Abstract

Traveling wave piezoelectric ultrasonic motors (PUMs) are ideal actuators for a variety of important applications including medical and space robotics, haptic interfaces, and positioning devices. Consisting of a single moving part, the motors are much simpler mechanically than other drive systems that require transmissions and brakes. Many potential PUM applications require accurate real-time control of output torque, which is difficult due to the highly nonlinear PUM dynamics. This paper reviews the development of a model-based PUM torque regulation algorithm and applications of the algorithm. The paper then examines the stability of the torque control and demonstrates it experimentally.

Citation

"Stable Torque Regulation of Piezoelectric Ultrasonic Motors", Dabney, J. B., Harman, T.L., Ghorbel, F. H, American Society of Civil Engineers, Earth and Space 2008, Long Beach, CA, March, 2008