

Copyright

by

Lohit Ravi Teja Bhupati

2019

CLASSIFICATION OF fMRI BRAIN ACTIVATION MAPS BY USING SPACE

FILLING CURVES

by

Lohit Ravi Teja Bhupati, MS

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Science

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

DECEMBER, 2019

CLASSIFICATION OF fMRI BRAIN ACTIVATION MAPS BY USING SPACE

FILLING CURVES

by

Lohit Ravi Teja Bhupati

APPROVED BY

 __

 Unal ‘Zak’ Sakoglu, PhD, Chair

 __

 Ahmed Ahed Abukmail, PhD, Committee Member

 __

 Khondker Shajadul Hasan, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Associate Dean

__

Miguel Gonzalez , PhD, Dean

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Dr. Unal ‘Zak’

Sakoglu, for the continuous support of my thesis and related research, for his patience,

motivation, and immense knowledge. I really had a good learning experience, and the

credit goes to Dr. Zak. His valuable guidance and support made all this possible.

I am very grateful to Dr. Khondker Shajadul Hasan and Dr. Ahmed Ahed

Abukmail for serving on my thesis committee and giving me valuable suggestions, for

their time and input.

I thank Nazanin Beheshti at University of Houston main campus for her

contribution in searching for an optimal space filling curve for 3D MRI data. I would also

like to extend my thanks to staff at the Engineering Department, Computer Science

Department, Dean’s Office, Library, and Writing Center.

I would also want to extend my gratitude to Office of Sponsored Programs and

College of Science and Engineering at the University of Houston - Clear Lake for

providing me with the graduate research assistantship opportunity for my master’s

education.

Last but not the least, my deepest gratitude goes to my family, friends and well-

wishers who always had my back, supported me, and encouraged me to be a person what

I am today.

v

ABSTRACT

CLASSIFICATION OF fMRI BRAIN ACTIVATION MAPS BY USING SPACE

FILLING CURVES

Lohit Ravi Teja Bhupati

University of Houston-Clear Lake, 2019

Thesis Chair: Unal ‘Zak’ Sakoglu, PhD

Functional magnetic resonance imaging or functional MRI (fMRI) is a brain imaging

technique which is used to measure brain activity by detecting changes associated with

the blood flow and oxygenation, which are indirect measures of neural activity. When

participants perform a task and/or have some stimuli during their fMRI scans, fMRI data

helps us to obtain brain activation maps, which have three spatial dimensions (3D). 3D

activation maps need to be converted (ordered, or vectorized) to 1D vectors for further

analyses such as localization and classification of activations and/or participants.

Traditionally, the 3D to 1D conversion has been done using linear ordering, which loses

most of the information about the spatial structure of the brain. Instead, one can use

space-filling curves (SFC) for vectorization, such as a 3D Hilbert curve, which can better

preserve the structure of the brain; however, it is still far from being optimal. Finding an

SFC which is adaptive to human brain can better preserve the structure of the human

brain in 3D-to-1D ordering. The problem of finding an adaptive optimal SFC is

vi

inherently a modified traveling salesman problem (TSP), which is a non-deterministic

polynomial-hard (NP-hard) problem.

In this thesis work, we obtained an approximation of the SFC practically using a

heuristic solution to the modified TSP. We used completely de-identified fMRI brain

activation maps from two groups of fMRI experiment participants: cocaine addicted and

schizophrenia. We first applied a Hilbert SFC to obtain features and apply deep learning

and other machine learning algorithms to classify participants from their brain activation

maps and to fine-tune algorithm parameters. We also used an approximation of the

optimal SFC using a TSP heuristic, converted the brain maps to 1D and obtained features

for classification. The classification based on the heuristic approximations of adaptive

SFC’s orderings yielded comparable or better classification accuracies than those of

linear ordering and Hilbert ordering.

vii

TABLE OF CONTENTS

List of Tables ...viii

List of Figures .. ix

List of Pseudocode ... xi

CHAPTER I: INTRODUCTION .. 1

Linear Ordering: .. 2
Hilbert space filling curve: ... 3

Optimal space filling curve: ... 5

CHAPTER II: PREVIOUS WORK .. 7

CHAPTER III: METHODOLOGY ... 8

Optimal space filling curve: ... 12

Methodology 1: ... 15
Methodology 2: ... 19

3D down-sampling without 1D mapping: ... 23

CHAPTER IV: RESULTS .. 25

Datasets: .. 25

CHAPTER V: CLASSIFICATION RESULTS .. 36

CHAPTER VI: CONCLUSION .. 44

REFERENCES.. 45

APPENDIX A: MATLAB CODE FOR HILBERT AND LINEAR CURVE

ORDERING WITH BINNING AND BACK MAPPING .. 47

APPENDIX B: MATLAB SCRIPT PRODUCING SFC ORDERING 50

APPENDIX C: MATLAB CODE FOR DOWNSIZED BRAIN ACTIVATION MAP .. 54

APPENDIX D: MATLAB CODE FOR PROJECTIONS SIGNAL PLOTS AND

COST FUNCTIONS FOR ALL THE ORDERINGS ... 56

APPENDIX E: MATLAB CODE FOR TWENTY-SIX NEIGHBOR USED IN SFC 59

APPENDIX F: MATLAB CODE FOR HILBERT AND SFC WITH MASKING 67

viii

LIST OF TABLES

Table 1: Cocaine Addiction Dataset .. 25

Table 2: Schizophrenia Dataset... 25

Table 3: Deep learning results of Hilbert and linear using different activation

functions (cocaine addiction dataset) applied on cocaine addiction dataset..................... 36

Table 4: Classification results using Multilayer perceptron in weka averaging 10

iterations on cocaine addiction dataset. .. 37

Table 5: Classification result using SVM on cocaine addiction dataset with bin

size 100 and p<0.05. .. 37

Table 6: Classification result using sequential forward selection on SFC, Hilbert

and linear ordering on MCIC dataset. .. 38

Table 7: Classification Accuracy of all the methods with all the features 100 bin

size applied on MCIC dataset. ... 41

ix

LIST OF FIGURES

Figure 1: The linear ordering scheme. .. 3

Figure 2: 1st order 3D Hilbert Curve .. 4

Figure 3: 2nd order 3D Hilbert Curve ... 5

Figure 4: 6th order 3D Hilbert Curve .. 5

Figure 5: (a) 2D 3rd Order, 4×4 Hilbert space-filling curve. (b) 6th Order, 64×64

Hilbert space-filling curve. (c) A 2D slice from a 3D fMRI brain activation map.

(d) 2D 64×64 Hilbert space-filling curve tracing of the activation map. 8

Figure 6: SFC Brain Activation Plot .. 15

Figure 7: Part A of Processing Flow .. 17

Figure 8: Part B of Processing Flow .. 17

Figure 9: Hilbert-ordered, zero-trimmed, before binning.. 18

Figure 10: Hilbert-ordered, zero-trimmed, after binning with a bin size of 100 19

Figure 11: Masked brain activation map. ... 20

Figure 12: Deep learning model... 23

Figure 13: Steps of proposed methodology. ... 24

Figure 14: Linear Order Signal plot. .. 26

Figure 15: Hilbert order Signal plot. .. 27

Figure 16: Optimal Space Filling Curve Ordered Signal plot. .. 27

Figure 17: Downsized brain activation map signal plot. ... 28

Figure 18: Zoomed in binned signal values on SFC ordered plot 30

Figure 19: Zoomed in binned signal values on Hilbert ordered plot 31

Figure 20: Zoomed in binned signal values on linear ordered plot.................................. 32

Figure 21: Zoomed in binned signal values on Downsized activation map signal

plot .. 34

Figure 22: Conversion of 3D to 1D and Overlaying two controls from Cocaine

addiction dataset after applying Hilbert curve. ... 35

Figure 23: SFC Brain Activation plot after removing the non-brain. 35

Figure 24: Classification accuracy for SFC using Sequential forwards selection on

MCIC dataset. ... 39

Figure 25: Classification accuracy for Hilbert Ordering using Sequential forwards

selection on MCIC dataset. .. 40

x

Figure 26: Classification accuracy for linear ordering using Sequential forwards

selection on MCIC dataset. .. 40

Figure 27: Sagittal view of Back mapped features of Hilbert 100 bin size and

p<0.05 ... 42

Figure 28: Sagittal view of back mapped features of SFC 100 bin size 43

xi

LIST OF PSEUDOCODE

Pseudocode 1: SFC Pseudocode .. 14

Pseudocode 2: Pseudo Code for Sequential forward selection .. 22

1

CHAPTER I:

INTRODUCTION

The brain is the most complex organ in the human body. Neuroimaging or brain

imaging research field uses different imaging techniques to study the structure and the

function of the brain; neuroimaging is broadly classified into two categories, namely

structural imaging and functional imaging. Structural neuroimaging is used for studying

the structure of the nervous system and for diagnosis of certain diseases such as brain

tumors, etc. Functional neuroimaging is used for studying the functioning of the brain

under different conditions and diseases tracking the dynamics of neural activity or

neurovascular activity. There are different mechanisms to capture the activity in the brain

such as event-related optical signal (EROS), electroencephalography (EEG),

magnetoencephalography (MEG), functional near-infrared imaging (fNIR) and functional

magnetic resonance imaging (fMRI).

MRI uses magnetic fields and radio-frequency waves to produce high 2D or 3D

brain structures without the use of radioactive tracers. FMRI is a technique that relies on

paramagnetic properties of oxygenated or deoxygenated hemoglobin to observe images

for change in blood flow which is related to particular neural activity. FMRI data can be

used to map brain activity using the difference in their magnetic properties between high

and poorly oxygenated regions in the brain, under the presence and absence of carefully

designed tasks and/or stimuli introduced during the fMRI scan. These activation patterns,

is consistent within a group of participants and different from another group of

participants, can be used as features for a machine learning algorithm which can be

trained to learn patterns and classify whether a given participant belongs to a certain

group (such as healthy/normal group vs another group).

2

In this work, our aim is to classify healthy controls vs patients by utilizing the

differences in patterns of the fMRI brain activation maps which are obtained from the

fMRI images. These fMRI images are stored as .nii files which are associated with the

nifti-1 data format, these images are acquired in three spatial dimensions (3D) over time.

Hence, the overall fMRI data has 4 dimensions (4D), three spatial dimensions and one

temporal/time dimension. The smallest element of 3D spatial data is known as volume

element, or voxel, which represents an average signal value of a mini cube in 3D. These

3D images are converted into a 1D vector which can be further used for the classification.

In fMRI analysis, mapping of the overall 4D brain imaging data to two dimensions (2D),

representing matrices of voxels-by-time, is needed for almost all model-based or data-

driven analysis methods [Worsley]. These nii files can be read by SPM (Statistical

Parametric Mapping) [SPM], which is a MATLAB-based toolbox [MATLAB].

Below, different ordering schemes for ordering spatial 3D data to 1D are

introduced.

Linear Ordering:

Linear ordering is the main traditional ordering scheme. It converts the

multidimensional values into a 1D sequence from left-to-right, top-to-bottom, and front-

to-back order using the Cartesian (x, y, z) coordinates. Linear ordering results in a highly

discontinuous and disconnected 1D array that loses most of the brain structural

information. For example, many neighboring anatomical points in the brain will not be in

consecutive positions in the 1D vector when using linear ordering (Figure 1).

Therefore, the structural information is not concurrently utilized in any

spatiotemporal fMRI data analysis at all. In addition, the template-matching of individual

human brain data to the template brain data is generally done using correlating the 1D

brain vectors, which are highly discontinuous since simple linear ordering is used [Smith,

3

Jiang]. The discontinuity in the 1D individual and template brain vectors appears as a

common noise structure and it reduces the specificity of the correlation. If a linear

ordering is considered, then the 3D data is scanned line by line and then layer by layer so

there is no continuity in the signal (Figure 1 [Sakoglu-2]). Figure 1 it depicts the layer by

layer traversal with jumps and changes in the pointer positions. It fails to preserve the

locality and loses the basic structure while converting to 1D.

Figure 1: The linear ordering scheme.

Hilbert space filling curve:

The Hilbert space filling curve is a predetermined and a continuous space-filling

curve used to convert multi-dimensional space to a 1D space while preserving the

structural information of the brain [Wiki-Hilbert]. It also preserves the locality of the

brain structure better than linear ordering. The Hilbert SFC is a suboptimal and

predetermined space-filling curve which can be generated only by using powers of 2 as

4

the length of one dimension, as depicted in Figures 2, 3 and 4 for the 1st, 3rd, and 6th

order Hilbert curves.

For example, for traversal of an fMRI activation map for a 3D spatial activation

map/matrix of size 53×63×46 which has 153,594 points/voxels, we would require a

Hilbert curve of size 64×64×64, or 6th order 3D Hilbert curve, since 64=2n. Therefore, the

actual fMRI brain map data needs to be padded with zeroes (namely, “zero-padding”) to

obtain a 64×64×64 map, and then the conversion from 3D to 1D can be done. Due to this

zero-padding operation, there are about 262,144 points/voxels to be traversed, which

results in 72% more points/voxels. In our scenario, 6th order Hilbert curve is used for the

3D-to-1D conversion (Figure 4)

Figure 2: 1st order 3D Hilbert Curve

5

Figure 3: 2nd order 3D Hilbert Curve

Figure 4: 6th order 3D Hilbert Curve

Optimal space filling curve:

Finding an optimal space filling curve adaptive to data at hand is important for

finding the optimal compression, dimensionality reduction, optimal mathematical

6

programming [Butz 1968], optimal sparse multi-dimensional database indexing [Lawder

2000], electronics [Zhu 2003], and biology [Lieberman 2009]. The organizing power of

space-filling curves is even employed by the xkcd webcomic "Map of the Internet".

So, in this thesis we proposed an adaptive curve which works on the basis of

travelling salesman problem (TSP) and traverses based on the signal difference. The

curve starting at a point inside the brain and check for the signal difference in all its

neighborhood. The curve moves to the next voxel which has the minimum signal

difference with the base voxel. If all the voxels in a neighborhood are already visited or

the curve is going into loops then it jumps back one step and again searches for the next

possible minimum signal difference voxel. There by it covers the whole brain activation

map. There are some traversal brain activation plots depicted below in the results section

using this approach.

7

CHAPTER II:

PREVIOUS WORK

Previously Sakoglu et al. has introduced two suboptimal practical ordering

methods, which involve two space-filling curves, the Z-curve and the Hilbert curve for

mapping of a 3D MRI brain gray matter template to 1D, and compared their results using

a cost function that we introduced, which was a measure of the “connectedness” of the

1D brain vector [Sakoglu-1]. They showed that, among linear ordering, Z-curve ordering

and Hilbert curve ordering, the Hilbert curve ordering achieved the minimum cost

function, resulting in the most “connected” 1D brain. They also proposed that an optimal

mapping could be found by minimizing the cost function, resulting in the highly

connected 1D brain vector and we formulated the problem as a Hamiltonian path problem

(HPP) which reduces to the famous traveling salesman problem (TSP) [Sakoglu-1] ; and

pointed that finding such an optimal mapping is computationally impossible since it

involves approximately three hundred thousand variables for fMRI data and several

million constraints, and therefore heuristic approaches are needed [Sakoglu-1] .

Subsequently, with the help, they showed the utility of 3D to 1D orderings of the

MRI brain data using a practical suboptimal space-filling curve, the 3D Hilbert curve on

a small subset of the data with n=17 participants of cocaine dependent and healthy

control groups, and obtained 100% accuracy, which was better than the classification

performance with the linear ordering [Sakoglu-2]. Subsequently, they applied this

methodology to a larger dataset with n=84 participants, however, participant

classification accuracy was decreased to ~77% with Hilbert ordering and 67% with linear

ordering, using only Bayesian network (Bayes Net) classifier [De Leon].

8

CHAPTER III:

METHODOLOGY

Before further processing, all the fMRI activation maps data are changed to

64×64×64 by doing zero padding, that is zeros padded in all the dimensions, then using

the whole dataset a mean brain map is calculated. Then a brain mask is applied in order to

mark the voxels outside the brain. Afterwards, the 3D-to-1D vectorization is performed

[Sakoglu-1].

In this work, we performed three different kind of vectorizations: a) linear, b)

Hilbert, c) heuristic approximation to optimal SFC. Below, Figure 5 illustrates an

example of Hilbert curve in 2D in different sizes, and how it can trace the brain activation

map from 2D image to a 1D vector, for visualization. In this work, the SFCs is done in

3D. A more optimal curve can follow the activation map adaptively which would

correlate with the gyri and sulci of the brain. Since brain activation maps are 3D, we

attempted to solve this problem in 3D.

Figure 5: (a) 2D 3rd Order, 4×4 Hilbert space-filling curve. (b) 6th Order, 64×64 Hilbert

space-filling curve. (c) A 2D slice from a 3D fMRI brain activation map. (d) 2D 64×64

Hilbert space-filling curve tracing of the activation map.

9

The problem of finding an optimal space-filling curve was formulated in detail in

[Sakoglu-1]. Briefly, let us assume that the 3D MRI data matrix has N volume elements,

or “voxels”, v
1
, v

2
…, v

N
. Let sv

1
, sv

2
…, sv

N
 denote the voxel signal values of these 3-D

voxels. The structural brain MRI signals are kept in cartesian coordinates which are

represented by x, y and z dimensions. Therefore, we define the coordinates of voxel vi =

[xi, yi, zi], where i = 1, 2,…, N. We would like to find such an ordering/permutation of

voxels vr = { vr
1
, vr

2
, …, vr

N
 } which will constitute an optimal space-filling curve

ordering, so that the following cost function is minimized:

In other words, the sum of the squared distance between neighboring voxels’

values is minimized. The optimality is in the sense of achieving the minimum sum of

squared signal differences along the traced curve.

Here, the restriction on r is that the indices of the optimal space-filling curve

ordering, r = {r
1
, r

2
,…, r

N
}, must constitute indices of neighboring voxels in 3 dimensions.

We assume the 26-neighbor rule in 3-D in which a voxel has 26 immediate/adjacent

neighbors as explained above. In other words, we assume that the distance between the

neighboring voxels to be either 1, √2 or √3, i.e. the spatial (coordinate) distance

dij = |[xr
i
, yr

i
, zr

i
] – [xr

j
, yr

j
, zr

j
]| = 1, √2 or √3, if vr

i
 and vr

j
 are 26-neighbors of each other.

We can rewrite the cost function in Eqn. (1) in a more analytically tractable quadratic

form and formulate the minimization problem algebraically as follows; the objective:

minimize

 c
2

 = (s[vr
1
] - s[vr

2
])

2

 + (s[vr
2
] - s[vr

3
])

2

 + …+ (s[vr
N-1

] - s[vr
N
])

2

 (1)

subject to

10

vr
i
 and vr

i+1
 are 26-neighbors for all i =1,…, N-1.

Different orderings or curves would result in different cost function values. The

more connected and smoother the resulting 1D curve, the smaller the value of the cost

function should be. If there was no “connectedness” or “neighborhood” restriction, then

simply sorting the 3D values from minimum and maximum would give the lowest cost

function, but that would not be a curve, and the structural information would have been

completely lost. Ideally, we would like to minimize Eqn. (1) analytically; however, it is

not analytically possible. We formulate the optimal space-filling curve ordering problem

by defining the ordering in an undirected graph and show that the problem is a

Hamiltonian path problem which can be solved by integer linear programming techniques

(ILPs).

We create an undirected graph G = (V, E) as described in the following:

For each voxel vi create vertex vi in V. We create edge {vi, vj } in E for every pair

of voxels vi and vj if voxels vi and vj are immediate neighbors (recall that each voxel has 6

neighbors).The weight w({vi, vj }) of edge {vi, vj } in E is the difference in their signal

values squared.

That is, w{(vi, vj)}= (sv
i
- sv

j
). (2)

Recall from previous section that r = {r
1
, r

2
,…, r

N
} is a permutation of indices of

voxels. We call r as connected permutation if for all j, 1 ≤ j < N, voxels 𝑣𝑟𝑗 and 𝑣𝑟𝑗+1
are

neighbors. Let P be the set of all connected permutations. Let H be the set of all

Hamiltonian paths in G. A Hamiltonian path in graph G is a simple path that contains all

vertices. The two end vertices in this path are not connected in the solution. If they are,

then this is called a Hamiltonian cycle.

11

There exists a one-to-one correspondence between sets P and H. For every

connected permutation r = {r
1
, r

2
,…, r

N
} there exists a unique Hamiltonian path denoted

by h = {h
1
, h

2
,…, h

N
} in G. Conversely, for every Hamiltonian path h in H there exists a

unique connected permutation r(h) in P. The mapping between permutation r and h is the

identity mapping, i.e. voxel 𝑣𝑟𝑖 in permutation r corresponds to vertex vi in Hamiltonian

path h for all i, 1 ≤ i ≤ N. Therefore, finding a permutation that minimizes Eqn. (1) is the

same problem as finding a Hamiltonian path in G with the minimum weight. To find an

optimal permutation, we solve the Minimum Weight Hamiltonian Path (MWHP) (or the

Shortest Hamiltonian Path in [Chen]) problem and obtain an optimally connected

permutation r(h) from a Hamiltonian path h with optimal weights. In this project, we

propose to solve the MWHP problem for our fMRI data by reducing it to a traveling

salesman problem (TSP) using ILP techniques. TSP is a computationally very intensive

problem (called non-polynomial-time-hard / NP-hard) [Garey] since it involves

approximately three hundred thousand variables for fMRI data and several million

constraints [Sakoglu-1]. Therefore, heuristics-based approaches to TSP are needed to be

developed for our problem. We start with the most commonly known heuristics of the

TSP [Tenenberg].

We hypothesized that the features obtained by the heuristic approximation of the

optimal space-filling curve-based ordering of the brain activation maps would lead to a

better classification of the cocaine-dependent participants, and hence we would be able to

better isolate the brain regions involved in cocaine addiction. The steps of the

methodology are summarized below:

• Obtain a suboptimal approximation of the space-filling curve-based tracing

of the fMRI activation maps by implementing one or more of the heuristics

of the TSP,

12

• Compress the 1D data and obtain features (by averaging, called “binning”),

• Use the obtained features to perform participant classification of data,

• Find the features which contribute to the classification the most, further reduce the

features to the most important features,

• Locate where these reduced features lie on the 1D brain curve/vector,

• Back-map the important features to the 3D data, find where the important brain

regions are located,

• Repeat all the steps with the traditional linear ordering, compare results,

• Iterate the steps above by using different compression ratios (bin sizes), different

classification algorithms and parameters; optimize the overall classification

accuracy.

Optimal space filling curve:

Finding an optimal space-filling curve (OSFC) inherently requires solving a

modified traveling salesman problem (TSP)[Sakoglu-1] which takes exponential

computation time and hence cannot be solved in polynomial-time [Sakoglu-1]. Based on

definition by Sakoglu et al in [Sakoglu-1], an OSFC would start from a voxel and trace

the matrix by moving to the neighboring voxel with minimum signal difference, as the

basic rule or constraint. This would result in the minimum sum of squares of signal

difference in the 1D OSFC [Sakoglu-1]. If a practical approximation of the optimal 1D

space-filling curve which can trace the 3D MRI brain can be found, even a suboptimal

approximation, as proposed in this project, it will greatly enhance the features extracted

from the MRI data and it has to attain a better classification of participants with different

brain conditions. Therefore, the optimal space-filling curve comes into picture which

would traverse the whole space with smoother signal transition values and no frequent

large jumps or discontinuities hence preserving the structure of the element. These space-

13

filling curves can start at any location and can traverse all the points or voxels only once

by definition and end at a different point. The crucial point is that the traversal has to go

from one neighbor to another at each step.

In a 3D space, immediate neighborhood can be defined in different ways. The

sparsest definition involves having only 6 neighbors when one considers north, south,

east, west, above, and below immediate neighbors, each with a distance of 1, given the

spacing between the voxel grid is 1 (6-neighborhood). If diagonal neighbors are also

counted as immediate neighbors, then there are 18 immediate neighbors, including the

diagonals with a distance of square root of 2 (18-neighborhood). In this work, we

considered 26-neighborhood.

Our developed space filling curve tracing algorithm moves to the neighboring

voxel keeping track of the voxels visited so that already visited voxels are not visited

again and instead it moves to the next neighboring voxel with the minimum signal

difference. If it is going into some loop (called a “trap”), then the algorithm moves one

step back, and then visits a different neighboring voxel than before (i.e. not the neighbor

with the minimum signal difference, but the neighbor with the second minimum signal-

difference). Below is the pseudocode depicting the flow of the algorithm.

14

Pseudocode 1: SFC Pseudocode

Input: fMRI image

Output: 1D signal vector

SFC Pseudocode:

Read the Brain Activation Map.

Find the number of non-zero voxels in the map n.

Start from 1st non zero voxel i, j, k.

For iSFC = 1 to n

 Maintain a visited voxels vector, place the I, j, k in the visited vector

xyzzy.

Using a 26-neighbor function all the neighbors of the point (I, j, k) are

stored in a vector.

 The signal difference of the neighbor with the current voxel is calculated

The pointer is moved to the neighbor with minimum signal difference.

Verify that the point is not visited already.

If the next point is found to traverse

 Then update visited vector with the neighbor found.

Else

 Decrement the visited list and select the next minimum signal

difference neighbor.

endif

end for

15

Figure 6: SFC Brain Activation Plot

Methodology 1:

 The implementation of Hilbert and the linear space filling curves were done by

following the flowcharts depicted in Figure 7 and Figure 8.We converted the 3D brain

activation map data from two groups (patient and control groups) to 1D, and the 1D data

was down-sized using binning as described in the thesis proposal. By performing binning,

the data was reduced from about one hundred fifty thousand voxels to approximately one

thousand voxels. And then the t statistics was applied to find the most statistically

significantly discriminative brain regions in 1D, and these regions are extracted as

discriminative features based on the low p values that they result in group discrimination.

Classification and deep learning are also applied to the obtained features for getting a

prediction of whether they are control or cocaine-addicted. We have used linear

classification and support vector machine with different kernels and have obtained

accuracies for both Hilbert and linear and compared the results (presented in the tables

below). Then in the end, the most discriminative attributes/features in 1D were back-

16

mapped to the actual 3D brain regions to locate and visualize which regions in the 3D

brain were among the most important regions in the classification of the data.

The implementation was done in two phases: part A and part B. In part A, using all the

participants a mean activation brain map was calculated and the mean brain map was

multiplied with the mask (m) so that all the non-brain region voxel values are zero. Then

this extracted brain map was zero-padded to change the size of the image to 64×64×64 as

the Hilbert curve can be applied to datasets with dimensional length of only powers of 2.

If we use linear ordering there is no need for zero padding. Then using the selected

technique, they are converted from 3D to 1D. The zeroes in the 1D vector are removed

using an absolute threshold keeping track of their indexes which are further used in part

B. This operation is called “zero-trimming”.

 Then for each participant activation map was multiplied with the mask(m) and the

non-brain region are made zero removing all values outside the brain. Just like the part A

the extracted brain map is zero padded to change the dimensions of the map to 64×64×64

while applying the Hilbert space filling curve. Then for each participant activation map

are multiplied with the mask(m) and the non-brain region are made zero removing all

values outside the brain.

17

Figure demonstrating the complete workflow for Hilbert.

Figure 7: Part A of Processing Flow

Figure 8: Part B of Processing Flow

Just like the part A the extracted brain map are zero padded to change the

dimensions of the map to 64×64×64 when applying the Hilbert space filling curve. Then

the pre-defined sub optimal Hilbert curve is applied, and the 3D activation map are

converted to 1D. Using the zero removal indexes which are obtained from the part A, the

same voxels are removed from these individual maps as well to eliminate the zeros.

Before the zero removal was done there was around 262,144 attributes, which is a very

large number for any classifier. Just by removing the zero valued voxels (i.e. by “zero-

18

trimming”), the size is reducing to nearly 150 thousand voxels. Even then it is hard to

perform any classification because of the large number of attributes.

Therefore, to further downsize the data, a method of “binning” was applied to the

data. Different bin sizes can be used to obtain different number of attributes. Binning is a

process of averaging the values that are grouped in a bin. For example, if there are 100

attributes to start with, and if the bin size is 20 then the resulting dataset has only 5

attributes. The mean of the 1st 20 attributes in the 100 attributes dataset gives the 1st value

of the resulting dataset and the 2nd 20 values mean gives the 2nd value of the resulting

dataset and so on. In Figure 9 , the size of the data is around 120 thousand voxels but

after binning the data with bin size of 100 it had only 1200 values in the resulting dataset

(i.e. Figure 10).

Figure 9: Hilbert-ordered, zero-trimmed, before binning

19

Figure 10: Hilbert-ordered, zero-trimmed, after binning with a bin size of 100

Methodology 2:

 In the second methodology each participant was masked with a mask and the non-

brain region removed. So, whatever the remaining signal values present in the data are

coming from inside the brain. In Figure 11 we can observe that the non-brain region is

smoother, and, there is good differentiation of the boundary. These masked activation

maps are further used for applying all the orderings. Below is the flow depicting the flow

of the second methodology (Figure 13).

• Linear- It is a conventional method. As discussed in the above introduction the

linear ordering is done from left to right, top to bottom and as it is applied on a

three-dimensional space front to back layer by layer. Follow the same approach

each masked data is converted into one dimension using linear ordering and are

added as the record for the data. Each attribute is considered as a feature. The

length of record in the resultant data is 153,594 attributes.

• When the linear ordered dataset is down sized with a bin size 100 or 200 the

resultant dataset would have 1536 attributes for 100 bin size and 768 attributes

20

when the bin size is 200.

Figure 11: Masked brain activation map.

• Hilbert- The Hilbert works in the power of 2, as the size of data is 53x63x46, so it

was zero padded and the size of the data is changed to 64x64x64. This is done on

the masked data. Masking the data does not change the size of it so applying the

zero padding on the masked data just changes the size to 64x64x64.Then on the

zero padded data the predetermined Hilbert curve is applied. Point by point the

signals are traversed and 1D curve was obtained. Because of the zero padding

each 1D record has increased the number of features to 262,144.

• When the Hilbert ordered data, set is down sized with a bin size 100 or 200 the

resultant dataset would have 2622 attributes for 100 bin size and 1311 attributes

when the bin size is 200.

• Optimal SFC- The optimal proposed SFC is applied on mean brain map which

was obtained from averaging all the participant brain maps. It yields an optimal

21

curve with 52605 features which is much smaller when compared to linear and

Hilbert. It is nearly one third of the linear ordered curve and one fifth of the

Hilbert ordered curve. This overall reduces the number of points to traverse.

• So, when the binning is performed on the SFC ordered data the resultant dataset

would have 527 features when the bin size is 100 and 263 features when the bin

size is 200.

Before the classification was applied, attribute/feature selection was done using

two-sample t test and sequential forward selection, in order to reduce the number of

features being processed through the model, which in turn reduces the computation.

These selected features which gave a better accuracy were back-mapped onto the 3D

brain imaging space to visualize the brain regions corresponding to the most

discriminative features. Two sample t test, across two group’s samples, performed for

each feature/attribute, provides a measure of how significantly each feature can

discriminate between two groups of samples by measuring the p values of significance of

the t test. In our case, the attributes/features were the binned brain activation values in 1D

for each participant.

Sequential forward search is another technique which is used for the feature

selection. In the below pseudocode you can see that in an iterative process the features

are selected which is best in that iteration. Basically, it follows a greedy approach that is

without considering the future it accepts the best at that point of time.

22

Pseudocode 2: Pseudo Code for Sequential forward selection

1.Start with empty set Y0={ᴓ}

2.Select the best from remaining features (bin):

 next feature x = argmaxx∈Yk [J(Yk + x)]

3. If J((Yk+x)>J(Yk))

a. Update Yk+1= Yk+x

b. k=k+1

c. Go back to step 2.

• Iteratively the model is fed with different features and which combination gives

better accuracy is forwarded to the next generation and other attribute with the

best combination achieved from the previous iteration are passed to the model and

again searched for the best accuracy. These selected attributes are then feed to

different models for classification.

• There are different classification models like support vector machines, voting

algorithm, perceptron, random forest and Gaussian naïve Bayes etc. are applied

and also, I have applied a deep learning model to all these data.

• A deep learning model with 5 hidden layers and with 32,16,8,4,2 hidden nodes in

a sequential order. The number of input nodes depends on the number of

attributes in the dataset and with only one output node. I have used Rectified

Linear Unit (ReLu) activation function for the Hidden nodes and for the output

node have used both the sigmoid and SoftMax. To check which one was yielding

better results(Figure 12).

23

3D down-sampling without 1D mapping:

There is another method that I have implemented without any conversion of 3D to

1D. Directly averaging the brain activation map and downsizing it, a usual brain

activation map is 53×63×46 but downsize by 4 changes the size of the activation to

13×15×11. It is done by averaging the value of consecutive 4×4×4 voxels in the

activation map. Then linearly convert each participant to 1D for the classification.

Figure 12: Deep learning model

24

Figure 13: Steps of proposed methodology.

25

CHAPTER IV:

RESULTS

Datasets:

There are two fMRI brain activation datasets used for analysis in this work. The

first dataset is from a cocaine addiction neuroimaging study, and the second dataset is

from a shared repository of multi-modal, multi-site neuroimaging data from a clinical

investigation of schizophrenia (MCIC). These datasets are completely de-identified brain

activation maps. Cocaine addiction dataset has 84 participants and schizophrenia dataset

has 184 participants. Each dataset has also data from control participants. The breakdown

of numbers of participants for each dataset are summarized below in Table 3 and Table 4.

Table 1:

Cocaine Addiction Dataset

Cocaine Addiction Dataset

Control 25

Patient 59

Total 84

Table 2:

Schizophrenia Dataset

Schizophrenia Dataset

Control 95

Patient 89

Total 184

A brain activation map from one of the participants in the schizophrenia dataset,

after ordering from 3D to 1D, are plotted for each of the orderings linear, Hilbert and

SFC below (Figure 14, Figure 15, Figure 16). The linear ordering has discontinuous

26

signal values as we can observe that in regular intervals the signal values are zero (Figure

14). Which visually depicts that the linear order is not at all structure preserving and

discontinuous. In Hilbert we can observe that there is some continuity in the values, and

we can observe a larger cluster of zeros because of the zero padding is performed on the

data for applying Hilbert (Figure 15). But the SFC curve has a continuity in the signal

values and shortest of all the curves.

Figure 14: Linear Order Signal plot.

27

Figure 15: Hilbert order Signal plot.

Figure 16: Optimal Space Filling Curve Ordered Signal plot.

28

Figure 17: Downsized brain activation map signal plot.

When applied the cost function sum of squared signal differences (1) below are

the resulting values for each curve. Using SFC cost function has obtained a value which

is smaller by an order of 2. So SFC is better than the other ordering techniques in terms

of cost function.

SFC Ordering: 1.153905049000000e+09

Hilbert Ordering: 1.250167550200000e+11

Linear Ordering: 1.413038600370000e+11

Downsized Map: 2.575344347250000e+09

Binned signal value for each curve are zoomed in and depicted. Just for

representing they are binned with a bin size 1000, for each division the values are

averaged and consider as the attribute value or feature. As the zero regions are grouped in

SFC (Figure 18) at a place all those bins value would be zero and so they will not have

29

any effect on classification. In the bar graph a snap of the mean signal values of the part

are depicted.

In the Figure 19 we can observe that on Hilbert the binning is applied, and it is

evident from the 2nd plot that just because of 2 values between the 1000 and 2000 bins

the activation of the bin is not zero. The 1st bin value is zero, but the value of the second

bin is not. So, on the whole when binning is performed on the dataset it biases the data by

averaging. For linear binned (Figure 20) there will be even more difference as there is a

regular break down in the signal and so it even has a greater effect when binning. Which

results in corrupted or biased bins.

30

Figure 18: Zoomed in binned signal values on SFC ordered plot

31

Figure 19: Zoomed in binned signal values on Hilbert ordered plot

32

Figure 20: Zoomed in binned signal values on linear ordered plot

33

For linear ordering and the downsized both have even more discontinuity (Figure

20 and Figure 21) in the signal values, so there might not perform better when compared

to other approaches. Just like the linear ordering the down sized sample also has the same

problem of discontinuity as we are using the linear method to convert the down sized

sample.

Below in Figure 22 it shows the two control participants brain activation maps are

converted from 3D to 1D using Hilbert curves and are overlaid to see how well they are

co registered. By this plot we know that points are from the same region for both

participants and both have more or less similar values.

34

Figure 21: Zoomed in binned signal values on Downsized activation map signal plot

35

Figure 22: Conversion of 3D to 1D and Overlaying two controls from Cocaine addiction

dataset after applying Hilbert curve.

 Below is the plot of the optimal SFC with difference in color magnitude for every

thousand voxels that are traversed (Figure 23).

Figure 23: SFC Brain Activation plot after removing the non-brain.

36

CHAPTER V:

CLASSIFICATION RESULTS

Classification result on cocaine addiction dataset using all the feature and features

selected using t statics of p<0.05 with different activation function sigmoid and SoftMax.

It is observed that in all combinations SoftMax out performed sigmoid by a large

difference. As well the Hilbert was performing better than linear at all the instances at

least by a small margin.

Table 3:

Deep learning results of Hilbert and linear using different activation functions (cocaine

addiction dataset) applied on cocaine addiction dataset.

Combinations Hilbert Linear

BinSize_200_P<0.05_Sigmoid 54.56 53

BinSize_200_P<0.05_SoftMax 70.4 69.7

BinSize_200_FullDataSet_Sigmoid 51.2 50.2

BinSize_200_FullDataSet_SoftMax 69.8 68.5

BinSize_100_P<0.05_Sigmoid 51.02 50.4

BinSize_100_P<0.05_SoftMax 71.20 71.60

BinSize_100_FullDataSet_Sigmoid 53.6 50.7

BinSize_100_FullDataSet_SoftMax 71.19 71.07

BinSize_50_P<0.05_Sigmoid 53.7 53

BinSize_50_P<0.05_SoftMax 70.6 70.3

BinSize_50_FullDataSet_Sigmoid 55.1 53.3

BinSize_50_FullDataSet_SoftMax 71.07 70.3

Table 4 has the classification result that are obtained from applying methodology

1 on both the Hilbert and linear ordering on cocaine addiction dataset. Applied the

Multilayer perceptron by using the Weka tool [WEKA], which is a machine learning

37

software using java. Using different bin sizes and different p values I have tried

calculating the accuracies and the Hilbert was performing better in every combination.

Table 4:

Classification results using Multilayer perceptron in weka averaging 10 iterations on

cocaine addiction dataset.

Classification of cocaine addiction using
multi-layer perceptron

About the Data Hilbert Linear

bin size 100 and p < 0.05 77.30% 75.30%

bin size 100 and p < 0.03 77.00% 66.40%

bin size 200 and p < 0.05 72.50% 69.80%

bin size 200 and p < 0.03 74.50% 70.00%

In Table 5 the classification results of the cocaine addiction dataset using SVM

are depicted. The bin size of the data is 100 and the with p value less than 0.05. Even

when the number of iterations is increased, the Hilbert was constantly performing better

than the linear ordering.

Table 5:

Classification result using SVM on cocaine addiction dataset with bin size 100 and

p<0.05.

Classification of cocaine addiction,
bin size = 100 and

p< 0.05 Using SVM Gaussian Kernel

Iterations Hilbert Linear

100 75.60% 69.00%

200 75.30% 69.20%

300 76.07% 69.50%

400 76% 70.00%

500 75.20% 69.80%

38

The sequential forward selection was applied for all the ordering and the

classification accuracies are compared to see which was performing better and how the

accuracies changed (Table 6). The Hilbert and SFC are getting an accuracy more than

70% but the linear are just around 50% accuracy which is very low. As the number of

attributes are increased the accuracy is also been increased slightly.

Table 6:

Classification result using sequential forward selection on SFC, Hilbert and linear

ordering on MCIC dataset.

Classification Accuracy table following Sequential forward selection

Ordering
Bin
size

Number
of
Attributes
in the set

Number of
Attributes
used for
Classification Iterations Algorithm

Highest
accuracy

No. of
attributes
that
achieve
the
highest
accuracy

SFC 100 667 30 100 SVC 72.1% 25

Hilbert 100 2622 30 100 SVC 73.2% 30

Linear 100 1536 30 100 SVC 49.9% 14

SFC 100 667 100 100 SVC 74.6% 100

Hilbert 100 2622 100 100 SVC 76.8% 100

Linear 100 1536 100 100 SVC 50% 27

Below is the accuracy plot for sequential forward selection of each ordering as the

number of attributes are added to the best sequence. Figure 24 the SFC had a gradual

increase in the accuracy as the best attribute in that iteration is being added to the

sequence and the accuracy is again calculated. It has a maximum accuracy of 74.6% with

100 attributes. And for the Hilbert (Figure 25) the accuracy was best with 100 attributes

with an accuracy of 76.8%. The linear ordering (Figure 26) has the lowest accuracy

39

when compared to other with 50% accuracy. Number of features that are considered is

quite low in SFC and even then there are some significant results. But for Hilbert if we

observe there are about two thousand six hundred feature which is 4 times greater than

that of the SFC. So, for using sequential forward selection it has to go through all the

combinations of 2622 features for a Hilbert.

Comparatively the SFC has less computation required with a smaller number of

features and gaining better results.

Figure 24: Classification accuracy for SFC using Sequential forwards selection on

MCIC dataset.

40

Figure 25: Classification accuracy for Hilbert Ordering using Sequential forwards

selection on MCIC dataset.

Figure 26: Classification accuracy for linear ordering using Sequential forwards

selection on MCIC dataset.

41

Table 7:

Classification Accuracy of all the methods with all the features 100 bin size applied on

MCIC dataset.

In the above Table 7, we can observe that Space filling curve was performing

better than all the other techniques at least by a smaller margin when using all the

features or the full dataset. It is a lot better when compared to the linear and the

downsized brain activation method and slightly performing better than that of the Hilbert.

Because when using all the features the number of features used for computation are

pretty less for SFC when compared to Hilbert and linear. But for Down sized activation

there is no binning performed as it is already an averaged data. So, in majority of

algorithms SFC was performing better than the other approaches.

PCA: We also did a principal component analysis (PCA) of the SFC ordered MCIC data,

with a split ratio of 70% train and 30% test data. It resulted with128 principle

components (i.e. features) since it had 128 training records/samples. When passed

through the SVM with 100 iterations, it resulted in an average accuracy of 51.7% which

is close to the chance accuracy of 50%.

Methodology
Bin
Size

Classification Accuracy with different algorithms on MCIC data for
100 iterations

Num. of
Attributes

Voting
Algorithm

SVM Gaussian
Random
Forest

Perceptron

Downsized
brain
activation

N/A
2146 49.90% 49.80% 50.00% 49.40% 46.50%

Linear 100 1536 47.00% 46.70% 47.40% 46.10% 49.40%

Hilbert 100 2622 62.30% 63.30% 55.40% 60.10% 67.00%

Space Filling
Curve (SFC)

100 622 62.30% 65.40% 58.60% 61.20% 64.60%

42

The sagittal view of the Brain map for Hilbert 100 bin size with p<0.05 and has

about 27 features which are back mapped on to the brain to know the region of interest.

The slices starting from 14 to 53 all the sagittal views are displayed (Figure 27).

The sagittal view of the brain map with region of interests or features obtained

from the SFC ordered curve are plot below on one of the participants. The slices start

from 15 to 52 with all the slices combined (Figure 28).

Figure 27: Sagittal view of Back mapped features of Hilbert 100 bin size and p<0.05

43

Figure 28: Sagittal view of back mapped features of SFC 100 bin size

44

CHAPTER VI:

CONCLUSION

In this proposed work, we proposed to find a new suboptimal heuristic

approximation to an optimal space filling curve (SFC) that would traverse the fMRI

human brain data in an optimal way, and we expected that this new SFC would result in

better classification accuracy of participants from fMRI brain activation maps when

compared to the Hilbert ordering and the conventional models of ordering, such as linear

ordering. Our results on two separate fMRI datasets, one from cocaine addiction and

another from schizophrenia brain activation maps, show Hilbert based classification

achieved slightly better classification accuracy than that of SFC (approximately 76% vs

75%) when utilizing sequential forward search and two sample t test for finding the most

discriminative features. When no feature selection was done, the SFC provided a slightly

better accuracy for most of the classification algorithms utilized. That is when the whole

dataset is used the SFC is performing better than the other methods.

On the whole, Hilbert curve and the SFC outperformed the conventional linear

model by a large difference. We have used different deep learning algorithms with

different parameters, e.g. different activation functions, number of hidden layers, nodes,

as well as different bin sizes in the binning step, in order to optimize algorithm

parameters and to maximize classification accuracy. But the proposed SFC had a better

cost function in terms of mean squared signal difference in data, and also was successful

in preserving the structural information of the brain, also there is continuity in the signal

value which can be applied to many other problems like MRI data acquisition and data

analysis.

45

REFERENCES

[Sakoglu-1] U. Sakoglu et al., “In Search of Optimal Space-Filling Curves for 3-

D to 1-D Mapping: Application to 3-D Brain MRI Data,” Proceedings of the

Bioinformatics and Computational Biology (Biko) Annual Conference, Las Vegas, NV,

March 2014.

[Sakoglu-2] U. Sakoglu, J. De Leon, C. Huerta, M. Galla, M. Mete, B. Adinoff,

“Classification of Cocaine Addiction Using Hilbert-Curve Ordering of fMRI

Activations,” International Society of Magnetic Resonance in Medicine (ISMRM)

Machine Learning Workshop, Pacific Grove, CA, March 2018.

[De Leon] J. De Leon “Classification of Cocaine Addicted Patients Using 3D to

1D Hilbert Space-Filling Curve Ordering of fMRI Activation Maps,” MS Thesis,

Advisor: U. Sakoglu, Computer Engineering, University of Houston– Clear Lake,

Houston, TX, December 2018.

[Weka] https://www.cs.waikato.ac.nz/ml/weka/

[Smith] Smith, S.M.: Fast robust automated brain extraction. J. Human Brain

Mapping 17(3), 143–155 (2002)

[Jiang] Jiang, S.F., Wang, W.H., Feng, Q.J., et al.: Automatic Extraction of Brain

from Cerebral MR Image Based on Improved BET Algorithm. Journal of Image and

Graphics 14(10), 2029–2034 (2009)

[Worsley] K. J. Worsley, and K. J. Frinton, “Analysis of fMRI time-series

revisited-again,” Neuroimage, vol. 2, no. 3, pp. 173-81, Sep 1995.

[Butz 1968] A. R. Butz. Space filling curves and mathematical programming.

Information and Control, 12:314-330, 1968.

https://www.cs.waikato.ac.nz/ml/weka/

46

[Lawder 2000] J.K.Lawder, P.J.H.King, Using Space-filling Curves for Multi-

Dimensional Indexing, BNCOD 17, Lectures Notes in Computer Science, vol. 1832,

pp 20-35, Springer 2000.

[Zhu 2003] Jinhui Zhu, Ahmad Hoorfar, and Nader Engheta, Bandwidth, Cross-

Polarization, and Feed-Point Characteristics of Matched Hilbert Antennas, pp. 2-5, IEEE

ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 2, 2003.

[Lieberman 2009] Lieberman-Aiden & Van Berkum et al., Comprehensive

Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome,

Science 326, pp. 289 - 293 (2009).

[Chen] D. Chen, R. G. Batson, and Y. Dang, Applied Integer Programming:

Modeling and Solution: John Wiley & Sons Inc, New York, 2010.

[Garey] M. R. Garey, and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness: W.H. Freeman, 1979.

[Sahni] S. Sahni, and T. Gonzalez, “P-complete approximation problems,”

JACM, vol. 23, pp.555, 1976.

[Tenenberg]

http://faculty.washington.edu/jtenenbg/courses/342/f08/sessions/tsp.html

[Ashley] Ashley S, Olga Mendoza S, Scott K, Mathew Dierking “An end-to-end

vehicle classification pipeline using vibrometry data” June 2014.

[SPM] https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ , last update Oct 2014.

[MATLAB] https://www.mathworks.com/products/matlab.html

[Wiki-Hilbert] https://en.wikipedia.org/wiki/Hilbert_curve

http://www.dcs.bbk.ac.uk/TriStarp/pubs/bncod17.pdf
http://www.dcs.bbk.ac.uk/TriStarp/pubs/bncod17.pdf
http://www.ee.upenn.edu/~engheta/Hilbert_Antennas_IEEE_AWPL_2003.pdf
http://www.ee.upenn.edu/~engheta/Hilbert_Antennas_IEEE_AWPL_2003.pdf
http://www.sciencemag.org/cgi/content/abstract/326/5950/289
http://www.sciencemag.org/cgi/content/abstract/326/5950/289
http://faculty.washington.edu/jtenenbg/courses/342/f08/sessions/tsp.html
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.mathworks.com/products/matlab.html
https://en.wikipedia.org/wiki/Hilbert_curve

47

APPENDIX A:

MATLAB CODE FOR HILBERT AND LINEAR CURVE ORDERING WITH

BINNING AND BACK MAPPING

%BrainMAppingScriptUS

%Create Hilbert Curve 64^3:

n=6

[x,y,z]=hilbert3(n);

hilbert3US

%Read a 3D brain activation map

allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii');

numfiles=length(allfilenames_ar);

%Iteratively accepting each nii file for the analysis

lengths_all=zeros(numfiles);

L=64^3;

linearlen=53×63×46;

myVolume1DHilbert_all=zeros(numfiles,L);

myVolume1DLinear_all=zeros(numfiles,linearlen);

BinSize=100;

NumBins=floor(L/BinSize);

myVolume1DHilbert_binned=zeros(numfiles,NumBins);

LNumBins=floor(linearlen/BinSize);

myVolume1DLinear_binned=zeros(numfiles,LNumBins);

for img=1: numfiles %

 allfilenames=num2str(allfilenames_ar(img,:));

 buf='E:\Thesis\Processed_MCIC\';

 filename=strcat(buf,allfilenames);

 myVolume=spm_read_vols(spm_vol(filename));

 %allf=dir('×test×nii')

 allfilenames

 %Zero-pad it

 myVolumeZeroPadded=zeros(64,64,64); %temp

 myVolumeZeroPadded(1:53,1:63,1:46)=myVolume;

 %show slice from it

%%figure,imagesc(myVolumeZeroPadded(:,:,23));colormap(gray),colorbar

 %see the histogram

 %%figure,hist(myVolumeZeroPadded(:),200)

 %convert to 1D vector using Hilbert ordering

 myVolume1DHilbert=zeros(1,L);

 for i=1:L,

48

myVolume1DHilbert(i)=myVolumeZeroPadded(x_new(i),y_new(i),z_new(i));

 end

 myVolume1DHilbert_all(img,:)=myVolume1DHilbert;

 figure,plot(myVolume1DHilbert),axis tight, title('Hilbert-Curve

Ordered')

 %convert to 1D vector using linear ordering:

 myVolume1DLinear=transpose(myVolume(:));

 myVolume1DLinear_all(img,:)=myVolume1DLinear;

 figure,plot(myVolume1DLinear),axis tight, title('Linear Ordered')

 for i=1:NumBins,

 myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert((i-

1)×BinSize+1:i×BinSize));

 end

 for i=1:LNumBins,

 myVolume1DLinear_binned(img,i)=mean(myVolume1DLinear((i-

1)×BinSize+1:i×BinSize));

 end

 Zeroclipping

 mythresh=0.001,

 j=1;k=1;l=1;

 for i=1:L,

 if abs(myVolume1DHilbert(i))>mythresh,

 myVolume1DHilbert_zeroremoved(j)=myVolume1DHilbert(i);

 j=j+1;

 nonzeroindexvector(l)=i;

 l=l+1;

 else

 zeroindexvector(k)=i; k=k+1;

 %k

 end

 end

 plot zero-clipped vector

 %figure,plot(myVolume1DHilbert_zeroremoved),title(['Hilbert-ordered

& zero-removed using threshold ',num2str(mythresh)])

 Lzr=length(myVolume1DHilbert_zeroremoved);

 allfilenames

 Lzr

 lengths_all(img)=lzr;

 Map_After_zero_removal(84,lzr);%=zeros(84,Lzr);

dlmwrite('E:\Thesis\Results\Binned_res.csv',myVolume1DHilbert_binned(im

g,:),'-append');

end

dlmwrite('E:\Thesis\Results_new\Hilbert1D_100bin.csv',myVolume1DHilbert

_binned,'-append');

49

dlmwrite('E:\Thesis\Results_new\Linear1D_100bin.csv',myVolume1DLinear_b

inned,'-append');

%csvwrite('Map_After_zero_removal',Map_After_zero_removal);

for i=1:80

 temp=Map_After_zero_removal(i:i+10,:);

 te=transpose(temp);

 figure,plot(te)

 i=i+10;

end

%Binning:

figure,plot(myVolume1DHilbert_binned),title(['Hilbert-ordered & zero-

removed & binned using Bin Size ',num2str(BinSize)])

%The above binned values provide your raw features into classificztion

%algorithm. The Feature Selection PRocedure will select Some featrues

as

%subset. %You can save them using

%csvwrite('myfilename.csv',myVolume1DHilbert_binned)

%Let's say you got bins #76,236 and 345 as important features

ImportantBins=[76,236,345],

NumImportantBins=length(ImportantBins)

for iBin=1:NumImportantBins,

 myBin=ImportantBins(iBin),

 myBinIndexI(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize;

 iBin

end

myBinIndexConcat=reshape(myBinIndexI',[1,NumImportantBins×BinSize]);

originalIndexesOfImportantBins=nonzeroindexvector(myBinIndexConcat);

my3DImportantBins=zeros(64,64,64);

%randn(53,63,46);

for p=originalIndexesOfImportantBins,

 p

 my3DImportantBins(x_new(p),y_new(p),z_new(p))=1;

end

my3DImportantBinsZeroPadsRemoved=my3DImportantBins(1:53,1:63,1:46);

V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii');

Vtemp=spm_create_vol(V)

Vtemp.fname='E:\Thesis\test_AQI_C_importantregions.nii'

Vtemp.descript='brain regions'

spm_write_vol(Vtemp,my3DImportantBinsZeroPadsRemoved);

50

APPENDIX B:

MATLAB SCRIPT PRODUCING SFC ORDERING

%script %function [xy] = US_heuristic01 %(myimage)

% Given a grayscale image (3D), returns the coordinates of a

% space-filling curve that traces it which minimizes the SSE of

diff(jump)

buf='E:\Thesis\MaskedData\C_AQI_C.nii';

%filename=strcat(buf,allfilenames);

myimage=spm_read_vols(spm_vol(buf));

sizeVec=size(myimage),

M=sizeVec(1)

N=sizeVec(2)

O=sizeVec(3)

i = 25,

j = 31,

k = 23,

%figure(1),ylabel('i'),xlabel('j'),zlabel('k')

purgedflag=0;

tic

xyz=zeros(M,N,O);

for i_SFC=1:M*N*O,

 %for i_SFC=1:1000,

% if exist('next_i')

% %if max(ismember(xy',[next_i,next_j,next_k],'rows'))==1 ||

myimage(next_i,next_j,next_k)==0, %change the neighbor if it is already

in the index set

% if xyz(next_i,next_j,next_k)==1

% if purgedflag==1

% i_SFC=i_SFC-1;

% end

% i_SFC=i_SFC-1; %prune the last i,j off from the curve and

continue

% purgedflag=1

% else

% purgedflag=0

% end

% end

 %x(i_SFC)=i;

 %y(i_SFC)=j;

 xy(:,i_SFC)=[i,j,k]';

 t=xy';

 buf=1;

 purgedflag=0;

 xyz(i,j,k)=1;

 mysignal(i_SFC)=myimage(i,j,k);

 twentySixneigh = US_26neighbors_LT(i,j,k,M,N,O);

 %size26neigh=size(twentySixneigh)

51

 %signalsdiffNeighs=zeros(1,size(twentySixneigh,1));

 signalsdiffNeighs=[];

 %index1=zeros(size(twentySixneigh,1));

 for in=1:size(twentySixneigh,1)

 signalsdiffNeighs(in)=abs(mysignal(i_SFC)-

myimage(twentySixneigh(in,1),twentySixneigh(in,2),twentySixneigh(in,3))

) %;

 end

 index1=zeros(1,size(twentySixneigh,1));

 [minDiffSignalinNeighs,index1]=sort(signalsdiffNeighs,2,'ascend');

 min_i=1; max_i=length(index1);

 % next_i=twentySixneigh(index1(min_i+purgedflag),1); %<-go to

the next neighbor that gives you min signal diff

 % next_j=twentySixneigh(index1(min_i+purgedflag),2); %<-go to

the next neighbor that gives you min signal diff

 % next_k=twentySixneigh(index1(min_i+purgedflag),3); %<-go to

the next neighbor that gives you min signal diff

 % %

while((max(ismember(xy',[next_i,next_j,next_k],'rows'))==1)&&(min_i<siz

e(twentySixneigh))) %change the neighbor if it is already in the index

set

 next_i=twentySixneigh(index1(min_i),1); %<-go to the next neighbor

that gives you min signal diff

 next_j=twentySixneigh(index1(min_i),2); %<-go to the next neighbor

that gives you min signal diff

 next_k=twentySixneigh(index1(min_i),3); %<-go to the next neighbor

that gives you min signal diff

 while(xyz(next_i,next_j,next_k)==1)

 display(['switched neighbor

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']'])

 %randm=(round(1+rand(1,1)*(size26neigh(1))));

 min_i=min_i+1;

 if(min_i <= max_i)

 %

next_i=twentySixneigh(index1(min_i+purgedflag),1);

 %

next_j=twentySixneigh(index1(min_i+purgedflag),2);

 %

next_k=twentySixneigh(index1(min_i+purgedflag),3);

 next_i=twentySixneigh(index1(min_i),1); %<-go to the next

neighbor that gives you min signal diff

 next_j=twentySixneigh(index1(min_i),2); %<-go to the next

neighbor that gives you min signal diff

 next_k=twentySixneigh(index1(min_i),3); %<-go to the next

neighbor that gives you min signal diff

 else

 break;

 end

 display(['.............. to

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']'])

 end

 if min_i<=max_i

 xyz(next_i,next_j,next_k)=1;

52

 display(['switched neighbor

[',num2str(i),',',num2str(j),',',num2str(k),'] to

[',num2str(next_i),',',num2str(next_j),',',num2str(next_k),']'])

 else

 purgedflag=1;

 end

 if purgedflag==1

 ind=0;

 t=xy';

 ind=length(t);

 while(buf==1)

 next_i=t(ind,1);

 next_j=t(ind,2);

 next_k=t(ind,3);

 twentySixneigh =

US_26neighbors_LT(next_i,next_j,next_k,M,N,O);

 if(~isempty(twentySixneigh))

 for p=1:size(twentySixneigh,1)

if(xyz(twentySixneigh(p,1),twentySixneigh(p,2),twentySixneigh(p,3))==0)

 next_i=twentySixneigh(p,1);

 next_j=twentySixneigh(p,2);

 next_k=twentySixneigh(p,3);

 purgedflag=0;

 break;

 end

 end

 end

 ind=ind-1;

 t=xy';

 end

 end

minDiffSignalinNeighsAll(i_SFC)=minDiffSignalinNeighs(index1(min_i));

 figure(1),plot3([i next_i],[j next_j],[k next_k],'-

.'),title(['i_{SFC}=',num2str(i_SFC)]),hold on

 %%just simulate Brownian motion just to see how it works:

 %r = randperm(max_i);

 %next_i=eightneigh(index1(r(1)),1); %<-go to random neighb0r

 %next_j=eightneigh(index1(r(1)),2); %<-go to random neighbor

 %next_k=eightneigh(index1(r(1)),3); %<-go to random neighbor

%minDiffSignalinNeighsAll(i_SFC)=minDiffSignalinNeighs(index1(min_i));

 %figure(1),plot3(i,j,k),title(['i_{SFC}=',num2str(i_SFC)]),hold on

 i=next_i;

 j=next_j;

 k=next_k;

 clear twentySixneigh

 clear signalsNeighs

 clear minDiffSignalinNeighs

 clear index1

53

 clear ind

end

toc

zlabel('k'),ylabel('j'),xlabel('i')

figure(3),plot(minDiffSignalinNeighsAll),xlabel('i_{SFC}'),ylabel('\Del

ta signal')

%figure(4),plot(myimage(xy))

%figure(1),hold on , imagesc(myimage), colormap(gray)

%

filename='E:\Thesis\Results\ResXY\14923_voxels.csv';

fl=csvread(filename);

fl=xy;

len=length(fl);

sigvec=zeros(1,len);

for it=1:len-1

 sigvec(1,it)=myimage(fl(1,it),fl(2,it),fl(3,it));

end

figure(4),plot(sigvec),xlabel('voxel'),ylabel('Signal Value')

54

APPENDIX C:

MATLAB CODE FOR DOWNSIZED BRAIN ACTIVATION MAP

allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii');

numfiles=length(allfilenames_ar);

for img=1:numfiles

 allfilenames=num2str(allfilenames_ar(img,:));

 buf='E:\Thesis\Processed_MCIC\';

 filename=strcat(buf,allfilenames);

 t1=spm_read_vols(spm_vol(filename));

 sizevec=size(t1);

 sz=4;

 l=floor(sizevec(1)/sz);

 m=floor(sizevec(2)/sz);

 n=floor(sizevec(3)/sz);

 tdownnan=zeros(sizevec(1),sizevec(2),sizevec(3));

 tdown=zeros(l,m,n);

 for k=1:sizevec(3)

 for i=1:sizevec(1)

 for j=1:m

 %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k));

 tdownnan(i,j,k)=nanmean(t1(i,(j-1)×sz+1:j×sz,k));

 end

 end

 end

 for k=1:sizevec(3)

 for j=1:m

 for i=1:l

 %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k));

 tdownnan(i,j,k)=nanmean(t1((i-1)×sz+1:i×sz,j,k));

 end

 end

 end

 for i=1:l

 for j=1:m

 for k=1:n

 %tdown(i,j,k)=mean(t1(i,(j-1)×sz+1:j×sz,k));

 tdownnan(i,j,k)=nanmean(t1(i,j,(k-1)×sz+1:k×sz));

 end

 end

 end

 tdown=tdownnan(1:l,1:m,1:n);

 myVolume_Linear_1D_nonan(img,:)=transpose(tdown(:));

 plot(myVolume_Linear_1D_nonan)

 title('Downsized brain map signal plot')

55

end

dlmwrite('E:\Thesis\Results_new\MCIC\1D_Linear_downsized3Dto1D.csv',myV

olume_Linear_1D_nonan,'-append');

Binsize=100;

NumBins= floor(l×m×n/Binsize);

for img=1:numfiles

 for i=1:NumBins,

myVolume_Linear_1D_binned100(img,i)=mean(myVolume_Linear_1D_nonan(img,(

i-1)×Binsize+1:i×Binsize));

 end

end

dlmwrite('E:\Thesis\Results_new\MCIC\1D_Linear_downsized3Dto1D_100Bin.c

sv',myVolume_Linear_1D_binned100,'-append');

56

APPENDIX D:

MATLAB CODE FOR PROJECTIONS SIGNAL PLOTS AND COST FUNCTIONS

FOR ALL THE ORDERINGS

t1=spm_read_vols(spm_vol('D:\rmniT1_3by3by3_NN.nii'));

%SFC

xyz= csvread('E:\Thesis\Results_new\TSP\points.csv',1,0);

sizevec=size(xyz)

vec=zeros(sizevec(1),0)

%colorvec=Colormap;

colorvec=load('colorvec.mat')

c=cell2mat(struct2cell(colorvec))

colorvec=colormap(autumn(67));

j=1;

for i=2:sizevec(1)

%for i=2:7020

 buf=i/1000;

 if mod(buf,1)==0

 j=j+1;

 end

 %c=colorvec(1,1);

 %vec(i)=t1(xyz(i,1),xyz(i,2),xyz(i,3));

 if(t1(xyz(i-1,1),xyz(i-1,2),xyz(i-1,3))~=0)

 figure(1),plot3([xyz(i-1,1) xyz(i,1)],[xyz(i-1,2)

xyz(i,2)],[xyz(i-1,3) xyz(i,3)],'- .','color',colorvec(j,:)),hold on

 %title('SFC plot')

 end

end

title('SFC plot')

figure(2),plot3(rand(10,1),rand(10,1))

plot(vec)

title('SFC signal plot')

sfc_SSSD=0;

for i=1:(sizevec(1)-1)

 sfc_SSSD=sfc_SSSD+(vec(i+1)-vec(i))^2;

end

%Hilbert using t1

n=6

[x,y,z]=hilbert3(n);

hilbert3US

57

ti_Zeropadded=zeros(64,64,64);

ti_Zeropadded(1:53,1:63,1:46)=t1;

L=64^3;

myVolume1DHilbert=zeros(1,L);

for i=1:L,

 myVolume1DHilbert(i)=ti_Zeropadded(x_new(i),y_new(i),z_new(i));

end

plot(myVolume1DHilbert)

title('Hilbert curve signal plot')

% Hilbert Binning

BinSize=100;

NumBins=floor(L/BinSize);

myVolume1DHilbert_binned=zeros(numfiles,NumBins);

for i=1:NumBins,

 myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert((i-

1)×BinSize+1:i×BinSize));

end

plot(myVolume1DHilbert_binned)

title('Hilbert curve Binned signal plot')

Hilbert_SSSD=0;

for i=1:(L-1)

 Hilbert_SSSD=Hilbert_SSSD+(myVolume1DHilbert(i+1)-

myVolume1DHilbert(i))^2;

end

%Linear

myVolume_Linear_1D=transpose(t1(:));

plot(myVolume_Linear_1D)

title('Linear order signal plot')

Linear_SSSD=0;

LinearSize=size(myVolume_Linear_1D);

%Linear Binning

BinSize=100;

LNumBins=floor(LinearSize(2)/BinSize);

myVolume1DLinear_binned=zeros(numfiles,LNumBins);

 for i=1:LNumBins,

 myVolume1DLinear_binned(img,i)=mean(myVolume1DLinear((i-

1)×BinSize+1:i×BinSize));

 end

plot(myVolume1DLinear_binned)

title('Linear order Binned signal plot')

%SSSD calculation

for i=1:(LinearSize(2)-1)

 Linear_SSSD=Linear_SSSD+(myVolume_Linear_1D(i+1)-

myVolume_Linear_1D(i))^2;

end

58

%Downsampling of 3D map

Downsized_SSSD=0;

Downsized_size=size(myVolume_Linear_1D_nonan);

%SSSD calculation

for i=1:(Downsized_size(2)-1)

 Downsized_SSSD=Downsized_SSSD+(myVolume_Linear_1D_nonan(i+1)-

myVolume_Linear_1D_nonan(i))^2;

end

59

APPENDIX E:

MATLAB CODE FOR TWENTY-SIX NEIGHBOR USED IN SFC

function twentySixneigh = US_26neighbors_LT(i,j,k,M,N,O)

%Finds the 26-neighbors of a given pixel i,j,k

%Input: pixels (i,j,k), image size M,N,O

%output: pixels of the 26-neighbors, r rows by 3 columns:

% if i,j,k is completely inside, r = 26 pixels

% if i,j,k is on the side plane r = 17 pixels

% if i,j,k is on the edge, r = 11 pixels

% if i,j,k is on the corner, r = 7 pixels

%neighbors are ordered counterclockwise, starting East: East, North,

West, South.

if (i==1 && j==1 && k==1),

 twentySixneigh(1,:)=[1,2,1];

 twentySixneigh(2,:)=[2,1,1];

 twentySixneigh(3,:)=[2,2,1];

 twentySixneigh(4,:)=[1,2,2];

 twentySixneigh(5,:)=[2,1,2];

 twentySixneigh(6,:)=[2,2,2];

 twentySixneigh(7,:)=[1,1,2];

elseif (i==M && j==1 && k==1),

 twentySixneigh(1,:)=[M,2,1];

 twentySixneigh(2,:)=[M-1,1,1];

 twentySixneigh(3,:)=[M-1,2,1];

 twentySixneigh(4,:)=[M,2,2];

 twentySixneigh(5,:)=[M-1,1,2];

 twentySixneigh(6,:)=[M-1,2,2];

 twentySixneigh(7,:)=[M,1,2];

elseif (i==1 && j==N && k==1),

 twentySixneigh(1,:)=[1,N-1,1];

 twentySixneigh(2,:)=[2,N,1];

 twentySixneigh(3,:)=[2,N-1,1];

 twentySixneigh(4,:)=[1,N-1,2];

 twentySixneigh(5,:)=[2,N,2];

 twentySixneigh(6,:)=[2,N-1,2];

 twentySixneigh(7,:)=[1,N,2];

elseif (i==M && j==N && k==1),

 twentySixneigh(1,:)=[M-1,N,1];

 twentySixneigh(2,:)=[M,N-1,1];

 twentySixneigh(3,:)=[M-1,N-1,1];

 twentySixneigh(4,:)=[M-1,N,2];

 twentySixneigh(5,:)=[M,N-1,2];

 twentySixneigh(6,:)=[M-1,N-1,2];

 twentySixneigh(7,:)=[M,N,2];

elseif (i==1 && j==1 && k==O),

 twentySixneigh(1,:)=[1,2,1];

60

 twentySixneigh(2,:)=[2,1,1];

 twentySixneigh(3,:)=[2,2,1];

 twentySixneigh(4,:)=[1,2,2];

 twentySixneigh(5,:)=[2,1,2];

 twentySixneigh(6,:)=[2,2,2];

 twentySixneigh(7,:)=[1,1,2];

elseif (i==M && j==1 && k==O),

 twentySixneigh(1,:)=[M,2,1];

 twentySixneigh(2,:)=[M-1,1,1];

 twentySixneigh(3,:)=[M-1,2,1];

 twentySixneigh(4,:)=[M,2,2];

 twentySixneigh(5,:)=[M-1,1,2];

 twentySixneigh(6,:)=[M-1,2,2];

 twentySixneigh(7,:)=[M,1,2];

elseif (i==1 && j==N && k==O),

 twentySixneigh(1,:)=[1,N-1,1];

 twentySixneigh(2,:)=[2,N,1];

 twentySixneigh(3,:)=[2,N-1,1];

 twentySixneigh(4,:)=[1,N-1,2];

 twentySixneigh(5,:)=[2,N,2];

 twentySixneigh(6,:)=[2,N-1,2];

 twentySixneigh(7,:)=[1,N,2];

elseif (i==M && j==N && k==O),

 twentySixneigh(1,:)=[M-1,N,1];

 twentySixneigh(2,:)=[M,N-1,1];

 twentySixneigh(3,:)=[M-1,N-1,1];

 twentySixneigh(4,:)=[M-1,N,2];

 twentySixneigh(5,:)=[M,N-1,2];

 twentySixneigh(6,:)=[M-1,N-1,2];

 twentySixneigh(7,:)=[M,N,2];

elseif (i==1 && k==1),

 twentySixneigh(1,:)=[i,j+1,1];

 twentySixneigh(2,:)=[i,j-1,1];

 twentySixneigh(3,:)=[i+1,j,1];

 twentySixneigh(4,:)=[i+1,j-1,1];

 twentySixneigh(5,:)=[i+1,j+1,1];

 twentySixneigh(6,:)=[i,j+1,2];

 twentySixneigh(7,:)=[i,j-1,2];

 twentySixneigh(8,:)=[i+1,j,2];

 twentySixneigh(9,:)=[i+1,j-1,2];

 twentySixneigh(10,:)=[i+1,j+1,2];

 twentySixneigh(11,:)=[i,j,2];

elseif (i==M && k==1),

 twentySixneigh(1,:)=[i,j+1,1];

 twentySixneigh(2,:)=[i-1,j,1];

 twentySixneigh(3,:)=[i,j-1,1];

 twentySixneigh(4,:)=[i-1,j+1,1];

 twentySixneigh(5,:)=[i-1,j-1,1];

 twentySixneigh(6,:)=[i,j+1,2];

61

 twentySixneigh(7,:)=[i-1,j,2];

 twentySixneigh(8,:)=[i,j-1,2];

 twentySixneigh(9,:)=[i-1,j+1,2];

 twentySixneigh(10,:)=[i-1,j-1,2];

 twentySixneigh(11,:)=[i,j,2];

elseif (j==1 && k==1),

 twentySixneigh(1,:)=[i,j+1,1];

 twentySixneigh(2,:)=[i-1,j,1];

 twentySixneigh(3,:)=[i+1,j,1];

 twentySixneigh(4,:)=[i-1,j+1,1];

 twentySixneigh(5,:)=[i+1,j+1,1];

 twentySixneigh(6,:)=[i,j+1,2];

 twentySixneigh(7,:)=[i-1,j,2];

 twentySixneigh(8,:)=[i+1,j,2];

 twentySixneigh(9,:)=[i-1,j+1,2];

 twentySixneigh(10,:)=[i+1,j+1,2];

 twentySixneigh(11,:)=[i,j,2];

elseif (j==N && k==1),

 twentySixneigh(1,:)=[i-1,j,1];

 twentySixneigh(2,:)=[i,j-1,1];

 twentySixneigh(3,:)=[i+1,j,1];

 twentySixneigh(4,:)=[i-1,j-1,1];

 twentySixneigh(5,:)=[i+1,j-1,1];

 twentySixneigh(6,:)=[i-1,j,2];

 twentySixneigh(7,:)=[i,j-1,2];

 twentySixneigh(8,:)=[i+1,j,2];

 twentySixneigh(9,:)=[i-1,j-1,2];

 twentySixneigh(10,:)=[i+1,j-1,2];

 twentySixneigh(11,:)=[i+1,j-1,2];

elseif (i==1 && k==O),

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i,j-1,k];

 twentySixneigh(3,:)=[i+1,j,k];

 twentySixneigh(4,:)=[i+1,j-1,k];

 twentySixneigh(5,:)=[i+1,j+1,k];

 twentySixneigh(6,:)=[i,j+1,k-1];

 twentySixneigh(7,:)=[i,j-1,k-1];

 twentySixneigh(8,:)=[i+1,j,k-1];

 twentySixneigh(9,:)=[i+1,j-1,k-1];

 twentySixneigh(10,:)=[i+1,j+1,k-1];

 twentySixneigh(11,:)=[i,j,k-1];

elseif (i==M && k==O),

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i-1,j+1,k];

 twentySixneigh(5,:)=[i-1,j-1,k];

 twentySixneigh(6,:)=[i,j+1,k-1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i,j-1,k-1];

62

 twentySixneigh(9,:)=[i-1,j+1,k-1];

 twentySixneigh(10,:)=[i-1,j-1,k-1];

 twentySixneigh(11,:)=[i,j,k-1];

elseif (j==1 && k==O),

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i+1,j,k];

 twentySixneigh(4,:)=[i-1,j+1,k];

 twentySixneigh(5,:)=[i+1,j+1,k];

 twentySixneigh(6,:)=[i,j+1,k-1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i+1,j,k-1];

 twentySixneigh(9,:)=[i-1,j+1,k-1];

 twentySixneigh(10,:)=[i+1,j+1,k-1];

 twentySixneigh(11,:)=[i,j,k-1];

elseif (j==N && k==O),

 twentySixneigh(1,:)=[i-1,j,k];

 twentySixneigh(2,:)=[i,j-1,k];

 twentySixneigh(3,:)=[i+1,j,k];

 twentySixneigh(4,:)=[i-1,j-1,k];

 twentySixneigh(5,:)=[i+1,j-1,k];

 twentySixneigh(6,:)=[i-1,j,k-1];

 twentySixneigh(7,:)=[i,j-1,k-1];

 twentySixneigh(8,:)=[i+1,j,k-1];

 twentySixneigh(9,:)=[i-1,j-1,k-1];

 twentySixneigh(10,:)=[i+1,j-1,k-1];

 twentySixneigh(11,:)=[i+1,j-1,k-1];

elseif (i==1 && j==1)

 twentySixneigh(1,:)=[i,j,k+1];

 twentySixneigh(2,:)=[i,j,k-1];

 twentySixneigh(3,:)=[i,j+1,k];

 twentySixneigh(4,:)=[i,j+1,k-1];

 twentySixneigh(5,:)=[i,j+1,k+1];

 twentySixneigh(6,:)=[i+1,j,k+1];

 twentySixneigh(7,:)=[i+1,j,k-1];

 twentySixneigh(8,:)=[i+1,j+1,k];

 twentySixneigh(9,:)=[i+1,j+1,k-1];

 twentySixneigh(10,:)=[i+1,j+1,k+1];

 twentySixneigh(11,:)=[i+1,j,k];

elseif (i==1 && j==N)

 twentySixneigh(1,:)=[i,j,k+1];

 twentySixneigh(2,:)=[i,j,k-1];

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i,j-1,k-1];

 twentySixneigh(5,:)=[i,j-1,k+1];

 twentySixneigh(6,:)=[i+1,j,k+1];

 twentySixneigh(7,:)=[i+1,j,k-1];

 twentySixneigh(8,:)=[i+1,j-1,k];

 twentySixneigh(9,:)=[i+1,j-1,k-1];

 twentySixneigh(10,:)=[i+1,j-1,k+1];

63

 twentySixneigh(11,:)=[i+1,j,k];

elseif (i==M && j==1)

 twentySixneigh(1,:)=[i,j,k+1];

 twentySixneigh(2,:)=[i,j,k-1];

 twentySixneigh(3,:)=[i,j+1,k];

 twentySixneigh(4,:)=[i,j+1,k-1];

 twentySixneigh(5,:)=[i,j+1,k+1];

 twentySixneigh(6,:)=[i-1,j,k+1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i-1,j+1,k];

 twentySixneigh(9,:)=[i-1,j+1,k-1];

 twentySixneigh(10,:)=[i-1,j+1,k+1];

 twentySixneigh(11,:)=[i-1,j,k];

elseif (i==M && j==N)

 twentySixneigh(1,:)=[i,j,k+1];

 twentySixneigh(2,:)=[i,j,k-1];

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i,j-1,k-1];

 twentySixneigh(5,:)=[i,j-1,k+1];

 twentySixneigh(6,:)=[i-1,j,k+1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i-1,j-1,k];

 twentySixneigh(9,:)=[i-1,j-1,k-1];

 twentySixneigh(10,:)=[i-1,j-1,k+1];

 twentySixneigh(11,:)=[i-1,j,k];

elseif i==1,

 twentySixneigh(1,:)=[i,j-1,k];

 twentySixneigh(2,:)=[i,j-1,k-1];

 twentySixneigh(3,:)=[i,j,k-1];

 twentySixneigh(4,:)=[i,j+1,k-1];

 twentySixneigh(5,:)=[i,j+1,k];

 twentySixneigh(6,:)=[i,j-1,k+1];

 twentySixneigh(7,:)=[i,j,k+1];

 twentySixneigh(8,:)=[i,j+1,k+1];

 twentySixneigh(9,:)=[i+1,j-1,k];

 twentySixneigh(10,:)=[i+1,j-1,k-1];

 twentySixneigh(11,:)=[i+1,j,k-1];

 twentySixneigh(12,:)=[i+1,j+1,k-1];

 twentySixneigh(13,:)=[i+1,j+1,k];

 twentySixneigh(14,:)=[i+1,j-1,k+1];

 twentySixneigh(15,:)=[i+1,j,k+1];

 twentySixneigh(16,:)=[i+1,j+1,k+1];

 twentySixneigh(17,:)=[i+1,j,k];

elseif i==M,

 twentySixneigh(1,:)=[i,j-1,k];

 twentySixneigh(2,:)=[i,j-1,k-1];

 twentySixneigh(3,:)=[i,j,k-1];

 twentySixneigh(4,:)=[i,j+1,k-1];

 twentySixneigh(5,:)=[i,j+1,k];

 twentySixneigh(6,:)=[i,j-1,k+1];

64

 twentySixneigh(7,:)=[i,j,k+1];

 twentySixneigh(8,:)=[i,j+1,k+1];

 twentySixneigh(9,:)=[i-1,j-1,k];

 twentySixneigh(10,:)=[i-1,j-1,k-1];

 twentySixneigh(11,:)=[i-1,j,k-1];

 twentySixneigh(12,:)=[i-1,j+1,k-1];

 twentySixneigh(13,:)=[i-1,j+1,k];

 twentySixneigh(14,:)=[i-1,j-1,k+1];

 twentySixneigh(15,:)=[i-1,j,k+1];

 twentySixneigh(16,:)=[i-1,j+1,k+1];

 twentySixneigh(17,:)=[i-1,j,k];

elseif j==1,

 twentySixneigh(1,:)=[i+1,j,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i,j,k-1];

 twentySixneigh(4,:)=[i,j,k+1];

 twentySixneigh(5,:)=[i+1,j,k-1];

 twentySixneigh(6,:)=[i+1,j,k+1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i-1,j,k+1];

 twentySixneigh(9,:)=[i+1,j+1,k];

 twentySixneigh(10,:)=[i-1,j+1,k];

 twentySixneigh(11,:)=[i,j+1,k-1];

 twentySixneigh(12,:)=[i,j+1,k+1];

 twentySixneigh(13,:)=[i+1,j+1,k-1];

 twentySixneigh(14,:)=[i+1,j+1,k+1];

 twentySixneigh(15,:)=[i-1,j+1,k-1];

 twentySixneigh(16,:)=[i-1,j+1,k+1];

 twentySixneigh(17,:)=[i,j+1,k];

elseif j==N,

 twentySixneigh(1,:)=[i+1,j,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i,j,k-1];

 twentySixneigh(4,:)=[i,j,k+1];

 twentySixneigh(5,:)=[i+1,j,k-1];

 twentySixneigh(6,:)=[i+1,j,k+1];

 twentySixneigh(7,:)=[i-1,j,k-1];

 twentySixneigh(8,:)=[i-1,j,k+1];

 twentySixneigh(9,:)=[i+1,j-1,k];

 twentySixneigh(10,:)=[i-1,j-1,k];

 twentySixneigh(11,:)=[i,j-1,k-1];

 twentySixneigh(12,:)=[i,j-1,k+1];

 twentySixneigh(13,:)=[i+1,j-1,k-1];

 twentySixneigh(14,:)=[i+1,j-1,k+1];

 twentySixneigh(15,:)=[i-1,j-1,k-1];

 twentySixneigh(16,:)=[i-1,j-1,k+1];

 twentySixneigh(17,:)=[i,j-1,k];

elseif k==1,

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i-1,j,k];

65

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i+1,j,k];

 twentySixneigh(5,:)=[i-1,j-1,k];

 twentySixneigh(6,:)=[i+1,j-1,k];

 twentySixneigh(7,:)=[i-1,j+1,k];

 twentySixneigh(8,:)=[i+1,j+1,k];

 twentySixneigh(9,:)=[i,j+1,k+1];

 twentySixneigh(10,:)=[i-1,j,k+1];

 twentySixneigh(11,:)=[i,j-1,k+1];

 twentySixneigh(12,:)=[i+1,j,k+1];

 twentySixneigh(13,:)=[i-1,j-1,k+1];

 twentySixneigh(14,:)=[i+1,j-1,k+1];

 twentySixneigh(15,:)=[i-1,j+1,k+1];

 twentySixneigh(16,:)=[i+1,j+1,k+1];

 twentySixneigh(17,:)=[i,j,k+1];

elseif k==O,

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i+1,j,k];

 twentySixneigh(5,:)=[i-1,j-1,k];

 twentySixneigh(6,:)=[i+1,j-1,k];

 twentySixneigh(7,:)=[i-1,j+1,k];

 twentySixneigh(8,:)=[i+1,j+1,k];

 twentySixneigh(9,:)=[i,j+1,k-1];

 twentySixneigh(10,:)=[i-1,j,k-1];

 twentySixneigh(11,:)=[i,j-1,k-1];

 twentySixneigh(12,:)=[i+1,j,k-1];

 twentySixneigh(13,:)=[i-1,j-1,k-1];

 twentySixneigh(14,:)=[i+1,j-1,k-1];

 twentySixneigh(15,:)=[i-1,j+1,k-1];

 twentySixneigh(16,:)=[i+1,j+1,k-1];

 twentySixneigh(17,:)=[i,j,k-1];

else

 twentySixneigh(1,:)=[i,j+1,k];

 twentySixneigh(2,:)=[i-1,j,k];

 twentySixneigh(3,:)=[i,j-1,k];

 twentySixneigh(4,:)=[i+1,j,k];

 twentySixneigh(5,:)=[i-1,j-1,k];

 twentySixneigh(6,:)=[i+1,j-1,k];

 twentySixneigh(7,:)=[i-1,j+1,k];

 twentySixneigh(8,:)=[i+1,j+1,k];

 twentySixneigh(9,:)=[i,j+1,k+1];

 twentySixneigh(10,:)=[i-1,j,k+1];

 twentySixneigh(11,:)=[i,j-1,k+1];

 twentySixneigh(12,:)=[i+1,j,k+1];

 twentySixneigh(13,:)=[i-1,j-1,k+1];

 twentySixneigh(14,:)=[i+1,j-1,k+1];

 twentySixneigh(15,:)=[i-1,j+1,k+1];

 twentySixneigh(16,:)=[i+1,j+1,k+1];

 twentySixneigh(17,:)=[i,j,k+1];

 twentySixneigh(18,:)=[i,j+1,k-1];

66

 twentySixneigh(19,:)=[i-1,j,k-1];

 twentySixneigh(20,:)=[i,j-1,k-1];

 twentySixneigh(21,:)=[i+1,j,k-1];

 twentySixneigh(22,:)=[i-1,j-1,k-1];

 twentySixneigh(23,:)=[i+1,j-1,k-1];

 twentySixneigh(24,:)=[i-1,j+1,k-1];

 twentySixneigh(25,:)=[i+1,j+1,k-1];

 twentySixneigh(26,:)=[i,j,k-1];

end

67

APPENDIX F:

MATLAB CODE FOR HILBERT AND SFC WITH MASKING

n=6

[x,y,z]=hilbert3(n);

hilbert3US

allfilenames_ar=ls('E:\Thesis\Processed_MCIC\×nii');

numfiles=length(allfilenames_ar);

meanVolume=zeros(53,63,46);

for img=1:numfiles

 allfilenames=num2str(allfilenames_ar(img,:));

 buf='E:\Thesis\Processed_MCIC\';

 filename=strcat(buf,allfilenames);

 myVolume=spm_read_vols(spm_vol(filename));

 %allfilenames=dir('×test×nii')

 meanVolume=meanVolume+myVolume;

end

meanVolume=meanVolume/numfiles;

mask=spm_read_vols(spm_vol('E:\Thesis\DataMask.nii'));

meanBrainMap=meanVolume.×mask;

meanBrainMap_Zeropadded=zeros(64,64,64);

meanBrainMap_Zeropadded(1:53,1:63,1:46)=meanBrainMap;

L=64^3;

myVolume1DHilbert=zeros(1,L);

for i=1:L,

myVolume1DHilbert(i)=meanBrainMap_Zeropadded(x_new(i),y_new(i),z_new(i)

);

end

%Zero Removal using Thrushold

mythresh=0.005,

j=1;k=1;l=1;

for i=1:L,

 if abs(myVolume1DHilbert(i))>mythresh,

 myVolume1DHilbert_zeroremoved(j)=myVolume1DHilbert(i);

 j=j+1;

 nonzeroindexvector(l)=i;

 l=l+1;

 else

 zeroindexvector(k)=i; k=k+1;

 %k

 end

end

68

%Part B-

%masking for each participant

%%Already created so no need to run again

for img=1:numfiles %

 allfilenames=num2str(allfilenames_ar(img,:));

 buf='E:\Thesis\Processed_MCIC\';

 filename=strcat(buf,allfilenames);

 myVolume=spm_read_vols(spm_vol(filename));

 myVolume=myVolume.×mask;

 fileloc=strcat('E:\Thesis\MaskedData_MCIC\',allfilenames);

 %Saving each masked participant

 V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii');

 Vtemp=spm_create_vol(V);

 Vtemp.fname=fileloc;

 Vtemp.descript='masked activation map';

 spm_write_vol(Vtemp,myVolume);

end

%Each participant activation map processing

lengths_all=zeros(numfiles);

currentvolume_ZeroRemoved=zeros(numfiles,116286);

myVolume_Linear_1D_all=zeros(84,153594);

for img=1:numfiles %

 allfilenames=num2str(allfilenames_ar(img,:));

 buf='E:\Thesis\Processed_MCIC\';

 filename=strcat(buf,allfilenames);

 myVolume=spm_read_vols(spm_vol(filename));

 myVolumeZeroPadded=zeros(64,64,64); %temp

 myVolumeZeroPadded(1:53,1:63,1:46)=myVolume;

 L=64^3;

 %myVolume1DHilbert=zeros(1,L);

 for i=1:L,

myVolume1DHilbert(i)=myVolumeZeroPadded(x_new(i),y_new(i),z_new(i));

 end

 myVolume_Linear_1D=transpose(myVolume(:));

 myVolume_Linear_1D_all(img,:)=myVolume_Linear_1D;

 k=1;

 j=1;

 for j=1:l-1

currentvolume_ZeroRemoved(img,j)=myVolume1DHilbert(nonzeroindexvector(k

));

 k=k+1;

69

 end

%

dlmwrite('E:\Thesis\Results_new\1D_Hilbert_ZeroTrim_MeanBrainMap_MCIC.c

sv',currentvolume_ZeroRemoved(img,:),'-append');

end

%saving Linear 1D activation maps

dlmwrite('E:\Thesis\Results_new\1D_Linear_masked_MCIC.csv',myVolume_Lin

ear_1D_all,'-append');

Lzr=length(myVolume1DHilbert_zeroremoved);

BinSize=100;

BinSizeL=200

NumBins=floor(Lzr/BinSize)

myVolume1DHilbert_binned=zeros(84,NumBins);

NumBins_lin=floor(153594/BinSizeL);

myVolume1DLinear_binned=zeros(84,NumBins_lin);

%Hilbert & LinearBinning

for img=1:numfiles,

 myVolume1DHilbert_zeroremoved=currentvolume_ZeroRemoved(img,:);

 %Hilbert

 for i=1:NumBins,

myVolume1DHilbert_binned(img,i)=mean(myVolume1DHilbert_zeroremoved((i-

1)×BinSize+1:i×BinSize));

 end

 %Linear

 for i=1:NumBins_lin

 myVolume1DLinear_binned(img,i)=mean(myVolume_Linear_1D((i-

1)×BinSizeL+1:i×BinSizeL));

 end

end

dlmwrite('E:\Thesis\Results_new\1D_Hilbert_ZeroTrim_MCIC_Bin_200.csv',m

yVolume1DHilbert_binned,'-append');

dlmwrite('E:\Thesis\Results_new\1D_Linear_ActionBMap_MCIC_Bin_200.csv',

myVolume1DLinear_binned,'-append');

%---------Hilbert Feature Selection-----------------

%figure,stem(myVolume1DHilbert_binned(1:2,:)','.')

%figure,bar(mean(myVolume1DHilbert_binned,1))

stderr=std(myVolume1DHilbert_binned)/sqrt(84);

hold on,

errorbar([1:NumBins],mean(myVolume1DHilbert_binned,1),stderr/2,':','Lin

eWidth',0.1,'MarkerSize',0.01);

axis tight

%Ctrls vs CD separately:

figure(99),

subplot(211),bar(mean(myVolume1DHilbert_binned(1:25,:),1)),

X=myVolume1DHilbert_binned(1:25,:);

stderr_C=std(myVolume1DHilbert_binned(1:25,:),1)/sqrt(25);

70

hold on,

errorbar([1:NumBins],mean(myVolume1DHilbert_binned(1:25,:),1),stderr_C/

2,':','LineWidth',0.1,'MarkerSize',0.01);

axis tight

subplot(212),bar(mean(myVolume1DHilbert_binned(26:84,:),1))

Y=myVolume1DHilbert_binned(26:84,:);

stderr_P=std(myVolume1DHilbert_binned(26:84,:),1)/sqrt(59);

hold on,

errorbar([1:NumBins],mean(myVolume1DHilbert_binned(26:84,:),1),stderr_P

/2,':','LineWidth',0.1,'MarkerSize',0.01);

axis tight

[H,P,CI,STATS] = ttest2(X,Y,'alpha',0.05,'dim',1,'tail','both');

figure,plot(P)

SignifFeatIndexes=find(P<0.05)

%dlmwrite('E:\Thesis\Results_new\Binned_res.csv',myVolume1DHilbert_binn

ed(img,:),'-append');

dlmwrite('E:\Thesis\Results_new\MCIC\Binned_res_100_Bin.csv',SignifFeat

Indexes,'-append');

ImportantBins=SignifFeatIndexes;

NumImportantBins=length(ImportantBins)

for iBin=1:NumImportantBins,

 myBin=ImportantBins(iBin),

 myBinIndex(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize;

 iBin

end

%----------Linear Feature Selection------------

stderr=std(myVolume1DLinear_binned)/sqrt(84);

X=myVolume1DLinear_binned(1:25,:);

stderr_C=std(myVolume1DLinear_binned(1:25,:),1)/sqrt(25);

Y=myVolume1DLinear_binned(26:84,:);

stderr_P=std(myVolume1DLinear_binned(26:84,:),1)/sqrt(59);

[H,P,CI,STATS] = ttest2(X,Y,'alpha',0.05,'dim',1,'tail','both');

ImportantBins=find(P<0.05)

NumImportantBins=length(ImportantBins)

for iBin=1:NumImportantBins,

 myBin=ImportantBins(iBin),

 myBinIndex(iBin,:)=(myBin-1)×BinSize+1:myBin×BinSize;

 iBin

end

%---

myBinIndexConcat=reshape(myBinIndex',[1,NumImportantBins×BinSize]);

originalIndexesOfImportantBins=nonzeroindexvector(myBinIndexConcat);

my3DImportantBins=zeros(64,64,64);

% randn(53,63,46);

71

Ind =1;

j=1;

for p=originalIndexesOfImportantBins,

 my3DImportantBins(x_new(p),y_new(p),z_new(p))=j;

 if(rem(ind,BinSize)==0)

 j=j+1;

 end

 ind=ind+1;

end

my3DImportantBinsZeroPadsRemoved=my3DImportantBins(1:53,1:63,1:46);

%save_nii(my3DImportantBinsZeroPadsRemoved,'E:\Thesis\Results\C_AQI_C.n

ii')

V=spm_vol('E:\Thesis\Resized Data\C_AQI_C.nii');

Vtemp=spm_create_vol(V)

Vtemp.fname='E:\Thesis\Results_new\importantregions_100BinSize_P_0.05.n

ii'

Vtemp.descript='brain regions'

spm_write_vol(Vtemp,my3DImportantBinsZeroPadsRemoved);

