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ABSTRACT

DERIVING THE INITIAL CONDITIONS OF THE
ELECTROWEAK AND QCD PHASE
TRANSITIONS AND TESTING A
NUMERICAL RELATIVITY CODE

Joshua E Barrera
University of Houston-Clear Lake, 2021

Thesis Chair: David Garrison, Ph.D.

The field of Numerical Relativity (NR) has been primarily driven by the study of

large scale dynamics involving binary systems of black holes and neutron stars. Due

to the nature of the underlying theory, NR also has the ability to simulate relativistic

fluids. Being radiation dominated, the early universe can be modeled as a relativistic

plasma, and the proper Stress-Energy tensor can be utilized with Einstein’s Field

Equations to evolve the conditions of the Early Universe over time. These simulations

can give us key insights pertaining to the development of the universe and the formation

of large-scale systems. Magnetogenesis is of particular interest, as characterizing this

phenomenon could shed light on the seeding and formation of galaxies. Additionally,

these techniques can be used to derive gravitational-wave spectra from the events that

took place during these time periods. This thesis aims to derive the conditions present

in the early universe during the Electroweak (EW) and Quantum Chromodynamic

(QCD) phase transitions. These conditions are prerequisites for SpecCosmo, a NR

code being developed at the University of Houston-Clear Lake, which utilizes the
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techniques of NR to model the evolution of the early universe. This thesis will also

investigate the ability of SpecCosmo to handle relativistic shocks in its current state.

The shock capturing ability of the code will be gauged using a suite of tests from

work by Komissarov [1, 2]. Once the shock capturing ability of SpecCosmo has been

analyzed, SpecCosmo will be ready to accept the initial conditions calculated here that

can then be used in simulations of the early universe to study its development and

characteristics.
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CHAPTER 1:

INTRODUCTION

Baumgarte and Shapiro describe Numerical Relativity as "the art and science of

developing computer algorithms to solve Einstein’s equations for astrophysically re-

alistic, high-velocity, strong-field systems" [3]. Only a handful of analytical solutions

to Einstein’s field equations exist. In order to find these solutions, several simplifying

assumptions must be made which limit our ability to analyze a fully dynamic system.

Numerical relativity circumvents this issue by using numerical methods to approxi-

mate solutions to a high degree of accuracy. The field has largely been driven by the

study of the dynamics of large bodies such as black holes. Here, we take a look at how

NR can be used to study the evolution of the early universe.

Statement of the Problem

Modern cosmology bases conclusions about the evolution of our universe by ob-

serving the interaction of large scale structures, and looking as far back as the Cosmic

Microwave Background (CMB). Theories of modern cosmology suggest a dynamic, tur-

bulent, and violent early universe. Many cosmological models characterize the CMB

according to perturbations in the Friedman-Robertson-Walker (FRW) model. The

FRW metric is an exact solution to the Einstein field equations. Perturbations of

the FRW metric, which grow according to a power-law with time, are thought to be

the most accurate cosmological models of the universe [4]. The FRW model, com-

bined with the fact that magnetic fields are a key factor in the evolution of relativistic

objects, sets the stage for the application of General Relativity and Magnetohydro-

dynamics to study the evolution of the early universe. Using results from modern

particle physics research and the FRW model as the cosmological model, this thesis
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will develop the mathematical models and calculate the initial conditions necessary in

order to simulate the physics of the early universe at specific epochs of interest. The

two epochs this thesis will look at are the Electroweak (EW) phase transition and

the Quantum Chromodynamic (QCD) phase transition. These two phase transitions

have well known energy expectation values that will be used as starting points for

calculations.

Current State of Research

The ongoing goal of this research has been studying the evolution of the Early

Universe in order to gain a better understanding of its development. Results from

[4] regarding the order of phase transitions have shown that these simulations have

the potential to better our understanding of how the early universe formed. Potential

phenomena to study are the development of large scale magnetic fields, characterizing

the EW and QCD phase transitions, deriving gravitational wave spectra for these

and other phenomena, and detailing how these events influenced the evolution of the

universe. Using parameters derived from modern Cosmology, and the techniques of

Numerical Relativity, we can evolve the state of the universe from roughly t0 = 10−11 s

and beyond. Through this mathematical simulation, critical parameters of the early

universe can be calculated, and limits on unknown parameters such as magnetic field

strength and velocity perturbations can be determined.

Cosmological Model

Einstein Field Equations

The Einstein equations have the familiar compact form of
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Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.1)

where Rµν is the Ricci tensor, gµν is the spacetime metric, R is the Ricci scalar (the

trace of the Ricci tensor), G is Newton’s gravitational constant, c is the speed of light,

and Tµν is the energy-momentum tensor. For a perfect fluid, Tµν takes the form

T µν = (ε+ p)uµuν − pgµν (1.2)

where ε is mass-energy density, p is pressure, and uµ is the four-velocity of matter

given by

uµ =
dxµ

ds
(1.3)

and xµ(s) describes the worldline of matter in terms of proper time τ = c−1s [5]. Note

from [5] that the Ricci tensor is given by

Rµν = Γλµν,λ − Γλµλ,ν + ΓλµνΓ
σ
λσ − ΓσµλΓ

λ
νσ (1.4)

and the Christoffel symbols Γ are given in terms of the metric tensor by
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Γµνλ =
1

2
gµσ(gσν,λ + gσλ,ν − gνλ,σ). (1.5)

By choosing a form of the spacetime metric gµν , one can derive all permutations

of Γµνλ. It would then be possible to determine all permutations of Rµν and Tµν , and

therefore build all of the possible permutations of the Einstein equations given by 1.1.

Friedmann Model

The Friedmann model is considered to be the standard of modern cosmology. To

define the Friedmann model of cosmology, we will first take a look at the Friedmann-

Roberston-Walker (FRW) metric, and then define and discuss the Friedmann equa-

tions that can be derived from the Einstein equations using this particular choice of

spacetime metric. The spacetime metric in its well-known general form is

ds2 = gµνdx
µdxν . (1.6)

The FRW metric, taken from equation 3.35 in [5], has the form

ds2 = (cdt)2 − a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

]
. (1.7)

Note several things here: the coordinates of choice (x0, x1, x2, x3) = (ct, r, θ, φ) are

spherical, the value k = −1, 0, 1 can be selected to define curvature as negative, zero,

or positive, respectively, and a(t) is the scale factor of the universe, usually defined as

a = 1 at present time, and a(0) = 0 at the beginning of the universe. It is important
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to take a moment here to distinguish between the scale factor a(t), which shows up in

the elements of Rµν , and the Ricci scalar R = R00 + R11 + R22 + R33. Sometimes the

scale factor a(t) is instead represented by R(t), which can be confusing. It has been

decided to make the change to a(t) here in hopes of avoiding that confusion. From this

point forward, any R(t) which denotes scale factor in equations taken from sources has

been changed to a(t).

Using this choice of gµν , a detailed calculation of the Christoffel symbols can be

found on page 51 of [5]. Because of spherical symmetry, the θ and φ componenets can

be ignored, and we can reduce the rest of the calculations to the following 00- and

11-components of the spacetime metric and Ricci tensor elements, which are the time

and radius components, respectively:

g00 = 1, (1.8)

g11 =
−a2(t)
1− kr2

, (1.9)

R00 =
−3ä(t)

a(t)
, (1.10)

R11 =
Rä(t) + 2ȧ2(t) + 2c2k

1− kr2
. (1.11)

Noting that the four-velocity vector uµ = (1, 0, 0, 0), we can gather the components

of Tµν :

T00 = ε, (1.12)
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T11 =
pa2(t)

1− kr2
. (1.13)

Now that we have the 00- and 11-components of gµν , Rµν , and Tµν , we are able to

build the 00- and 11-components of the Einstein equations as follows:

3(ȧ2(t) + c2k) =
8πGεa2(t)

c2
, (1.14)

2a(t)ä(t) + ȧ2(t) + kc2 = −8πGpa2(t)

c2
. (1.15)

Using a similar process found in [5], eliminating ȧ2(t) from equation 1.15 yields

T11 =
pa2(t)

1− kr2
, (1.16)

and by choosing k = −1, 0, 1 in equation 1.14, we get three new equations:

ȧ2(t) = c2 +
8πGεa2(t)

3c2
(1.17)

ȧ2(t) =
8πGεa2(t)

3c2
(1.18)

ȧ2(t) = −c2 +
8πGεa2(t)

3c2
(1.19)

With a given equation of state p = p(ε), we have three equations and three un-
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knowns for any of the three values of k. For the early universe, which is what we

are intersted in, the physics is dominated by either pure radiation, or by radiation

and highly relativistic particles. For this situation, the equation of state would be

p = 1
3
ε, so that the mass-energy density ε behaves like a−4(t). Models of the universe

determined by this method are referred to as Friedmann models [5].

The last piece of the cosmological model worth discussing is the Hubble Parameter.

Starting with the Hubble law (equation 29.7 from [6]):

v(t) = H(t)r(t) = H(t)a(t)$ (1.20)

where $ is a constant that identifies a particular thin spherical shell whose radius at

time t is defined by

r(t) = a(t)$, (1.21)

a(t) being the scale factor at time t. Realizing that v(t) = dr(t)
dt

, we can change 1.20

into

dr(t)

dt
= H(t)r(t), (1.22)

and solving for H(t) gives the relationship

7



H(t) =
ȧ(t)

a(t)
. (1.23)

During the radiation dominated era, it is known that a(t) ∼ t1/2 from [5]. This

relationship will be revisited in chapter 2. By taking the derivative with respect to

time of this equation and using 1.23, we can arrive at the following relationship between

Hubble parameter and time:

H(t) =
1

2t
. (1.24)

This equation will be utilized in chapter 2 as a way to double-check that the critical

density, Hubble parameter, and initial time are all in agreement. The current value of

the Hubble constant is H0 ≈ 50 kms−1Mpc−1, although there are uncertainties in the

exact determination of this value [5].

Computational Methods

3+1 Decomposition

Only a handful of analytic solutions to Einstein’s Field Equations exist. These solu-

tions require simplifying assumptions that limit the description of physical systems.

Calculating the dynamics of a physical system governed by Einstein’s equations of

general relativity could be impossible to do analytically, but high performance com-

puting and numerical techniques have opened doors for this kind of research. To
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construct algorithms that will accomplish this task, we first have to recast Einstein’s

4-dimensional field equations into a form that is suitable for numerical integration [3].

3+1 decomposition is a technique used in numerical relativity to carry out compu-

tational simulations while still complying with Einstein’s requirement of having four

dimensions of space-time. The four space-time dimensions are separated into the three

spatial dimensions and one time dimension. The physics and underlying mathemat-

ics are calculated in the three dimensions at one instant in time. This is where the

critical parameters within the stress-energy tensor are calculated, such as densities

or pressures. Time is then stepped forward by a small increment, and the physics is

recalculated at this new time.

The standard 3+1 or ADM equations offer a general framework for the physics we

are interested in [3]. The most notable place to begin would be with the spacetime

interval, which in standard 3+1 is written as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (1.25)

where α is the lapse, β is the shift, and γij is the spatial metric that is induced on

the 3D hypersurfaces Σ by the familiar metric gab through the equation

γab = gab + nanb. (1.26)

BSSN Formulation

The BSSN formulation, or Baumgarte-Shapiro-Shibata-Nakamura formulation, is a

special version of the 3+1 decomposition that essentially simplifies the spatial Ricci

tensor. In short, the BSSN formulation separates the transverse from longitudinal,

9



or the radiative from nonradiative, degrees of freedom [3]. In order to accomplish

this, the conformal factor eφ and the trace of the extrinsic curvature K are evolved

separately. The spatial metric is decomposed into a conformally related metric γ̄ij

with determinant γ̄ = 1 and the conformal factor as follows:

γij = e4φγ̄ij. (1.27)

The extrinsic curvature is decomposed into its trace and traceless parts,

Kij = e4φÃij +
1

3
γijK. (1.28)

The Hamiltonian constraint becomes

0 = H = γ̄ijD̄iD̄je
φ − eφ

8
R̄ +

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ, (1.29)

while the momentum constraint becomes

0 =Mi = D̄j(e
6φÃji)− 2

3
e6φD̄iK − 8πe6φSi. (1.30)

The BSSN evolution equations are as follows:

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i, (1.31)
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∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k, (1.32)

∂tK = −γijDjDiα + α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK, (1.33)

∂tÃij = e−4φ
(
− (DiDjα)TF + α(RTF

ij − 8πSTFij )
)

+ α(KÃij − 2ÃilÃ
l
j) (1.34)

+βk∂kÃij + Ãik∂jβ
K + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k. (1.35)

Cactus

The numerical simulations carried out in this research use Cactus as a tool for handling

computation. Cactus is an open source collection of computer code that consists of

two types of code: flesh and thorns [7]. The flesh is the central core of the code,

which connects to modules (thorns) of the user’s choosing. Thorns implement the

specific mathematics to be evolved during the simulation. The Cactus community

maintains multiple "toolkits" for specific fields of research, one being the Einstein

Toolkit [8]. This toolkit comes with specific thorns that are equipped to handle the

popular problems in numerical relativity, namely the dynamics of large-body binary

systems. The research conducted here uses a unique code that will be discussed in

greater detain in the next section.

SpecCosmo

SpecCosmo was developed within the Cactus framework, and utilizes GRMHD equa-

tions and a modified version of the BSSN formulation of the Einstein Field Equations

shown in [4]. We will begin by defining the spacetime interval as
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ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (1.36)

where α is the lapse, β is the shift, and γij is the spatial metric. The next entity we

wish to consider is the stress-energy tensor and the accompanying equations. We will

make use of the GRMHD model found in [3] and [4], which is derived from constraints

like the continuity equation and conservation of energy-momentum. The MHD stress-

energy tensor is given by

T ab = (ρ0h+ b2)uaub + (P +
b2

2
)gab − babb, (1.37)

h = 1 + ε+
P

ρ0
, (1.38)

ba =
1√
4π
Ba

(u), (1.39)

B0
(u) =

1

α
uiB

i, (1.40)

Bi
(u) =

1

u0

(
Bi

α
+B0

(u)u
i

)
, (1.41)

where P is the fluid pressure, ρ0 is density, Bi is magnetic field, ua is four-velocity, h

is the enthalpy, ε is specific internal energy, and b is the magnitude of the magnetic

12



vector field [4].

We are also interested in the MHD evolution equations. These are coupled equa-

tions that involve terms from the stress-energy tensor, matter source terms, and mag-

netic field. The flux-conservative equations of relativistic hydrodynamics take on the

general form

∂tU + ∂iF i = S (1.42)

where U is the state vector of conserved variables built out of the so-called primitive

fluid variables P = (ρ0, v
i, P ), the F i are the flux vectors (one for each spatial di-

mension, i), and where the source vector S does not contain any derivatives of the

primitive fluid variables [9]. Note that the time index is separated from the three

spatial indices, as is consistent with 3+1 decomposition. The set of coupled MHD

evolution equations are as follows:

∂tρ∗ + ∂j(ρ∗v
j) = 0 (1.43)

∂tS̃i + ∂j(α
√
γ T j i) =

1

2
α
√
γ T abgab,i (1.44)

∂tτ̃ + ∂i(α
2√γ T 0i − ρ∗vi) = sτ̃ (1.45)

13



∂tB̃
i + ∂j(v

jB̃i − viB̃j) = 0 (1.46)

Here, ρ∗ is the total mass-energy density as measure by an observer co-moving with

the fluid, v is the fluid velocity, S̃i is the momentum density, T is the stress-energy

tensor, α is the lapse, τ̃ is energy, sτ̃ is the source term, and B̃ is the magnetic field.

In all cases, terms with a tilde contain a factor of √γ, making them the relativistic

terms.

Initial Magnetic Field

These simulations make use of the standard MHD equations, which require an initial

magnetic field as a form of input in order to evolve forward in time. This warrants

some kind of initial B-field value that came from Inflation. The exact strength of

this initial magnetic field has not yet been determined. This input parameter can be

adjusted each time a simulation is performed, and the resulting background magnetic

field data can be compared with observation to verify the accuracy of initial B-field

estimations. This initial magnetic field is of interest to the research, as studying this

phenomenon could improve our understanding of the origins of these seed fields, their

development, and how they influenced the evolution of the universe. Here we will make

use of the Biermann Battery equation taken from equation 7 in [10], which yields an

evolution equation for the B-field:

∂tB̃i =
1

qmρ2∗
∇p×∇ρ∗ (1.47)

14



where ρ∗ = α
√
γρ0u

0 is a conserved mass density, p is pressure of the fluid, and qm is

charge per unit mass [10]. This will be incorporated into the MHD evolution equations

as a modification to equation 1.12. This equation meets our needs for several reasons.

Perhaps most importantly, the standard MHD equations do not produce the initial

B-field required at the initial time our simulations begin, so invoking this equations

fills that void. The fact that we have already defined the pressure and density terms

seen in equation (2.4) as initial conditions means that this initial B-field partial time-

derivative term allows us to adjust the evolution equations based on the pressure and

density of the fluid that is being modeled.
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CHAPTER 2:

INITIAL CONDITIONS

This chapter outlines the process for calculating the initial conditions of a simula-

tion for both the Electroweak and QCD phase transitions. Each phase transition has

a well known vacuum expectation value associated with it, which will be the starting

point for each calculation. Energy, temperature, scale factor, time, thermal degrees

of freedom, and critical density are the six parameters that will be found for each of

these phase transitions. Some of the parameters are needed to calculate others, and

some of the parameters are critical inputs required by the computer code. Once these

parameters are determined, they can be used as inputs before a simulation begins.

The data generated by these inputs combined with the evolution equations can be

analyzed to determine if the simulation conforms to the FRW model and whether or

not the hypothesized values are accurate.

Electroweak Phase Transition

Energy and Temperature

The expression for the total available thermal energy is

E1 = kBT1 (2.1)

where E is the energy in Joules, kB is Boltzmann’s constant (8.617× 10−5 eV/K), and

T is temperature in Kelvin. For the EW phase transition, the vacuum expectation
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value of the Higgs field is known to be 246 GeV. Using this value as the average energy

available at the time, we get

T1 =
E1

kB
=

246× 1011 eV

8.617× 10−5 eV/K
(2.2)

T1 ≈ 2.85× 1015 K (2.3)

Scale Factor

Now that we have the average temperature that corresponds to the total available

energy at the time, we can use the age of the universe today (t2 = 4.35× 1017 s), the

average temperature of the universe today (T2 = 2.7 K), and the scale factor today

(a2=1), together with equation 8.2 from [5] to get the scale factor and the initial time

of the EW phase transition. The process for deriving 8.2 from [5] goes back to equation

3.76 from [5] (1.14 and 1.15 above), which can be found using the following process:

Rearrange equation 1.14 from above for ε, and calculate ε̇. This new equation for ε̇

will yield a ä term, which can be eliminated using equation 1.15 from above. This

will yield equation 3.79 in [5], which can then be rearranged to give equation 4.6 from

[5]. Section 4.3 in [5] shows how to integrate equation 4.6 to give equation 4.40. The

Stefan-Boltzmann law gives the relationship ε ∼ T 4, which then gives the following:

a1
a2

=
T2
T1
, (2.4)

a1
1

=
2.7 K

2.85× 1015 K
, (2.5)
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a1 ≈ 9.58× 10−16. (2.6)

This result indicates that at the time we are interested in, the universe was around

one quadrillion times smaller than it is today. Note that the scale factor has no units

as it is a ratio comparing the size of the universe at different times.

Thermal Degrees of Freedom

In order to calculate the critical density parameter in the next section, we first need

to know what the thermal degrees of freedom of the system are at the time of interest.

The process for calculating thermal degrees of freedom is outlined in section 8.4 of

[5], and is essentially dependent on three conditions: whether the particle has an

antiparticle, the number of spin states of a particle, and whether the particle is a

boson or a fermion. The calculation is as follows:

N = N1N2N3 (2.7)

where N1 is 1 if the particle has a distinct antiparticle, and 2 if it does not; N2 is the

number of spin states of the particle; N3 is a statistical mechanical factor which is 7
8

for fermions and 1 for bosons [5]. This number N needs to be calculated for every

individual particle that exists during the particular epoch that is being considered,

and then each N value for each particle is added together for a total effective number.

In order for a particle to be counted, the particle’s mass must be less than or

equal to the vacuum expectation value at the time, otherwise there is not enough

available energy for the particle to manifest. All seventeen particles currently know
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to exist according to the standard model have a mass less than 246 GeV/c2, so the

full standard model is considered for the EW phase transition. The following table

outlines how this calculation is performed, and uses a similar format outlined in [11].

Particle Anti Colors Spins States Fermion/Boson Effective no.

u 2 3 2 12 0.875 10.5

d 2 3 2 12 0.875 10.5

c 2 3 2 12 0.875 10.5

s 2 3 2 12 0.875 10.5

t 2 3 2 12 0.875 10.5

b 2 3 2 12 0.875 10.5

e 2 1 2 4 0.875 3.5

µ 2 1 2 4 0.875 3.5

τ 2 1 2 4 0.875 3.5

νe 2 1 1 2 0.875 1.75

νµ 2 1 1 2 0.875 1.75

ντ 2 1 1 2 0.875 1.75

g 1 8 2 16 1 16

γ 1 1 2 2 1 2

W 2 1 3 6 1 6

Z 1 1 3 3 1 3

H 1 1 1 1 1 1

g∗ 106.75

Table 2.1: Particle States for EW Phase Transition

Here, the number of states for each particle is the product of columns 2, 3, and 4.

The number of states is multiplied by the fermion/boson factor to give the effective

number of each particle, and those effective numbers are added together for a total

effective number.
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Critical Denisity and Hubble Parameter

The process outlined in chapter 29 section 2 of [6] shows how to develop the equation

that will be used here to calculate the critical density. We will also need the previously

calculated values for temperature and thermal degrees of freedom. From equation 29.77

in [6], we have

ρrel =
urel
c2

=
g∗aT

4

2c2
(2.8)

where g∗ is the effective number of degrees of freedom for the EW phase transition as

calculated above, and T is the temperature from 2.3 above. Putting the values for g∗

and T into this equation yields

ρrel =
(106.75)(7.5641× 10−16 J m−3 K−4)(2.85× 1015 K)4

2c2
(2.9)

ρrel ≈ 2.96× 1031 kg m−3 (2.10)

We will then set this value equal to the critical density found in equation 29.12

from [6]. If the relativistic density is equal to critical density, this would have several

consequences, one being that the density contribution from matter particles is near

zero (ρm ≈ 0). This makes sense in our situation since we are assuming a radiation

dominated universe, and all particles are considered relativistic. This would in turn

make the matter density parameter approximately equal to zero, and the relativistic

density parameter approximately equal to 1, which from equation 29.79 and 29.80 in
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[6] would result in

Ωm =
ρm
ρc
≈ 0

ρc
≈ 0 (2.11)

Ωrel =
ρrel
ρc
≈ 1. (2.12)

This result would also satisfy Ωm + Ωrel = 1 and therefore k = 0 for the Friedmann

model, and suggest that the universe is flat [6]. By using equation 29.12 from [6] for

ρc and setting ρrel = ρc, we can then calculate the Hubble parameter as follows:

ρc =
3H2(t)

8πG
= ρrel (2.13)

H(t) =

√
8πGρrel

3
(2.14)

H(t) =

√
8π(6.67× 10−11 m3 kg−1 s−2)(2.96× 1031 kg m−3)

3
(2.15)

H(t) ≈ 1.29× 1011 s−1 (2.16)

Time

For initial time, we can refer directly to equation 8.34 from [5]. Rewriting c√
ε

= 1√
ρc

gives
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t1 =

√
3

32πGρc
(2.17)

where ρc is the critical density, G is Newton’s gravitational constant, and c is the speed

of light in vacuum. Putting these constants into the equation above, and using the

previously calculated value for ρc, we get

t1 =

√
3

32π(6.67× 10−11 m3 kg−1 s−2)(2.96× 1031 kg m−3)
(2.18)

t1 ≈ 3.90× 10−12 s. (2.19)

We can also refer to equation 53 from [11] to cross-check this result and confirm

some agreement between different source. Using table A1 from [11], we can infer

g∗ ≈ 106 based on the work in this paper, and we get

t =

√
90~3c5

32π3Gg∗ε(T )
(kBT )−2 (2.20)

t =
2.4√
g∗ε(T )

T−2MeV (2.21)

t =
2.4√
106

(246000)−2 (2.22)
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t ≈ 3.85× 10−12 s (2.23)

where temperature T has been converted back into units of energy (246 GeV =

246000 MeV ).

As a third check, we can use equation 1.24 from above:

t =
1

2H(t)
(2.24)

t =
1

2(1.29× 1011 s−1)
(2.25)

t ≈ 3.88× 10−12 s (2.26)

The level of agreement between these three methods of calculating initial time

gives confidence in the results. The differences in the three results are likely due to

the choice of significant digits carried over in calculations and digits of precision used

for the known constants. This thesis will choose 3.88× 10−12 s as the declared result

since it is the median of the three different calculations for time.

QCD Phase Transition

Energy and Temperature

Using the same approach as in 2.1.1, the expression for the total available thermal

energy is
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E1 = kBT1 (2.27)

where E is the energy in Joules, kB is Boltzmann’s constant, and T is temperature in

Kelvin. For the QCD phase transition, we will use a vacuum expectation value of 170

MeV. Using this value as the average energy available at the time, we get

T1 =
E1

kB
=

246× 1011 eV

8.617× 10−5 eV/K
(2.28)

T1 ≈ 1.97× 1012 K (2.29)

Scale Factor

Using the same approach as in 2.1.2, we can use the age of the universe today, the

average temperature of the universe today, and the scale factor today with equation

8.2 from [5] to get the scale factor and the initial time of the QCD phase transition.

Starting with equation 8.2,

a1
a2

=
T2
T1

(2.30)

a1
1

=
2.7 K

1.97× 1012 K
(2.31)
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a1 ≈ 1.38× 10−12 (2.32)

which indicates that at the time we are interested in, the universe was around one

trillion times smaller than it is today, and about 1000 times larger than the value

calculated for the EW phase transition.

Thermal Degrees of Freedom

For the QCD phase transition, the thermal degrees of freedom are calculated in the

same way as the EW phase transition in section 2.1.4. With the vacuum expectation

value of 170 MeV, we ignore all particles with a mass greater than 170 MeV/c2, and

table 2.1 reduces to

Particle Anti? Colors Spins States Fermion/Boson Effective no.

u 2 3 2 12 0.875 10.5

d 2 3 2 12 0.875 10.5

s 2 3 2 12 0.875 10.5

e 2 1 2 4 0.875 3.5

µ 2 1 2 4 0.875 3.5

νe 2 1 1 2 0.875 1.75

νµ 2 1 1 2 0.875 1.75

ντ 2 1 1 2 0.875 1.75

g 1 8 2 16 1 16

γ 1 1 2 2 1 2

g∗ 61.75

Table 2.2: Particle States for QCD Phase Transition
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Critical Denisity and Hubble Parameter

Using the same approach as in 2.1.4, and inserting the values for temperature and

thermal degrees of freedom that correspond to the QCD phase transition:

ρrel =
g∗aT

4

2c2
(2.33)

ρrel =
(61.75)(7.5641× 10−16 J m−3 K−4)(1.97× 1012)4

2c2
(2.34)

ρrel = ρc ≈ 3.91× 1018 kg m−3 (2.35)

Jumping to equation 2.14 above for Hubble Parameter, we get

H(t) =

√
8πGρrel

3
(2.36)

H(t) =

√
8π(6.67× 10−11 m3 kg−1 s−2)(3.91× 1018 kg m−3)

3
(2.37)

H(t) ≈ 46700 s−1 (2.38)

and from the relationship between Hubble Parameter and time, we get
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t =
1

2H(t)
(2.39)

t =
1

2(46700 s−1)
(2.40)

t ≈ 1.07× 10−5 s. (2.41)

Time

Using the same approach as in 2.1.5, we begin with equation 2.11, and insert the

critical density value for the QCD phase transition calculated above to get

t1 =

√
3

32πGρc
(2.42)

t1 =

√
3

32π(6.67× 10−11 m3 kg−1 s−2)(3.91× 1018 kg m−3)
(2.43)

t1 ≈ 1.07× 10−5 s. (2.44)

Again, double checking this result using equation 53 from [11], the value g∗ = 61.72

from table A1, and the vacuum expectation value of 170 MeV, we have
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t =

√
90~3c5

32π3Gg∗ε(T )
(kBT )−2 (2.45)

t =
2.4√
g∗ε(T )

T−2MeV (2.46)

t =
2.4√
61.72

(170)−2 (2.47)

t ≈ 1.06× 10−5 s. (2.48)

All three methods for calculating initial time during the QCD phase transition have

shown to be almost exactly the same, so this thesis will choose 1.07 × 10−5 s for the

declared result.

Summary of Key Parameters

In the previous two sections, five different parameters were calculated for two dif-

ferent epochs based on the vacuum expectation values being the available energies.

The following table shows these twelve total parameters and the corresponding epoch

that they belong to. These parameters are used as initial conditions that the computer

code needs in order to begin calculating new values and evolving forward in time.
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Initial Condition Electroweak QCD

Energy 246 GeV 170 MeV

Temperature 2.85× 1015 K 1.97× 1012 K

Thermal Degrees of Freedom 106.75 61.75

Scale Factor 9.58× 10−16 1.38× 10−12

Initial Time 3.88× 10−12 s 1.07× 10−5 s

Critical Density 2.96× 1031 kg m−3 3.91× 1018 kg m−3

Hubble Parameter 1.29× 1011 s−1 46 700 s−1

Table 2.3: Initial Conditions
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CHAPTER 3:

SHOCK TESTING

In Numerical Relativity, the term "shock" refers to a sharp discontinuity (or jump)

between any two values calculated by a numerical relativity code during a simulation.

A codes ability to handle shocks during a simulation are dependent on the shock-

capturing scheme implemented in the code, the resolution chosen at run-time, and

the computational capability of the system being used. In general, the higher the

resolution of the shock-capturing scheme is, the more computational power and/or

time is required for running the simulation.

SCR3 and Previous Testing

SCR3 is a fourth-order weighted essentially non-oscillaroty scheme built by follow-

ing the method outlined in work by Liu, Osher, and Chan [12]. It is an additional

finite differencing method available to be chosen at runtime, along with 2nd-order fi-

nite, 4th-order finite, spectral methods, and spectral methods (one-dimensional) for a

total of five different shock capturing schemes. Work done in [12] has shown SCR3 to

be a more effective shock capturing routine than 2nd-order finite differencing with ar-

tificial viscosity. According to [12], the next step should be refining the SCR3 scheme

by adding artificial viscosity. However, it is noted that work in [12] was based on

the use of FixedCosmo, whereas the work presented in this thesis utilizes SpecCosmo.

Since the code has been changed, the goal of the work in this series of shock tests was

to determine how the results using SpecCosmo compare to the previous results using

FixedCosmo with the same parameters. All shock tests were ran without the use of

artificial viscosity except for the Alfven wave shock test.
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Shock Test Types

There are eight different shock test types considered, first introduced in work by

Komissarov, and later in work by Duez, Liu, Shapiro, and Stephens [9]. These tests are

one-dimensional (z-axis chosen in this work), starting with a discontinuity at z = 0, and

extending in the positive and negative directions along the axis by the same amount.

For each test type, the density and velocity of the relativistic fluid are compared with

results from [9] and [12].

The eight different test types are Fast Shock, Slow Shock, Switch-on Rarefaction,

Switch-off Rarefaction, Shock Tube 1, Shock Tube 2, Collision, and Non-linear Alfven

Wave. In fast and slow shock, initial data along the axis satisfies the special relativistic

Rankine-Hugonoit jump conditions for MHD shocks, and thus the discontinuity travels

with a speed µ without changing its pattern [9]. In switch-on/off rarefaction, positive

and negative directions of the axis are connected by a rarefaction wave at t = 0 [9].

The challenge with these tests arises when the tangential component of the magnetic

field (By) is switch on or off when transitioning from one side of the axis to another [9].

In Shock Tubes 1 and 2, left and right sides of the axis are connected by a rarefaction

wave, a contact discontinuity, and a shock wave [9]. In Collision, both sides of the axis

travel with equal speeds in opposite directions. In Non-linear Alfven Wave, the setup

differs from the other 7 tests in that there are no discontinuities initially [9]. The left

and right states are separated by a width (W = 0.5), and are joined by continuous

functions at t = 0 [9].

The following table taken from Komissarov [2] details the initial conditions and test

parameters for each shock test type. These initial conditions are scripted in the code

for each test type, and can be chosen at the start of a simulation run in the parameter

file.

Within the thorn mhd_init, the variable initial_mhd can be changed to any one of
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Table 3.1: Shock Test Initial Data

the following: fast_shock, slow_shock, fast_rare, slow_rare, shock1, shock2, collision,

or alfven. Specifying one of these values for mhd_init chooses which values for the

initial velocity, initial magnetic field, density, and pressure are chosen to be the initial

data at runtime.
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Shock Test Results

The following figure taken from [9] gives a baseline for what the test results should

look like for each shock test type. This figure includes analytical calculations as well

as simulated data.

Figure 3.1: Density and Velocity Profiles from Duez et al.

The following figure taken from [12] shows the shock test results using FixedCosmo

and 2nd-order finite differencing as the shock capturing method.
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Figure 3.2: FixedCosmo Shock Tests using 2nd-order Finite Differencing

The shock tests presented in work by [12] all utilized a Courant factor (dtfac in

.par file and from this point forward) of 0.5. This factor adjusts the ratio between

grid resolution and time step, and appears to have been small enough in the work that

used FixedCosmo to allow each shock test to run to completion. Using SpecCosmo, the

first several shock test runs using a value of 0.5 and 0.05 for dtfac in this work quickly

showed large spikes in the data sets near the discontinuity at z=0. After several trials,

a value of 0.002 for dtfac was found to be successful for some of the tests. Smaller val-

ues for dtfac that allowed the other tests to compete were determined using the same

trial-and-error process. The table below details the shock test type, grid resolution,

number of iterations needed for completion, and the dtfac that was used for each test

type. Other than the different values for dtfac, all parameters were maintained from

the work done in [12] in order find a baseline for SpecCosmo as well as to compare

how SpecCosmo handles shocks as opposed to FixedCosmo.
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Test Type Grid Res. Iterations dtfac

Fast Shock 0.1 250 0.001

Slow Shock 0.02 200 0.002

Switch-off Fast 0.0267 100 0.002

Switch-on Slow 0.008 500 0.0005

Shock Tube 1 0.008 500 0.000 05

Shock Tube 2 0.02 250 0.002

Collision 0.02 122 0.001

Alfven 0.02 240 0.002

Table 3.2: Parameter File Settings
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Fast and Slow Shock

Below are the results for density and velocity for the Fast and Slow Shock tests at

tfinal using SpecCosmo.

Figure 3.3: Fast Shock, Density and Velocity

Figure 3.4: Slow Shock, Density and Velocity
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Fast and Slow Rarefaction

Below are the results for density and velocity for the Fast and Slow Rarefaction tests

at tfinal using SpecCosmo.

Figure 3.5: Switch-off Fast Rarefaction, Density and Velocity

Figure 3.6: Switch-on Slow Rarefaction, Density and Velocity
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Shock Tube 1 and 2

Below are the results for density and velocity for the Shock Tube 1 and Shock Tube 2

tests at tfinal using SpecCosmo.

Figure 3.7: Shock Tube 1, Density and Velocity

Figure 3.8: Shock Tube 2, Density and Velocity
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Collision

Below are the results for density and velocity for the Collision test at tfinal using Spec-

Cosmo.

Figure 3.9: Collision, Density and Velocity

Alfven

Below are the results for density and velocity for the Alfven wave test at tfinal using

SpecCosmo.

Figure 3.10: Alfven Wave, Density and Velocity
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CHAPTER 4:

CONCLUSIONS AND DISCUSSION

Initial Conditions

In chapter 1, the FRW comsological model and resulting Friedmann equations that

come from Einstein’s field equations were developed. This model leads to the relation-

ships between scale factor, temperature, age of the universe, and other parameters that

were then used to calculated the initial conditions. In chapter 2, the initial conditions

required to run a simulation using SpecCosmo were calculated at two different epochs

in the early universe: the Electroweak phase transition and the QCD phase transition.

These two epochs are important milestones in the universes evolution where certain

details about the energy and matter content are known from particle physics research.

Using what we know about particle physics at these epochs, it is then possible to cal-

culate the energy content, temperature, critical density, size, and age of the universe

at these times. All of these parameters are needed by the evolution equations in Spec-

Cosmo as a starting point for a simulation. These initial conditions are supplied to

the parameter file as initial input values for the SpecCosmo thorn. An example of a

parameter file for the Biermann Electroweak simulation is given in the appendix, with

the values from this work for the EW phase transition specified as inputs.

Shock Tests

In chapter 3, the suite of shock tests outlined by Komissarov [2], and reproduced

in [4] and [12] for FixedCosmo was performed using SpecCosmo. The results for

each shock test characterize SpecCosmo’s ability to handle discontinuities that arise

in data while simulations are running. Upon initial investigation, it was noted that
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the previously used value of 0.5 for dtfac was not usable in these tests. In order for

the shock capturing scheme to handle the initial discontinuity without introducing

numerical error into the data, dtfac needed to be several orders of magnitude smaller

than in previous work. After several iterations for each shock test, it was observed

that values for dtfac larger than 0.002, and therefore larger timesteps, resulted in

infinities appearing in the data sets early on. However, all of the tests were able to

finish the prescribed number of time iterations using the above documented values for

dtfac in each test, the largest being 0.002. Even with reducing dtfac from what was

usable in the shock tests with FixedCosmo, these dtfac values result in a much larger

timestep than what would be used in an early universe simulation using SpecCosmo,

which suggests that SpecCosmo is in fact handling the shocks quite well. The smallest

values used for dtfac in these shock tests was 0.00005. The target value for dtfac in a

simulation at the EW phase transition would be on the order of 10−13 and is adaptive,

which would result in much smaller timesteps that are adjustable, even when taking

differences in grid resolution into account. p

Future Work

The next step to build upon this work would be to utilize the initial conditions

derived here at the Electroweak phase transition in order to study the development of

initial magnetic fields in the early universe. In order to proceed on that front, the shock

capturing ability of SpecCosmo has been tested and verified to meet expectations. It

was observed in this work that some of the shock tests did not produce data sets

that reflected previous work, perhaps due to SpecCosmo differing from FixedCosmo

by having dynamically evolving spacetime rather than fixed or static spacetime. This

difference in the evolution equations might cause perturbations or discontinuities to

have a more significant effect on the data produced by the code. Adding artificial

viscosity to the shock tests using SpecCosmo is another path forward. The addition of
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artificial viscosity should enhance SCR3’s shock capturing ability and/or extend run

time of the shock tests without numerical error. This may also allow larger values for

dtfac to be used, which would in turn allow for larger timesteps. In terms of future

work for initial conditions, it may also be of interest to investigate the ratio of dark

matter to normal matter.
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APPENDIX:

PARAMETER FILES

Fast Sock Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.001

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 250
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 40
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"
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mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0

mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "fast_shock"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"
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#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/fast_shock_dtfac_001/chkpt"
IO::checkpoint_dir = "SCR3/fast_shock_dtfac_001/chkpt"
IO::recover_file = "SCR3/fast_shock_dtfac_001/chkpt"
IO::recover_dir = "SCR3/fast_shock_dtfac_001/chkpt"
IO::out_dir = "SCR3/fast_shock_dtfac_001"
#IO::recover = "autoprobe"
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Slow Shock Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.002

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 200
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 200
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "slow_shock"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/slow_shock_dtfac_002/chkpt"
IO::checkpoint_dir = "SCR3/slow_shock_dtfac_002/chkpt"
IO::recover_file = "SCR3/slow_shock_dtfac_002/chkpt"
IO::recover_dir = "SCR3/slow_shock_dtfac_002/chkpt"
IO::out_dir = "SCR3/slow_shock_dtfac_002"
#IO::recover = "autoprobe"
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Fast Rarefaction Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.002

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 100
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 150
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "fast_rare"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/fast_rare_dtfac_002/chkpt"
IO::checkpoint_dir = "SCR3/fast_rare_dtfac_002/chkpt"
IO::recover_file = "SCR3/fast_rare_dtfac_002/chkpt"
IO::recover_dir = "SCR3/fast_rare_dtfac_002/chkpt"
IO::out_dir = "SCR3/fast_rare_dtfac_002"
#IO::recover = "autoprobe"
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Slow Rarefaction Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.0005

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 500
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 500
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "slow_rare"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/slow_rare_dtfac_0005/chkpt"
IO::checkpoint_dir = "SCR3/slow_rare_dtfac_0005/chkpt"
IO::recover_file = "SCR3/slow_rare_dtfac_0005/chkpt"
IO::recover_dir = "SCR3/slow_rare_dtfac_0005/chkpt"
IO::out_dir = "SCR3/slow_rare_dtfac_0005"
#IO::recover = "autoprobe"
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Shock Tube 1 Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.00005

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 500
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 500
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "shock1"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/shock1_dtfac_00005/chkpt"
IO::checkpoint_dir = "SCR3/shock1_dtfac_00005/chkpt"
IO::recover_file = "SCR3/shock1_dtfac_00005/chkpt"
IO::recover_dir = "SCR3/shock1_dtfac_00005/chkpt"
IO::out_dir = "SCR3/shock1_dtfac_00005"
#IO::recover = "autoprobe"
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Shock Tube 2 Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.002

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 250
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 200
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "shock2"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/shock2_dtfac_002/chkpt"
IO::checkpoint_dir = "SCR3/shock2_dtfac_002/chkpt"
IO::recover_file = "SCR3/shock2_dtfac_002/chkpt"
IO::recover_dir = "SCR3/shock2_dtfac_002/chkpt"
IO::out_dir = "SCR3/shock2_dtfac_002"
#IO::recover = "autoprobe"
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Collision Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.001

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 122
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 200
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "collision"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/collision_dtfac_001/chkpt"
IO::checkpoint_dir = "SCR3/collision_dtfac_001/chkpt"
IO::recover_file = "SCR3/collision_dtfac_001/chkpt"
IO::recover_dir = "SCR3/collision_dtfac_001/chkpt"
IO::out_dir = "SCR3/collision_dtfac_001"
#IO::recover = "autoprobe"
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Alfven Parameters

ActiveThorns = "slab boundary cartgrid3d coordbase ioascii iobasic ioutil localinterp
localreduce mol symbase time iojpeg pugh pughinterp pughreduce pughslab nanchecker
mhd_analysis mhd_init specgrmhd"

#time::timestep_method = "given"
#time::timestep = 0.0005
time::dtfac = 0.002

#Cactus::terminate = "runtime"
#Cactus::max_runtime = 5760
Cactus::cctk_itlast = 240
Cactus::cctk_initial_time = 0.0
cactus::cctk_timer_output = "full"
pugh::timer_output = "yes"

Nanchecker::check_every = 10
Nanchecker::check_after = 0
Nanchecker::check_vars = "all"
Nanchecker::action_if_found = "terminate"

grid::type = "byrange"
grid::xmin = -0.04
grid::xmax = 0.04
grid::ymin = -0.04
grid::ymax = 0.04
grid::zmin = -2.0
grid::zmax = 2.0
grid::domain = "full"

driver::global_nx = 7
driver::global_ny = 7
driver::global_nz = 200
driver::ghost_size = 3

driver::periodic = "no"
driver::periodic_x = "yes"
driver::periodic_y = "yes"
driver::periodic_z = "yes"

mol::ode_method = "ICN"
mol::MoL_Intermediate_Steps = 3
mol::MoL_Num_Scratch_Levels = 0
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mhd_init::initial_data = "flatspace"
mhd_init::initial_gauge = "geodesic"
mhd_init::gauge_condition = "geodesic"
mhd_init::initial_mhd = "alfven"
mhd_init::itime = 0.0
mhd_init::maxvel = 1.00
#mhd_init::update_Hubble = "no"

specgrmhd::ch = 1.0
specgrmhd::cp = 10.0
specgrmhd::bound = "flat"
specgrmhd::diff = "SCR3"
specgrmhd::kphi = 1.0
specgrmhd::kgam = 1.0
specgrmhd::kalpha = 1.0
specgrmhd::kbeta = 1.0
#specgrmhd::fix_lapse = "yes"
#specgrmhd::fix_shift = "yes"
#specgrmhd::slicing = "None"
#specgrmhd::sigma = 0.5
specgrmhd::add_AV_bulk = "no"
specgrmhd::add_AV_shear = "no"
specgrmhd::add_DM = "no"
#specgrmhd::calc_constraint = "no"
specgrmhd::nn = 1.0
specgrmhd::kl = 0.1
specgrmhd::kq = 0.1
specgrmhd::scp = 0.08
specgrmhd::e1 = 0.000000000000001
#specgrmhd::sensitivity = 0.0000000000000001

iobasic::outinfo_every = 1
iobasic::outinfo_vars = "mhd_analysis::rho_out mhd_analysis::temp_out"
IOBasic::outScalar_style = "gnuplot"
IOASCII::out1D_style = "gnuplot f(x)"
IOBasic::outScalar_every = 1
IOBasic::outScalar_vars = "specgrmhd::calcvars mhd_analysis::output"

IOASCII::out1D_every = 1
IOASCII::out1D_vars = "specgrmhd::calcvars mhd_analysis::output"

#IOHDF5::out_every = 100
#IOHDF5::out_vars = "mhd_analysis::output"

#IOHDF5::checkpoint = "yes"
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#IO::checkpoint_every = 1000

#IO::out_mode = "onefile"
#IO::out_unchunked = "yes"
IO::checkpoint_file = "SCR3/alfven_dtfac_001/chkpt"
IO::checkpoint_dir = "SCR3/alfven_dtfac_001/chkpt"
IO::recover_file = "SCR3/alfven_dtfac_001/chkpt"
IO::recover_dir = "SCR3/alfven_dtfac_001/chkpt"
IO::out_dir = "SCR3/alfven_dtfac_001"
#IO::recover = "autoprobe"
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