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ABSTRACT 

CLASSIFICATION OF fMRI BRAIN ACTIVATION MAPS BY USING SPACE 
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Thesis Chair: Unal ‘Zak’ Sakoglu, PhD 

 

 

Functional magnetic resonance imaging or functional MRI (fMRI) is a brain imaging 

technique which is used to measure brain activity by detecting changes associated with 

the blood flow and oxygenation, which are indirect measures of neural activity. When 

participants perform a task and/or have some stimuli during their fMRI scans, fMRI data 

helps us to obtain brain activation maps, which have three spatial dimensions (3D). 3D 

activation maps need to be converted (ordered, or vectorized) to 1D vectors for further 

analyses such as localization and classification of activations and/or participants. 

Traditionally, the 3D to 1D conversion has been done using linear ordering, which loses 

most of the information about the spatial structure of the brain. Instead, one can use 

space-filling curves (SFC) for vectorization, such as a 3D Hilbert curve, which can better 

preserve the structure of the brain; however, it is still far from being optimal. Finding an 

SFC which is adaptive to human brain can better preserve the structure of the human 

brain in 3D-to-1D ordering. The problem of finding an adaptive optimal SFC is 
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inherently a modified traveling salesman problem (TSP), which is a non-deterministic 

polynomial-hard (NP-hard) problem.   

In this thesis work, we obtained an approximation of the SFC practically using a 

heuristic solution to the modified TSP. We used completely de-identified fMRI brain 

activation maps from two groups of fMRI experiment participants: cocaine addicted and 

schizophrenia. We first applied a Hilbert SFC to obtain features and apply deep learning 

and other machine learning algorithms to classify participants from their brain activation 

maps and to fine-tune algorithm parameters. We also used an approximation of the 

optimal SFC using a TSP heuristic, converted the brain maps to 1D and obtained features 

for classification. The classification based on the heuristic approximations of adaptive 

SFC’s orderings yielded comparable or better classification accuracies than those of 

linear ordering and Hilbert ordering.  
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CHAPTER I:  

INTRODUCTION 

The brain is the most complex organ in the human body. Neuroimaging or brain 

imaging research field uses different imaging techniques to study the structure and the 

function of the brain; neuroimaging is broadly classified into two categories, namely 

structural imaging and functional imaging. Structural neuroimaging is used for studying 

the structure of the nervous system and for diagnosis of certain diseases such as brain 

tumors, etc. Functional neuroimaging is used for studying the functioning of the brain 

under different conditions and diseases tracking the dynamics of neural activity or 

neurovascular activity. There are different mechanisms to capture the activity in the brain 

such as event-related optical signal (EROS), electroencephalography (EEG), 

magnetoencephalography (MEG), functional near-infrared imaging (fNIR) and functional 

magnetic resonance imaging (fMRI). 

MRI uses magnetic fields and radio-frequency waves to produce high 2D or 3D 

brain structures without the use of radioactive tracers. FMRI is a technique that relies on 

paramagnetic properties of oxygenated or deoxygenated hemoglobin to observe images 

for change in blood flow which is related to particular neural activity. FMRI data can be 

used to map brain activity using the difference in their magnetic properties between high 

and poorly oxygenated regions in the brain, under the presence and absence of carefully 

designed tasks and/or stimuli introduced during the fMRI scan. These activation patterns, 

is consistent within a group of participants and different from another group of 

participants, can be used as features for a machine learning algorithm which can be 

trained to learn patterns and classify whether a given participant belongs to a certain 

group (such as healthy/normal group vs another group). 
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In this work, our aim is to classify healthy controls vs patients by utilizing the 

differences in patterns of the fMRI brain activation maps which are obtained from the 

fMRI images. These fMRI images are stored as .nii files which are associated with the 

nifti-1 data format, these images are acquired in three spatial dimensions (3D) over time. 

Hence, the overall fMRI data has 4 dimensions (4D), three spatial dimensions and one 

temporal/time dimension. The smallest element of 3D spatial data is known as volume 

element, or voxel, which represents an average signal value of a mini cube in 3D. These 

3D images are converted into a 1D vector which can be further used for the classification. 

In fMRI analysis, mapping of the overall 4D brain imaging data to two dimensions (2D), 

representing matrices of voxels-by-time, is needed for almost all model-based or data-

driven analysis methods [Worsley]. These nii files can be read by SPM (Statistical 

Parametric Mapping) [SPM], which is a MATLAB-based toolbox [MATLAB].  

Below, different ordering schemes for ordering spatial 3D data to 1D are 

introduced.  

Linear Ordering: 

Linear ordering is the main traditional ordering scheme. It converts the 

multidimensional values into a 1D sequence from left-to-right, top-to-bottom, and front-

to-back order using the Cartesian (x, y, z) coordinates. Linear ordering results in a highly 

discontinuous and disconnected 1D array that loses most of the brain structural 

information. For example, many neighboring anatomical points in the brain will not be in 

consecutive positions in the 1D vector when using linear ordering (Figure 1). 

Therefore, the structural information is not concurrently utilized in any 

spatiotemporal fMRI data analysis at all. In addition, the template-matching of individual 

human brain data to the template brain data is generally done using correlating the 1D 

brain vectors, which are highly discontinuous since simple linear ordering is used [Smith, 
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Jiang]. The discontinuity in the 1D individual and template brain vectors appears as a 

common noise structure and it reduces the specificity of the correlation. If a linear 

ordering is considered, then the 3D data is scanned line by line and then layer by layer so 

there is no continuity in the signal (Figure 1 [Sakoglu-2]). Figure 1 it depicts the layer by 

layer traversal with jumps and changes in the pointer positions. It fails to preserve the 

locality and loses the basic structure while converting to 1D.  

 

 
Figure 1: The linear ordering scheme. 

 

Hilbert space filling curve: 

The Hilbert space filling curve is a predetermined and a continuous space-filling 

curve used to convert multi-dimensional space to a 1D space while preserving the 

structural information of the brain [Wiki-Hilbert]. It also preserves the locality of the 

brain structure better than linear ordering. The Hilbert SFC is a suboptimal and 

predetermined space-filling curve which can be generated only by using powers of 2 as 
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the length of one dimension, as depicted in Figures 2, 3 and 4 for the 1st, 3rd, and 6th 

order Hilbert curves. 

For example, for traversal of an fMRI activation map for a 3D spatial activation 

map/matrix of size 53×63×46 which has 153,594 points/voxels, we would require a 

Hilbert curve of size 64×64×64, or 6th order 3D Hilbert curve, since 64=2n. Therefore, the 

actual fMRI brain map data needs to be padded with zeroes (namely, “zero-padding”) to 

obtain a 64×64×64 map, and then the conversion from 3D to 1D can be done. Due to this 

zero-padding operation, there are about 262,144 points/voxels to be traversed, which 

results in 72% more points/voxels. In our scenario, 6th order Hilbert curve is used for the 

3D-to-1D conversion (Figure 4) 

 

 

 

 
Figure 2: 1st order 3D Hilbert Curve 
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Figure 3: 2nd order 3D Hilbert Curve 

 

 
Figure 4: 6th order 3D Hilbert Curve 

 

Optimal space filling curve: 

Finding an optimal space filling curve adaptive to data at hand is important for 

finding the optimal compression, dimensionality reduction, optimal mathematical 
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programming [Butz 1968], optimal sparse multi-dimensional database indexing [Lawder 

2000], electronics [Zhu 2003], and biology [Lieberman 2009]. The organizing power of 

space-filling curves is even employed by the xkcd webcomic "Map of the Internet".  

So, in this thesis we proposed an adaptive curve which works on the basis of 

travelling salesman problem (TSP) and traverses based on the signal difference. The 

curve starting at a point inside the brain and check for the signal difference in all its 

neighborhood. The curve moves to the next voxel which has the minimum signal 

difference with the base voxel. If all the voxels in a neighborhood are already visited or 

the curve is going into loops then it jumps back one step and again searches for the next 

possible minimum signal difference voxel. There by it covers the whole brain activation 

map. There are some traversal brain activation plots depicted below in the results section 

using this approach.  
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CHAPTER II:  

PREVIOUS WORK 

Previously Sakoglu et al. has introduced two suboptimal practical ordering 

methods, which involve two space-filling curves, the Z-curve and the Hilbert curve for 

mapping of a 3D MRI brain gray matter template to 1D, and compared their results using 

a cost function that we introduced, which was a measure of the “connectedness” of the 

1D brain vector [Sakoglu-1]. They showed that, among linear ordering, Z-curve ordering 

and Hilbert curve ordering, the Hilbert curve ordering achieved the minimum cost 

function, resulting in the most “connected” 1D brain. They also proposed that an optimal 

mapping could be found by minimizing the cost function, resulting in the highly 

connected 1D brain vector and we formulated the problem as a Hamiltonian path problem 

(HPP) which reduces to the famous traveling salesman problem (TSP) [Sakoglu-1] ; and 

pointed that finding such an optimal mapping is computationally impossible since it 

involves approximately three hundred thousand variables for fMRI data and several 

million constraints, and therefore heuristic approaches are needed [Sakoglu-1] . 

Subsequently, with the help, they showed the utility of 3D to 1D orderings of the 

MRI brain data using a practical suboptimal space-filling curve, the 3D Hilbert curve on 

a small subset of the data with n=17 participants of cocaine dependent and healthy 

control groups, and obtained 100% accuracy, which was better than the classification 

performance with the linear ordering [Sakoglu-2]. Subsequently, they applied this 

methodology to a larger dataset with n=84 participants, however, participant 

classification accuracy was decreased to ~77% with Hilbert ordering and 67% with linear 

ordering, using only Bayesian network (Bayes Net) classifier [De Leon].  
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CHAPTER III: 

METHODOLOGY 

Before further processing, all the fMRI activation maps data are changed to 

64×64×64 by doing zero padding, that is zeros padded in all the dimensions, then using 

the whole dataset a mean brain map is calculated. Then a brain mask is applied in order to 

mark the voxels outside the brain. Afterwards, the 3D-to-1D vectorization is performed 

[Sakoglu-1].  

In this work, we performed three different kind of vectorizations: a) linear, b) 

Hilbert, c) heuristic approximation to optimal SFC. Below, Figure 5 illustrates an 

example of Hilbert curve in 2D in different sizes, and how it can trace the brain activation 

map from 2D image to a 1D vector, for visualization. In this work, the SFCs is done in 

3D. A more optimal curve can follow the activation map adaptively which would 

correlate with the gyri and sulci of the brain. Since brain activation maps are 3D, we 

attempted to solve this problem in 3D. 

 

 
Figure 5: (a) 2D 3rd Order, 4×4 Hilbert space-filling curve. (b) 6th Order, 64×64 Hilbert 

space-filling curve. (c) A 2D slice from a 3D fMRI brain activation map. (d) 2D 64×64 

Hilbert space-filling curve tracing of the activation map. 
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The problem of finding an optimal space-filling curve was formulated in detail in 

[Sakoglu-1]. Briefly, let us assume that the 3D MRI data matrix has N volume elements, 

or “voxels”, v
1
, v

2
…, v

N
. Let sv

1
, sv

2
…, sv

N
  denote the voxel signal values of these 3-D 

voxels. The structural brain MRI signals are kept in cartesian coordinates which are 

represented by x, y and z dimensions. Therefore, we define the coordinates of voxel vi = 

[xi, yi, zi], where i = 1, 2,…, N. We would like to find such an ordering/permutation of 

voxels vr = { vr
1
, vr

2
, …, vr

N
 } which will constitute an optimal space-filling curve 

ordering, so that the following cost function is minimized: 

In other words, the sum of the squared distance between neighboring voxels’ 

values is minimized. The optimality is in the sense of achieving the minimum sum of 

squared signal differences along the traced curve.  

 

Here, the restriction on r is that the indices of the optimal space-filling curve 

ordering, r = {r
1
, r

2
,…, r

N
}, must constitute indices of neighboring voxels in 3 dimensions. 

We assume the 26-neighbor rule in 3-D in which a voxel has 26 immediate/adjacent 

neighbors as explained above. In other words, we assume that the distance between the 

neighboring voxels to be either 1, √2 or √3, i.e. the spatial (coordinate) distance  

dij = |[ xr
i
, yr

i
, zr

i
] – [xr

j
, yr

j
, zr

j
]| = 1, √2 or √3,  if vr

i
 and vr

j
 are 26-neighbors of each other. 

We can rewrite the cost function in Eqn. (1) in a more analytically tractable quadratic 

form and formulate the minimization problem algebraically as follows; the objective: 

minimize  

  c
2

 = (s[vr
1
] - s[vr

2
])

2

 + (s[vr
2
] - s[vr

3
])

2

 + …+ (s[vr
N-1

] - s[vr
N
])

2

 (1) 

subject to   
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vr
i
 and  vr

i+1
 are 26-neighbors for all i =1,…, N-1.  

 

Different orderings or curves would result in different cost function values. The 

more connected and smoother the resulting 1D curve, the smaller the value of the cost 

function should be. If there was no “connectedness” or “neighborhood” restriction, then 

simply sorting the 3D values from minimum and maximum would give the lowest cost 

function, but that would not be a curve, and the structural information would have been 

completely lost. Ideally, we would like to minimize Eqn. (1) analytically; however, it is 

not analytically possible. We formulate the optimal space-filling curve ordering problem 

by defining the ordering in an undirected graph and show that the problem is a 

Hamiltonian path problem which can be solved by integer linear programming techniques 

(ILPs). 

 

We create an undirected graph G = (V, E) as described in the following: 

For each voxel vi create vertex vi in V. We create edge {vi, vj } in E for every pair 

of voxels vi and vj if voxels vi and vj are immediate neighbors (recall that each voxel has 6 

neighbors).The weight w({vi, vj }) of edge {vi, vj } in E is the difference in their signal 

values squared. 

That is, w{( vi, vj)}= (sv
i
- sv

j
). (2) 

Recall from previous section that r = {r
1
, r

2
,…, r

N
} is a permutation of indices of 

voxels. We call r as connected permutation if for all j, 1 ≤ j < N, voxels 𝑣𝑟𝑗 and 𝑣𝑟𝑗+1 
are 

neighbors. Let P be the set of all connected permutations. Let H be the set of all 

Hamiltonian paths in G. A Hamiltonian path in graph G is a simple path that contains all 

vertices. The two end vertices in this path are not connected in the solution. If they are, 

then this is called a Hamiltonian cycle. 
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There exists a one-to-one correspondence between sets P and H. For every 

connected permutation r = {r
1
, r

2
,…, r

N
} there exists a unique Hamiltonian path denoted 

by h = {h
1
, h

2
,…, h

N
}  in G. Conversely, for every Hamiltonian path h in H there exists a 

unique connected permutation r(h) in P. The mapping between permutation r and h is the 

identity mapping, i.e. voxel 𝑣𝑟𝑖 in permutation r corresponds to vertex vi in Hamiltonian 

path h for all i, 1 ≤ i ≤ N. Therefore, finding a permutation that minimizes Eqn. (1) is the 

same problem as finding a Hamiltonian path in G with the minimum weight. To find an 

optimal permutation, we solve the Minimum Weight Hamiltonian Path (MWHP) (or the 

Shortest Hamiltonian Path in [Chen]) problem and obtain an optimally connected 

permutation r(h) from a Hamiltonian path h with optimal weights. In this project, we 

propose to solve the MWHP problem for our fMRI data by reducing it to a traveling 

salesman problem (TSP) using ILP techniques. TSP is a computationally very intensive 

problem (called non-polynomial-time-hard / NP-hard) [Garey] since it involves 

approximately three hundred thousand variables for fMRI data and several million 

constraints [Sakoglu-1]. Therefore, heuristics-based approaches to TSP are needed to be 

developed for our problem. We start with the most commonly known heuristics of the 

TSP [Tenenberg].  

We hypothesized that the features obtained by the heuristic approximation of the 

optimal space-filling curve-based ordering of the brain activation maps would lead to a 

better classification of the cocaine-dependent participants, and hence we would be able to 

better isolate the brain regions involved in cocaine addiction. The steps of the 

methodology are summarized below: 

• Obtain a suboptimal approximation of the space-filling curve-based tracing 

of the fMRI activation maps by implementing one or more of the heuristics 

of the TSP, 
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• Compress the 1D data and obtain features (by averaging, called “binning”), 

• Use the obtained features to perform participant classification of data, 

•  Find the features which contribute to the classification the most, further reduce the 

features to the most important features, 

• Locate where these reduced features lie on the 1D brain curve/vector, 

• Back-map the important features to the 3D data, find where the important brain 

regions are located, 

• Repeat all the steps with the traditional linear ordering, compare results, 

• Iterate the steps above by using different compression ratios (bin sizes), different 

classification algorithms and parameters; optimize the overall classification 

accuracy.  

Optimal space filling curve: 

Finding an optimal space-filling curve (OSFC) inherently requires solving a 

modified traveling salesman problem (TSP)[Sakoglu-1] which takes exponential 

computation time and hence cannot be solved in polynomial-time [Sakoglu-1]. Based on 

definition by Sakoglu et al in [Sakoglu-1], an OSFC would start from a voxel and trace 

the matrix by moving to the neighboring voxel with minimum signal difference, as the 

basic rule or constraint. This would result in the minimum sum of squares of signal 

difference in the 1D OSFC [Sakoglu-1]. If a practical approximation of the optimal 1D 

space-filling curve which can trace the 3D MRI brain can be found, even a suboptimal 

approximation, as proposed in this project, it will greatly enhance the features extracted 

from the MRI data and it has to attain a better classification of participants with different 

brain conditions. Therefore, the optimal space-filling curve comes into picture which 

would traverse the whole space with smoother signal transition values and no frequent 

large jumps or discontinuities hence preserving the structure of the element. These space-
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filling curves can start at any location and can traverse all the points or voxels only once 

by definition and end at a different point. The crucial point is that the traversal has to go 

from one neighbor to another at each step. 

In a 3D space, immediate neighborhood can be defined in different ways. The 

sparsest definition involves having only 6 neighbors when one considers north, south, 

east, west, above, and below immediate neighbors, each with a distance of 1, given the 

spacing between the voxel grid is 1 (6-neighborhood). If diagonal neighbors are also 

counted as immediate neighbors, then there are 18 immediate neighbors, including the 

diagonals with a distance of square root of 2 (18-neighborhood). In this work, we 

considered 26-neighborhood.  

Our developed space filling curve tracing algorithm moves to the neighboring 

voxel keeping track of the voxels visited so that already visited voxels are not visited 

again and instead it moves to the next neighboring voxel with the minimum signal 

difference. If it is going into some loop (called a “trap”), then the algorithm moves one 

step back, and then visits a different neighboring voxel than before (i.e. not the neighbor 

with the minimum signal difference, but the neighbor with the second minimum signal-

difference). Below is the pseudocode depicting the flow of the algorithm. 
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Pseudocode 1: SFC Pseudocode 

 

Input: fMRI image 

Output: 1D signal vector 

 

SFC Pseudocode: 

Read the Brain Activation Map. 

Find the number of non-zero voxels in the map n. 

Start from 1st non zero voxel i, j, k. 

For iSFC = 1 to n 

 Maintain a visited voxels vector, place the I, j, k in the visited vector 

xyzzy. 

Using a 26-neighbor function all the neighbors of the point (I, j, k) are 

stored in a vector. 

 The signal difference of the neighbor with the current voxel is calculated  

The pointer is moved to the neighbor with minimum signal difference. 

Verify that the point is not visited already. 

If the next point is found to traverse 

   Then update visited vector with the neighbor found. 

Else 

  Decrement the visited list and select the next minimum signal 

difference neighbor. 

endif 

end for 
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Figure 6: SFC Brain Activation Plot 

  

Methodology 1: 

 The implementation of Hilbert and the linear space filling curves were done by 

following the flowcharts depicted in Figure 7 and Figure 8.We converted the 3D brain 

activation map data from two groups (patient and control groups) to 1D, and the 1D data 

was down-sized using binning as described in the thesis proposal. By performing binning, 

the data was reduced from about one hundred fifty thousand voxels to approximately one 

thousand voxels. And then the t statistics was applied to find the most statistically 

significantly discriminative brain regions in 1D, and these regions are extracted as 

discriminative features based on the low p values that they result in group discrimination. 

Classification and deep learning are also applied to the obtained features for getting a 

prediction of whether they are control or cocaine-addicted. We have used linear 

classification and support vector machine with different kernels and have obtained 

accuracies for both Hilbert and linear and compared the results (presented in the tables 

below). Then in the end, the most discriminative attributes/features in 1D were back-
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mapped to the actual 3D brain regions to locate and visualize which regions in the 3D 

brain were among the most important regions in the classification of the data.  

The implementation was done in two phases: part A and part B. In part A, using all the 

participants a mean activation brain map was calculated and the mean brain map was 

multiplied with the mask (m) so that all the non-brain region voxel values are zero. Then 

this extracted brain map was zero-padded to change the size of the image to 64×64×64 as 

the Hilbert curve can be applied to datasets with dimensional length of only powers of 2. 

If we use linear ordering there is no need for zero padding. Then using the selected 

technique, they are converted from 3D to 1D. The zeroes in the 1D vector are removed 

using an absolute threshold keeping track of their indexes which are further used in part 

B. This operation is called “zero-trimming”.  

 Then for each participant activation map was multiplied with the mask(m) and the 

non-brain region are made zero removing all values outside the brain. Just like the part A 

the extracted brain map is zero padded to change the dimensions of the map to 64×64×64 

while applying the Hilbert space filling curve. Then for each participant activation map 

are multiplied with the mask(m) and the non-brain region are made zero removing all 

values outside the brain. 
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Figure demonstrating the complete workflow for Hilbert. 

 

 
Figure 7: Part A of Processing Flow 

 
Figure 8: Part B of Processing Flow 

 

Just like the part A the extracted brain map are zero padded to change the 

dimensions of the map to 64×64×64 when applying the Hilbert space filling curve. Then 

the pre-defined sub optimal Hilbert curve is applied, and the 3D activation map are 

converted to 1D. Using the zero removal indexes which are obtained from the part A, the 

same voxels are removed from these individual maps as well to eliminate the zeros. 

Before the zero removal was done there was around 262,144 attributes, which is a very 

large number for any classifier. Just by removing the zero valued voxels (i.e. by “zero-
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trimming”), the size is reducing to nearly 150 thousand voxels. Even then it is hard to 

perform any classification because of the large number of attributes.  

Therefore, to further downsize the data, a method of “binning” was applied to the 

data. Different bin sizes can be used to obtain different number of attributes. Binning is a 

process of averaging the values that are grouped in a bin. For example, if there are 100 

attributes to start with, and if the bin size is 20 then the resulting dataset has only 5 

attributes. The mean of the 1st 20 attributes in the 100 attributes dataset gives the 1st value 

of the resulting dataset and the 2nd 20 values mean gives the 2nd value of the resulting 

dataset and so on. In Figure 9 , the size of the data is around 120 thousand voxels but 

after binning the data with bin size of 100 it had only 1200 values in the resulting dataset 

(i.e. Figure 10). 

 

 
Figure 9: Hilbert-ordered, zero-trimmed, before binning 
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Figure 10: Hilbert-ordered, zero-trimmed, after binning with a bin size of 100 

Methodology 2: 

 In the second methodology each participant was masked with a mask and the non-

brain region  removed. So, whatever the remaining signal values present in the data are 

coming from inside the brain. In Figure 11 we can observe that the non-brain region is 

smoother, and, there is good differentiation of the boundary. These masked activation 

maps are further used for applying all the orderings. Below is the flow depicting the flow 

of the second methodology (Figure 13). 

• Linear- It is a conventional method. As discussed in the above introduction the 

linear ordering is done from left to right, top to bottom and as it is applied on a 

three-dimensional space front to back layer by layer. Follow the same approach 

each masked data is converted into one dimension using linear ordering and are 

added as the record for the data. Each attribute is considered as a feature. The 

length of record in the resultant data is 153,594 attributes. 

• When the linear ordered dataset is down sized with a bin size 100 or 200 the 

resultant dataset would have 1536 attributes for 100 bin size and 768 attributes 
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when the bin size is 200. 

 

 
Figure 11: Masked brain activation map.  

• Hilbert- The Hilbert works in the power of 2, as the size of data is 53x63x46, so it 

was zero padded and the size of the data is changed to 64x64x64. This is done on 

the masked data. Masking the data does not change the size of it so applying the 

zero padding on the masked data just changes the size to 64x64x64.Then on the 

zero padded data the predetermined Hilbert curve is applied. Point by point the 

signals are traversed and 1D curve was obtained. Because of the zero padding 

each 1D record has increased the number of features to 262,144. 

• When the Hilbert ordered data, set is down sized with a bin size 100 or 200 the 

resultant dataset would have 2622 attributes for 100 bin size and 1311 attributes 

when the bin size is 200. 

• Optimal SFC- The optimal proposed SFC is applied on mean brain map which 

was obtained from averaging all the participant brain maps. It yields an optimal 
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curve with 52605 features which is much smaller when compared to linear and 

Hilbert. It is nearly one third of the linear ordered curve and one fifth of the 

Hilbert ordered curve. This overall reduces the number of points to traverse.  

• So, when the binning is performed on the SFC ordered data the resultant dataset 

would have 527 features when the bin size is 100 and 263 features when the bin 

size is 200. 

 

Before the classification was applied, attribute/feature selection was done using 

two-sample t test and sequential forward selection, in order to reduce the number of 

features being processed through the model, which in turn reduces the computation. 

These selected features which gave a better accuracy were back-mapped onto the 3D 

brain imaging space to visualize the brain regions corresponding to the most 

discriminative features.  Two sample t test, across two group’s samples, performed for 

each feature/attribute, provides a measure of how significantly each feature can 

discriminate between two groups of samples by measuring the p values of significance of 

the t test. In our case, the attributes/features were the binned brain activation values in 1D 

for each participant.  

Sequential forward search is another technique which is used for the feature 

selection. In the below pseudocode you can see that in an iterative process the features 

are selected which is best in that iteration. Basically, it follows a greedy approach that is 

without considering the future it accepts the best at that point of time.  
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Pseudocode 2: Pseudo Code for Sequential forward selection  

1.Start with empty set Y0={ᴓ} 

2.Select the best from remaining features (bin): 

          next feature x = argmaxx∈Yk [J(Yk + x)]   

3. If J((Yk+x)>J(Yk)) 

a. Update Yk+1= Yk+x 

b. k=k+1 

c. Go back to step 2. 

 

• Iteratively the model is fed with different features and which combination gives 

better accuracy is forwarded to the next generation and other attribute with the 

best combination achieved from the previous iteration are passed to the model and 

again searched for the best accuracy. These selected attributes are then feed to 

different models for classification. 

• There are different classification models like support vector machines, voting 

algorithm, perceptron, random forest and Gaussian naïve Bayes etc. are applied 

and also, I have applied a deep learning model to all these data. 

• A deep learning model with 5 hidden layers and with 32,16,8,4,2 hidden nodes in 

a sequential order. The number of input nodes depends on the number of 

attributes in the dataset and with only one output node. I have used Rectified 

Linear Unit (ReLu) activation function for the Hidden nodes and for the output 

node have used both the sigmoid and SoftMax. To check which one was yielding 

better results(Figure 12). 
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3D down-sampling without 1D mapping:  

There is another method that I have implemented without any conversion of 3D to 

1D. Directly averaging the brain activation map and downsizing it, a usual brain 

activation map is 53×63×46 but downsize by 4 changes the size of the activation to 

13×15×11. It is done by averaging the value of consecutive 4×4×4 voxels in the 

activation map. Then linearly convert each participant to 1D for the classification.  

 

 

 
Figure 12: Deep learning model 
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Figure 13: Steps of proposed methodology.  
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CHAPTER IV: 

RESULTS 

Datasets: 

There are two fMRI brain activation datasets used for analysis in this work. The 

first dataset is from a cocaine addiction neuroimaging study, and the second dataset is 

from a shared repository of multi-modal, multi-site neuroimaging data from a clinical 

investigation of schizophrenia (MCIC). These datasets are completely de-identified brain 

activation maps. Cocaine addiction dataset has 84 participants and schizophrenia dataset 

has 184 participants. Each dataset has also data from control participants. The breakdown 

of numbers of participants for each dataset are summarized below in Table 3 and Table 4.  

 

Table 1: 

 

Cocaine Addiction Dataset 

Cocaine Addiction Dataset 

Control 25 

Patient 59 

Total 84 

 

Table 2: 

 

Schizophrenia Dataset 

Schizophrenia Dataset 

Control 95 

Patient 89 

Total 184 

A brain activation map from one of the participants in the schizophrenia dataset, 

after ordering from 3D to 1D, are plotted for each of the orderings linear, Hilbert and 

SFC below (Figure 14, Figure 15, Figure 16). The linear ordering has discontinuous 
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signal values as we can observe that in regular intervals the signal values are zero (Figure 

14). Which visually depicts that the linear order is not at all structure preserving and 

discontinuous. In Hilbert we can observe that there is some continuity in the values, and 

we can observe a larger cluster of zeros because of the zero padding is performed on the 

data for applying Hilbert (Figure 15). But the SFC curve has a continuity in the signal 

values and shortest of all the curves. 

 

 

Figure 14: Linear Order Signal plot. 
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Figure 15: Hilbert order Signal plot. 

 

  

Figure 16: Optimal Space Filling Curve Ordered Signal plot. 
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Figure 17: Downsized brain activation map signal plot. 

When applied the cost function sum of squared signal differences (1) below are 

the resulting values for each curve. Using SFC cost function has obtained a value which 

is smaller by an order of 2. So SFC is better than the other ordering techniques in terms 

of cost function. 

SFC Ordering: 1.153905049000000e+09 

Hilbert Ordering: 1.250167550200000e+11 

Linear Ordering: 1.413038600370000e+11 

Downsized Map: 2.575344347250000e+09 

 

Binned signal value for each curve are zoomed in and depicted. Just for 

representing they are binned with a bin size 1000, for each division the values are 

averaged and consider as the attribute value or feature. As the zero regions are grouped in 

SFC (Figure 18) at a place all those bins value would be zero and so they will not have 
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any effect on classification. In the bar graph a snap of the mean signal values of the part 

are depicted. 

In the Figure 19 we can observe that on Hilbert the binning is applied, and it is 

evident from the 2nd plot that just because of 2 values between the 1000  and 2000 bins 

the activation of the bin is not zero. The 1st bin value is zero, but the value of the second 

bin is not. So, on the whole when binning is performed on the dataset it biases the data by 

averaging. For linear binned (Figure 20) there will be even more difference as there is a 

regular break down in the signal and so it even has a greater effect when binning. Which 

results in corrupted or biased bins. 
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Figure 18: Zoomed in binned signal values on SFC ordered plot 
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Figure 19: Zoomed in binned signal values on Hilbert ordered plot 
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Figure 20: Zoomed in binned signal values on linear ordered plot 
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For linear ordering and the downsized both have even more discontinuity (Figure 

20 and Figure 21) in the signal values, so there might not perform better when compared 

to other approaches. Just like the linear ordering the down sized sample also has the same 

problem of discontinuity as we are using the linear method to convert the down sized 

sample. 

Below in Figure 22 it shows the two control participants brain activation maps are 

converted from 3D to 1D using Hilbert curves and are overlaid to see how well they are 

co registered. By this plot we know that points are from the same region for both 

participants and both have more or less similar values.    
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Figure 21: Zoomed in binned signal values on Downsized  activation map signal plot 
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Figure 22: Conversion of 3D to 1D and Overlaying two controls from Cocaine addiction 

dataset after applying Hilbert curve. 

 Below is the plot of the optimal SFC with difference in color magnitude for every 

thousand voxels that are traversed (Figure 23).  

 

 
Figure 23: SFC Brain Activation plot after removing the non-brain. 
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CHAPTER V: 

CLASSIFICATION RESULTS 

Classification result on cocaine addiction dataset using all the feature and features 

selected using t statics of p<0.05 with different activation function sigmoid and SoftMax. 

It is observed that in all combinations SoftMax out performed sigmoid by a large 

difference. As well the Hilbert was performing better than linear at all the instances at 

least by a small margin.  

 

Table 3: 

 

Deep learning results of Hilbert and linear using different activation functions (cocaine 

addiction dataset) applied on cocaine addiction dataset. 

 

Combinations Hilbert Linear 

BinSize_200_P<0.05_Sigmoid 54.56 53 

BinSize_200_P<0.05_SoftMax 70.4 69.7 

BinSize_200_FullDataSet_Sigmoid 51.2 50.2 

BinSize_200_FullDataSet_SoftMax 69.8 68.5 

BinSize_100_P<0.05_Sigmoid 51.02 50.4 

BinSize_100_P<0.05_SoftMax 71.20 71.60 

BinSize_100_FullDataSet_Sigmoid 53.6 50.7 

BinSize_100_FullDataSet_SoftMax 71.19 71.07 

BinSize_50_P<0.05_Sigmoid 53.7 53 

BinSize_50_P<0.05_SoftMax 70.6 70.3 

BinSize_50_FullDataSet_Sigmoid 55.1 53.3 

BinSize_50_FullDataSet_SoftMax 71.07 70.3 

 

Table 4 has the classification result that are obtained from applying methodology 

1 on both the Hilbert and linear ordering on cocaine addiction dataset. Applied the 

Multilayer perceptron by using the Weka tool [WEKA], which is a machine learning 
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software using java. Using different bin sizes and different p values I have tried 

calculating the accuracies and the Hilbert was performing better in every combination. 

 

Table 4: 

 

Classification results using Multilayer perceptron in weka averaging 10 iterations on 

cocaine addiction dataset. 

 

Classification of cocaine addiction using 
multi-layer perceptron 

About the Data Hilbert Linear 

bin size 100 and p < 0.05 77.30% 75.30% 

bin size 100 and p < 0.03 77.00% 66.40% 

bin size 200 and p < 0.05 72.50% 69.80% 

bin size 200 and p < 0.03 74.50% 70.00% 

 

In Table 5 the classification results of the cocaine addiction dataset using SVM 

are depicted. The bin size of the data is 100 and the with p value less than 0.05. Even 

when the number of iterations is increased, the Hilbert was constantly performing better 

than the linear ordering. 

 

Table 5: 

 

Classification result using SVM on cocaine addiction dataset with bin size 100 and 

p<0.05. 

Classification of cocaine addiction, 
bin size = 100 and 

p< 0.05 Using SVM Gaussian Kernel 

Iterations Hilbert Linear 

100 75.60% 69.00% 

200 75.30% 69.20% 

300 76.07% 69.50% 

400 76% 70.00% 

500 75.20% 69.80% 
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The sequential forward selection was applied for all the ordering and the 

classification accuracies are compared to see which was performing better and how the 

accuracies changed ( Table 6 ). The Hilbert and SFC are getting an accuracy more than 

70% but the linear are just around 50% accuracy which is very low. As the number of 

attributes are increased the accuracy is also been increased slightly. 

 

Table 6: 

 

Classification result using sequential forward selection on SFC, Hilbert and linear 

ordering on MCIC dataset. 

 

Classification Accuracy table following Sequential forward selection 

Ordering 
Bin 
size 

Number 
of 
Attributes 
in the set 

Number of 
Attributes 
used for 
Classification Iterations Algorithm 

Highest 
accuracy  

No. of 
attributes 
that 
achieve 
the 
highest 
accuracy  

SFC 100 667 30 100 SVC 72.1% 25 

Hilbert 100 2622 30 100 SVC 73.2% 30 

Linear 100 1536 30 100 SVC 49.9% 14 

SFC 100 667 100 100 SVC 74.6% 100 

Hilbert 100 2622 100 100 SVC 76.8% 100 

Linear 100 1536 100 100 SVC 50% 27 

 

Below is the accuracy plot for sequential forward selection of each ordering as the 

number of attributes are added to the best sequence. Figure 24 the SFC had a gradual 

increase in the accuracy as the best attribute in that iteration is being added to the 

sequence and the accuracy is again calculated. It has a maximum accuracy of 74.6% with 

100 attributes. And for the Hilbert (Figure 25) the accuracy was best with 100 attributes 

with an accuracy of 76.8%. The linear ordering  (Figure 26) has the lowest accuracy 
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when compared to other with 50% accuracy. Number of features that are considered is 

quite low in SFC and even then there are some significant results. But for Hilbert if we 

observe there are about two thousand six hundred feature which is 4 times greater than 

that of the SFC. So, for using sequential forward selection it has to go through all the 

combinations of 2622 features for a Hilbert. 

Comparatively the SFC has less computation required with a smaller number of 

features and gaining better results. 

 

 

 

 

 

Figure 24: Classification accuracy for SFC using Sequential forwards selection on 

MCIC dataset. 
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Figure 25: Classification accuracy for Hilbert Ordering using Sequential forwards 

selection on MCIC dataset. 

 

 
Figure 26: Classification accuracy for linear ordering using Sequential forwards 

selection on MCIC dataset. 
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Table 7: 

 

Classification Accuracy of all the methods with all the features 100 bin size applied on 

MCIC dataset. 

In the above Table 7, we can observe that Space filling curve was performing 

better than all the other techniques at least by a smaller margin when using all the 

features or the full dataset. It is a lot better when compared to the linear and the 

downsized brain activation method and slightly performing better than that of the Hilbert. 

Because when using all the features the number of features used for computation are 

pretty less for SFC when compared to Hilbert and linear. But for Down sized activation 

there is no binning performed as it is already an averaged data. So, in majority of 

algorithms SFC was performing better than the other approaches. 

 

PCA: We also did a principal component analysis (PCA) of the SFC ordered MCIC data, 

with a split ratio of 70% train and 30% test data. It resulted with128 principle 

components (i.e. features) since it had 128 training records/samples. When passed 

through the SVM with 100 iterations, it resulted in an average accuracy of 51.7% which 

is close to the chance accuracy of 50%. 

 

Methodology 
Bin 
Size 

Classification Accuracy with different algorithms on MCIC data for 
100 iterations 

Num. of 
Attributes 

Voting 
Algorithm 

SVM Gaussian 
Random 
Forest 

Perceptron 

Downsized 
brain 
activation 

N/A 
2146 49.90% 49.80% 50.00% 49.40% 46.50% 

Linear 100 1536 47.00% 46.70% 47.40% 46.10% 49.40% 

Hilbert 100 2622 62.30% 63.30% 55.40% 60.10% 67.00% 

Space Filling 
Curve (SFC) 

100 622 62.30% 65.40% 58.60% 61.20% 64.60% 



 

 

42 

The sagittal view of the Brain map for Hilbert 100 bin size with p<0.05 and has 

about 27 features which are back mapped on to the brain to know the region of interest. 

The slices starting from 14 to 53 all the sagittal views are displayed (Figure 27). 

The sagittal view of the brain map with region of interests or features obtained 

from the SFC ordered curve are plot below on one of the participants. The slices start 

from 15 to 52 with all the slices combined (Figure 28).  

 

 

Figure 27: Sagittal view of Back mapped features of Hilbert 100 bin size and p<0.05 
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Figure 28: Sagittal view of back mapped features of SFC 100 bin size  
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CHAPTER VI: 

CONCLUSION 

In this proposed work, we proposed to find a new suboptimal heuristic 

approximation to an optimal space filling curve (SFC) that would traverse the fMRI 

human brain data in an optimal way, and we expected that this new SFC would result in 

better classification accuracy of participants from fMRI brain activation maps when 

compared to the Hilbert ordering and the conventional models of ordering, such as linear 

ordering. Our results on two separate fMRI datasets, one from cocaine addiction and 

another from schizophrenia brain  activation maps, show Hilbert based classification 

achieved slightly better classification accuracy than that of SFC (approximately 76% vs 

75%) when utilizing sequential forward search and two sample t test for finding the most 

discriminative features. When no feature selection was done, the SFC provided a slightly 

better accuracy for most of the classification algorithms utilized. That is when the whole 

dataset is used the SFC is performing better than the other methods. 

On the whole, Hilbert curve and the SFC outperformed the conventional linear 

model by a large difference. We have used different deep learning algorithms with 

different parameters, e.g. different activation functions, number of hidden layers, nodes, 

as well as different bin sizes in the binning step, in order to optimize algorithm 

parameters and to maximize classification accuracy. But the proposed SFC had a better 

cost function in terms of mean squared signal difference in data, and also was successful 

in preserving the structural information of the brain, also there is continuity in the signal 

value which can be applied to many other problems like MRI data acquisition and data 

analysis.  
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APPENDIX A:  

MATLAB CODE FOR HILBERT AND LINEAR CURVE ORDERING WITH 

BINNING AND BACK MAPPING 

 

%BrainMAppingScriptUS 

%Create Hilbert Curve 64^3: 

n=6 

[x,y,z]=hilbert3(n); 

hilbert3US 

  

%Read a 3D brain activation map 

allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii'); 

  

numfiles=length(allfilenames_ar); 

  

%Iteratively accepting each nii file for the analysis 

lengths_all=zeros(numfiles); 

L=64^3; 

linearlen=53×63×46; 

myVolume1DHilbert_all=zeros(numfiles,L); 

myVolume1DLinear_all=zeros(numfiles,linearlen); 

BinSize=100; 

NumBins=floor(L/BinSize); 

myVolume1DHilbert_binned=zeros(numfiles,NumBins); 

LNumBins=floor(linearlen/BinSize); 

myVolume1DLinear_binned=zeros(numfiles,LNumBins); 

  

for img=1: numfiles % 

    allfilenames=num2str(allfilenames_ar(img,:)); 

    buf='E:\Thesis\Processed_MCIC\'; 

    filename=strcat(buf,allfilenames); 

     

    myVolume=spm_read_vols(spm_vol(filename)); 

    %allf=dir('×test×nii') 

    allfilenames 

    %Zero-pad it 

    myVolumeZeroPadded=zeros(64,64,64); %temp 

    myVolumeZeroPadded(1:53,1:63,1:46)=myVolume; 

    %show slice from it 

    

%%figure,imagesc(myVolumeZeroPadded(:,:,23));colormap(gray),colorbar 

    %see the histogram 

    %%figure,hist(myVolumeZeroPadded(:),200) 

    %convert to 1D vector using Hilbert ordering 

     

    myVolume1DHilbert=zeros(1,L); 

    for i=1:L, 
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myVolume1DHilbert(i)=myVolumeZeroPadded(x_new(i),y_new(i),z_new(i)); 

    end 

    myVolume1DHilbert_all(img,:)=myVolume1DHilbert; 

    figure,plot(myVolume1DHilbert),axis tight, title('Hilbert-Curve 

Ordered') 

    %convert to 1D vector using linear ordering: 

    myVolume1DLinear=transpose(myVolume(:)); 

    myVolume1DLinear_all(img,:)=myVolume1DLinear; 

    figure,plot(myVolume1DLinear),axis tight, title('Linear Ordered') 

     

    for i=1:NumBins, 

        myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert((i-

1)×BinSize+1:i×BinSize)); 

    end 

     

    for i=1:LNumBins, 

        myVolume1DLinear_binned(img,i)=mean(myVolume1DLinear((i-

1)×BinSize+1:i×BinSize)); 

    end 

    Zeroclipping 

    mythresh=0.001, 

    j=1;k=1;l=1; 

    for i=1:L, 

        if abs(myVolume1DHilbert(i))>mythresh, 

            myVolume1DHilbert_zeroremoved(j)=myVolume1DHilbert(i); 

            j=j+1; 

            nonzeroindexvector(l)=i; 

            l=l+1; 

        else 

            zeroindexvector(k)=i; k=k+1; 

            %k 

        end 

    end 

     

    plot zero-clipped vector 

    %figure,plot(myVolume1DHilbert_zeroremoved),title(['Hilbert-ordered 

& zero-removed using threshold ',num2str(mythresh)]) 

    Lzr=length(myVolume1DHilbert_zeroremoved); 

    allfilenames 

    Lzr 

    lengths_all(img)=lzr; 

     

    Map_After_zero_removal(84,lzr);%=zeros(84,Lzr); 

     

     

     

    

dlmwrite('E:\Thesis\Results\Binned_res.csv',myVolume1DHilbert_binned(im

g,:),'-append'); 

end 

dlmwrite('E:\Thesis\Results_new\Hilbert1D_100bin.csv',myVolume1DHilbert

_binned,'-append'); 
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dlmwrite('E:\Thesis\Results_new\Linear1D_100bin.csv',myVolume1DLinear_b

inned,'-append'); 

  

  

  

%csvwrite('Map_After_zero_removal',Map_After_zero_removal); 

  

for i=1:80 

    temp=Map_After_zero_removal(i:i+10,:); 

    te=transpose(temp); 

    figure,plot(te) 

    i=i+10; 

end 

%Binning: 

  

figure,plot(myVolume1DHilbert_binned),title(['Hilbert-ordered & zero-

removed & binned using Bin Size ',num2str(BinSize)]) 

%The above binned values provide your raw features into classificztion 

%algorithm. The Feature Selection PRocedure will select Some featrues 

as 

%subset. %You can save them using 

%csvwrite('myfilename.csv',myVolume1DHilbert_binned) 

  

%Let's say you got bins #76,236 and 345 as important features 

ImportantBins=[76,236,345], 

NumImportantBins=length(ImportantBins) 

for iBin=1:NumImportantBins, 

    myBin=ImportantBins(iBin), 

    myBinIndexI(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize; 

    iBin 

end 

  

myBinIndexConcat=reshape(myBinIndexI',[1,NumImportantBins×BinSize]); 

originalIndexesOfImportantBins=nonzeroindexvector(myBinIndexConcat); 

  

my3DImportantBins=zeros(64,64,64); 

%randn(53,63,46); 

for p=originalIndexesOfImportantBins, 

    p 

    my3DImportantBins(x_new(p),y_new(p),z_new(p))=1; 

end 

my3DImportantBinsZeroPadsRemoved=my3DImportantBins(1:53,1:63,1:46); 

V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii'); 

Vtemp=spm_create_vol(V) 

Vtemp.fname='E:\Thesis\test_AQI_C_importantregions.nii' 

Vtemp.descript='brain regions' 

spm_write_vol(Vtemp,my3DImportantBinsZeroPadsRemoved); 
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APPENDIX B: 

MATLAB SCRIPT PRODUCING SFC ORDERING 

%script %function [xy] = US_heuristic01 %(myimage) 

%   Given a grayscale image (3D), returns the coordinates of a 

%   space-filling curve that traces it which minimizes the SSE of 

diff(jump) 

  

  

buf='E:\Thesis\MaskedData\C_AQI_C.nii'; 

%filename=strcat(buf,allfilenames); 

myimage=spm_read_vols(spm_vol(buf)); 

sizeVec=size(myimage), 

M=sizeVec(1) 

N=sizeVec(2) 

O=sizeVec(3) 

i = 25, 

j = 31, 

k = 23, 

%figure(1),ylabel('i'),xlabel('j'),zlabel('k') 

purgedflag=0; 

tic 

  

xyz=zeros(M,N,O); 

  

for i_SFC=1:M*N*O, 

    %for i_SFC=1:1000, 

%     if exist('next_i') 

%         %if max(ismember(xy',[next_i,next_j,next_k],'rows'))==1 || 

myimage(next_i,next_j,next_k)==0, %change the neighbor if it is already 

in the index set 

%         if xyz(next_i,next_j,next_k)==1 

%             if purgedflag==1 

%                 i_SFC=i_SFC-1; 

%             end 

%             i_SFC=i_SFC-1; %prune the last i,j off from the curve and 

continue 

%             purgedflag=1 

%         else 

%             purgedflag=0 

%         end 

%     end 

    %x(i_SFC)=i; 

    %y(i_SFC)=j; 

    xy(:,i_SFC)=[i,j,k]'; 

    t=xy'; 

    buf=1; 

    purgedflag=0; 

    xyz(i,j,k)=1; 

    mysignal(i_SFC)=myimage(i,j,k); 

    twentySixneigh = US_26neighbors_LT(i,j,k,M,N,O); 

    %size26neigh=size(twentySixneigh) 
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    %signalsdiffNeighs=zeros(1,size(twentySixneigh,1)); 

    signalsdiffNeighs=[]; 

    %index1=zeros(size(twentySixneigh,1)); 

    for in=1:size(twentySixneigh,1) 

        signalsdiffNeighs(in)=abs(mysignal(i_SFC)-

myimage(twentySixneigh(in,1),twentySixneigh(in,2),twentySixneigh(in,3))

) %; 

    end 

    index1=zeros(1,size(twentySixneigh,1)); 

    [minDiffSignalinNeighs,index1]=sort(signalsdiffNeighs,2,'ascend'); 

    min_i=1; max_i=length(index1); 

    %     next_i=twentySixneigh(index1(min_i+purgedflag),1); %<-go to 

the next neighbor that gives you min signal diff 

    %     next_j=twentySixneigh(index1(min_i+purgedflag),2); %<-go to 

the next neighbor that gives you min signal diff 

    %     next_k=twentySixneigh(index1(min_i+purgedflag),3); %<-go to 

the next neighbor that gives you min signal diff 

    %     %  

while((max(ismember(xy',[next_i,next_j,next_k],'rows'))==1)&&(min_i<siz

e(twentySixneigh))) %change the neighbor if it is already in the index 

set 

    next_i=twentySixneigh(index1(min_i),1); %<-go to the next neighbor 

that gives you min signal diff 

    next_j=twentySixneigh(index1(min_i),2); %<-go to the next neighbor 

that gives you min signal diff 

    next_k=twentySixneigh(index1(min_i),3); %<-go to the next neighbor 

that gives you min signal diff 

     

    while(xyz(next_i,next_j,next_k)==1) 

        display(['switched neighbor 

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']']) 

        %randm=(round(1+rand(1,1)*(size26neigh(1)))); 

        min_i=min_i+1; 

        if(min_i <= max_i) 

            %             

next_i=twentySixneigh(index1(min_i+purgedflag),1); 

            %             

next_j=twentySixneigh(index1(min_i+purgedflag),2); 

            %             

next_k=twentySixneigh(index1(min_i+purgedflag),3); 

            next_i=twentySixneigh(index1(min_i),1); %<-go to the next 

neighbor that gives you min signal diff 

            next_j=twentySixneigh(index1(min_i),2); %<-go to the next 

neighbor that gives you min signal diff 

            next_k=twentySixneigh(index1(min_i),3); %<-go to the next 

neighbor that gives you min signal diff 

        else 

            break; 

        end 

        display(['.............. to 

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']']) 

    end 

    if min_i<=max_i 

        xyz(next_i,next_j,next_k)=1; 
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        display(['switched neighbor 

[',num2str(i),',',num2str(j),',',num2str(k),'] to 

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']']) 

    else 

        purgedflag=1; 

    end 

     

    if purgedflag==1 

        ind=0; 

        t=xy'; 

        ind=length(t); 

        while(buf==1) 

            next_i=t(ind,1); 

            next_j=t(ind,2); 

            next_k=t(ind,3); 

            twentySixneigh = 

US_26neighbors_LT(next_i,next_j,next_k,M,N,O); 

            if(~isempty(twentySixneigh)) 

                for p=1:size(twentySixneigh,1) 

                    

if(xyz(twentySixneigh(p,1),twentySixneigh(p,2),twentySixneigh(p,3))==0) 

                        next_i=twentySixneigh(p,1); 

                        next_j=twentySixneigh(p,2); 

                        next_k=twentySixneigh(p,3); 

                        purgedflag=0; 

                        break; 

                    end 

                end 

            end 

            ind=ind-1; 

            t=xy'; 

        end 

    end 

     

    

minDiffSignalinNeighsAll(i_SFC)=minDiffSignalinNeighs(index1(min_i)); 

    figure(1),plot3([i next_i],[j next_j],[k next_k],'- 

.'),title(['i_{SFC}=',num2str(i_SFC)]),hold on 

     

    %%just simulate Brownian motion just to see how it works: 

    %r = randperm(max_i); 

    %next_i=eightneigh(index1(r(1)),1); %<-go to random neighb0r 

    %next_j=eightneigh(index1(r(1)),2); %<-go to random neighbor 

    %next_k=eightneigh(index1(r(1)),3); %<-go to random neighbor 

    

%minDiffSignalinNeighsAll(i_SFC)=minDiffSignalinNeighs(index1(min_i)); 

    %figure(1),plot3(i,j,k),title(['i_{SFC}=',num2str(i_SFC)]),hold on 

    i=next_i; 

    j=next_j; 

    k=next_k; 

    clear twentySixneigh 

    clear signalsNeighs 

    clear minDiffSignalinNeighs 

    clear index1 
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    clear ind 

     

end 

toc 

zlabel('k'),ylabel('j'),xlabel('i') 

figure(3),plot(minDiffSignalinNeighsAll),xlabel('i_{SFC}'),ylabel('\Del

ta signal') 

%figure(4),plot(myimage(xy)) 

  

%figure(1),hold on , imagesc(myimage), colormap(gray) 

% 

filename='E:\Thesis\Results\ResXY\14923_voxels.csv'; 

fl=csvread(filename); 

fl=xy; 

len=length(fl); 

sigvec=zeros(1,len); 

for it=1:len-1 

    sigvec(1,it)=myimage(fl(1,it),fl(2,it),fl(3,it)); 

end 

figure(4),plot(sigvec),xlabel('voxel'),ylabel('Signal Value') 
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APPENDIX C: 

MATLAB CODE FOR DOWNSIZED BRAIN ACTIVATION MAP 

 
allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii'); 

  

numfiles=length(allfilenames_ar); 

for img=1:numfiles 

    allfilenames=num2str(allfilenames_ar(img,:)); 

    buf='E:\Thesis\Processed_MCIC\'; 

    filename=strcat(buf,allfilenames); 

     

    t1=spm_read_vols(spm_vol(filename)); 

     

    sizevec=size(t1); 

    sz=4; 

    l=floor(sizevec(1)/sz); 

    m=floor(sizevec(2)/sz); 

    n=floor(sizevec(3)/sz); 

     

    tdownnan=zeros(sizevec(1),sizevec(2),sizevec(3)); 

    tdown=zeros(l,m,n); 

    for k=1:sizevec(3) 

        for i=1:sizevec(1) 

            for j=1:m 

                %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k)); 

                tdownnan(i,j,k)=nanmean(t1(i,(j-1)×sz+1:j×sz,k)); 

            end 

        end 

    end 

    for k=1:sizevec(3) 

        for j=1:m 

            for i=1:l 

                %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k)); 

                tdownnan(i,j,k)=nanmean(t1((i-1)×sz+1:i×sz,j,k)); 

            end 

        end 

    end 

     

    for i=1:l 

        for j=1:m 

            for k=1:n 

                %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k)); 

                tdownnan(i,j,k)=nanmean(t1(i,j,(k-1)×sz+1:k×sz)); 

            end 

        end 

    end 

    tdown=tdownnan(1:l,1:m,1:n); 

    myVolume_Linear_1D_nonan(img,:)=transpose(tdown(:)); 

    plot(myVolume_Linear_1D_nonan) 

    title('Downsized brain map signal plot') 
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end 

dlmwrite('E:\Thesis\Results_new\MCIC\1D_Linear_downsized3Dto1D.csv',myV

olume_Linear_1D_nonan,'-append'); 

  

Binsize=100; 

NumBins= floor(l×m×n/Binsize); 

  

for img=1:numfiles 

    for i=1:NumBins, 

        

myVolume_Linear_1D_binned100(img,i)=mean(myVolume_Linear_1D_nonan(img,(

i-1)×Binsize+1:i×Binsize)); 

    end 

end 

dlmwrite('E:\Thesis\Results_new\MCIC\1D_Linear_downsized3Dto1D_100Bin.c

sv',myVolume_Linear_1D_binned100,'-append'); 
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APPENDIX D: 

MATLAB CODE FOR PROJECTIONS SIGNAL PLOTS AND COST FUNCTIONS 

FOR ALL THE ORDERINGS 

 
t1=spm_read_vols(spm_vol('D:\rmniT1_3by3by3_NN.nii')); 

  

%SFC 

xyz= csvread('E:\Thesis\Results_new\TSP\points.csv',1,0); 

sizevec=size(xyz) 

  

vec=zeros(sizevec(1),0) 

  

  

%colorvec=Colormap; 

colorvec=load('colorvec.mat') 

c=cell2mat(struct2cell(colorvec)) 

  

colorvec=colormap(autumn(67)); 

j=1; 

for i=2:sizevec(1) 

%for i=2:7020  

    buf=i/1000; 

    if mod(buf,1)==0 

        j=j+1; 

    end 

    %c=colorvec(1,1); 

    %vec(i)=t1(xyz(i,1),xyz(i,2),xyz(i,3)); 

    if(t1(xyz(i-1,1),xyz(i-1,2),xyz(i-1,3))~=0) 

        figure(1),plot3([xyz(i-1,1) xyz(i,1)],[xyz(i-1,2) 

xyz(i,2)],[xyz(i-1,3) xyz(i,3)],'- .','color',colorvec(j,:)),hold on 

    %title('SFC plot') 

    end 

end 

title('SFC plot') 

  

figure(2),plot3(rand(10,1),rand(10,1)) 

plot(vec) 

title('SFC signal plot') 

  

sfc_SSSD=0; 

for i=1:(sizevec(1)-1) 

   sfc_SSSD=sfc_SSSD+(vec(i+1)-vec(i))^2;  

end 

  

%Hilbert using t1 

n=6 

[x,y,z]=hilbert3(n); 

hilbert3US 
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ti_Zeropadded=zeros(64,64,64); 

ti_Zeropadded(1:53,1:63,1:46)=t1; 

L=64^3; 

myVolume1DHilbert=zeros(1,L); 

for i=1:L, 

    myVolume1DHilbert(i)=ti_Zeropadded(x_new(i),y_new(i),z_new(i)); 

end 

plot(myVolume1DHilbert) 

title('Hilbert curve signal plot') 

% Hilbert Binning 

BinSize=100; 

NumBins=floor(L/BinSize); 

myVolume1DHilbert_binned=zeros(numfiles,NumBins); 

for i=1:NumBins, 

        myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert((i-

1)×BinSize+1:i×BinSize)); 

end 

plot(myVolume1DHilbert_binned) 

title('Hilbert curve Binned signal plot') 

  

  

Hilbert_SSSD=0; 

for i=1:(L-1) 

   Hilbert_SSSD=Hilbert_SSSD+(myVolume1DHilbert(i+1)-

myVolume1DHilbert(i))^2;  

end 

  

%Linear 

myVolume_Linear_1D=transpose(t1(:)); 

plot(myVolume_Linear_1D) 

title('Linear order signal plot') 

  

Linear_SSSD=0; 

LinearSize=size(myVolume_Linear_1D); 

  

%Linear Binning 

BinSize=100; 

LNumBins=floor(LinearSize(2)/BinSize); 

myVolume1DLinear_binned=zeros(numfiles,LNumBins); 

  

 for i=1:LNumBins, 

        myVolume1DLinear_binned(img,i)=mean(myVolume1DLinear((i-

1)×BinSize+1:i×BinSize)); 

 end 

plot(myVolume1DLinear_binned) 

title('Linear order Binned signal plot') 

  

%SSSD calculation 

for i=1:(LinearSize(2)-1) 

   Linear_SSSD=Linear_SSSD+(myVolume_Linear_1D(i+1)-

myVolume_Linear_1D(i))^2; 

end 
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%Downsampling of 3D map 

  

Downsized_SSSD=0; 

Downsized_size=size(myVolume_Linear_1D_nonan); 

  

%SSSD calculation 

for i=1:(Downsized_size(2)-1) 

   Downsized_SSSD=Downsized_SSSD+(myVolume_Linear_1D_nonan(i+1)-

myVolume_Linear_1D_nonan(i))^2; 

end 
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APPENDIX E: 

MATLAB CODE FOR TWENTY-SIX NEIGHBOR USED IN SFC 

function twentySixneigh = US_26neighbors_LT(i,j,k,M,N,O) 

%Finds the 26-neighbors of a given pixel i,j,k 

%Input: pixels (i,j,k), image size M,N,O 

%output: pixels of the 26-neighbors, r rows by 3 columns: 

% if i,j,k is completely inside, r = 26 pixels 

% if i,j,k is on the side plane r = 17 pixels 

% if i,j,k is on the edge, r = 11 pixels 

% if i,j,k is on the corner, r = 7 pixels 

%neighbors are ordered counterclockwise, starting East: East, North, 

West, South.  

  

if (i==1 && j==1 && k==1), 

    twentySixneigh(1,:)=[1,2,1]; 

    twentySixneigh(2,:)=[2,1,1]; 

    twentySixneigh(3,:)=[2,2,1]; 

    twentySixneigh(4,:)=[1,2,2]; 

    twentySixneigh(5,:)=[2,1,2]; 

    twentySixneigh(6,:)=[2,2,2]; 

    twentySixneigh(7,:)=[1,1,2]; 

     

elseif (i==M && j==1 && k==1), 

    twentySixneigh(1,:)=[M,2,1]; 

    twentySixneigh(2,:)=[M-1,1,1]; 

    twentySixneigh(3,:)=[M-1,2,1]; 

    twentySixneigh(4,:)=[M,2,2]; 

    twentySixneigh(5,:)=[M-1,1,2]; 

    twentySixneigh(6,:)=[M-1,2,2]; 

    twentySixneigh(7,:)=[M,1,2]; 

     

elseif (i==1 && j==N && k==1), 

    twentySixneigh(1,:)=[1,N-1,1]; 

    twentySixneigh(2,:)=[2,N,1]; 

    twentySixneigh(3,:)=[2,N-1,1]; 

    twentySixneigh(4,:)=[1,N-1,2]; 

    twentySixneigh(5,:)=[2,N,2]; 

    twentySixneigh(6,:)=[2,N-1,2]; 

    twentySixneigh(7,:)=[1,N,2]; 

     

elseif (i==M && j==N && k==1), 

    twentySixneigh(1,:)=[M-1,N,1]; 

    twentySixneigh(2,:)=[M,N-1,1]; 

    twentySixneigh(3,:)=[M-1,N-1,1]; 

    twentySixneigh(4,:)=[M-1,N,2]; 

    twentySixneigh(5,:)=[M,N-1,2]; 

    twentySixneigh(6,:)=[M-1,N-1,2]; 

    twentySixneigh(7,:)=[M,N,2]; 

     

elseif (i==1 && j==1 && k==O), 

    twentySixneigh(1,:)=[1,2,1]; 
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    twentySixneigh(2,:)=[2,1,1]; 

    twentySixneigh(3,:)=[2,2,1]; 

    twentySixneigh(4,:)=[1,2,2]; 

    twentySixneigh(5,:)=[2,1,2]; 

    twentySixneigh(6,:)=[2,2,2]; 

    twentySixneigh(7,:)=[1,1,2]; 

     

elseif (i==M && j==1 && k==O), 

    twentySixneigh(1,:)=[M,2,1]; 

    twentySixneigh(2,:)=[M-1,1,1]; 

    twentySixneigh(3,:)=[M-1,2,1]; 

    twentySixneigh(4,:)=[M,2,2]; 

    twentySixneigh(5,:)=[M-1,1,2]; 

    twentySixneigh(6,:)=[M-1,2,2]; 

    twentySixneigh(7,:)=[M,1,2]; 

     

elseif (i==1 && j==N && k==O), 

    twentySixneigh(1,:)=[1,N-1,1]; 

    twentySixneigh(2,:)=[2,N,1]; 

    twentySixneigh(3,:)=[2,N-1,1]; 

    twentySixneigh(4,:)=[1,N-1,2]; 

    twentySixneigh(5,:)=[2,N,2]; 

    twentySixneigh(6,:)=[2,N-1,2]; 

    twentySixneigh(7,:)=[1,N,2]; 

     

elseif (i==M && j==N && k==O), 

    twentySixneigh(1,:)=[M-1,N,1]; 

    twentySixneigh(2,:)=[M,N-1,1]; 

    twentySixneigh(3,:)=[M-1,N-1,1]; 

    twentySixneigh(4,:)=[M-1,N,2]; 

    twentySixneigh(5,:)=[M,N-1,2]; 

    twentySixneigh(6,:)=[M-1,N-1,2]; 

    twentySixneigh(7,:)=[M,N,2]; 

  

elseif (i==1 && k==1), 

    twentySixneigh(1,:)=[i,j+1,1]; 

    twentySixneigh(2,:)=[i,j-1,1]; 

    twentySixneigh(3,:)=[i+1,j,1]; 

    twentySixneigh(4,:)=[i+1,j-1,1]; 

    twentySixneigh(5,:)=[i+1,j+1,1]; 

    twentySixneigh(6,:)=[i,j+1,2]; 

    twentySixneigh(7,:)=[i,j-1,2]; 

    twentySixneigh(8,:)=[i+1,j,2]; 

    twentySixneigh(9,:)=[i+1,j-1,2]; 

    twentySixneigh(10,:)=[i+1,j+1,2]; 

    twentySixneigh(11,:)=[i,j,2]; 

     

elseif (i==M && k==1), 

    twentySixneigh(1,:)=[i,j+1,1]; 

    twentySixneigh(2,:)=[i-1,j,1]; 

    twentySixneigh(3,:)=[i,j-1,1]; 

    twentySixneigh(4,:)=[i-1,j+1,1]; 

    twentySixneigh(5,:)=[i-1,j-1,1];    

    twentySixneigh(6,:)=[i,j+1,2]; 
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    twentySixneigh(7,:)=[i-1,j,2]; 

    twentySixneigh(8,:)=[i,j-1,2]; 

    twentySixneigh(9,:)=[i-1,j+1,2]; 

    twentySixneigh(10,:)=[i-1,j-1,2];    

    twentySixneigh(11,:)=[i,j,2];    

     

elseif (j==1 && k==1), 

    twentySixneigh(1,:)=[i,j+1,1]; 

    twentySixneigh(2,:)=[i-1,j,1]; 

    twentySixneigh(3,:)=[i+1,j,1]; 

    twentySixneigh(4,:)=[i-1,j+1,1]; 

    twentySixneigh(5,:)=[i+1,j+1,1];  

    twentySixneigh(6,:)=[i,j+1,2]; 

    twentySixneigh(7,:)=[i-1,j,2]; 

    twentySixneigh(8,:)=[i+1,j,2]; 

    twentySixneigh(9,:)=[i-1,j+1,2]; 

    twentySixneigh(10,:)=[i+1,j+1,2];  

    twentySixneigh(11,:)=[i,j,2];  

     

elseif (j==N && k==1), 

    twentySixneigh(1,:)=[i-1,j,1]; 

    twentySixneigh(2,:)=[i,j-1,1]; 

    twentySixneigh(3,:)=[i+1,j,1]; 

    twentySixneigh(4,:)=[i-1,j-1,1]; 

    twentySixneigh(5,:)=[i+1,j-1,1]; 

    twentySixneigh(6,:)=[i-1,j,2]; 

    twentySixneigh(7,:)=[i,j-1,2]; 

    twentySixneigh(8,:)=[i+1,j,2]; 

    twentySixneigh(9,:)=[i-1,j-1,2]; 

    twentySixneigh(10,:)=[i+1,j-1,2]; 

    twentySixneigh(11,:)=[i+1,j-1,2]; 

  

elseif (i==1 && k==O), 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i,j-1,k]; 

    twentySixneigh(3,:)=[i+1,j,k]; 

    twentySixneigh(4,:)=[i+1,j-1,k]; 

    twentySixneigh(5,:)=[i+1,j+1,k]; 

    twentySixneigh(6,:)=[i,j+1,k-1]; 

    twentySixneigh(7,:)=[i,j-1,k-1]; 

    twentySixneigh(8,:)=[i+1,j,k-1]; 

    twentySixneigh(9,:)=[i+1,j-1,k-1]; 

    twentySixneigh(10,:)=[i+1,j+1,k-1]; 

    twentySixneigh(11,:)=[i,j,k-1]; 

     

elseif (i==M && k==O), 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i-1,j+1,k]; 

    twentySixneigh(5,:)=[i-1,j-1,k];    

    twentySixneigh(6,:)=[i,j+1,k-1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i,j-1,k-1]; 
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    twentySixneigh(9,:)=[i-1,j+1,k-1]; 

    twentySixneigh(10,:)=[i-1,j-1,k-1];    

    twentySixneigh(11,:)=[i,j,k-1];    

     

elseif (j==1 && k==O), 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i+1,j,k]; 

    twentySixneigh(4,:)=[i-1,j+1,k]; 

    twentySixneigh(5,:)=[i+1,j+1,k];  

    twentySixneigh(6,:)=[i,j+1,k-1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i+1,j,k-1]; 

    twentySixneigh(9,:)=[i-1,j+1,k-1]; 

    twentySixneigh(10,:)=[i+1,j+1,k-1];  

    twentySixneigh(11,:)=[i,j,k-1];  

     

elseif (j==N && k==O), 

    twentySixneigh(1,:)=[i-1,j,k]; 

    twentySixneigh(2,:)=[i,j-1,k]; 

    twentySixneigh(3,:)=[i+1,j,k]; 

    twentySixneigh(4,:)=[i-1,j-1,k]; 

    twentySixneigh(5,:)=[i+1,j-1,k]; 

    twentySixneigh(6,:)=[i-1,j,k-1]; 

    twentySixneigh(7,:)=[i,j-1,k-1]; 

    twentySixneigh(8,:)=[i+1,j,k-1]; 

    twentySixneigh(9,:)=[i-1,j-1,k-1]; 

    twentySixneigh(10,:)=[i+1,j-1,k-1]; 

    twentySixneigh(11,:)=[i+1,j-1,k-1]; 

     

elseif (i==1 && j==1) 

    twentySixneigh(1,:)=[i,j,k+1]; 

    twentySixneigh(2,:)=[i,j,k-1]; 

    twentySixneigh(3,:)=[i,j+1,k]; 

    twentySixneigh(4,:)=[i,j+1,k-1]; 

    twentySixneigh(5,:)=[i,j+1,k+1]; 

    twentySixneigh(6,:)=[i+1,j,k+1]; 

    twentySixneigh(7,:)=[i+1,j,k-1]; 

    twentySixneigh(8,:)=[i+1,j+1,k]; 

    twentySixneigh(9,:)=[i+1,j+1,k-1]; 

    twentySixneigh(10,:)=[i+1,j+1,k+1]; 

    twentySixneigh(11,:)=[i+1,j,k]; 

     

elseif (i==1 && j==N) 

    twentySixneigh(1,:)=[i,j,k+1]; 

    twentySixneigh(2,:)=[i,j,k-1]; 

    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i,j-1,k-1]; 

    twentySixneigh(5,:)=[i,j-1,k+1]; 

    twentySixneigh(6,:)=[i+1,j,k+1]; 

    twentySixneigh(7,:)=[i+1,j,k-1]; 

    twentySixneigh(8,:)=[i+1,j-1,k]; 

    twentySixneigh(9,:)=[i+1,j-1,k-1]; 

    twentySixneigh(10,:)=[i+1,j-1,k+1]; 
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    twentySixneigh(11,:)=[i+1,j,k]; 

   

elseif (i==M && j==1) 

    twentySixneigh(1,:)=[i,j,k+1]; 

    twentySixneigh(2,:)=[i,j,k-1]; 

    twentySixneigh(3,:)=[i,j+1,k]; 

    twentySixneigh(4,:)=[i,j+1,k-1]; 

    twentySixneigh(5,:)=[i,j+1,k+1]; 

    twentySixneigh(6,:)=[i-1,j,k+1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i-1,j+1,k]; 

    twentySixneigh(9,:)=[i-1,j+1,k-1]; 

    twentySixneigh(10,:)=[i-1,j+1,k+1]; 

    twentySixneigh(11,:)=[i-1,j,k]; 

     

elseif (i==M && j==N) 

    twentySixneigh(1,:)=[i,j,k+1]; 

    twentySixneigh(2,:)=[i,j,k-1]; 

    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i,j-1,k-1]; 

    twentySixneigh(5,:)=[i,j-1,k+1]; 

    twentySixneigh(6,:)=[i-1,j,k+1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i-1,j-1,k]; 

    twentySixneigh(9,:)=[i-1,j-1,k-1]; 

    twentySixneigh(10,:)=[i-1,j-1,k+1]; 

    twentySixneigh(11,:)=[i-1,j,k]; 

     

elseif i==1, 

    twentySixneigh(1,:)=[i,j-1,k]; 

    twentySixneigh(2,:)=[i,j-1,k-1]; 

    twentySixneigh(3,:)=[i,j,k-1]; 

    twentySixneigh(4,:)=[i,j+1,k-1]; 

    twentySixneigh(5,:)=[i,j+1,k]; 

    twentySixneigh(6,:)=[i,j-1,k+1]; 

    twentySixneigh(7,:)=[i,j,k+1]; 

    twentySixneigh(8,:)=[i,j+1,k+1]; 

    twentySixneigh(9,:)=[i+1,j-1,k]; 

    twentySixneigh(10,:)=[i+1,j-1,k-1]; 

    twentySixneigh(11,:)=[i+1,j,k-1]; 

    twentySixneigh(12,:)=[i+1,j+1,k-1]; 

    twentySixneigh(13,:)=[i+1,j+1,k]; 

    twentySixneigh(14,:)=[i+1,j-1,k+1]; 

    twentySixneigh(15,:)=[i+1,j,k+1]; 

    twentySixneigh(16,:)=[i+1,j+1,k+1]; 

    twentySixneigh(17,:)=[i+1,j,k]; 

     

elseif i==M, 

    twentySixneigh(1,:)=[i,j-1,k]; 

    twentySixneigh(2,:)=[i,j-1,k-1]; 

    twentySixneigh(3,:)=[i,j,k-1]; 

    twentySixneigh(4,:)=[i,j+1,k-1]; 

    twentySixneigh(5,:)=[i,j+1,k]; 

    twentySixneigh(6,:)=[i,j-1,k+1]; 
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    twentySixneigh(7,:)=[i,j,k+1]; 

    twentySixneigh(8,:)=[i,j+1,k+1]; 

    twentySixneigh(9,:)=[i-1,j-1,k]; 

    twentySixneigh(10,:)=[i-1,j-1,k-1]; 

    twentySixneigh(11,:)=[i-1,j,k-1]; 

    twentySixneigh(12,:)=[i-1,j+1,k-1]; 

    twentySixneigh(13,:)=[i-1,j+1,k]; 

    twentySixneigh(14,:)=[i-1,j-1,k+1]; 

    twentySixneigh(15,:)=[i-1,j,k+1]; 

    twentySixneigh(16,:)=[i-1,j+1,k+1]; 

    twentySixneigh(17,:)=[i-1,j,k]; 

     

elseif j==1, 

    twentySixneigh(1,:)=[i+1,j,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i,j,k-1]; 

    twentySixneigh(4,:)=[i,j,k+1]; 

    twentySixneigh(5,:)=[i+1,j,k-1]; 

    twentySixneigh(6,:)=[i+1,j,k+1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i-1,j,k+1]; 

    twentySixneigh(9,:)=[i+1,j+1,k]; 

    twentySixneigh(10,:)=[i-1,j+1,k]; 

    twentySixneigh(11,:)=[i,j+1,k-1]; 

    twentySixneigh(12,:)=[i,j+1,k+1]; 

    twentySixneigh(13,:)=[i+1,j+1,k-1]; 

    twentySixneigh(14,:)=[i+1,j+1,k+1]; 

    twentySixneigh(15,:)=[i-1,j+1,k-1]; 

    twentySixneigh(16,:)=[i-1,j+1,k+1]; 

    twentySixneigh(17,:)=[i,j+1,k]; 

  

elseif j==N, 

    twentySixneigh(1,:)=[i+1,j,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i,j,k-1]; 

    twentySixneigh(4,:)=[i,j,k+1]; 

    twentySixneigh(5,:)=[i+1,j,k-1]; 

    twentySixneigh(6,:)=[i+1,j,k+1]; 

    twentySixneigh(7,:)=[i-1,j,k-1]; 

    twentySixneigh(8,:)=[i-1,j,k+1]; 

    twentySixneigh(9,:)=[i+1,j-1,k]; 

    twentySixneigh(10,:)=[i-1,j-1,k]; 

    twentySixneigh(11,:)=[i,j-1,k-1]; 

    twentySixneigh(12,:)=[i,j-1,k+1]; 

    twentySixneigh(13,:)=[i+1,j-1,k-1]; 

    twentySixneigh(14,:)=[i+1,j-1,k+1]; 

    twentySixneigh(15,:)=[i-1,j-1,k-1]; 

    twentySixneigh(16,:)=[i-1,j-1,k+1]; 

    twentySixneigh(17,:)=[i,j-1,k]; 

  

     

elseif k==1, 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 
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    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i+1,j,k]; 

    twentySixneigh(5,:)=[i-1,j-1,k]; 

    twentySixneigh(6,:)=[i+1,j-1,k]; 

    twentySixneigh(7,:)=[i-1,j+1,k]; 

    twentySixneigh(8,:)=[i+1,j+1,k]; 

    twentySixneigh(9,:)=[i,j+1,k+1]; 

    twentySixneigh(10,:)=[i-1,j,k+1]; 

    twentySixneigh(11,:)=[i,j-1,k+1]; 

    twentySixneigh(12,:)=[i+1,j,k+1]; 

    twentySixneigh(13,:)=[i-1,j-1,k+1]; 

    twentySixneigh(14,:)=[i+1,j-1,k+1]; 

    twentySixneigh(15,:)=[i-1,j+1,k+1]; 

    twentySixneigh(16,:)=[i+1,j+1,k+1]; 

    twentySixneigh(17,:)=[i,j,k+1]; 

     

elseif k==O, 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i+1,j,k]; 

    twentySixneigh(5,:)=[i-1,j-1,k]; 

    twentySixneigh(6,:)=[i+1,j-1,k]; 

    twentySixneigh(7,:)=[i-1,j+1,k]; 

    twentySixneigh(8,:)=[i+1,j+1,k]; 

    twentySixneigh(9,:)=[i,j+1,k-1]; 

    twentySixneigh(10,:)=[i-1,j,k-1]; 

    twentySixneigh(11,:)=[i,j-1,k-1]; 

    twentySixneigh(12,:)=[i+1,j,k-1]; 

    twentySixneigh(13,:)=[i-1,j-1,k-1]; 

    twentySixneigh(14,:)=[i+1,j-1,k-1]; 

    twentySixneigh(15,:)=[i-1,j+1,k-1]; 

    twentySixneigh(16,:)=[i+1,j+1,k-1]; 

    twentySixneigh(17,:)=[i,j,k-1]; 

  

else 

    twentySixneigh(1,:)=[i,j+1,k]; 

    twentySixneigh(2,:)=[i-1,j,k]; 

    twentySixneigh(3,:)=[i,j-1,k]; 

    twentySixneigh(4,:)=[i+1,j,k]; 

    twentySixneigh(5,:)=[i-1,j-1,k]; 

    twentySixneigh(6,:)=[i+1,j-1,k]; 

    twentySixneigh(7,:)=[i-1,j+1,k]; 

    twentySixneigh(8,:)=[i+1,j+1,k]; 

    twentySixneigh(9,:)=[i,j+1,k+1]; 

    twentySixneigh(10,:)=[i-1,j,k+1]; 

    twentySixneigh(11,:)=[i,j-1,k+1]; 

    twentySixneigh(12,:)=[i+1,j,k+1]; 

    twentySixneigh(13,:)=[i-1,j-1,k+1]; 

    twentySixneigh(14,:)=[i+1,j-1,k+1]; 

    twentySixneigh(15,:)=[i-1,j+1,k+1]; 

    twentySixneigh(16,:)=[i+1,j+1,k+1]; 

    twentySixneigh(17,:)=[i,j,k+1]; 

    twentySixneigh(18,:)=[i,j+1,k-1]; 
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    twentySixneigh(19,:)=[i-1,j,k-1]; 

    twentySixneigh(20,:)=[i,j-1,k-1]; 

    twentySixneigh(21,:)=[i+1,j,k-1]; 

    twentySixneigh(22,:)=[i-1,j-1,k-1]; 

    twentySixneigh(23,:)=[i+1,j-1,k-1]; 

    twentySixneigh(24,:)=[i-1,j+1,k-1]; 

    twentySixneigh(25,:)=[i+1,j+1,k-1]; 

    twentySixneigh(26,:)=[i,j,k-1]; 

     

end 
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APPENDIX F: 

MATLAB CODE FOR HILBERT AND SFC WITH MASKING 

n=6 

[x,y,z]=hilbert3(n); 

hilbert3US 

  

allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii'); 

  

numfiles=length(allfilenames_ar); 

meanVolume=zeros(53,63,46); 

for img=1:numfiles 

    allfilenames=num2str(allfilenames_ar(img,:)); 

    buf='E:\Thesis\Processed_MCIC\'; 

    filename=strcat(buf,allfilenames); 

     

    myVolume=spm_read_vols(spm_vol(filename)); 

    %allfilenames=dir('×test×nii') 

     

    meanVolume=meanVolume+myVolume; 

end 

meanVolume=meanVolume/numfiles; 

  

mask=spm_read_vols(spm_vol('E:\Thesis\DataMask.nii')); 

meanBrainMap=meanVolume.×mask; 

  

meanBrainMap_Zeropadded=zeros(64,64,64); 

meanBrainMap_Zeropadded(1:53,1:63,1:46)=meanBrainMap; 

  

L=64^3; 

myVolume1DHilbert=zeros(1,L); 

for i=1:L, 

    

myVolume1DHilbert(i)=meanBrainMap_Zeropadded(x_new(i),y_new(i),z_new(i)

); 

end 

  

%Zero Removal using Thrushold 

mythresh=0.005, 

j=1;k=1;l=1; 

for i=1:L, 

    if abs(myVolume1DHilbert(i))>mythresh, 

        myVolume1DHilbert_zeroremoved(j)=myVolume1DHilbert(i); 

        j=j+1; 

        nonzeroindexvector(l)=i; 

        l=l+1; 

    else 

        zeroindexvector(k)=i; k=k+1; 

        %k 

    end 

end 
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%Part B- 

  

%masking for each participant 

  

%%Already created so no need to run again 

  

for img=1:numfiles % 

    allfilenames=num2str(allfilenames_ar(img,:)); 

    buf='E:\Thesis\Processed_MCIC\'; 

    filename=strcat(buf,allfilenames); 

    myVolume=spm_read_vols(spm_vol(filename)); 

    myVolume=myVolume.×mask; 

     

    fileloc=strcat('E:\Thesis\MaskedData_MCIC\',allfilenames); 

     

    %Saving each masked participant 

    V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii'); 

    Vtemp=spm_create_vol(V); 

    Vtemp.fname=fileloc; 

    Vtemp.descript='masked activation map'; 

    spm_write_vol(Vtemp,myVolume); 

end 

  

%Each participant activation map processing 

  

lengths_all=zeros(numfiles); 

currentvolume_ZeroRemoved=zeros(numfiles,116286); 

myVolume_Linear_1D_all=zeros(84,153594); 

  

for img=1:numfiles % 

    allfilenames=num2str(allfilenames_ar(img,:)); 

    buf='E:\Thesis\Processed_MCIC\'; 

    filename=strcat(buf,allfilenames); 

    myVolume=spm_read_vols(spm_vol(filename)); 

    myVolumeZeroPadded=zeros(64,64,64); %temp 

    myVolumeZeroPadded(1:53,1:63,1:46)=myVolume; 

    L=64^3; 

    %myVolume1DHilbert=zeros(1,L); 

    for i=1:L, 

        

myVolume1DHilbert(i)=myVolumeZeroPadded(x_new(i),y_new(i),z_new(i)); 

    end 

     

    myVolume_Linear_1D=transpose(myVolume(:)); 

    myVolume_Linear_1D_all(img,:)=myVolume_Linear_1D; 

       

     

    k=1; 

    j=1; 

    for j=1:l-1 

        

currentvolume_ZeroRemoved(img,j)=myVolume1DHilbert(nonzeroindexvector(k

)); 

        k=k+1; 
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    end 

%    

dlmwrite('E:\Thesis\Results_new\1D_Hilbert_ZeroTrim_MeanBrainMap_MCIC.c

sv',currentvolume_ZeroRemoved(img,:),'-append'); 

end 

%saving Linear 1D activation maps 

dlmwrite('E:\Thesis\Results_new\1D_Linear_masked_MCIC.csv',myVolume_Lin

ear_1D_all,'-append'); 

  

  

Lzr=length(myVolume1DHilbert_zeroremoved); 

BinSize=100; 

BinSizeL=200 

NumBins=floor(Lzr/BinSize) 

myVolume1DHilbert_binned=zeros(84,NumBins); 

NumBins_lin=floor(153594/BinSizeL); 

myVolume1DLinear_binned=zeros(84,NumBins_lin); 

%Hilbert & LinearBinning 

for img=1:numfiles, 

    myVolume1DHilbert_zeroremoved=currentvolume_ZeroRemoved(img,:); 

    %Hilbert 

    for i=1:NumBins, 

        

myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert_zeroremoved((i-

1)×BinSize+1:i×BinSize)); 

    end 

    %Linear 

    for i=1:NumBins_lin 

       myVolume1DLinear_binned(img,i)=mean(myVolume_Linear_1D((i-

1)×BinSizeL+1:i×BinSizeL)); 

    end 

end 

dlmwrite('E:\Thesis\Results_new\1D_Hilbert_ZeroTrim_MCIC_Bin_200.csv',m

yVolume1DHilbert_binned,'-append'); 

dlmwrite('E:\Thesis\Results_new\1D_Linear_ActionBMap_MCIC_Bin_200.csv',

myVolume1DLinear_binned,'-append'); 

  

  

%---------Hilbert Feature Selection----------------- 

%figure,stem(myVolume1DHilbert_binned(1:2,:)','.')   

%figure,bar(mean(myVolume1DHilbert_binned,1)) 

stderr=std(myVolume1DHilbert_binned)/sqrt(84); 

hold on, 

errorbar([1:NumBins],mean(myVolume1DHilbert_binned,1),stderr/2,':','Lin

eWidth',0.1,'MarkerSize',0.01); 

axis tight 

  

%Ctrls vs CD separately: 

figure(99), 

subplot(211),bar(mean(myVolume1DHilbert_binned(1:25,:),1)), 

X=myVolume1DHilbert_binned(1:25,:); 

stderr_C=std(myVolume1DHilbert_binned(1:25,:),1)/sqrt(25); 
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hold on, 

errorbar([1:NumBins],mean(myVolume1DHilbert_binned(1:25,:),1),stderr_C/

2,':','LineWidth',0.1,'MarkerSize',0.01); 

axis tight 

subplot(212),bar(mean(myVolume1DHilbert_binned(26:84,:),1)) 

Y=myVolume1DHilbert_binned(26:84,:); 

stderr_P=std(myVolume1DHilbert_binned(26:84,:),1)/sqrt(59); 

hold on, 

errorbar([1:NumBins],mean(myVolume1DHilbert_binned(26:84,:),1),stderr_P

/2,':','LineWidth',0.1,'MarkerSize',0.01); 

axis tight 

[H,P,CI,STATS] = ttest2(X,Y,'alpha',0.05,'dim',1,'tail','both');  

figure,plot(P) 

SignifFeatIndexes=find(P<0.05) 

%dlmwrite('E:\Thesis\Results_new\Binned_res.csv',myVolume1DHilbert_binn

ed(img,:),'-append'); 

dlmwrite('E:\Thesis\Results_new\MCIC\Binned_res_100_Bin.csv',SignifFeat

Indexes,'-append'); 

ImportantBins=SignifFeatIndexes; 

NumImportantBins=length(ImportantBins) 

for iBin=1:NumImportantBins, 

    myBin=ImportantBins(iBin), 

    myBinIndex(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize; 

    iBin 

end 

  

%----------Linear Feature Selection------------ 

stderr=std(myVolume1DLinear_binned)/sqrt(84); 

  

X=myVolume1DLinear_binned(1:25,:); 

stderr_C=std(myVolume1DLinear_binned(1:25,:),1)/sqrt(25); 

  

Y=myVolume1DLinear_binned(26:84,:); 

stderr_P=std(myVolume1DLinear_binned(26:84,:),1)/sqrt(59); 

  

[H,P,CI,STATS] = ttest2(X,Y,'alpha',0.05,'dim',1,'tail','both');  

  

ImportantBins=find(P<0.05) 

  

NumImportantBins=length(ImportantBins) 

for iBin=1:NumImportantBins, 

    myBin=ImportantBins(iBin), 

    myBinIndex(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize; 

    iBin 

end 

  

  

%----------------------------------------------------- 

myBinIndexConcat=reshape(myBinIndex',[1,NumImportantBins×BinSize]); 

  

originalIndexesOfImportantBins=nonzeroindexvector(myBinIndexConcat); 

  

my3DImportantBins=zeros(64,64,64); 

% randn(53,63,46); 
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Ind =1; 

j=1; 

for p=originalIndexesOfImportantBins, 

    my3DImportantBins(x_new(p),y_new(p),z_new(p))=j;   

    if(rem(ind,BinSize)==0) 

        j=j+1; 

    end 

    ind=ind+1; 

end 

my3DImportantBinsZeroPadsRemoved=my3DImportantBins(1:53,1:63,1:46); 

%save_nii(my3DImportantBinsZeroPadsRemoved,'E:\Thesis\Results\C_AQI_C.n

ii') 

  

V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii'); 

Vtemp=spm_create_vol(V) 

Vtemp.fname='E:\Thesis\Results_new\importantregions_100BinSize_P_0.05.n

ii' 

Vtemp.descript='brain regions' 

spm_write_vol(Vtemp,my3DImportantBinsZeroPadsRemoved); 

  

  

  

  

 

 

 


