
 

 

 

 

 

 

 

 

 

 

Copyright 

by 

Isaac Westby 

2020 

 

  



 

 

 

 

 

FPGA ACCELERATION ON MULTILAYER PERCEPTRON (MLP) NEURAL 

NETWORK FOR HANDWRITTEN DIGIT RECOGNITION 

 

 

by 

 

 

 

Isaac Westby, BS 

 

 

 

 

 

THESIS 

Presented to the Faculty of 

The University of Houston-Clear Lake 

In Partial Fulfillment 

Of the Requirements 

For the Degree 

 

 

MASTER OF SCIENCE 

 

in Computer Engineering 

 

 

 

 

THE UNIVERSITY OF HOUSTON-CLEAR LAKE 

 

MAY, 2020 

 

  



 

 

 

 

FPGA ACCELERATION ON MULTILAYER PERCEPTRON (MLP) NEURAL 

NETWORK FOR HANDWRITTEN DIGIT RECOGNITION 

 

by 

 

Isaac Westby 

 

 

 

 

 

APPROVED BY 

 

     __________________________________________ 

     Xiaokun Yang, PhD, Chair 

 

 

     __________________________________________ 

     Hakduran Koc, PhD, Committee Member 

      

 

__________________________________________

Jiang Lu, PhD, Committee Member 

 

 

 

 

 

 

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING: 

 

 

        

David Garrison, PhD, Associate Dean 

 

 

__________________________________________ 

Miguel A Gonzalez, PhD, Dean 

  



 

 

Dedication 

 

I would like to dedicate this thesis to my Dad, thank you for all your love and 

support through the years.   

  



 

 

v 

Acknowledgements 

I would like to thank Dr. Xiaokun Yang for all his help on this project. I would 

like to thank him for being so helpful and understanding through the entire time. Without 

his support I would not have been able to accomplish all that I have in this project. 

  



 

 

vi 

 

 

 

 

 

ABSTRACT 

FPGA ACCELERATION ON MULTILAYER PERCEPTRON (MLP) NEURAL 

NETWORK FOR HANDWRITTEN DIGIT RECOGNITION 

 

 

 

Isaac Westby 

University of Houston-Clear Lake, 2020 

 

 

 

Thesis Chair: Xiaokun Yang, PhD 

 

 

 

This dissertation presents a hardware implementation of a Multi-Layer Perceptron 

(MLP) network used for the purpose of low-latency, high-accuracy digit recognition. The 

accuracy of various network designs was compared in Python, and the final network 

design was comprised of 784 input neurons, a single hidden-layer of 12 neurons, and an 

output layer of 10 neurons. The weights and biases of this network were then trained 

using the Modified National Institute of Standards and Technology (MNIST) handwritten 

digit data in Python using the stochastic gradient descent method. This network design 

was then tested in software for the digit recognition accuracy of half (16-bit), single (32-

bit), and double (64-bit) precision inputs. These all gave nearly the same results of 

(93.26, 93.25, and 93.25%) digit recognition accuracy respectively. This design was then 

implemented in hardware using the Verilog Hardware Description Language (HDL). This 

novel design uses a custom timing structure along with single-precision, floating-point 



 

 

vii 

IPs from Vivado for multiplication, addition, subtraction, accumulation, exponential, and 

reciprocal. Results show a speedup of 40.3967 over the fastest software execution, and 

127.219 over the slowest software execution. The results of the synthesis were found for 

the Kintex-Ultrascale FPGA, part xcku035-sfva784-1LV-I. These results showed a 

utilization of 44,668 Look Up Tables (LUT), 14,274 Flip Flops (FF), and 604 Digital 

Signal Processors (DSP), for utilization of 21.99%, 3.51%, and 35.53% respectively. 

Compared with related works, our proposed work provides the lowest latency for digit 

recognition, with a speedup of 61 and 42 over these works. Further compared to these 

related works, our design is between the two in accuracy and resource utilization, 

showing a tradeoff between design complexity and digit recognition accuracy. 

Conclusions of our research are that our proposed design presents a high-accuracy, low-

latency digit recognition network. Our proposed design allows for further customization 

to fit with a future user’s needs.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii 

TABLE OF CONTENTS 

 

List of Tables ...................................................................................................................... x 

List of Figures .................................................................................................................... xi 

CHAPTER 1:  INTRODUCTION ...................................................................................... 1 

1.1 Background ....................................................................................................... 1 
1.2 Related Works ................................................................................................... 2 

1.3 Design Process .................................................................................................. 4 
1.4 Structure of Dissertation ................................................................................... 4 

CHAPTER 2:  PROPOSED DESIGN OF THE NETWORK ............................................ 6 

2.1 Neural Networks ............................................................................................... 6 

2.2 Sigmoid Neurons .............................................................................................. 7 
2.3 Training the Neural Network ............................................................................ 7 
2.4 Running the Python Code ............................................................................... 10 

2.4.1 Resources Needed ............................................................................ 10 

2.4.2 Steps to Run the Code ...................................................................... 10 
2.4.3 Exporting Weights and Biases to CSV ............................................ 13 

2.5 Finding the Best Design .................................................................................. 14 

2.5.1 Comparing Different Networks ....................................................... 14 
2.5.2 Adjusting Epoch, mini_batch_size, and Learning Rate ................... 18 

2.6 Final Network Design ..................................................................................... 22 

CHAPTER 3:  SOFTWARE IMPLEMENTATION ........................................................ 24 

3.1 Matlab Implementation ................................................................................... 24 

3.2 Matlab Results ................................................................................................ 28 

3.3 Accuracy Comparison ..................................................................................... 32 

CHAPTER 4:  HARDWARE IMPLEMENTATION ...................................................... 34 

4.1 Hardware Design Architecture ....................................................................... 34 
4.2 Final Hardware Architecture........................................................................... 39 

4.3 Timing and RTL Design ................................................................................. 40 
4.3.1 How the Counters are Used ............................................................. 40 
4.3.2 RTL Design ...................................................................................... 44 

4.4 Vivado IPs ....................................................................................................... 46 
4.4.1 Instantiating the IPs.......................................................................... 46 

4.4.2 Distributed Memory Generator IP ................................................... 49 
4.4.3 How to Create COE files Using Matlab .......................................... 50 

4.5 Running the Project......................................................................................... 51 



 

 

ix 

4.5.1 Creating the Project Using TCL ...................................................... 52 
4.5.2 Running the TCL Script ................................................................... 52 

4.5.3 Synthesis in Vivado ......................................................................... 53 
4.5.4 Generating the Waveform in Vivado ............................................... 54 
4.5.5 Interpreting Results in Vivado ......................................................... 55 

CHAPTER 5:  RESULTS ................................................................................................. 63 

5.1 Execution Time on FPGA ............................................................................... 63 

5.2 Resource Cost on FPGA ................................................................................. 64 
5.3 Power Cost on FPGA ...................................................................................... 67 
5.4 Comparison to Related Works ........................................................................ 68 

5.4.1 Accuracy Comparison ...................................................................... 68 
5.4.2 Speed Comparison ........................................................................... 68 
5.4.3 Utilization Comparison .................................................................... 69 
5.4.4 Summary of Comparison ................................................................. 70 

CHAPTER 6:  CONCLUSIONS AND FUTURE WORK ............................................... 71 

6.1 Conclusions ..................................................................................................... 71 

6.2 Future Work .................................................................................................... 72 

REFERENCES ................................................................................................................. 74 

 

 

  



 

 

x 

LIST OF TABLES 

Table 2.1 The data corresponding to graph in figure 2.4. ................................................. 16 

Table 2.2 The data corresponding to graph in figure 2.5. ................................................. 17 

Table 3.1 A layout of the weights of the first hidden layer. ............................................. 24 

Table 3.2 A layout of the input pixels of the first hidden layer. ....................................... 25 

Table 3.3 A layout of the biases of the first hidden layer. ................................................ 25 

Table 3.4 An example layout of the weights1.csv file. ..................................................... 26 

Table 3.5 An example layout output neuron biases. ......................................................... 26 

Table 3.6 Corresponding data used for comparison of ‘strength’ of single and 

double precision datatypes. ............................................................................................... 30 

Table 3.7 Corresponding data used for comparison of ‘strength’ greater than 0.9 

of single and double precision datatypes. ......................................................................... 31 

Table 4.1 A comparison of the resources needed for a pipelined vs non-pipelined 

design. ............................................................................................................................... 36 

Table 4.2 A comparison of the resources needed for a pipelined, non-pipelined 

design, and pipelined with 98 multipliers designs. ........................................................... 38 

Table 4.3 A table showing the results of the network with an input of a 

handwritten 7. ................................................................................................................... 58 

Table 4.4 A table showing the results of the network with an input of a 

handwritten 2. ................................................................................................................... 60 

Table 4.5 A table showing the results of the network with an input of a 

handwritten 1. ................................................................................................................... 62 

Table 5.1 A comparison of the execution times in software and hardware. ..................... 64 

Table 5.2 The utilization results of the hardware synthesis. ............................................. 65 

Table 5.3 A further breakdown of the utilization results. ................................................. 66 

Table 5.4 Accuracy comparison to related works. ............................................................ 68 

Table 5.5 Speed comparison to related works. ................................................................. 69 

Table 5.6 A utilization comparison to related works. ....................................................... 70 

  



 

 

xi 

LIST OF FIGURES 

Figure 2.1 A visualization of the Gradient descent curve. .................................................. 9 

Figure 2.2 The output that you should see when running the Python code. ..................... 12 

Figure 2.3 An image showing the commands to save the weights and biases to a 

CSV file. ........................................................................................................................... 13 

Figure 2.4 A graph comparing accuracy of different networks with 1 hidden-layer 

of various numbers of neurons. ......................................................................................... 15 

Figure 2.5 A graph comparing accuracy of different networks with 2 hidden-

layers of various numbers of neurons. .............................................................................. 17 

Figure 2.6 A graph comparing networks with a single hidden layer and two 

hidden layers. .................................................................................................................... 18 

Figure 2.7 A graph comparing the digit recognition accuracy with the mini-batch 

size. ................................................................................................................................... 19 

Figure 2.8 A graph comparing the digit recognition accuracy with the learning 

rate..................................................................................................................................... 20 

Figure 2.9 A graph comparing the digit recognition accuracy with varying 

parameters. ........................................................................................................................ 21 

Figure 2.10 A figure showing the final network design. .................................................. 23 

Figure 3.1 An example output when running the program. .............................................. 27 

Figure 3.2 An example output when running the program with an input of 3. ................ 28 

Figure 3.3 Comparison of half, single, and double precision results in Matlab. .............. 29 

Figure 3.4 Comparison of the ‘strength’ of single and double precision data-types. ....... 30 

Figure 3.5 Further comparison of the ‘strength’ greater than 0.9 of single and 

double precision data-types. .............................................................................................. 31 

Figure 4.1 A visual representation of the multipliers and adders going into the first 

layer hidden neurons. ........................................................................................................ 34 

Figure 4.2 A visual representation of the results from the multipliers and adders 

going into the final operations of the neuron. ................................................................... 35 

Figure 4.3 A visual representation of the operations of a single output layer 

neuron. .............................................................................................................................. 36 

Figure 4.4 A visual representation of the first stage multiplication with 98 

multipliers. ........................................................................................................................ 37 

Figure 4.5 A visual representation of the accumulation and final operations used 

after the 98 multipliers. ..................................................................................................... 38 



 

 

xii 

Figure 4.6 A visual representation of all the components of the design put 

together. ............................................................................................................................ 39 

Figure 4.7 A visual diagram of the timing of operations aligned with counters. ............. 43 

Figure 4.8 A simplified hardware translation of the enable design. ................................. 45 

Figure 4.9 An example COE file for the hidden layer biases. .......................................... 50 

Figure 4.10 The line in the .tcl file that needs to be changed to correspond to your 

directory. ........................................................................................................................... 52 

Figure 4.11 An example of the direct path that needs to be changed. .............................. 53 

Figure 4.12 Vivado waveform with all counters and their corresponding enable 

signals. .............................................................................................................................. 55 

Figure 4.13 Vivado waveform showing when cnt6 starts counting.................................. 56 

Figure 4.14 Vivado waveform showing the final results of the network.......................... 57 

Figure 4.15 Vivado waveform showing the final results of the network for input 

of 2. ................................................................................................................................... 59 

Figure 4.16 Vivado waveform showing the final results of the network for input 

of 1. ................................................................................................................................... 61 

Figure 5.1 A graph of the utilization results. .................................................................... 65 

Figure 5.2 An image of the power breakdown. ................................................................ 67 

Figure 5.3 A further breakdown of the power consumption. ............................................ 67 



 

 

1 

CHAPTER 1:  

INTRODUCTION 

1.1 Background 

The subject of creating a computational model for neural networks (NNs) can be 

traced back to 1943 [45, 46]. Until 1970, the general method for automatic differentiation 

of discrete connected networks of nested differentiable functions has been published by 

Seppo Linnainmaa [47,48]. In 1980s, the VLSI technology enabled the development of 

practical artificial neural networks. A landmark publication in this field is a book 

authored by Carver A. Mead and Mohammed Ismail, titled “Analog VLSI 

Implementation of Neural Systems” in 1989 [49].  

The real-world applications of NNs mainly appeared after 2000 [27]. In 2009, the 

design on the network with long short-term memory (LSTM) won three competitions of 

handwriting recognition without any prior knowledge about the three languages to be 

learned [52,53]. And in 2012, Ng and Dean created a network being able to recognize 

higher-level concepts such as cats [50].  

Today, NNs have shown great ability to process emerging applications such as 

speech/music recognition [1,2], language recognition [3,33], image classification [4,5], 

video segmentation [6,19], and robotic [41, 43]. With the artificial intelligence (AI) chip 

market report published in May 2019, the global AI chip market size was valued at 

$6,638.0 million in 2018, and is projected to reach $91,185.1 million by 2025, growing at 

Compound Annual Growth Rate (CAGR) of 45.2% from 2019 to 2025 [54]. Therefore, to 

make NNs high speed and efficient will have a profound impact on transportation, 

sustainability, manufacturing, city services, banking, healthcare, education, 

entertainment, gaming, defense, criminal investigation, and many more.  



 

 

2 

Prior researches on NNs were mainly based on the software implementations, 

which can be very effective but require intensive CPU operations and memory bandwidth 

to achieve the desired results. The increasing computing power including but not limited 

to application-specific integrated circuit (ASIC), field-programmable gate array (FPGAs), 

and system-on-chips (SoCs) has been boosting the use of larger networks in image and 

visual recognition [23, 51]. These innovative technologies will contribute to making AI a 

reality, particularly to the time- and resource-constrained applications such as smart cars, 

industrial control systems, fraud detection with financial service, Internet of Medical 

Things (IoMT), speech recognition, natural language processing (NLP), automated 

speech recognition, and unmanned surveillance vehicles.  

In addition, Internet of Things (IoT) devices have taken in data, processed it, and 

sent it off to the cloud where the results have been calculated, then these results are sent 

back to the IoT device [28,29,30]. This has been successful because the IoT device is able 

to remain simple, needing only to process and send off results. As the number of IoT 

device increases, and drives pressure on finite bandwidths, edge computing has emerged 

as a new trend [24, 40]. Edge computing allows for processing of data at the network 

edge rather than sending the data off and processing remotely. Software solutions are 

good up to a point, but hardware acceleration can provide a faster, lower power solution 

[31,32]. Under this context, in this paper a case study of the hardware acceleration on 

digit recognition with a FPGA is presented. 

 

1.2 Related Works 

To date, many designs on digit recognition have been presented on the algorithm 

level [11,7] and hardware level [9,10,19]. For example, a recurrent neural network 

(RNN) has been proposed in [21] to recognize digits, and in [20] the designs on Deep 



 

 

3 

Neural Network (DNN), Convolutional neural networks) (CNN), and Bidirectional 

Recurrent Neural network (RNN) have been implemented and evaluated. As a result, the 

accuracy can reach 99.6% with the CNN and 97.8% with the four-layer DNN. The 

accuracy of RNN is 99.2%. All these researches were focused on exploring the accuracy 

of the implementations on algorithm and software level.  

On hardware level, many prior researches focused on the design with high speed 

[22,8], low-energy cost [38,39,44], and security [36, 37]. In this thesis we concentrating 

on finding the optimal acceleration of digit recognition with FPGA corresponding to the 

quality edge. The latest implementation on multilayer perceptron (MLP) in [12] has 

shown the computation latency as 3.8 seconds including both training and inference. Four 

implementations were provided in this work, including four-bit, five-bit, six-bit, and 

eight-bit designs with FPGA. The eight-bit MLP consumed 34k logic elements but 

achieved the highest accuracy (89%) compared with the other implementations; and the 

four-bit design can reduce the slice count to 20k with 9% accuracy decrease. Different 

from the fully connected network as MLP, CNN is created with layers sparsely connected 

or partially connected. In [13], the digit recognition on an eight-bit CNN has been 

presented. Experimental results showed that the proposed hardware achieved a latency of 

9.4 seconds on the design with sequential channel and 2.2 seconds with the parallel 

channel. The hardware costs are 20k and 98k respectively by using the sequential channel 

and parallel channel on FPGA. Both of the designs can achieve an accuracy over 90%. 

Compared with [12] and [13], a single-hidden-layer MLP is proposed to continually 

reduce the complexity of the design on digit recognition with FPGA. 

 

 

 



 

 

4 

1.3 Design Process 

The goal of this project was to design a neural network that could recognize 

handwritten digits with an accuracy of >90% and with a latency of < 3.5ms for each 

recognition. The implementation is based on the database of Modified National Institute 

of Standards and Technology (MNIST), which was developed by Yann LeCun, Corinna 

Cortes and Christopher Burges for evaluating machine learning models on the 

handwritten digit classification problem [15,14]. The network created was trained and 

tested based upon this MNIST data. The entire design process took place in a linear 

fashion and was composed of three major parts.  

1. Decide on the network design to be used.  

2. Test the network design in software using Matlab.  

3. Build and test hardware implementation of the design in Vivado.  

These are obviously simplified steps in the design process, but they reflect the major 

portions of the project. Each of these parts were internally iterative, (i.e. for step 1 

various network designs were considered before a final one was chosen), but each step 

needed to be completed before moving on to the next. 

 

1.4 Structure of Dissertation 

 The remaining structure of the dissertation follows the parts of the design process 

through the completion of the project. In Chapter 2 I will be describing the proposed 

design of the network. In this chapter I will converge on a network design and describe 

how I reached this decision. In Chapter 3, I will be taking the proposed design described 

in Chapter 2, and implementing it in Matlab. This chapter will then compare the digit 

recognition accuracy of the network in Matlab using various floating-point precision 

inputs. Chapter 4 describes the hardware implementation and everything that went into 



 

 

5 

taking the design that was used in Matlab and converting it to RTL. Chapter 5 will then 

take the results of the hardware implementation and compare them to the results of the 

software implementation as well as to related works. Finally, in Chapter 6 the final 

conclusions of the project and future work are described. 

  



 

 

6 

CHAPTER 2:  

PROPOSED DESIGN OF THE NETWORK 

This chapter is important in showing the process of choosing network design that 

we did.  We first cover some of the background on Neural Networks, then move onto 

discussing how the network is trained. Finally, Python code from [26] is used to setup 

and train the network is used to compare different networks with different training 

parameters. 

 

2.1 Neural Networks 

The history of Neural Networks can be traced back to 1943 when McColluch and 

Pitts wrote a paper on how neurons work. In order to more easily explain this complex 

phenomenon, they used electrical circuits to show it [25]. It was with this previous work 

in mind, that the perceptron was created by Frank Rosenblatt. The perceptron takes in 

multiple binary inputs, and then outputs a single binary output. These inputs are then 

multiplied by their corresponding weights, and summed together. That sum is then 

compared to a bias value in order to determine the output of the neuron. The equation for 

the output of perceptron is shown. 

𝑜𝑢𝑡𝑝𝑢𝑡 = {

0 𝑖𝑓 ∑ 𝑤𝑖 ∗ 𝑥𝑖
𝑖

+ 𝑏 ≤ 0

1 𝑖𝑓 ∑ 𝑤𝑖 ∗ 𝑥𝑖
𝑖

+ 𝑏 > 0
 

where 𝑥 is the input, 𝑥 is the weight, and 𝑏 is the bias. 

This network design described by Rosenblatt gave us the ability to tweak or 

‘learn’ new weights and biases in order to get the desired output. It is this idea that is the 

basis for most of the artificial neural networks that we see today. 

 



 

 

7 

2.2 Sigmoid Neurons 

The efficacy of the perceptron starts to break down when you are training it. 

Because the output is binary, any small change in the input weights and biases can affect 

the output. Due to the nature of the output being binary, it makes it very hard to ‘train’ 

these perceptron networks. This is where the sigmoid neuron comes in. The sigmoid 

neural network works similar to the perceptron network, except that the output is a value 

between 0 and 1.0, instead of a binary value of 0 or 1. The output for the sigmoid neuron 

is shown below. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 =  
1

1 + exp (−(∑ 𝑤𝑖 ∗ 𝑥𝑖) + 𝑏)𝑖
 

where 𝑤 are the weights corresponding to the inputs 𝑥, and 𝑏 represents the bias. 

This sigmoid neuron solves the problem with training. By making small changes 

to the weights and biases of the sigmoid neuron, you are able to make small changes to 

the output, eventually converging on a ‘correct’ or most effective set of weights and 

biases.  

Because of this fact, sigmoid neurons are used in the network that I am using. In 

order to simulate this network, I will need to run the sigmoid function for all neurons in 

the hidden and output layers. Also, to clarify a point of confusion here, as stated in [26], 

networks made up of sigmoid neurons are often referred to as Multi Layer Perceptron 

(MLP) networks. Any future reference to an MLP network is referring to a network made 

of these sigmoid neurons. 

 

2.3 Training the Neural Network 

As stated above, because we are using the sigmoid neuron in our network, we 

have the ability to train the network by making small changes to the weights and biases. 

In order to train our network, we are using the MNIST handwritten digit dataset. This 



 

 

8 

dataset has 60,000 handwritten digits with corresponding labels that can be used to train 

the network. There is then a separate set of 10,000 different handwritten digits with labels 

that can be used to test the network. The test data set also comes from a completely 

different group of people, so a person who drew a ‘2’ for instance in the training set, will 

not have drawn any digits in the testing set.  

The methods and ideas used in training the neural network are taken from the 

Neural Networks and Deep Learning Book by Michael Nielson [26]. In training the 

network, we have a cost function dependent on the weights and biases shown below. 

𝐶(𝑤, 𝑏) ≝
1

2𝑛
∑||𝑦(𝑥) − 𝑎 ||

2

𝑥

 

where 𝑦(𝑥) is the results array of 10 values where the correct result has one value 

equal to 1 and the rest equal to 0. For example y(1) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T. The 

value of 𝑎 represents the output vector of the network. The value of 𝑛 is the total number 

of training inputs, and 𝑥 is the value of the training input.  

The idea here is that we want to minimize this cost function. This would mean 

that our results are as close as possible to 𝑦(𝑥), which is the actual value. With this cost 

function, we are able to provide a result that is dependent on the two inputs (weights and 

biases) which are to be changed in training. The way that the Cost function is minimized 

is through the process of gradient descent. In this process, you are taking the gradient of 

the cost function repeatedly, such that with each step you are trying to decrease the Cost 

function the most. If we look at the image of the cost function, with two direction vectors 

from [26], shown on the next page. 



 

 

9 

 
Figure 2.1 

A visualization of the Gradient descent curve. 

Looking at this image, the idea with gradient descent is to change the values of v1 

and v2, that the green ball can ‘roll’ down to the minimum value of C. Through this 

gradient descent, we are updating the values for all the weights and biases. In order to 

compute the gradient for the cost function you need to compute the gradient of each 

individual function individually. This is a weak point of gradient descent when you have 

a large sample size used for training.  

Stochastic Gradient descent is used as a way to speed up training. In this method 

we are doing the training based on a small random sample size, then average the entire 

thing together. This is different than calculating the entire gradient for all inputs in 

gradient descent method. In this training, we are choosing a ‘mini-batch size’ which is 

user defined and made up of randomly chosen inputs. The way that the training works is 

it choose a mini-batch of inputs and trains with those, once those have all been used, it 

then picks another mini-batch of inputs until all the inputs have been exhausted. Once all 

the inputs have been exhausted, this is called an ‘Epoch’. Once an Epoch has been 

completed, the process starts all over again in the next Epoch. The analogy that is used in 



 

 

10 

[26] is to think of this like political polling, where we are just looking at a small sample 

size that is representative of the whole more or less. This process is implemented in the 

Python code provided by [26] and used for training my network. 

 

2.4 Running the Python Code 

2.4.1 Resources Needed 

 In generating the weights and biases for the sigmoid Neural Network, 

Python was used. In my case, I have done this task using Python 2.7.17, which can be 

downloaded at https://www.python.org/downloads/release/python-2716/ . 

The code that is used to accomplish this task is written by [26] and can be found 

at https://github.com/mnielsen/neural-networks-and-deep-learning . 

You can also clone the entire repository using the following command: 

 git clone https://github.com/mnielsen/neural-networks-and-deep-

learning.git 

From this repository, the files that will be used are: 

 neural-networks-and-deep-learning/data/mnist.pkl.gz 

 neural-networks-and-deep-learning/src/mnist_loader.py 

 neural-networks-and-deep-learning/src/network.py 

These files also use a Python Library called Numpy, which can be downloaded at 

https://www.scipy.org/install.html . 

2.4.2 Steps to Run the Code 

To run the code to generate the weights and biases of a network of your design, 

follow these steps. 



 

 

11 

1. Move the above three files (mnist.pk.gz, mnist_loader.py, and network.py) 

into your working Python directory. In my case, C:\Python27 . Make sure you have 

installed Numpy into this directory if you did not already have it installed.  

2. Open ‘IDLE (Python GUI)’. This should open up a Python shell. 

3. Execute the following in the python shell: 

import mnist_loader 

 This imports the helper file, mnist_loader.py that unpacks the MNIST 

data. 

4. Execute the following in the python shell: 

training_data, validation_data, test_data = mnist_loader.load_data_wrapper() 

This again is setting up the MNIST data that is used for training, validation, and 

testing. 

5. Execute the following in the python shell: 

import network 

 This imports the network python file. 

6. Execute the following in the python shell: 

net = network.Network([784, 30, 10]) 

This command is setting up the Neural Network that we are using here. The 

number of input neurons is 28-pixel x 28-pixel = 784. The hidden-layer neuron value 

here is 30, and the output layer neuron value is 10. The input and output layer values 

need to remain static, but the number of neurons in the hidden layer can be changed, as 

well as the number of hidden layers (i.e. [784, 30, 30, 10].  

7. Execute the following in the python shell: 

net.SGD(training_data, 30, 10, 3.0, test_data=test_data) 



 

 

12 

This command starts the training of the neural network by Stochastic Gradient 

Descent. The variables represent, the training data that is being used, the number of 

epochs over which it is trained (30), the mini-batch size used (10), the learning rate (3.0), 

and the test data being used.  

Once the above steps have been completed, you should see an output similar to 

below: 

Figure 2.2 

The output that you should see when running the Python code. 



 

 

13 

The values here show the number of correct digit classifications were made across 

each epoch with the weights and biases. In order to design the most accurate Neural 

Network, the values of the neurons, epochs, mini-batch size, and learning rate can be 

changed in order to find the weights and biases that are for that design. 

2.4.3 Exporting Weights and Biases to CSV 

Once you are content with the design of the network and the accuracy, you can 

export the values of the weights and biases by running the following commands: 

 import numpy 

 numpy.savetxt(“weights0.csv”, net.weights[0], delimiter=”,”) 

 numpy.savetxt(“weights1.csv”, net.weights[1], delimiter=”,”) 

 numpy.savetxt(“biases0.csv”, net.biases[0], delimiter=”,”) 

 numpy.savetxt(“biases1.csv”, net.biases[1], delimiter=”,”) 

In the Python shell it should look like below: 

 

 
Figure 2.3 

An image showing the commands to save the weights and biases to a CSV file. 

Make sure that the quotation marks used match as shown in the above image, I 

had a problem with this when copying/pasting the commands.  

After executing these commands, you will have four separate CSV files with the 

weights and biases for your network. 

 

 

 



 

 

14 

2.5 Finding the Best Design 

Once the method for finding the accuracy of the network with a trained set of 

weights and biases had been established, the goal was now to decide on a network design. 

In choosing the design, the goal was to have a high accuracy in digit detection, while 

maintaining as simple a design as possible.  

In choosing the network design, there were a few things that would be forced to 

remain static due to the problem at hand. First, the input layer would require 784 neurons 

due to the fact that the MNIST digit images we would be using to train the network are 

28-pixel × 28-pixel = 784 input pixels in size. The second thing that would need to 

remain static, is the fact there would be 10 output neurons. This value is static at 10 

because there are 10 possible outputs (0-9) that would converge to a value of around 1 

when that value is converged on by the network. The value of 10 outputs is chosen over a 

value of 4 outputs (24=16 possible outputs), because according to [26], the design of a 

system using 10 outputs rather than 4 produced empirically better results. This leaves the 

number of hidden layers, as well as the number of neurons in each hidden layer as the 

values that can be adjusted.  

Once a network design (number of hidden layers and number of nodes in each 

layer) has been decided, the values of epochs used, mini_batch_size, and learning rate 

can be tweaked in order to find the best results. These values are static with values of 

epoch = 30, mini_batch_size = 10, and learning rate = 3.0, when comparing different 

network designs. Once a network design was chosen, these values were tweaked in order 

to find the most accurate set of weights and biases. 

2.5.1 Comparing Different Networks 

As stated above, various network designs were considered to find a network that 

would be able to be implemented with relative simplicity but still attain a high accuracy. 



 

 

15 

When testing different networks, the epoch, mini_batch size, and learning rate all 

remained the same, but the number of hidden layers and neurons in each layer were 

changed. The following 1-hidden layer networks were tested [784, 50, 10], [784, 30, 10], 

[784, 20, 10], [784, 16, 10], [784, 12, 10], [784, 10, 10], [784, 8, 10], [784, 5, 10], [784, 

4, 10], [784, 3, 10], [784, 2, 10], [784, 1, 10]. Where the first number is the input layer 

number, the second number is the number of neurons in the hidden layer, and the third 

number is the output layer neurons. The results are shown below. 

 

 
Figure 2.4 

A graph comparing accuracy of different networks with 1 hidden-layer of various 

numbers of neurons. 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

A
cc

u
ra

cy

Neurons

1-Hidden Layer  



 

 

16 

Neurons Accuracy 

50 0.9568 

30 0.9489 

20 0.9366 

16 0.9277 

12 0.9264 

10 0.9167 

8 0.8639 

5 0.7176 

4 0.7213 

3 0.552 

2 0.2132 

1 0.1961 

Table 2.1 

The data corresponding to graph in figure 2.4. 

The results of a network using 1-hidden layer show that as you increase the 

number of the neurons in the middle layer from 1 up, the output increases exponentially 

and asymptotically approaches a value of 1.0. 

When using 2-hidden layers, the following networks were tested; [784, 50, 50, 

10], [784, 30, 30, 10], [784, 20, 20, 10], [784, 16, 16, 10], [784, 12, 12, 10], [784, 10, 10, 

10], [784, 8, 8, 10], [784, 5, 5, 10], [784, 4, 4, 10], [784, 3, 3, 10], [784, 2, 2, 10], [784, 1, 

1, 10]. Again, the second and third numbers show the value of neurons used in the first 

and second hidden layers. The results are shown on the next page in figure 2.5. 

 



 

 

17 

 
Figure 2.5 

A graph comparing accuracy of different networks with 2 hidden-layers of various 

numbers of neurons. 

 

Hidden Layer 1 Hidden Layer 2 Accuracy 

50 50 0.9582 

30 30 0.952 

20 20 0.9453 

16 16 0.9379 

12 12 0.9296 

10 10 0.9121 

8 8 0.9032 

5 5 0.7882 

4 4 0.7194 

3 3 0.4781 

2 2 0.3055 

1 1 0.3019 

Table 2.2 

The data corresponding to graph in figure 2.5. 

The digit recognition accuracy results when using two hidden layers of the same 

size showed similar results to using one hidden layer. As you can see above, the accuracy 

increases in an exponential fashion when you add more neurons to each layer, then 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

A
cc

u
ra

cy

Neurons in each Hidden Layer

2-Hidden Layers  



 

 

18 

asymptotically approaches near 100% accuracy. Below I have included a graph 

comparing the digit recognition accuracy of the one hidden-layer and two hidden-layer 

networks described above. As seen for the results, the two-hidden layer networks edge 

out the single hidden-layer networks. 

 

 
Figure 2.6 

A graph comparing networks with a single hidden layer and two hidden layers. 

For networks that have 10 neurons or greater in the hidden-layer(s), the difference 

in accuracy is especially small. This was taken into consideration when deciding the final 

network design. 

2.5.2 Adjusting Epoch, mini_batch_size, and Learning Rate 

With any network design, you can adjust the Epoch, mini_batch_size, and 

learning rate when training the network. These values are important to how quickly the 

network’s weights and biases can be trained to the highest attainable digit recognition 

accuracy. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

A
cc

u
ra

cy

Neurons

Comparing 1-Hidden Layer and 2-Hidden Layers  

1 Hidden-Layer

2 Hidden-Layers



 

 

19 

For my testing of these values, I used a network with 784 input-layer neurons, 12 

hidden-layer neurons, and 10 output-layer neurons. I then set the Epoch = 20, learning 

rate = 3.0, then varied the mini_batch_size. The mini_batch_size is used to set the 

number size of the batches that are used to train the weights and biases. The result are 

shown below. 

 

 
Figure 2.7 

A graph comparing the digit recognition accuracy with the mini-batch size. 

The results from changing the mini_batch_size showed that changes had a small 

effect on the overall digit recognition accuracy of the network after 20 epochs. Taking the 

results from above, I then tested changing the learning rate. For this case the values of 

mini_batch_size = 30 and epoch = 20. 

 

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 5 10 15 20

A
cc

u
ra

cy

Epoch

Digit Recognition Accuracy vs Mini-Batch Size

Mini Batch = 50

Mini Batch = 30

Mini Batch = 20

Mini Batch = 10

Mini Batch = 5

Mini Batch = 2



 

 

20 

 
Figure 2.8 

A graph comparing the digit recognition accuracy with the learning rate. 

The results here show that by changing the learning rate, the number of epochs it 

takes for the network to reach the perceived ‘highest accuracy level’ of around 92%, is 

mainly what is affected here. For these results there is virtually no discernible difference 

in the performance of training for learning rates between 2.0 – 10. 

One final test was conducted using four different combinations across 60 epochs. 

The combinations used here were, mini_batch_size = 10 & learning rate = 3.0, 

mini_batch_size = 10 & learning rate = 0.1, mini_batch_size = 30 & learning rate = 3.0, 

and finally mini_batch_size = 30 & learning rate = 3.0. The results of this test are shown 

on the next page. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

A
cc

u
ra

cy

Epoch

Digit Recognition Accuracy vs. Learning Rate

Learning Rate = 0.1

Learning Rate = 1.0

Learning Rate = 2.0

Learning Rate = 3.0

Learning Rate = 5.0

Learning Rate = 10



 

 

21 

 
Figure 2.9 

A graph comparing the digit recognition accuracy with varying parameters. 

By testing these varying parameters, we are able to figure out which combination 

will lead to the most accurate set of weights and biases in the shortest amount of time. In 

my case, since the biases and weights are only going to be generated one time, then used 

in the network after that point, I can train the network for many more epoch, so that the 

accuracy can be as high as possible. 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

A
cc

u
ra

cy

Epoch

Digit Recognition Accuracy with Varying Parameters

Mini Batch = 10, Learning Rate = 3.0 Mini Batch = 10, Learning Rate = 0.1

Mini Batch = 30, Learning Rate = 3.0 Mini Batch = 30, Learning Rate = 0.1



 

 

22 

2.6 Final Network Design 

As I stated before, when choosing the design of the network there were certain 

things that had be taken into consideration. We wanted to have an accuracy that would be 

greater than 90%, preferably a little higher, as well as simple as a design as possible. This 

would keep the resource and power costs down.  

The first thing that would need to be figured out is how many hidden layers would 

be needed. As shown in section 2.5.1, various networks with one and two hidden layers 

were compared. These results showed that networks with two hidden layers performed 

better than networks with a singles hidden layer, but this increase was less than 1% in the 

case of the higher performing networks.  

Once I had decided to only include a single hidden layer, I would now need to 

decide how many neurons would be in that layer. Again, the goal was to have greater 

than 90% accuracy, so I knew I would need at least 10 neurons in the hidden layer. A big 

consideration here was the need to reduce the number of neurons in order to make the 

design simpler in hardware. Each neuron would have to take as an input the 784 input 

neuron values multiplied by their respective weights. Each additional neuron would either 

add many floating-point adders, or additional cycles of latency to the system. Because of 

this tradeoff, I decided to go with 12 neurons in the hidden layer. This decision was made 

because at this number of neurons, each additional neuron does not add that much to the 

overall accuracy of the system. The final design of the network is shown in figure 2.10. 

 

 



 

 

23 

 
Figure 2.10 

A figure showing the final network design. 

Once a network design had been chosen, I could run the python program again to 

generate the final weights and biases that would be used. For this task, I used the 

techniques that were described in section 2.5.2, with Epoch = 60, mini_batch_size = 30, 

and Learning Rate = 3.0. There is a random nature to these numbers, so I ran this multiple 

times until I had a set of weights and biases that gave me an accuracy of 93.25%. 

 

 

 

 

 



 

 

24 

CHAPTER 3:  

SOFTWARE IMPLEMENTATION 

3.1 Matlab Implementation 

Once a design had been chosen, the next step was to prove the approximate 

design with single precision floating-point numbers. This step is important in ensuring 

the weights and biases trained in Python work in my approximate design.  

The implementation of the design begins with the weights and biases that were 

generated in Python. It is important to understand how the weights and biases are set up 

so that they can be correctly used in the network. The setup of weights0.csv is shown 

below. For this file we have a file with 9,408 single precision weights. These weights are 

distributed in 12 rows and 784 columns. Each row represents the weights associated with 

one of the 12 neurons in the hidden-layer. 

 

w11 w12 w13 … w1783 w1784 

w21 w22 w23 … w2783 w2784 

w31 w32 w33 … w3783 w3784 

… … … … … … 

w111 w112 w113 … w11783 w11784 

w121 w122 w123 … w12783 w12784 

Table 3.1 

A layout of the weights of the first hidden layer. 

The input image input into the network is a 28-pixel × 28-pixel grayscale image. 

The way that these pixels are numbered is shown in table 3.2 on the next page. 

 

 

 

 



 

 

25 

 

p1 p2 p3 p4 … p25 p26 p27 p28 

p29 p30 p31 p32 … p53 p54 p55 p56 

p57 p58 p59 p60 … p81 p82 p83 p84 

… … … … … … … … … 

p701 p702 p703 p704 … p725 p726 p727 p728 

p729 p730 p731 p732 … p753 p754 p755 p756 

p757 p758 p759 p760 … p781 p782 p783 p784 

Table 3.2 

A layout of the input pixels of the first hidden layer. 

 

For the first hidden layer, in the file biases0.csv, there are 12 biases, one for each 

neuron. The setup of the file biases0.csv is shown below. 

 

b1 

b2 

b3 

… 

b10 

b11 

b12 

Table 3.3 

A layout of the biases of the first hidden layer. 

The output for the hidden-layer neurons is then: 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (− ∑ 𝑤𝑥𝑖 ∗ 𝑝𝑖
784
𝑖=1 − 𝑏𝑥)

 

where in the above equation, 𝑖, refers to the input neuron, and the corresponding 

weight for that input, and 𝑥 refers to the hidden layer neuron (1-12) that the output is 

being calculated for.  

Once all 12 of the outputs of the hidden layer neurons are found, these values act 

as inputs to the 10 output layer neurons. A similar process in finding the outputs takes 

place as for the first hidden layer neurons, except this time we are using weights1.csv, 

and biases1.csv. 



 

 

26 

The file weights1.csv is laid out the same as weights0.csv, except this time there 

are 10 rows for the output neurons, and 12 columns for the inputs. An example of how 

the file is setup is shown below. 

 

w11 w12 w13 … w111 w112 

w21 w22 w23 … w211 w212 

w31 w32 w33 … w311 w312 

… … … … … … 

w91 w92 w93 … w911 w912 

w101 w102 w103 … w1011 w1012 

Table 3.4 

An example layout of the weights1.csv file. 

The file biases1.csv is similar to biases0.csv, except there are only 10 values (one 

for each output neuron). An example of how this file is setup is shown below. 

 

b1 

b2 

b3 

… 

b8 

b9 

b10 

Table 3.5 

An example layout output neuron biases. 

The output for the output layer neurons is then: 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (− ∑ 𝑤𝑥𝑖 ∗ ℎ𝑖𝑑𝑑𝑒𝑛_𝑜𝑢𝑡𝑖
12
𝑖=1 − 𝑏𝑥)

 

where in the above equation, 𝑖, refers to the hidden layer neuron that is multiplied 

with corresponding, output of that neuron, hidden_out. The value, 𝑥, refers to the output 

layer neuron (1-10) that the output is being calculated for.  

The way the whole network fits together is an image is input into the network. 

These 784 input values are used with the corresponding 9,408 weights, and 12 biases to 



 

 

27 

find the 12 outputs of the hidden layer neurons. The outputs of the hidden layer are then 

used with the corresponding 120 weights, and 10 biases to find the 10 outputs of the 

hidden layer neurons. Once this entire process has completed, the network has processed 

and classified one image. 

The way the results are extrapolated from the neurons is simple. The output of 

each neuron is a value between 0 and 1.0. For each image, the network should converge 

on a single digit value. So the results for one neuron should be very close to 1.0 while the 

other values should be very close to 0. The neurons are assigned such that output(1) = 0, 

output(2) = 1, …, output(10) = 9. An example output when running the program can be 

seen below. 

 
Figure 3.1 

An example output when running the program. 

The way the program works is it goes through each value of the outputs (0-9) 

sequentially, and if the current value is greater than the previous, it sets the value for 

variable ‘answer’ equal to that number. That is why we see the output ‘The answer is 1’, 

when that number is processed, because the value for 1 (0.0001626174), is greater than 

the value for 0 (0.000000007). We can see for the number 6, we have a value of 



 

 

28 

0.9999223948. Because this number is the highest, we can determine that the network has 

processed the input image, and classified it as a ‘6’. 

 

3.2 Matlab Results 

The implementation described above was run in Matlab using IEEE-754 double 

(64-bits), single (32-bits), and half (16-bits) precisions. The network was tested using the 

10,000 MNIST test images. These are the same 10,000 images that were used to test the 

accuracy of the network in the Python program, and were not used in training the weights 

and biases.  

In the first test, for each input image, all 10 of the outputs were compared and the 

highest value was determined to be the result. For instance, if we have the outputs shown 

below. The answer would be 3 even though the number for 3 (0.6894786954) isn’t as 

strong as it could be (0.9999). 

 

 
Figure 3.2 

An example output when running the program with an input of 3. 



 

 

29 

This test ran for all 10,000 of the MNIST test images. The results below show 

how many images were correctly identified for half, single, and double precision data-

types. 

Figure 3.3 

Comparison of half, single, and double precision results in Matlab. 

 

With each correct identification the value of the number that the network 

classified could be any value from 0 - 1.0. The number that is output from each neuron 

can be described as the ‘strength’ of the result. With a value of 1.0 meaning the network 

has classified that as being the result with the highest probability, and a value of 0 

meaning that it has the lowest chance of being that value. In figure 3.4 is a graph that 

shows the ‘strength’ of the images that were classified correctly. 

9
3

2
6

9
3

2
5

9
3

2
5

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Data  Type

Im
ag

es
 C

o
rr

ec
tl

y
 I

d
en

ti
fi

ed

Correct ly Ident i f ied Images vs  Data -type

Half-Precision (16-bit) Single-Precision (32-bit) Double-Precision (64-bit)



 

 

30 

 

Figure 3.4 

Comparison of the ‘strength’ of single and double precision data-types. 

 

 

0-

0.9 

0.1-

0.19 

0.2-

0.29 

0.3-

0.39 

0.4-

0.49 

0.5-

0.59 

0.6-

0.69 

0.7-

0.79 

0.8-

0.89 

0.9-

1.0 

Single-Precision 

(32-bits) 14 19 36 36 57 91 89 155 304 8524 

Double-Precision 

(64-bits) 14 19 36 36 57 91 89 155 304 8524 

Table 3.6 

Corresponding data used for comparison of ‘strength’ of single and double precision 

datatypes. 

From this data, we can see that for both single and double precision data types 

there are 8,524 out of 10,000 images correctly identified with a ‘strength’ of 0.9 or above. 

This data was examined further to find any differences between results with these data 

types. The graph below looks at the 8,524 correctly identified results, then breaks this 

data down further into different ranges. 

 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

N
u

m
b

er
 C

o
rr

ec
tl

y
 I

d
en

ti
fi

ed

Classification Output Value

Correct Identifications Sorted by Value 

Single-Precision (32-bits) Double-Precision (64-bits)



 

 

31 

 
Figure 3.5 

Further comparison of the ‘strength’ greater than 0.9 of single and double precision 

data-types. 

 

 

>0.

9 

>0.9

9 

>0.99

9 

>0.999

9 

>0.9999

9 

>0.99999

9 

>0.999999

9 

>0.999999

99 1 

Single-Precision (32-

bits) 

283

2 2867 2067 644 71 38 0 0 5 

Double-Precision (64-

bits) 

283

2 2867 2067 643 72 38 4 1 0 

Table 3.7 

Corresponding data used for comparison of ‘strength’ greater than 0.9 of single and 

double precision datatypes. 

The data in the above table and graph can be broken down such that the first 

column represents which of the values are >0.9 and <=0.99, the second column 

represents values >0.99 and <=0.999, and on. Then the second to last column is values 

>0.999999999 and <1, and finally the last column represents values that are equal to 1. 

From this data, you can see the main difference is that when using single-precision data 

types, there are 5 results that have a value of 1.0, meanwhile when using double 

precision, there are no results that have a value of 1.0. I will go into more detail 

interpreting these results in the next section. 

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

er
 C

o
rr

ec
tl

y
 I

d
en

ti
fi

ed

Classification Output Value

Correct Identifications Sorted by Value 

Single-Precision (32-bits) Double-Precision (64-bits)



 

 

32 

3.3 Accuracy Comparison 

The accuracy of the Matlab implementation of the neural network can be 

compared with the Python results obtained when training the network. This is because the 

network has the same weights and biases, and we are using the same 10,000 MNIST test 

images in order to test the network. The comparison of results is shown below. 

 

 
Figure 3.6 

Comparison of digit recognition accuracy of Matlab implementations with Python 

results. 

In Python, the weights and biases are created using 64-bit floating point numbers, 

therefore all the weights and biases are 64-bit, and must be converted to 32-bit and 16-bit 

for single and half precision. From this data we can see that the Python results, single, 

and double precision results are all the same. Surprisingly, the half-precision results in 

Matlab correctly identified 9326 values out of the 10,000. This is one better than all other 

results and is unexpected. Another set of weights and biases for the network was created 

9
3
2

6

9
3
2

5

9
3
2

5

9
3
2

5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Data  Type

Im
ag

es
 C

o
rr

ec
tl

y
 I

d
en

ti
fi

ed

Correctly Identif ied Images vs  Data -type

Half-Precision (16-bit) Single-Precision (32-bit)

Double-Precision (64-bit) Python (64-bit)



 

 

33 

in Python, this time correctly identifying 9267/10000 images. These weights and biases 

were then run in Matlab, where all half, single, and double precision implementations 

correctly identified 9267/10000 images. Therefore the discrepancy seen in the results 

above is most likely associated with a slight change in internal numbers when changing 

to lower granularity at half-precision.  

Another difference in the data that I want to cover in more detail here is the 

reason why for the single-precision results, there are 5 correctly identified results that are 

equal to 1.0, and no results >0.9999999 that are not equal to 1.0. Meanwhile for double 

precision, there are no results equal to 1.0 and 5 results >0.9999999 that are not equal to 

1.0. 

This difference can be attributed to the fact that doubles are more precise than 

singles, just as the name would suggest. For single precision numbers, any values with 

precision of 0.99999998 or greater are not able to be represented. These numbers are then 

converted to 1.0 when represented in single-precision floating point. For double-precision 

numbers meanwhile, these numbers are able to be represented. This is why the for double 

precision values, there are 5 numbers that are >0.9999999 and <1.0, and for single 

precision there are no values and 5 that are equal to 1.0. 

Overall, the results have proven the proposed network design for half, single, and 

double precision data types. Comparing all of these results with the initial Python results, 

we can see that there is no discernible difference when using different precision data 

types. Once I had these results I could start the process of taking this design and 

implementing it in hardware. 

  



 

 

34 

CHAPTER 4:  

HARDWARE IMPLEMENTATION 

4.1 Hardware Design Architecture 

When thinking about implementation in hardware, the first thing was to break the 

algorithm down by the operations that would need to happen. We can take equation for 

the output of the hidden layer neurons in section 3.1, and write it as the following: 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (−𝐾 − 𝑏𝑥)
 

where K = ∑ 𝑤𝑥𝑖 ∗ 𝑝𝑖
784
𝑖=1  

This allows us to break the problem of finding the output of a hidden layer neuron 

down into two parts. First, we need to multiply all 784 input pixels by their 

corresponding weights, then sum those values into one result. Second, we need to take 

that summed value and plug it into the sigmoid function. This involves five different 

operations; first taking the negative value of the summed result, then subtracting bias, 

then taking exp to that value, then adding a value of 1, then finally taking the reciprocal. 

A visual representation of the first part of this process is shown below. 

 
Figure 4.1 

A visual representation of the multipliers and adders going into the first layer hidden 

neurons. 



 

 

35 

In this representation we are assuming that each operation has a latency of one 

clock cycle. We can see that in the first clock cycle, we are using 784 multipliers to 

multiply the input pixels by their correct weights. There are then 10 stages of cascading 

adders to sum the results up into one final value. This value is then used as the input for 

the second part in finding the output of the hidden layer neurons. This stage is shown 

below. 

 

 
Figure 4.2 

A visual representation of the results from the multipliers and adders going into the final 

operations of the neuron. 

In the above image, we can see the second stage where we are taking the negative 

value of our result, subtracting the bias, taking that answer to exp, adding 1, then finally 

taking the reciprocal. This whole process takes another 5 clock cycles, if we assume a 

latency of one cycle for every operation. Putting the two steps together, it takes a total of 

16 clock cycles in order to find the output of a the hidden layer neuron.  

The second stage in the hardware involves taking the outputs of the hidden-layer 

neurons, then plugging those values into the following equation: 

𝑓𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (−𝐾 − 𝑏𝑥)
 

Where K = ∑ 𝑤𝑥𝑖 ∗ ℎ𝑖𝑑𝑑𝑒𝑛_𝑜𝑢𝑡𝑝𝑢𝑡𝑖
12
𝑖=1  

This stage is implemented in a similar manner as the first stage, but instead of 784 

inputs, we only have 12 this time. A visual representation is shown below. 



 

 

36 

 
Figure 4.3 

A visual representation of the operations of a single output layer neuron. 

In this stage, because there are only the 12 inputs, it takes only takes 4 layers of 

adders to sum the multiplication results, this allows the entire process of calculating the 

result of the final layer neurons to take only 10 clock cycles.  

The design described above describes the components needed for one neuron in 

the hidden layer, and one neuron in the output layer. This design can be implemented for 

every neuron in the hidden layer, as well as every neuron in the output layer by repeating 

the design 12 and 10 times respectively. You can also pipeline the design by in the first 

clock cycle use the data for the first hidden layer neuron, on second clock cycle use data 

for second layer neuron, etc. This adds complexity because to begin calculations for the 

output layer neurons, you must first know the results from all the hidden layer neurons. I 

have compared the latency and resource usage for these two approaches below. 

 

 

Latency  

(clock cycles) Multipliers Adders Subtractors Exponential Reciprocal 

Non-

pipelined 26 9528 9528 44 22 22 

Pipelined 48 796 796 4 2 2 

Table 4.1 

A comparison of the resources needed for a pipelined vs non-pipelined design. 



 

 

37 

When comparing these two approaches, you can see that even though the non-

pipelined approach is nearly twice the speed of the pipelined approach, it uses nearly 12 

times the resources. Because of this issue, I decided to go with a design that would be 

pipelined, in order to lower my resources usage. I still had issue with the fact that the 

number of multipliers and adders was so high. 

With this problem in mind, I decided to break down the multiplication of the first 

layer weights and inputs into 8 different steps. This portion of the design accounts for 

784/796 multipliers and 783/796 adders, if I break this down into multiple parts, I can 

lower the overall resource utilization tremendously.  

This design keeps the same pipelined structure for the output level neurons, but 

for the hidden layer neurons, instead of 784 multipliers followed by adders, we will only 

have 98. This design is shown below. 

 

 
Figure 4.4 

A visual representation of the first stage multiplication with 98 multipliers. 



 

 

38 

With this design, we are able to process 98 inputs with each iteration. So we will 

have to have 8 iterations in order to process all the inputs for a neuron. The way the 

design works is like a pipeline within a pipeline. For the first input neuron, we have to 

run the above 98 multiplier adder sequence 8 times. As the results from each eighth of the 

multiplications come through they are added together in an accumulator. An idea of how 

the accumulator fits into the output of the hidden layer neurons is shown below. 

 

Figure 4.5 

A visual representation of the accumulation and final operations used after the 98 

multipliers. 

Looking at the above image, you can see at cycle 9 the first value from the 

multiplier-adder comes in. For 8 cycles these values are accumulated to get one final 

value for all 784 inputs. Once this value has been found, the result is just sent into the 

same sequence, of taking the negative, subtracting bias, taking exponential, adding 1.0, 

then taking the reciprocal. This entire process ends up taking 21 cycles to find the result. 

A comparison of the resource utilization and latency of this design compared to pipelined 

and non-pipelined is shown below. 

 

 Latency (clock cycles) Multipliers Adders Subtractors Exponential Reciprocal 

Non-pipelined 26 9528 9528 44 22 22 

Pipelined 48 796 796 4 2 2 

Pipelined/98-

mul 129 110 110 4 2 2 

Table 4.2 

A comparison of the resources needed for a pipelined, non-pipelined design, and 

pipelined with 98 multipliers designs. 

 



 

 

39 

We can see that by adding this change, we are using 13.8% the number of 

multipliers and adders as the fully-pipelined design and 1.15% the number of multipliers 

and adders as the non-pipelined design. This does come at a cost of a higher latency, but 

given that the overall number of cycles needed for the network to classify one image is 

only 129, this still remains very low and still feasible for real-time applications. Because 

of these results, the hardware design architecture was finalized as the fully-pipelined 

design with 98 multipliers for the first hidden-layer. 

 

4.2 Final Hardware Architecture 

The design and tradeoffs of the various non-pipelined, pipelined, and pipelined 

with 98 multiplier architectures were discussed at length in the previous section. In this 

section I will describe the components used in the final architecture, and how they are 

connected. 

 

Figure 4.6 

A visual representation of all the components of the design put together. 

The above diagram shoes the connection of the hardware components. Stage 1 is 

used for finding the output of the hidden layer neurons, and stage 2 is used for finding the 

output of the output layer neurons. In stage 1, the 98 multipliers and 97 cascading adders 

are used 8 times, feeding the result each time into the accumulator. This allows the 

network to process all 784 input pixels and their corresponding weights. Once the 

accumulator has accumulated all 8 summed values, the results propagate sequentially 

Stage 1 

Stage 2 



 

 

40 

through the rest of stage 1. Stage 1 is pipelined for all 12 of the hidden-layer neurons. 

Once all 12 of the stage 1 outputs have been calculated, stage 2 processes the results of 

the output layer neurons sequentially. Stage 2 is again pipelined for all 10 output neurons. 

 

4.3 Timing and RTL Design 

4.3.1 How the Counters are Used 

Given the pipelined nature of the design, timing became very important in making 

sure that at any given moment the input pixels, weights, and biases were correct. The way 

that this problem was solved was by using six different counters that would serve as 

references for different inputs and outputs within the design.  

• Counter 1: Used to control the input pixels and weights that are being input into 

the 98 multipliers of stage 1.  

o Counts from 0-9. Increments counters every clock cycle. Resets to 0 when 

it reaches a value of 9. 

o Enabled when the entire network is enabled.  

o Inputs/weights change from 0-7, then two extra cycles allow for 

accumulator to be reset in between neurons. 

• Counter 2: Used to control for which neuron the input weights in stage 1 will 

correspond to.  

o Counts from 0-11. Increments every time Counter 1 reaches 9 and resets 

to 0. Resets to 0 when it reaches a value of 11 and Counter 1 reaches value 

of 9. 

o Enabled when the entire network is enabled.  

o Changes the input neuron weights every time it is incremented, cover all 

hidden layer neurons (0-11).  



 

 

41 

• Counter 3: Used to control the when accumulator is used.  

o Counts from 0-9. Increments every clock cycle. Resets to 0 when it 

reaches a value of 9.  

o Enabled when Counter 1 = 8 and Counter 2 = 0.  

o Used to enable to accumulator when Counter 3 is enabled and less than 8, 

and to resets the accumulator when Counter 3 is greater than 7. 

• Counter 4: Used to control when the output of the hidden layer neuron is valid.  

o Counts from 0-9. Increments every clock cycle. Resets to 0 when it 

reaches a value of 9.  

o Enabled when Counter 1 = 6 and Counter 2 = 1.  

o When Counter 4 = 5, the result is stored to a location in a buffer, 

dependent on the value of Counter 5.  

• Counter 5: Used to tell to which neuron (0-11) a valid hidden layer neuron result 

is stored. 

o Counts from 0-11. Increments every time Counter 4 reaches 9 and resets 

to 0. Resets to 0 when it reaches a value of 11 and Counter 4 = 9. 

o Enabled when entire network is enabled.  

o Tells which valid result corresponds to which neuron (0-11) in the hidden 

layer results buffer.  

• Counter 6: Used to tell when the output of the output layer neuron is valid.  

o Counts from 0-19. Increments every clock cycle. Resets to 0 when it 

reaches a value of 19. 

o Enabled when Counter 4 = 9 and Counter 5 = 11.  

o Signals when the output of the entire network is valid. When Counter 6 = 

0xa, the result corresponds to output-neuron[0] value, Counter 6 = 0xb 



 

 

42 

corresponds to output-neuron[1] value, …, Counter 6 = 0x13 corresponds 

to output-neuron[9] value.  

A diagram showing all timers in line with tasks of the network is shown in figure 

4.7 on the next page.



 

 
43 

 

  

Figure 4.7 

A visual diagram of the timing of operations aligned with counters. 



 

 

44 

In the above diagram, you can see the sequential nature of how the result from M0 

feeds into ADD1, which then takes 7 clock cycles to add the 98 results together, then at 

clock cycle 8, the accumulator starts adding together the 8 results, then feeding them into 

the sigmoid operations. Underneath these operations, you can see how the counters line 

up and signal correctly for all the attributes listed above. 

4.3.2 RTL Design 

Due to the number of operational components needed for this network (adder, 

multiplier, exponential, etc.) as well as the fact that these operations needed to take place 

with floating point inputs, the decision was made to use Vivado IP. I will go over the 

implementation of each individual IP thoroughly in the next section. Therefore, in this 

section I will describe the general RTL design used to describe the enables and counters 

used. 

A general enable was used when the entire network turns on. With this signal, we 

are allowing Cnt1, Cnt2, and Cnt5 to begin. Counter that have an enable specific to them 

have the structure shown below. 
wire en_cntx_w, en_cntx; 

reg  en_cntx_r; 

assign en_cntx_w = (CONDITION 1) & (CONDITION 2); 

assign en_cntx = en_cntx_w ^ en_cntx_r; 

always @(posedge clk or negedge rst) begin 

  if (~rst) begin 

    en_cntx_r <= 1'b0; 

  end else begin 

    en_cntx_r <= en_cntx; 

  end 

end 

In this code snippet, ‘x’ corresponds to the counter that this enable is used for. 

The values for CONDITION 1 and CONDITION 2, are user defined and can include one 

or more conditions on which you would like the counter to be enabled. A simplified 

hardware translation of this design is shown below: 



 

 

45 

 

 

Figure 4.8 

A simplified hardware translation of the enable design. 

From this design, we can see that once, CONDITION 1 and CONDITION 2 have 

both been met, this give en_cntx_w a value of 1, and en_ctnx a value of 1. This then 

gives en_cntx_r a value of 1 on the next clock cycle. On the next clock cycle, the value of 

en_cntx_w should no longer be 1, and therefor the value of en_cntx continues to maintain 

a value of 1 indefinitely. This design is used to enable counters 3, 4, and 6.  

The design for the counters is also very simple and similar to the design for the 

enables. A snippet of code used for Cnt1 is shown below. 
assign nxt_cnt1 = (en & cnt1==4'd9) ? 4'd0 :  

                                 en ? (cnt1+4'd1) : cnt1;  

always @(posedge clk or negedge rst) begin 

  if (~rst) begin 

    cnt1 <= 4'd0; 

  end else begin 

    cnt1 <= nxt_cnt1; 

  end 

end 

In this counter design, at every posedge of the clk we are assigning the register 

Cnt1 to be the value of the wire nxt_cnt1. The value of nxt_cnt1 is determined by an 

assign statement where we are controlling the en, that is used, when cnt1 is reset to 0 ((en 

& cnt1 == 4’d9) ? 4’d0), and the rate at which we are increasing the counter (cnt1+4’d1). 

For each counter, the differences are in the assign statement where we are deciding when 

the counter is enabled, how to count, and when to reset. 

 



 

 

46 

4.4 Vivado IPs 

As stated above, due to the number of components and the fact that they were 

floating point. The decision was made to use IPs designed by Vivado in order to represent 

the multiply, addition, subtraction, accumulation, exponential, and reciprocal operation. 

Since the Matlab results had shown no noticeable degradation in results when using 

lower precision numbers, the decision was made to use the lowest precision. However, 

half-precision inputs were not available for all the needed IPs, so the decision was made 

to use single-precision inputs for all floating-point IP. 

4.4.1 Instantiating the IPs 

From a project within Vivado the sources for the floating-point IP can be found 

by going to IP Catalog > Floating Point. Once you double click on ‘Floating Point’, a 

new window will pop up where you can specify all the attributes that you desire.  

For each operation, there are slightly different options when you are describing 

the IP so I will include screenshots below for each IP. For every IP, the flow-control 

should be specified as ‘non-blocking’ with the latency set to ‘1’, and the precision of  

inputs should be set to ‘single’. These options are saying that the latency of each of our 

IPs will be equal to 1 clock cycle. This is a critical assumption made in our timing 

considerations, so this value must be 1 for the network to function properly. A description 

of the options for each component is show below. For each component, all options are to 

be left at default except for what is described below. 

Floating-Point Adder: Component Name: fp_add 

Operation Selection > Operation Selection: Add/Subtract 

Operation Selection > Add/Subtract and FMA Operation options: Add 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Full Usage 



 

 

47 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

Floating-Point Subtractor: Component Name: fp_sub 

Operation Selection > Operation Selection: Add/Subtract 

Operation Selection > Add/Subtract and FMA Operation options: Sub 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Full Usage 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

Floating-Point Accumulator: Component Name: fp_acc 

Operation Selection > Operation Selection: Accumulator 

Operation Selection > Add/Subtract and FMA Operation options: Add 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Full Usage 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

Interface Options > Control Signals / ACLKEN: Checked 

Interface Options > Control Signals / ARESETn: Checked 

Floating-Point Multiplier: Component Name: fp_mul 



 

 

48 

Operation Selection > Operation Selection: Multiply 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Max Usage 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

Floating-Point Exponential: Component Name: fp_exp 

Operation Selection > Operation Selection: Exponential 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Full Usage 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

Floating-Point Reciprocal: Component Name: fp_recip 

Operation Selection > Operation Selection: Reciprocal 

Precision of Inputs > A Precision Type: Single 

Optimizations > DSP Slice Usage: Full Usage 

Interface Options > Flow Control Options / Flow Control: Nonblocking 

Interface Options > Latency and Rate Configuration / Use Maximum Latency: 

Unchecked 

Interface Options > Latency and Rate Configuration / Latency: 1 

 

 



 

 

49 

4.4.2 Distributed Memory Generator IP 

In order to store the input pixels, weights, and biases, the distributed memory 

generator IP was used. The use of this IP allowed us to initialize data the input data in the 

form of COE files into these memory locations. This IP can be found by going to the IP 

Catalog > Distributed Memory Generator. Once you double-clock on the distributed 

memory generator. The options selected are shown below. 

Distributed Memory Generator IP: Component Name: Dependent on 

weights/biases/etc. 

Memory config > Options / Depth: Dependent on weights/biases/etc. 

Memory config > Options / Data Width: 32 

Memory config > Memory type / Memory type: ROM 

Port config > Input Options / Input Options: Non Registered 

RST & Initialization > Load COE File / Coefficients File: Dependent on 

weights/biases/etc. 

 

In the above description, the Component name, memory depth, and COE file are 

dependent on  which specific memory component is being described. Overall, there are 

98 components for the input pixels, 98 components for the first input weights, 12 input 

components for the second input weights, and 2 components for the two different biases.  

For the input pixels, the names are pixels0, pixels1, pixels2, …, pixels97. The 

depth is 16 for all pixels, and the COE files have names corresponding to the pixels (i.e. 

pixels0.coe for the pixels0 memory). 

For the first input weights, the names are weights1_0, weights1_1, …, 

weights1_97. The depth is 96 for all the weights, and the COE files have names 

corresponding to the weights (i.e. weights1_0.coe for the weights1_0 memory). 



 

 

50 

For the second input weights, the names are weights2_0, weights2_1, …, 

weights2_11. The depth is 16 for all the weights, and the COE files have names 

corresponding to the weights (i.e. weights2_0.coe for the weights2_0 memory). 

For the two input biases, the names are bias1 and bias2. The depth is 16 for both 

the biases, and the COE files have names corresponding the bias, bias1.coe for bias1 and 

bias2.coe for bias2. 

4.4.3 How to Create COE files Using Matlab 

In order to load the correct values into memory using the COE files, I had to take 

the CSV files for weights0, weights1, biases0, biases1, and input pixels and convert to 

single precision floating point binary values. An example of the COE file for biases0 is 

shown below. 

 

 
Figure 4.9 

An example COE file for the hidden layer biases. 

In all the COE files, the first two lines are the same. These set the radix on which 

the COE file is read, and starts the vector of information. In this file, we have a Depth of 



 

 

51 

16, and a Width of 32. You can see this by noting that there are 16 lines of data, each of 

which is 32 bits wide. In this particular case we are representing the 12 biases for the 

hidden layer neurons. Therefore each of the first 12 values in this file are the single-

precision binary value for the bias associated with each neuron. In the distributed 

memory generator IP, the smallest depth allowed is 16, and since we only have 12 values, 

the last 4 pieces of data have a value of 0.  

In the file weights1_coe.m we are creating the 98 COE files that will be used in 

the initialization of the 98 memories used as inputs into the first stage multipliers. 

Because the value used must correspond to the values used in each of the 98 pixel input 

COE files created by pixels_coe.m, extra care must be taken. The way that the COE files 

for the hidden layer weights and input pixels is arranged is such that the first COE file 

has the first value, the second COE file has the second value, etc. In this arrangement, 

each weights COE file has 8 single precision values for the weights of each neuron, such 

that it has 96 values total when storing the weights for all the neurons. Each of the 98 

pixel COE file has 8 values.  

In Matlab I have created 5 files, pixels_coe.m, weights1_coe.m, weights2_coe.m, 

biases1_coe.m, and biases2_coe.m. These files can be run from the same path as the files 

weights0.csv, weights1.csv, biases0.csv, biases1.csv, load_mnist.m, and t10k-

images.idx3-ubyte in order to generate all 210 required COE files. 

 

4.5 Running the Project 

In this section I will cover all the steps needed to create the project using the TCL 

script, running the synthesis, generating the waveform, and interpreting the results of the 

waveform. 

 



 

 

52 

4.5.1 Creating the Project Using TCL 

In order to simplify the creation of this project I created a TCL script that can be 

used with Vivado’s TCL Shell to create the project and add all the appropriate IP.  The 

decision to make a TCL file to automate this process is due to the fact that there are 210 

instances of the Distributed Memory Generator alone. To manually add each instance 

with the correct COE file into the project would take quite some time, while the TCL 

script can do this all automatically based on predefined values. In the TCL script I am 

creating the project based upon the xcku035-sfva784-1LV-I part, adding all the sources, 

instantiating all the floating point and distributed memory generator IPs, then launching 

the GUI. Once the GUI has been launched you are able to do the synthesis or simulation 

just like you would if you created the project manually. 

4.5.2 Running the TCL Script 

The script that has been created is called project_run.tcl. Before you run the TCL 

script, the following things need to be checked/changed. First, ensure that you have the 

correct directory structure and files. For this you should have a directory called ‘Vivado’ 

within this directory you should have the file ‘project_run.tcl’, and the subdirectories 

‘sources_run’ and ‘COE_files’. In the ‘sources_run’ directory you should have all the 

Verilog files that are used in the project, and in the ‘COE_files’ directory you should 

have all COE files that being used in the project. Next, you need to open up the file 

project_run.tcl, and change line 7 to correspond to the directory you are running the TCL 

file from. 

 

 
Figure 4.10 

The line in the .tcl file that needs to be changed to correspond to your directory. 



 

 

53 

Finally, you need to find every location where the distributed memory generator 

is created and replace the current path, as shown below, with a complete direct path on 

you machine to that file. You should be able to do a find and replace by searching for all 

occurrences of C:/Users/Isaac/Desktop/FINAL_DOCUMENTS/Vivado/COE_files with 

the direct path on your machine. 

 

Figure 4.11 

An example of the direct path that needs to be changed. 

Once you have made these changes, you can run the project using the following 

steps. 

1. Open Vivado Shell. For my version of Vivado, this is called the ‘Vivado 2018.2 

Tcl Shell’. 

2. cd to the directory containing project_run.tcl. In my case, the command used here 

is, ‘cd C:/Users/Isaac/Desktop/FINAL_DOCUMENTS/Vivado’ 

3. To run the TCL script enter the command, ‘source project_run.tcl’. 

a. When you run this command you should see info running across the TCL 

command screen.  

b. This process should take a few minutes, and once it is completed it will 

launch the GUI version of Vivado. 

Once you have run these three steps, you have created the project with all the 

appropriate source files in Vivado for use on the Kintex Ultrascale xcku035-sfva784-

1LV-I part. 

4.5.3 Synthesis in Vivado 

In the Vivado GUI you can synthesize the entire project by selecting the 

‘Synthesis’ button on the left-side of the screen. For the entire project the synthesis takes 

around 2-3 hours on my machine. The long time required is largely due to the number of 

IPs that must be synthesized. In order to run the simulation in Vivado with the correct 

data loaded into the Distributed Block Memories, you must first run the synthesis. For my 



 

 

54 

project, the synthesis was run for a Kintex-Ultrascale FPGA. This exact FPGA is part 

xcku035-sfva784-1LV-I in Vivado. 

4.5.4 Generating the Waveform in Vivado 

In order to check the results of the hardware implementation in Vivado, the 

analysis of waveforms is used to verify the results. In order to generate the waveform, 

you first must create a testbench file. The testbench file created here, tb_digitrec.v, is 

stimulating the three inputs to the top module digitrec.v. In the testbench file, we are 

setting the input clock to run at a rate of 100MHz, then we initialize the en and rst to 

value of 0. Then after some time, the value of rst is set to 1, and then the value of en is set 

to 1. This is because the reset is active low, and must be set to 1 in order for the network 

to run, and the enable must be set to 1 for the network to run.  

Once you have created your test bench, you can add it to the project and start 

simulation by the following steps. 

1. Click ‘Add Sources’ in the Project Manager on the left of the Vivado GUI. 

2. In the ‘Add Sources’ menu, select ‘Add or create simulation sources’. 

3. In the ‘Add or Create Simulation Sources’ menu, click ‘Add files’, then find the 

testbench file you created and select ‘ok’. Once you have added the testbench file, 

you can leave all checked values as default and select ‘Finish’. 

4. Once you have added the testbench file to the project, right-click on ‘Simulation > 

Simulation Settings…’ in the ‘Flow Navigator’ on the left of the Vivado GUI. 

5. In the ‘Settings’ menu that pops up, find ‘Simulation top module name:’ and 

change it to ‘tb_digitrec’, or whatever the name of your top module is.  

6. In the ‘Settings’ menu under the ‘Simulation’ tab, change ‘xsim.simulate.runtime’ 

to 2000ns. In the same tab, make sure ‘xsim.simulate.log_all_signals’ is checked. 

You can then press ‘OK’ in the settings menu.  

7. Finally you can go to ‘Simulation > Run Simulation > Run Behavioral 

Simulation’ in order to run the simulation. 

8. Once the simulation is up, you should see the signals described in the testbench in 

the waveform viewer. To add all the signals to the waveform viewer, go to the 

‘Scope’ tab and underneath ‘tb_digitrec’, right-click on ‘u_digitrec’ and select 

‘Add to Wave Window’.  



 

 

55 

After all these steps have been completed, you can see all internal signals of the 

network. 

4.5.5 Interpreting Results in Vivado 

The use of the Wave Window in Vivado was important in order to verify that all 

the entire network is connected correctly, as well as to verify the counters, and the final 

result of the system. 

The first thing that was checked in simulation was the counters. In order to ensure 

proper functionality of the network, the counters needed to match the design described in 

Figure 4.7. 

Figure 4.12 

Vivado waveform with all counters and their corresponding enable signals. 

We can see in the waveform all 6 of the counters, with their appropriate enable 

signals. This waveform can be compared with the design in Figure 4.7 to see that the first 

5 counters are operating as intended. In order to check the operation of the 6th counter, 

we need to observe its waveform once all the hidden layer neurons have generated their 

outputs. 



 

 

56 

 

Figure 4.13 

Vivado waveform showing when cnt6 starts counting. 

By advancing further to when cnt4 = 9, and cnt5 = 0xb or decimal 11, we can see 

that cnt6 is enabled and begins to count properly.  

The final results of the network can be obtained by looking at the value of the 

wire final_neuron_result_value when cnt6 = 10-19 or 0xa – 0x13. The results are shown 

on the next page in figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
57 

 

Figure 4.14 

Vivado waveform showing the final results of the network. 



 

 

58 

These results come in such that the value of final_neuron_result_value at cnt6 = 

0xa corresponds to detection of a 0, at cnt6 = 0xb corresponds to a detection of a 1, etc. 

The final detection results of the network shown in the graph below show that the 

network has strongly detected a ‘7’, with that output being equal to 0.999975324, and all 

other outputs being nearly 0. 

 

Digit: Hex Result: 

Decimal 

Result: 

0 0x37bd0e4 7.40E-37 

1 0x3390d0d6 6.74E-08 

2 0x39d8a839 0.000413241 

3 0x36d3fec3 6.32E-06 

4 0x358937a6 1.02E-06 

5 0x37b59523 2.16E-05 

6 0x37a6d32f 1.99E-05 

7 0x3f7ffe62 0.999975324 

8 0x34e6f739 4.30E-07 

9 0x37985cb1 1.82E-05 

Table 4.3 

A table showing the results of the network with an input of a handwritten 7. 

When these results are compared with the results obtained in Matlab we can see 

similar results, with an overwhelming convergence on a value of ‘7’ as the result.  

In order to verify that the network was working correctly, other handwritten digit 

inputs were tested. The output waveform and results for a handwritten 2 are shown 

below. 

 



 

 
59 

 

Figure 4.15 

Vivado waveform showing the final results of the network for input of 2. 

 



 

 

60 

 

 

Digit: Hex Result: 

Decimal 

Result: 

0 0x3c40717c  0.011745807 

1 0x3381af80  6.04E-08 

2 0x3f4e6865  0.80628043 

3 0x3bef3bd2  0.007300832 

4 0x3631ec98  2.65E-06 

5 0x355b08de  8.16E-07 

6 0x3b27a193  0.002557848 

7 0x3588fb88  1.02E-06 

8 0x3608f151  2.04E-06 

9 0x3682938c  3.89E-06 

Table 4.4 

A table showing the results of the network with an input of a handwritten 2. 

Again, when these results are compared to the Matlab results, they show the same 

result, a value of ‘2’ is the detected digit. 

The final value tested was with an input of a handwritten 1. The waveform and 

output are shown in figure 4.16. 

 



 

 
61 

 

Figure 4.16 

Vivado waveform showing the final results of the network for input of 1. 

 



 

 

62 

 

Digit: Hex Result: 

Decimal 

Result: 

0 0x326a2896  1.36E-08 

1 0x3f7e6d93  0.99385947 

2 0x39c3833d  3.73E-04 

3 0x378e87ad  1.70E-05 

4 0x3402c339  1.22E-07 

5 0x33bccae2  8.79E-08 

6 0x3a4391c1  7.46E-04 

7 0x360e4379  2.12E-06 

8 0x3cbc080f  0.022953061 

9 0x380e20a4  3.39E-05 

Table 4.5 

A table showing the results of the network with an input of a handwritten 1. 

These results also show a match with the Matlab results, the final result of the 

network correctly indicates a detection of a handwritten ‘1’.  

In the verification of the results in hardware, only three different input values are 

considered. The small sample size here is because in order to load the correct input values 

into the distributed memory generator IP, the hardware must be synthesized. This means 

that each time we want to change the input image we must re-synthesize the system, 

which takes another 2-3 hours. Due to this fact 3 correct results which mirror the results 

seen in Matlab was determined to be enough. 

 

 

 

 

 

 

 



 

 

63 

CHAPTER 5:  

RESULTS 

In this chapter I will discuss the results of the synthesis and simulation of the 

hardware implementation in Vivado. In this discussion I will compare the results with the 

software description in Matlab, as well as with related digit detection networks [12,13]. 

 

5.1 Execution Time on FPGA 

The execution time in for a single digit recognition in hardware can be defined as 

the time from when the enable for the network goes high, until the last output neuron 

results is determined. In my implementation running on a 100 MHz clock, this takes 

1550ns. This result is compared with the time it takes the network to classify an image in 

Matlab. 

The Matlab execution time is calculated using the ‘tic’ command to begin timing, 

and ‘time_elapsed = toc’ command to stop timing. This time is taken for processing a 

total of 10,000 input images.  The software time was taken on Matlab on my personal 

computer that has the following processor, Intel(R) Core(TM) i7-7500U CPU @ 

2.70GHz, 2904 Mhz, 2 Core(s), 4 Logical Processor(s). 

The execution time in software (Matlab), varies every time you run it, with the 

first instance being significantly more than each thereafter. This is most likely due to the 

fact that when the program is run multiple times in a row, it reuses the existing arrays on 

the Matlab workspace.  Because of this, the Matlab code was timed for 10 consecutive 

runs, with the longest total execution time taken into consideration, and the fastest taken 

into consideration. The execution time for the software implementation (Matlab) is based 

upon 10,000 input images, so the total execution time is divided by 10,000 in order to 

find the execution time per image. The Speedup is found by the formula below. 



 

 

64 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐴 =
(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒)𝐵

(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒)𝐴
 

 

Table 5.1 

A comparison of the execution times in software and hardware. 

From these results, we are able to see that in hardware, the time required to 

classify an image is 1550 nanoseconds. In software, the longest measured time per image 

was 1.97E-4 seconds, and the fastest was 6.26E-5 seconds. This led to a speedup in 

hardware of 127.219 over the longest software run, and a speedup of 40.3967 over the 

fastest software run. 

With these results, the software is also running at 2.7 GHz, which is a 27× higher 

clock rate than the 100MHz that the hardware implementation results are obtained at. 

When you take this into consideration, the speedups of the hardware vs the software are 

both multiplied by 27 to 1090   and 3434 over the fastest and slowest results respectively. 

These results prove that the implementation of a solution in hardware allows significant 

speedup over a software implementation. 

 

5.2 Resource Cost on FPGA 

As stated in Chapter 4, the synthesis was run for a Kintex-Ultrascale FPGA. This 

exact FPGA is part xcku035-sfva784-1LV-I in Vivado. A summary of the utilization 

results of my design is shown below. 

 

 



 

 

65 

Resource Utilization Available Utilization (%) 

LUT 44668 203128 21.99 

LUTRAM 32 112800 0.03 

FF 14274 406256 3.51 

DSP 604 1700 35.53 

IO 3 468 0.64 

BUFG 1 480 0.21 

Table 5.2 

The utilization results of the hardware synthesis. 

 

 
Figure 5.1 

A graph of the utilization results. 

From the overall summary of utilization results, we can see that the resources 

needed fit within the bounds of the Kintex-Ultrascale FPGA we are using. From the 

graph above, we can see that the LUT and DSP are the highest utilized components at 

21.99% and 35.53% respectively. These values are as high as they are due to the number 

of IPs used for floating-point operation, and the specification of ‘Full Usage’ or ‘Max 

Usage’ of DSPs when they were created.  

21.99

0.03

3.51

35.53

0.64

0.21

0 20 40 60 80 100

LUT

LUTRAM

FF

DSP

IO

BUFG

Utilization (%)

R
es

o
u
rc

e

Summary of Resource Utilization



 

 

66 

A further breakdown of the utilization is shown below, with the top module, 

digitrec, and all the of the submodules found within it. 

 

  CLB LUTs CLB Registers DSPs 

Total 203128 406256 1700 

digitrec (top) 44668 14274 604 

    

acc_add 1880 656 16 

mul98 30100 11255 488 

mul_12 3473 1330 58 

u0_neuron_finish 1575 311 21 

u1_neuron_finish 1543 311 21 

all blk_mem (total) 6097 411 0 

Table 5.3 

A further breakdown of the utilization results. 

From these results, we can see digitrec contains the total number of CLB LUTs, 

CLB Registers, and DSPs for the entire system. Below is the data for each instantiated 

submodule. Finally, the last data point, all blk_mem, represents the totals for all the 

distributed block memories in the system. These values were combined because there are 

a total of 210 separate instantiations.  

From these results, we can see that most of our resource utilization comes from 

the mul98 module, which includes 98 single-precision floating point multipliers, and 97 

single-precision floating point adders. As I stated above, the utilization of resources is 

heavily tied to the number of floating point IP that is used. For my applications, this 

utilization is satisfactory. In future work, if you cut the number of multipliers used in 

half, you could lower the overall utilization of CLB LUTs, CLB Registers, and DSPs 

each by around 33%. This will be further discussed in Future Work section of Chapter 6. 

 

 



 

 

67 

5.3 Power Cost on FPGA 

The Power Report is generated by Vivado after synthesis has occurred [16,18]. In 

this report the power is estimated based on the part that is used, and the synthesized 

netlist. The summary of the power output is shown below. 

 
Figure 5.2 

An image of the power breakdown. 

From the results of the power utilization, the total on-chip power is 569.749 W. 

Of this power 566.313 W is dynamic power and 3.436 W is static. This gives a 

breakdown of 99% dynamic power, and 1% static power. A further hierarchical 

breakdown of the power consumption of the top power modules is shown below. 

 

 

Figure 5.3 

A further breakdown of the power consumption. 



 

 

68 

In the above image, we can see that the modules with instantiated IP for floating 

point operations take most of this dynamic power (491.7 W / 566.313 W). The majority 

of the remaining 74.613 W of dynamic power are related to the distributed block memory 

that is used to store the input pixels, weights, and biases. The power required for my 

implementation is fairly high due to the pipelined nature and high utilization of resources. 

The Vivado floating point IPs are use a lot of power as well, if the number is able to be 

reduced or a design of our own is created, this could lower the overall dynamic power as 

well. Further methods for power reduction are discussed in future works. 

 

5.4 Comparison to Related Works 

In [12] and [13] the authors have proposed two different network designs for 

classification of handwritten digits based upon the MNIST dataset. In [12] they describe a 

2-layer, 8-bit MLP network and in [13] an 8-bit Super Skinny CNN is used. 

5.4.1 Accuracy Comparison 

The accuracy comparison is based on the 10,000 test images from the MNIST 

data set. The results are shown in the following chart. 

 

  Digit Recognition Accuracy (%) 

[12] Implementation 89 

[13] Implementation 98.8 

My Implementation 93.25 

Table 5.4 

Accuracy comparison to related works. 

5.4.2 Speed Comparison 

In the implementation of [12], they are running at 25 MHz, and training the 

network based upon the 55,000 input images, and then classifying the 10,000 test images. 

I compare the time taken to classify 10,000 images in my implementation and their 



 

 

69 

implementation by dividing their total time by 4, given that their operating frequency is 

25 MHz, and mine is 100 MHz. 

In the implementation of [13], they are running at 30 MHz for the parallel channel 

implementation of SS-CNN and then classifying the 10,000 test images. In order to 

compare this time, I divide their total time by 10/3 to allow comparison to my 100 MHz 

frequency. 

 I then multiply the execution time of classifying 1 image in my network by 

10,000 to get the time to classify all the training images using my implementation. 

 

  Total Execution Time (10,000 images) [s] Speedup  

[12] Implementation 0.95 0.01637 
over my 

Implementation 

[13] Implementation 0.66 0.02356 
over my 

Implementation 

My Implementation 0.01555 
61.0932 over [12] 

42.4437 over [13] 

Table 5.5 

Speed comparison to related works. 

The execution time for my system is greatly less than [12] because the weights 

and biases for my system are trained beforehand, while the total execution time for [12] 

also includes training based on 55,000 images. The execution time for my system is also 

greatly less than [13], which also has a greater operational overhead. 

These results show that my implementation when compared to related works 

shows a large speedup. This can be attributed to the fact that the training of the weights 

and biases is done independently beforehand, and the large utilization of resources used. 

5.4.3 Utilization Comparison 

A comparison of the utilization of my network with related works is shown 

below. 



 

 

70 

 

  Total Logic Elements 

[12] Implementation 34,000 

[13] Implementation 98,000 

My Implementation 44,668 

Table 5.6 

A utilization comparison to related works. 

From these results, we can see that my utilization is between the two different 

related works. As stated previously, the high utilization of my network can be attributed 

to the large number of single-precision IP that I used. If I am able to cut just the number 

of multipliers in the mul98 module in half, I would be able to lower my logic elements to 

less than [12]. 

5.4.4 Summary of Comparison 

The results of the comparison of my system with related works shows that all the 

designs were able to effectively recognize handwritten digits at a high precision, with a 

significant speedup over pure software implementations. My design converges from these 

works in that the training of the network was done in software outside of the hardware 

implementation, with the weight and bias values being imported. This is able to lower the 

latency and hardware needed to train the network in hardware. The SS-CNN described in 

[13] is able to recognize digits with near perfect accuracy, but the complexity of the 

network and design makes the utilization much larger. Overall, my implementation was 

able to accomplish something in between [12] and [13], it is able to detect handwritten 

digits with accuracy somewhere between the two, with utilization between the two, but 

with a significant speedup. 

 

 



 

 

71 

CHAPTER 6:  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The purpose of this paper was to describe the implementation of a robust 

Multilayer Perceptron (MLP) network for the recognition of handwritten digits. As 

described, this design can prove as a proof-of-concept for AI-enabled IOT devices.  

In choosing my design, I wanted to create as simple of a network as possible that 

could attain a >92% recognition accuracy with a recognition latency of <3.5ms. In order 

to attain these numbers an MLP network was used with 784 input neurons, a single 

hidden layer of 12 neurons, and 10 output neurons. The training of the networks weights 

and biases based on the MNIST data set was done in Python using stochastic gradient 

descent. This off-board training is able to vastly decrease the complexity of the overall 

final network design, and provide a lower latency when classifying images. This network 

was then implemented in software and hardware, and compared.  

My hardware implementation showed a speedup of 40.3967 over the fastest run 

time in software. This can be adjusted to a speedup of 1090 when taking the 2.7 GHz 

clock that the software is running at compared to the 100 MHz clock in my 

implementation. This network was able to attain an accuracy of 93.25% and a latency of 

1.44 microseconds. Both of these values are within the goals stated at the beginning of 

the project.  

When my design was compared with related works in [12] and [13], I found a 

significant speedup over both designs with an accuracy and utilization between the two. 

These results show that my design represents a middle ground in terms of digit 

recognition accuracy and utilization that is not achieved by either of these designs. 



 

 

72 

The power consumption for my design was high, with dynamic power being 99% 

of the overall consumption at 566 W out of a total of 569 W.  Further analysis of this 

consumption shows that 491.7 W of 566.313 W of dynamic power comes from 

submodules with instantiated floating-point IPs. In future works, using custom designed 

floating-point IP could help lessen this power consumption.  

Overall, my design has been successful in providing a low-latency, high accuracy 

design for digit recognition. Due to the proof-of-concept and modular nature of this 

design, specifics such as the utilization of resources, latency, and overall network design 

can be changed in order to meet the needs of the end user. Further future modifications 

and improvements are described in the future work section. 

 

6.2 Future Work 

The future work for the proposed network is nearly endless, and can be adjusted 

based upon the users end-goals for the system, whether it be low power consumption or 

high digit recognition accuracy. In expanding the system, if floating point operators were 

created that could be used for multiplication, addition, etc. instead of the IPs the user 

could likely lower the overall utilization of resources and power consumption. Also, the 

Vivado IPs limit the lowest precision we can use (single-precision). In software testing, 

we were able to find that half-precision implementation showed no degradation in the 

digit recognition accuracy. 

Ultimately, this design will be integrated with an image/video processing system 

including an OV7670 camera and VGA-interface monitor [34,35], in order to have real-

time digit recognition. The final edge goal will be a low-cost system-on-chip (SoC) with 

a reduced complexity on-chip bus architecture proposed in [17,42], which will be a 

demonstration for time-sensitive applications like cooperative robotics, unmanned aerial 



 

 

73 

systems, as well as autonomous vehicles. Given the current latency, this is much faster 

than the frame rate for any regular camera. Due to this fact, the number of resources used 

in the implementation can be decreased, in order to lower power and utilization, while 

still having a latency within the frame rate of the camera. The main area of my design 

that can be lowered is the hidden layer with submodule with 98 multipliers. I have written 

the equation for the latency of a single hidden layer neuron. 

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
784

# 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠
+ 𝑐𝑒𝑖𝑙(log2 # 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠) + 7 

The implementation that I used has 98 multipliers, and thus a latency for a single 

hidden layer neuron of 22 clock cycles. If I use a design with 49 multipliers changes the 

latency for a single hidden layer neuron to 29 clock cycles. This change would only add a 

total of 77 clock cycles to the entire execution time for a single digit recognition, but 

could divide the number of logic elements used in the mul98 module by half. Even if we 

lowered the number of multipliers to 1, for this stage, the entire system would only take 

9,455 clock cycles to run, which at 100 MHz is only 0.00009455 seconds per recognition. 

These are just a few of the things that can be modified in the future to provide a 

better overall implementation for the end user. Ultimately, they will have decide what 

modifications would fit best for their desired implementation. 

 

 

 

 

 



 

 

74 

REFERENCES 

1. K. Vaca, A. Gajjar, and X. Yang, “Real-Time Automatic Music Transcription (AMT) 

with Zync FPGA,” IEEE Computer Society Annual Symposium on VLSI 

(ISVLSI), PP. 378-384, Miami, FL, US, Jan. 13, 2020.  

2. K. Vaca, M. Jefferies, and X. Yang, “An Open Real-Time Audio Processing Platform 

on Zync FPGA,” International Symposium on Measurement and Control in 

Robotics (ISMCR), Accepted, Sept 19-21, 2019.  

3. H. He, L. Wu, X. Yang, and Y. Feng, “Synthesize Corpus for Chinese Word 

Segmentation,” The 21st International Conference on Artificial Intelligence 

(ICAI), Las Vegas, USA, PP. 129-134, July 29 - August 1, 2019.  

4. A. Gajjar, X. Yang, L. Wu, H. Koc, I. Unwala, Y. Zhang, and Y. Feng, “An FPGA 

Synthesis of Face Detection Algorithm using HAAR Classifiers,” Intl. Conference 

on Algorithms, Computing and Systems (ICACS), PP.133-137, July 27-29, 

Beijing China, 2018.  

5. L. Nwosu, H. Wang, J. Lu, I. Unwala, X. Yang, and T. Zhang, “Deep Convolutional 

Neural Network for Facial Expression Recognition Using Facial Parts,” 2017 

IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing (DASC), 

PP. 1318-1321, Orlando, FL, 2017. 

6. X. Fu, J. Lu, X. Zhang, X. Yang, and I. Unwala, “Intelligent in-vehicle safety and 

security monitoring system with face recognition,” 2019 IEEE International 

Conference on Computational Science and Engineering (CSE), PP. 225-229, New 

York, NY, USA, 2019. 

7. Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y, Ma, and BeiYub, “Recent advances in 

convolutional neural network acceleration,” Neurocomputing, Vol. 323, No. 5 PP. 

37-51, January 2019.  



 

 

75 

8. S. Gupta, M. Imani, H. Kaur and T. S. Rosing, “NNPIM: A Processing In-Memory 

Architecture for Neural Network Acceleration,” IEEE Transactions on 

Computers, Vol. 68, No. 9, PP. 1325-1337, Sept. 2019.  

9. P. Lei, J. Liang, Z. Guan, J. Wang and T. Zheng, “Acceleration of FPGA Based 

Convolutional Neural Network for Human Activity Classification Using 

Millimeter-Wave Radar,” in IEEE Access, vol. 7, pp. 88917-88926, 2019.  

10. E. Wu, X. Zhang, X. Zhang, D. Berman, I. Cho, and J. Thendean, “Compute-Efficient 

Neural-Network Acceleration,” Proceedings of the 2019 ACM/SIGDA 

International Symposium on Field-Programmable Gate Arrays, PP. 191–200, Feb. 

2019.  

11. J. Qiao, G. Wang, W. Li, and M. Chen, “An adaptive deep Q-learning strategy for 

handwritten digit recognition,” Neural Networks, Vol. 107, PP. 61-71, November 

2018.  

12. J. Si and S. L. Harris, “Handwritten digit recognition system on an FPGA,” 2018 

IEEE 8th Annual Computing and Communication Workshop and Conference 

(CCWC), PP. 402-407, 2018.  

13. J. Si, E. Yfantis and S. L. Harris, “A SS-CNN on an FPGA for Handwritten Digit 

Recognition,” 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & 

Mobile Communication Conference (UEMCON), pp. 88-93, 2019.  

14. F. Chen, N. Chen, H. Mao, and H. Hu, “Assessing four Neural Networks on 

Handwritten Digit Recognition Dataset (MNIST),” Computer Vision and Pattern 

Recognition, Nov. 2018.  

15. Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” 2010.  



 

 

76 

16. X. Yang, N. Wu, and J. Andrian, “A Novel Bus Transfer Mode: Block Transfer and 

A Performance Evaluation Methodology,” Elsevier, Integration, the VLSI 

Journal, Vol. 52, PP. 23-33, Jan. 2016.  

17. X. Yang and J. Andrian, “A High Performance On-Chip Bus (MSBUS) Design and 

Verification,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (TVLSI), Vol. 

23, Issue: 7, PP. 1350-1354, Sept. 2015.  

18. X. Yang and J. Andrian, “A Low-Cost and High-Performance Embedded System 

Architecture and An Evaluation Methodology,” IEEE Computer Society Annual 

Symposium on VLSI (ISVLSI), PP. 240-243, Tampa, FL, USA, Sept. 2014.  

19. Y. Zhang, X. Yang, L. Wu, J. Lu, K. Sha, A. Gajjar, and H. He, “Exploring Slice-

Energy Saving on An Video Processing FPGA Platform with Approximate 

Computing,” Intl. Conference on Algorithms, Computing and Systems (ICACS), 

PP.138-143, July 2729, Beijing China, 2018.  

20. Jain S. and Chauhan R. “Recognition of Handwritten Digits Using DNN, CNN, and 

RNN,” Advances in Computing and Data Sciences, Vol 905. PP. 239-248, 2018.  

21. Zhan H., Wang Q., Lu Y. “Handwritten Digit String Recognition by Combination of 

Residual Network and RNN-CTC,” Neural Information Processing, Vol. 10639, 

2017.  

22. C. Gao, D. Neil, E. Ceolini, S. Liu, and Delbruck, “DeltaRNN: A Power-efficient 

Recurrent Neural Network Accelerator,” Proceedings of the 2018 ACM/SIGDA 

International Symposium on Field-Programmable Gate Arrays, PP. 21–30, Feb. 

2018. 

23 FPGA-based Accelerators of Deep Learning Networks for Learning and 

Classification: A Review https://arxiv.org/pdf/1901.00121.pdf 



 

 

77 

24. Batt, Simon. “The Advantages of Hardware Acceleration in Edge Devices.” IoT Tech 

Trends, 18 Feb. 2019, www.iottechtrends.com/advantages-of-hardware-

acceleration-edge-devices/. 

25. Clabaugh, Caroline, et al. “Neural Networks.” Neural Networks, Stanford University, 

2000, cs.stanford.edu/people/eroberts/courses/soco/projects/neural-

networks/History/history1.html. 

26. Nielsen, Michael. “Neural Networks and Deep Learning.” Neural Networks and Deep 

Learning, Determination Press, 2015, 

neuralnetworksanddeeplearning.com/chap1.html. 

27. Jaspreet. “A Concise History of Neural Networks.” Medium, 13 Aug. 2016, 

towardsdatascience.com/a-concise-history-of-neural-networks-2070655d3fec. 

28 A. Gajjar, X. Yang, H. Koc, I. Unwala, L. Wu, and J. Lu, “Mesh-IoT Based System 

For Large-Scale Environment,” 5th Annual Conf. on Computational Science & 

Computational Intelligence (CSCI), PP. 1019-1023, Las Vegas, NV, USA, 2018. 

29 A. Gajjar, S. Dave, and X. Yang, “An IoT-Edge-Server System with BLE Mesh 

Network, LBPH, and Deep Metric Learning,” The 22nd Int'l Conf on Artificial 

Intelligence (ICAI), Accepted, March 2020.  

30 X. Yang, L. Wu, X. He, A. Gajjar, and Y. Feng, “A Vision of Fog Systems with 

Integrating FPGAs and BLE Mesh Network,” Journal of Communications (JoC) , 

Vol. 14, No. 3, PP. 210-215, March 2019. 

31 X. Yang and X. He, “Establishing a BLE Mesh Network using Fabricated CSRmesh 

Devices,” The 2nd ACM/IEEE Symposium on Edge Computing (SEC), Article 

No. 34, San Jose/Fremont, CA, US, 2017. 

32 A. Gajjar, Y. Zhang, and X. Yang, “Demo Abstract: A Smart Building System 

Integrated with An Edge Computing Algorithm and IoT Mesh Networks,” The 



 

 

78 

Second ACM/IEEE Symposium on Edge Computing (SEC), Article No. 35, San 

Jose/Fremont, CA, US, 2017. 

33 H. He, L. Wu, X. Yang, H. Yan, Z. Gao, Y. Feng, and G. Townsend, “Dual Long 

Short-Term Memory Networks for Sub-Character Representation Learning,” The 

15th Intl. Conference on Information Technology - New Generations (ITNG), Las 

Vegas, NV, USA, 2018. 

34 Y. Zhang, X. Yang, L. Wu, and J. Andrian, “A Case Study On Approximate FPGA 

Design With an Open-Source Image Processing Platform,” IEEE Computer 

Society Annual Symposium on VLSI (ISVLSI), PP. 372-377, Miami, FL, US, 

Jan. 13, 2020.  

35. X. Yang, Y. Zhang, and L. Wu, “A Scalable Image/Video Processing Platform with 

Open Source Design and Verification Environment,” 20th Intl. Symposium on 

Quality Electronic Design (ISQED), PP. 110-116, Santa Clara, CA, US, April 

2019. 

36 X. Yang and W. Wen, “Design of A Pre-Scheduled Data Bus (DBUS) for Advanced 

Encryption Standard (AES) Encrypted System-on-Chips (SoCs),” The 22nd Asia 

and South Pacific Design Automation Conference (ASP-DAC), PP. 1-6, Chiba, 

Japan, 2017. 

37 X. Yang, W. Wen, and M. Fan, “Improving AES Core Performance via An Advanced 

IBUS Protocol,” ACM Journal on Emerging Technologies in Computing (JETC), 

Vol. 14, No. 1, PP. 61-63, Jan. 2018.  

38 M. Fan, Q. Han, and X. Yang, “Energy Minimization for On-Line Real-Time 

Scheduling with Reliability Awareness,” Elsevier Journal of Systems and 

Software (JSS) , Vol. 127, PP. 168-176, May 2017. 



 

 

79 

39 X. Yang, N. Wu, and J. Andrian, “Comparative Power Analysis of An Adaptive Bus 

Encoding Method on The MBUS Structure,” Journal of VLSI Design, Vol. 2017, 

Article ID 4914301, PP. 1-7, May 2017.  

40. P. Vangali and X. Yang, “A Compression Algorithm Design and Simulation for 

Processing Large Volumes of Data from Wireless Sensor Networks,” 

Communications on Applied Electronics (CAE), Vol. 7, Issue 4, PP. 1-5, July 

2017. 

41 J. Thota, P. Vangali, and X. Yang, “Prototyping An Autonomous Eye-Controlled 

System (AECS) Using Raspberry-Pi on Wheelchairs,” Intl. Journal of Compt. 

Application (IJCA), Vol. 158, Issue: 8, PP. 1-7, Jan. 2017. 

42. X. Yang and J. Andrian, “An Advanced Bus Architecture for AES-Encrypted High-

Performance Embedded Systems,” US20170302438A1, Oct. 19, 2017. 

43. X. Zhang, J. Lu, X. Fu, X. Yang , I. Unwala, and T. Zhang, “Tracking of Targets in 

Mobile Robots Based on Camshift algorithm,” International Symposium on 

Measurement and Control in Robotics (ISMCR 2019), PP. B2-3-1-B2-3-5., 

UHCL, Houston, USA, 2019. 

44. S. Sha, Ajinkya S. Bankar, X. Yang, W. Wen, and G. Quan, “On Fundamental 

Principles for Thermal-Aware Design on Periodic Real-Time Multi-Core 

Systems,” ACM Trans. on Design Automation of Electronic Systems (TODAES), 

Accepted, 2019. 

45. W. McCulloch, P. Walter, “A Logical Calculus of Ideas Immanent in Nervous 

Activity,” Bulletin of Mathematical Biophysics, Vol. 5, No. 4, PP. 115–133, 

1943.  



 

 

80 

46. S.C. Kleene, “Representation of Events in Nerve Nets and Finite Automata,” Annals 

of Mathematics Studies, Princeton University Press, PP. 3–41. Retrieved 17, 

1956. 

47. S. Linnainmaa, “The Representation of the Cumulative Rounding Error of an 

Algorithm as a Taylor Expansion of the Local Rounding Errors,” University of 

Helsinki, PP. 6–7, 1970. 

48. S. Linnainmaa, “Taylor expansion of the accumulated rounding error” BIT Numerical 

Mathematics, Vol. 16, No. 2, PP. 146–160, 1970. 

49. C. Mead, M. Ismail, “Analog VLSI Implementation of Neural Systems,” The Kluwer 

International Series in Engineering and Computer Science. 80. Norwell, MA: 

Kluwer Academic Publishers, ISBN 978-1-4613-1639-8, 1989.  

50. A. Ng and J. Dean, “Building High-level Features Using Large Scale Unsupervised 

Learning,” arXiv:1112.6209, 2012. 

51. I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT Press, 2016. 

52. A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with 

Multidimensional Recurrent Neural Networks,” Advances in Neural Information 

Processing Systems, Neural Information Processing Systems (NIPS) Foundation, 

PP. 545–552, 2009. 

53. A. Graves, “Novel Connectionist System for Improved Unconstrained Handwriting 

Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 31 No. 5, PP. 855–868, 2009. 

54. AI Chip Market Report, https://www.alliedmarketresearch.com/artificial-intelligence-

chip-market, 2019. 

 


