mass

but overall density is still high, and the magnetic field effects are negligible. In this

limit the electron mass, wavefunction and charge renormalization constants [33] [35]
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are

δm

m

+

(T, µ) ≈ απT 2

3m2
(4.85)

δm

m

−
(T, µ) ≈ απT 2

3m2
− 2α

π
ln(µ/m) (4.86)

+
2α

πm2

[
µ2

2

[
1− m2

µ2

]
− m2

2
ln(µ/m)− m4

8

1

2m2
(1−m2/µ2)

]
(4.87)

Z−1
2+(T, µ) = Z−1

2 (T = µ = 0)− α

4π2

[
8π

∫ ∞
0

dk

k
nB(k) +

4

3

π3T 2

E2

]
(4.88)

Z−1
2−(T, µ) = Z−1

2 (T = µ = 0) (4.89)

− α

4π2

[
8π

∫ ∞
0

dk

k
nB(k) +

4

3

π3T 2

E2
− 4π

E2

µ2

2

[
1− m2

µ2

]
(4.90)

− 12π ln(µ/m)− πE2

2

1

2m2
(1−m2/µ2)

]
(4.91)

Z3(µ) ≈ 1− e2

2πm2

[
µ2 − 2m2

8

[
1− m2

µ2

]]
(4.92)

Where the +/− is for the positron/electron. Where in all limits we have the renor-

malized values as

mR = m0(1 + δm) (4.93)

ψR = Z−1
2 ψ0 (4.94)

eR = Z
1/2
3 e0 (4.95)

αR = Z3α0 (4.96)

The Early Universe Limit (T > m) The next limit we must discuss is the

early universe limit, where T � m, and the converse, m � T , where µ and B are
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ignored [3]. This limit corresponds to the early universe, since m ∼ 109 K this is

approximately one second after the Big Bang.

δm

m
(T ) ' παT 2

3m2

[
1− 6

π2
c(mβ)

]
+

2α

π

T

m
a(mβ)− 3α

π
b(mβ) (4.97)

Z−1
2 (T ) = Z−1

2 (T = µ = 0) − 2α

π

∫ ∞
0

dk

k
nB(k)+ (4.98)

2α

π

1

E2β2

[
π2

6
− c(mβ) +mβa(mβ)

]
− 5α

π
b(mβ) (4.99)

Z3 = 1− 2e2

m2π2

[
c̃

β2
− mã

β
− 1

4

(
m2 +

ω2

3

)
b̃

]
(4.100)

Where the ãb̃c̃abc functions are given in [1] [2]. The charge renormalization constant

is not modified when m > T .

The Very Early Universe Limit (T > µ) The final limit we must discuss is the

very early universe limit, where T > µ > m, since temperature and density are high,

and comparatively the electron mass is low.

δm

m
(mβ, µ) ' παT 2

3m2

[
1− 6

π2
c̃(mβ)

]
+

2α

π

T

m
ã(mβ)− 3α

π
b̃(mβ) (4.101)

Z−1
2 (mβ, µ) = Z−1

2 (T = µ = 0) − 2α

π

∫ ∞
0

dk

k
nB(k)− (4.102)

5α

π
b̃(mβ, µ)− 2α

π

T 2

E2

[
− π2

6
+ c̃(mβ, µ)−mβã(mβ, µ)

]
(4.103)

Where the ãb̃c̃ functions are the abc functions averaged over the positron and electron

contributions. The full abc expressions are located in [3]. The results including a non-

negligible magnetic field T > µ > eB
m
� m, and T > eB

m
> µ � m are included in

Section 4.2.1.
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4.5 Results and Discussions

Using computational techniques, we graph and analyze data from Python code that

approximate the values of Masood’s abc functions at the superdense limit µ > T > eB
m

and for ultra-strong magnetic fields eB
m
> µ > T , as well as the early universe limit T >

me >
eB
m

and eB
m
> T > me. The abc functions give contributions to the self energy

constant for the electron as well as Z−1
2 and Z3, the wavefunction renormalization

constant and electron charge renormalization constant. We also graph these constants

and analyze the results. Here we will assume m = me the mass of the electron.

At low to zero magnetic field contribution, we find that in the limit T large relative

to the bare electron mass T � m > eB
m

we find Masood’s function a approaches the

limit ln(2) (Figure 4.3, top), which is sensible, as a is defined as ln(1+e−f(1/T )), a large

T implies the exponential argument approaches zero, and thus ln(1 + e0) = ln(2).

Masood’s c function approaches −π/12, which can be seen in Figure 4.3 (middle). In

this figure the blue line (hidden by the orange line) is the case where B is essentially

zero.

We wish to investigate non-zero magnetic fields B, so we run simulations of the

magnetic field for the case eB/m ∼ m and eB/m � m. The case eB/m ∼ m

corresponds to a neutron star with magnetic field on the order of B = 1010 T, and

for eB/m� m we have a field on the order of B = 1014 T, which corresponds to an

energy of around 75 MeV.

In order to convert from eB/m to units of energy we introduce a conversion

factor F = 3.7 ∗ 1020 eV2

T·C to move from Tesla Coulumb (T · C) to electronVolt (eV) or
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F−1 = 3.7 ∗ 10−22 T·C
eV2 to move the opposite direction. In this way we can see,

B ∼ m2

eF
(4.104)

B ∼ 0.52 ∗ 1012

1.6 ∗ 10−19 ∗ 3.7 ∗ 1020

eV2(T ∗ C)

C ∗ eV2
= 4.2 ∗ 109 T ∼ 1010 T (4.105)

which is assumed to be a reasonable value for the magnetic field of a neutron star, also.

We ultimately find negligible effects in the eB/m ∼ m limit and significant deviation

from the usual B=0 case when eB/m� m, however this is for fields around 4 orders

of magnitude stronger than physically observed.

As mentioned for T > eB
m
∼ m we find an almost negligible effect, although the b

function appears to show some significant changes (See Figure 4.3, bottom). However,

this does not translate into a meaningful change in the renormalization constants, as

can be seen in Figure 4.4 where the renormalization constants are virtually identical

to their B=0 counterparts.

Behavior of Masood’s abc functions For the nonphysical case, when eB/m�

T > m, things are more interesting, despite being at magnetic field strengths that

have not been observed. Considering a similar analysis for the abc functions (Figure

4.5), when a magnetic field is turned on, we find that the magnetic field tends to ”pull

the contribution” of all the abc functions closer to zero, essentially suppressing the

contribution for each. It is important to mention that the value used for the magnetic

field, B = 1014 T is around ten thousand times an upper limit on the magnetic field

found in nature. Most likely, this kind of field would be found in only the most

compact of stellar objects, such as neutron stars and magnetars, if at all. The analysis

is relevant in the event such a extreme object is found.

Examining Masood’s b function with this in mind, the proportional dependence

on the exponential integral Ei, which itself depends on B, suggests a possible cause for
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the suppression due to ultra-high magnetic field B, since the exponential term in the

function is parameterized by T, e∓nµ/T , it seems this could be the only reason for the

suppressive effect of the magnetic field on Masood’s b(µ, T,B) function contribution

(Figure 4.5).

We see a similar story when graphing Masood’s c with and without the ultra-high

magnetic field. Clearly we see a similar effect in a where the contribution is ”pulled

closer” to zero due to B, thereby reducing and countering in some sense the effect of

an extremely high temperature. The shape of the graph under high magnetic field is

similar but less pronounced than the B=0 counterpart.

Analyzing the data resulting from simulations, the data show the effect of ultra-

high magnetic field B (where T > m, Figure 4.5) is possibly non-negligible. Although

the overall behavior of these functions is similar, the specific suppressive effect of a

reduction of contribution from a,b, c, suggests scientifically relevant interpretation

may be useful here.

Renormalization parameters After simulating renormalized constants at finite

temperature, we find a predictable, non-negligible difference between constants at

a ultra-strong, unrealistic, (B=1.00E14 T) magnetic field, and no real difference at

typical neutron star magnetic fields (B=1.00E10 T), as can be seen in Figures 4.1

and 4.2 for the µ > T limit and Figures 4.4 and 4.6 for the limit T > m.

Most apparent in this data is in the electron mass, computed as a correction to

me = m0 + δm. By graphing the related quantity δm/m which is unitless, we find

that a strong magnetic field arcs the change in electron mass upwards, above the

regular B = 0 line, in both the limit T > m (Figure 4.6, top) and µ > T (Figure 4.2,

top). This is significant and may imply either the rebalanced contribution proportion
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of a/b/c has generated what could be a measurable effect in extremely high dense,

compact, stellar systems.

A somewhat similar picture emerges for the inverse of Z2, the wave normalization

constant. In this case we plotted terms proportional to temperature and found a

reduced contribution when simulated against high magnetic fields. An even greater

reduction in significance was found for Z3, the electron charge renormalization con-

stant, which contributes to the coupling constant of QED, all of which can be seen in

Figure 4.6, middle and bottom diagrams. All of this data suggest that at ultra-high

magnetic fields there are some non-negligible physical effects that may be measur-

able, which cannot be discounted, while at high magnetic field B, effects could be

negligible.
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Figure 4.1. Renormalization constant δm/m compared when (B=1.00E+14 T)
eB/m� m and (B=1.00E+10 T) eB/m ∼ m in the limit µ > T . In the eB/m ∼ m
case there is a negligible change and the two graphs are overlaid thus B has almost
no effect on electron mass.
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Figure 4.2. Renormalization constant δm/m compared when (B=1.00E+14 T)
eB/m� m and (B=1.00E+10 T) eB/m ∼ m in the limit µ > T . We graph chemical
potential versus temperature versus the value of δm/m. We observe a virtually iden-
tical result as in Figure 4.1. There is a negligible change for a typical neutron star
magnetic field (B=1.00E+10 T) and the two graphs are overlaid thus B has almost
no effect on electron mass.

90



Figure 4.3. Masood’s abc functions compared when (B=1.00E+10 T) eB/m ∼ m
in the limit T > m. The functions a and c show almost no change, while b does
change a small amount, by comparison.
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Figure 4.4. Renormalization constants compared when (B=1.00E+10 T) eB/m ∼
m. In these graphs, there is a negligible change and the two graphs are virtually
identical, and overlaid, in the limit T > m.
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Figure 4.5. Masood’s abc functions compared when (B=1.00E+14 T) eB/m � m
in the limit T > m. Compared with Figure 4.3, we see dramatic changes due to the
magnetic field, and the contribution of all functions is reduced in this magnetic field.
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Figure 4.6. Renormalization constants compared when (B=1.00E+14 T) eB/m�
m in the limit T > m. Compared with Figure 4.4 we see dramatic differences as the
high magnetic field reduces the renormalization constants Z−1

2 and Z3 while increasing
δm/m.
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4.6 Applications, Future Work and Conclusions

In neutron stars we have a relatively unknown core of very high density, on the order

of some of the most dense objects in the universe. In these cores, we must conjecture

the composition in order to have a better idea of observational results. The above

analysis shows that we not only have potential changes that occur in the cores of such

compact stellar objects like supernovae and neutron stars, but perhaps that these

changes are observable, given the right compact object. Despite there being little to

no change in a typical neutron star, there is still room for observations to change

our understanding of the extremes of the universe. Under these conditions, we can

make inferences due to the drastic difference in curve data comparing the unchanged

renormalization constants at finite temperature to one at ultra-high magnetic fields,

that are at least a few orders of magnitude above what is to be expected inside some

of the most compact objects in the known universe.

Considering the changes to the electron mass in these stellar environments, it is

worthwhile to investigate the medium effect on other particle propagation processes

such as beta decay in these conditions. Any resulting changes may lead to dramat-

ically different observations by astronomers, and our work provides a baseline for

understanding these observations in the context of finite temperature field theory as

one possible valid model. Subsequent results using a similar approach might then

produce related changes and the potential for more validation of observations that do

not meet current expectations.

Furthermore, because of the state of the early universe, which is hot, dense, and

compact, similar to a stellar compact object, we should expect modifications of the

same type in any plasma that is necessarily dense and hot enough. Thus, the appli-

cations of this work are not simply to compact objects, but the early universe, which
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may imply different rates of free streaming or nucleosynthesis ratios that may not

necessarily agree with current, established theory. It is worth noting, while we have

specificially focused on the renormalization constants of the electron, necessarily these

calculations can be performed on other particles, which may or may not necessarily

produce a measurable, or observable result.

It is here that we champion other particles to be studied under similar conditions,

as the possible utility of this model to observational astronomers could be quite large.

In conclusion, we must continue to probe the deepest regions of spacetime in order to

better understand our current universe, and the mathematical model described here,

finite temperature field theory, certainly allows for researchers to keep leading ideas

relevant by being able to express them in the language of finite temperature field

theory (FTD).
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