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ABSTRACT 

TRADEOFF FPGA COST OF SOBEL IMPLEMENTATION USING 

APPROXIMATE DESIGNS 

 

 

 

Harold Schmoyer 

University of Houston-Clear Lake, 2020 

 

 

 

Thesis Chair: Xiaokun Yang 

 

 

This dissertation proposes a scalable algorithm for tuning the tradeoff of space, energy, 

and quality for the implementation on Field-Programmable Gate Array (FPGA). First, an 

approximate design library including exact and several imprecise designs on adders and 

subtractors is presented. Using the design library, then six different approximation levels 

of register-transfer level (RTL) designs on a Sobel edge detection algorithm is created as 

a case study, in order to demonstrate the advantage of approximate design and develop a 

specific implementation to save energy and space at the cost of accuracy. Finally, all the 

designs of the Sobel engine are synthesized in Xilinx Vivado where the comparison 

between exact design and an array of approximate designs are conducted. Experimental 

results show that our proposed work achieves the maximum savings of 26% energy, 24% 

slice count, and 21% of look-up tables (LUTs) at the cost of 1.14% accuracy when 

images are compared pixel by pixel. In order to further explore the difference between 

FPGA demonstrations of the exact design and imprecise implementations, all the Sobel 
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cores are integrated with an image processing platform including OV7670 camera, VGA-

enabled monitor, and Xilinx Nexys 4 FPGA to show the quality of edge detection images. 

By integrating the designs of I2C controller, image capture interface, and the VGA 

master with our proposed Sobel engines, the simulation with Mentor Graphic ModelSim 

proves the validity of our proposed work.  
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CHAPTER I:  

INTRODUCTION 

 

1.1 Background 

Approximate design on integrated circuits and systems is becoming an emerging 

paradigm, enabling to minimize the area and energy dissipation with specifc quality 

constraint of the design specifications [1-3]. It leads to many implementations at different 

levels of accuracy, such as approximate computing to application-specific integrated 

circuit (ASIC) [4,5], field-programmable gate array (FPGA) [6-8], register-transfer-level 

(RTL) designs [9,10], and system-on-chips [11-13]. 

Most prior works to approximate computing focused on the individual designs of 

fundamental circuits such as adders and multipliers which are widely used by many 

applications, such as approximate adder for energy-efficient application [14], accuracy 

configurable adder for area and delay efficient designs [15], approximate multiplier for 

error-resilient applications [16], and many more [17-19]. By using the approximate 

circuit into various hardware applications including image and video processing [20-22], 

machine learning [23-26], and language/voice recognition [27-30], it enables to achieve a 

large amount of hardware savings in terms of area, latency, and power consumption. 

The main challenge of the approximate design in system level is to find an 

optimal integration of approximate circuits corresponding to various error metrics. In [31] 

a case study of a color to grayscale converter was presented based on approximate adders 

and multipliers, showing different energy-quality results on FPGA implementation. 

Similarly, the image blending and sharpening approaches were applied using 

approximate adders and multipliers to analyze the image quality metric in [32]. 

Considering tens to thousands of approximate implementations for each arithmetic 
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operation, it is impossible to identify the most suitable replacement of arithmetic 

operations and the combination of approximate circuits to reach the best tradeoff between 

area-speed-power cost and the quality bound. 

Therefore, prior work [33] presented a methodology for selecting and combining 

suitable approximate circuits from a set of available libraries to generate an approximate 

accelerator for a given application. Instead of performing full synthesis, the proposed 

methodology is able to automatically estimate quality of result based on computational 

models constructed using machine learning methods. Though the proposed work was 

shown to be quite effective under experimental scenarios, to obtain an accurate 

performance evaluation without hardware netlist can be a big challenge. In addition, 

earlier works [34] and [35] proposed a design approach being able to dynamically 

reconfigure the level of approximation in the hardware based on the input characteristics. 

As a result, it demonstrated significant energy savings while adhering to the given quality 

constraints. 

This dissertation focuses on finding the optimal combination of the area-speed-

power saving by integrating approximate circuits into system-level designs. First, a novel 

methodology to guide users to select the most suitable replacement of arithmetic 

operations with approximate circuits is proposed. As a case study, one of the most 

commonly used applications in image processing – sobel edge detection algorithm, is 

employed to test the functionality and estimate the hardware performance. Specically, the 

contributions are below. 

- This dissertation first presents several approximate designs on adders and 

subtractors. In what follows, FPGA design flow including RTL design, verificaiton, 

synthesis, and implementation are executed to show the quality to resource tradeoff. 
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- Experimental results show that there can be significant resources savings  for any 

specific applications 

- Finally, a video processing platform [26] is empoyed to demonstrate the different 

designs with different quality bounds to demons mtrate the qualitative performance 

of each design using the methodologies. 

1.2 Related Works 

Due to the benefits of parrallel computing and reprogrammability, hardware 

acceleration with FPGA has been widely used in many applications such as audio 

processing [37,38], image and video segmentation [39,40], edge computing[41-43], etc. 

As a case study, in this disseration the sobel edge detection, which is one of the classical 

and essential algorithms in the  field of image and video processing for the extraction of 

object edges [44], is designed and evaluated with FPGA. In prior work [45] both 

hardware and software implementations on the sobel engine have been evaluated and 

compared. By running the OpenCL with a Cortex-A9 embedded core and FPGA, it 

shows a significant improvement to the computation speed with hardware accelerator (2 

ms) compared to the software operation (977 ms). And the resource cost to the FPGA 

design was very high with 5155 slice of LUTs and 269,814 BRAMs. A similar work 

presented by [46] achieved 95% reduction on slices of LUTs and 97% reduction on slices 

of FFs by performing OpenCL in register-transfer (RT) level design using Vivado. 

Under this context, the software-hardware co-design platforms such as Xilinx 

Zynq FPGA were becoming very popular to demonstrate image processing application 

where the programming system (PS), or namely a CPU host, can be employed to reduce 

the complexity to a hardware implementation. Mean-time the programming logic (PL) 

part, or the FPGA, can be applied to accelerate the computation-intensive portions [46, 

47]. The main concern of the combined system is that the PS itself would spend a large 
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amount of FPGA resources in terms of slice count and power dissipation. Additionally 

the PS-PL interface is based on the very complicated AMBA AXI specication which 

consumes numerous hardware resources as well. 

Another trend to implement the image/video based processing like the edge 

detection application was mainly based on FPGA High-Level Synthesis (HLS), which 

offers a methodology for migrating algorithms from higher abstract languages like C or 

C++ onto the FPGA logic [46,48,49]. For example, in [48] a sobel edge detection core 

has been implemented by HLS as one of the three benchmarks to evaluate the security 

advantages and performance over the system. Synthesis results showed a hardware cost 

of 1,691 slice of LUTs and 3,356 slice of FFs. Likewise, in [49] the HLS based design 

led to a slices utilization of 1,069 slice of LUTs and 1,173 slice of FFs. For both design in 

[48] and [49], around ten BRAMs and DSPs were employed as well. 

Compared to the HLS based implementation, the application-specific RT-level 

design can achieve less space utilization and computation latency. For example, in [50] 

an inexpensive architecture for Sobel edge detection was proposed, showing that only 

114 slice of LUTs was spent and 32 us was needed to process 128×128 images at a clock 

frequency of 500 MHz. As the best of our knowledge, this is the optimal FPGA design on 

sobel engine which achieved the minimum latency and slice consumption. 

The main concern of the above-mentioned works is to statically implement and 

evaluate the design application in sobel edge detection on FPGA. In this paper, first 

several imprecise designs are proposed in order to further reduce the FPGA cost in a 

combination of area-latency-power. Seeing the sobel core design as a case study, a 

scalable methodology is presented to dynamically find the optimal implementation 

corresponding to different quality bounds. Though being employed by sobel engine 
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implementation and evaluation, the proposed approach is expandable to many other 

designs and applications can be integrated with multiple approximate circuits.  
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CHAPTER II:  

PROPOSED WORK 

 

2.1 Approximate Design 

Approximate designs are intended to give an answer that is close to a known exact 

solution. The exact implementation is a great benchmark for which to compare all 

designs. This is because when creating an exact solution, the top priority is that the 

solution is exactly correct. This can leave a lot of potential inefficiencies in the design of 

any project. These inefficiencies create an opportunity for approximate design.  

In general, an approximate design allows engineers to trade accuracy for design 

cost and resources. In the realm of FPGA based designs this means energy, processing 

power, and space [1]. Any digital design can be large and complex, but they can all be 

reduced to some level. The amount of reduction depends on the requirements of the 

application. An image processing system built as an early detection method for finding 

cancer in lungs would benefit from more accuracy than processing speed. However, 

cameras on a toll road reading license plates in order to automate ticketing violators 

would benefit from increased processing speed. All tradeoff decisions are application and 

requirement specific. 

For this work we are concerned with finding the relationship between quality and 

space with a case study focused on the Sobel engine. In order to do this, we will utilize 

Karnaugh maps (K-Maps) to reduce our design from an exact design cost to different 

levels of approximation. This is a continuation of the work done by [54] for approximate 

design method. 
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2.1.1 Design Algorithm 

When trying to create an approximate design of any system, it’s important to start 

at the fundamental part, the bit level.  

The pseudocode for implementing a system based on hardware to quality tradeoff 

is outlined in Algorithm 1. 

In Procedure #1 the first goal is to map the hardware cost, denoted as C in the 

algorithm. In line 2 the for loop is set to correspond to each approximation level k. Line 3 

shows the calculation for hardware cost C[k] which is the sum of 3 weighted attributes: 

slice count (represented as S[k]), latency (represented as L[k]), and power consumption 

(represented as P[k]). The weight of the slice count, denoted as ws, of S[k]×ws is 

assigned by the user as an input. This value is related to the user’s specifications, 

requirements, or applications. The weight of the latency, denoted as wl, is also assigned 

by the user based on the importance of the latency of the design. Lastly, the power 

consumption weight shows that, if specified last, that the power consumption weight is 

represented as 1 – ws – wl. This is simply to state that the combined weight of all desired 

attributes should sum to 1.   

Procedure #2 outlines the method for creating a design that fits the quality bound 

QB. The quality boundary sets the limit to the amount of approximation that can be 

provided. For instance, if an application requires 75% accuracy to be considered valid, 

we set our QB to 0.75. In order to accomplish this, each component has an approximation 

sub design inside of it. 
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Figure 2.1.1 Accuracy and Area-Latency-Power Tradeoff Algorithm 

 

2.2 MATLAB Design 

MATLAB R2020A software was used to quickly create an error detection method 

for the user and to help aid in the creation of the overall RTL design. MATLAB’s 

language made it easy to create simulated digital components of variable size and test 

them against all possible values. 

MATLAB’s base language supports the digital design operations for AND gates 

(&), OR (|), and NOT (~). These bitwise operations Verilog HDL design more intuitive 

and transferable. 
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The guided algorithm aids the user in creating approximate designs that are 

appropriate for the application. As a case study, the work of Dr. Xiaokun Yang on the 

Sobel engine was translated into MATLAB. 

 

2.3 Component Designs 

The following subsections outline the proposed work of implementing 

approximate designs of the adder, subtractor, and Sobel engine. The adder and 

subtractors designs are a continuation of the work set out by Yunxiang Zhang.  

Both the adder and subtractor are single bit components. Adders can be cascaded 

together to form a ripple adder with a carry-in bit. The subtractors can be cascaded to do 

the same but with a borrow-in bit.  

 

2.3.1 Subtractor  

Subtraction inside a digital system can be accomplished with a two’s-compliment 

addition operation. Converting a number into its two’s compliment form transforms it 

into a negative number. This requires inverting all the bits and adding “1” to create the 

negative number. The two numbers then need to be added together. This would require an 

n-number of inverters for each bit, an n-number of single-bit adders to add the one, and 

an additional n-number of single-bit adders to sum the two’s complimented number and 

the original addend.  

The Sobel algorithm design presents a unique opportunity for the implementation 

of a signed subtractor. The Sobel engine is designed to handle grayscale pixel values as 

inputs. Since the subtractors are only needed at the first stage of the Sobel algorithm we 

can create our design to reflect the fact that its inputs are always positive. This will save 

us resources as opposed to using this potentially costly two’s compliment method.  
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Approximations begin at the bit level. Four approximate designs of single bit 

subtractors was created. The following is the exact design of a single bit subtractor. 

Difference and borrow-out bits are denoted as Diff and BOUT. X and Y are two single bit 

inputs being subtracted and BIN denotes the borrow-in bit. 

The following is the K-map representation of the exact design of a single-bit 

signed subtractor. 

 

             
Figure 2.2.1 

Subtractor K-Map: Exact Design 

 

Diff (Exact) = X’YBIN’ + XY’BIN’ + XYBIN + X’Y’BIN 

BOUT (Exact) = X’BIN + X’Y + YBIN 

 

K-map representation of these designs aids us in approximation. Changing the 

result of the K-map allows us to design a system that will give us an output that is close 

to the result of the exact design. In the following diagram shows the K-map 

representation of the approximate subtractor subApprox1. The bits shown in red represent 

the bits that were changed from the exact design. In this case the gate X’Y’BIN is 

eliminated. 
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Figure 2.2.2 

Subtractor K-Map: subApprox1 

 

Diff (subApprox1) = X’YBIN’ + XYBIN + XY’BIN’ 

BOUT (subApprox1) = X’BIN + YBIN 

 

This is the first subtractor approximation. For the difference the 1 at X’Y’ BIN 

was changed from 0 to 1. The BOUT changed the result where X = 1, Y = 0, and BIN = 1, 

from 0 to 1. This equation is the result after all the 1s are grouped and reduced. 

 

    
Figure 2.2.3 

Subtractor K-Map: subApprox2 

 

Diff (subApprox2) = YBIN’ + XBIN’ + XY BIN + XY’ BIN’ 

BOUT (subApprox2) = X’BIN + YBIN 
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Figure 2.2.4 

Subtractor K-Map: subApprox3 

 

Diff (subApprox3) = X + YBIN’ 

BOUT (subApprox3) = BIN 

 

       
Figure 2.2.5 

Subtractor K-Map: subApprox4 

 

Diff (subApprox4) = X 

BOUT (subApprox4) = BIN 
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For each approximate design we are increasing the level of approximation for the 

output of that particular component. Each reduction in our K-map gives us extra space on 

the FPGA as well as a reduction in energy usage. In the exact design we are using a total 

of 16 logic gates. This is the exact design, so it will give us the most accurate result. 

However, this accuracy comes at a cost of space, latency, and power due to the longer 

critical path and number of gates. We attempt to strike a tradeoff between accuracy and 

power by reducing the gate count with the aid of our K-Maps. 

 

 

2.3.2 Adder 

The signed full adder is built by combining an n-number of single bit adders. The 

sum and carry-out bits are represented by Sum and COUT respectively. Each bit being 

summed is represented by X and Y. Lastly, CIN represents the carry-in bit which comes 

from the carry out. 
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Figure 2.3.2.1 

Adder K-Map: Exact Design 

 

Sum (Exact) = X’Y’CIN + X’YCIN’ + XY’CIN
’ + XYCIN 

COUT = X’CIN + X’Y + YCIN 

 

       
Figure 2.3.2.2 

Adder K-Map: AP1 

 

Sum (AP1) = X’YCIN’ + XYCIN + X’Y’CIN 

COUT (AP1) = X + YCIN 
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Figure 2.3.2.3 

Adder K-Map: AP2 

 

Sum (AP2) = X 

COUT (AP2) = X’CIN + X’Y + YCIN 

 

        
Figure 2.3.2.2 

Adder K-Map: AP3 

 

Sum (AP3) = X 

COUT (AP3) = X’CIN +Y 
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Figure 2.3.2.2 

Adder K-Map: AP4 

 

Sum (AP4) = X 

COUT (AP4) = Y 

 

2.4 Sobel Core 

The Sobel algorithm is a well-established method of edge detection in the image 

processing field. Its task is to apply a filter, pixel-by-pixel, that emphasizes perceived 

edges in an image. In this paper we use it as a case study for demonstrating the accuracy 

and power tradeoff algorithm discussed in this paper. The algorithm involves the 

combination of adders, subtractors, and shifters, making it an especially suitable 

candidate as a case study for the demonstration of the benefits of approximate design. 

Figure 2.4.1 (a) shows the full image capture of an input image I represented in 

matrix form, i for rows and j for columns. The input image is the resolution of the still 

image or camera capturing device.  

In order to apply the Sobel filter to the entire image, we must first extract a 3×3 

kernel to be processed. The kernel to be extracted first is shown in Figure 2.4.1 (a) in 

blue. This extraction happens pixel-by-pixel within I from P, at the center of the blue 

kernel.  
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The extracted pixel kernel, P, as shown in Figure 2.4.1 (b), is separated into pixel 

0 through pixel 8 (p0 to p8). This is the coordinate system within the kernel P. The pixels 

values within P will be the inputs to the Sobel algorithm for calculation. 

 

          

(a) Input Image           (b) Kernel Extraction 

Figure 2.4.1 

Pixel Extraction  

 

Once the kernel is extracted from the input image into the pixel kernel P it is 

multiplied it is ready to be processed into its individual components. The two components 

of the Sobel algorithm are the x-gradient (Gx) and y-gradient (Gy) shown in Figure 2.4.2 

(a) and (b). These two 3×3 matrixes are used to calculate the relative difference in pixel 

intensity with the x and y direction respectively.  This is done by multiplying P by Gx and 

Gy separately. Looking at Figure 2.4.2 (a) we can see that there is no calculation 

happening in the middle vertical segment of the matrix. Gx is calculating for the relative 

difference between the left side and the right side of P. A large non-zero value as the 

outcome of P * Gx indicates the presence of pixel value difference in the x-direction. The 

same is true for Gy in the y-direction. These two masks will you give you the two 

individual components of detecting edges when scanning in the x-direction and y-

direction. 
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𝐺𝑋 = (𝑝2 − 𝑝0) +  2 ∗ (𝑝5 − 𝑝3) + (𝑝8 − 𝑝6) 

 

𝐺𝑌 = (𝑝6 − 𝑝0) +  2 ∗ (𝑝7 − 𝑝1) + (𝑝8 − 𝑝2) 

 

 

            

(a) X-Gradient Gx              (b) Y-Gradient Gy 

Figure 2.4.2  

Sobel Gradient Masks 

Lastly, we want to combine the two results as a sum. Taking the sum of the two 

masks will more definitively define real edges. This is because the resultant sum is higher 

when an edge is detected in both directions. Once the sum is taken, we can display the 

pixel value in S as shown in Figure 2.4.3. This process is repeated pixel-by-pixel for the 

entirety of the input image I. 

 

 



 

 

19 

 
Figure 2.4.3  

Sobel Pixel Output 

 

Figure 2.4.3 shows the first processed pixel being input to the resultant output 

image O. This process occurs pixel by pixel until the entirety of I has been processed. 
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2.5 Image Processing Platform 

An open-source image/video processing platform [25] was implemented for the 

simulation of the Sobel engine on FPGA. The image processing platform can capture an 

image, write to the buffer, allow for any type of image processing to be implemented, and 

the result to be output onto a VGA monitor. The VGA monitor output is restricted to 

640×480-pixel resolution. The monitor output is split equally into 4 Regions.      

 

 
Figure 2.5.1  

Sobel Edge Detection with Image Processing Platform on FPGA 

 

Figure 2.5.1 is graphical representation of the image processing platform design 

under test (DUT). Firstly, the OV7670 camera is integrated as the capture device for the 

platform and is responsible for all initial input values in red, green, blue (RGB) color. 

 Data from the camera is sent to the appropriate buffers. Buffer 0 is 

responsible for the original RGB input values. From there the data is sent to the 

Grayscale Converter for image processing and read into Frame Buffer 1. Frame Buffer 1 

supplies the grayscale values to be read out to the monitor, and to be used by the Sobel 
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Edge. The VGA Master controls which section of the 640 × 480 VGA display to read out 

to. 

 

 
Figure 2.5.2 Image Processing Platform Testbench 

 

Figure 2.5.2 is the testbench (TB) of the DUT. The functionality of each 

component of the DUT needs to be tested. Each scoreboard shows the inputs, expected 

output, and the actual output. These scoreboards allow for the isolation of components for 

easier troubleshooting.  
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Figure 2.5.3 Simulation Report 

 

Figure 2.5.3 displays the results of the simulation of the design. 

Step 1 is the OV7670 configuration which simulates receiving data to the camera. 

‘Exp’ is the expected data value for the camera to receive, and ‘Rcv’ is the actual value 

received by the simulated camera.  

Step 2 is a simulation of the data being sent to the image capture from the 

OV7670 camera. The same convention between ‘Exp’ and ‘Rcv’ is used here. The image 

is captured as a RBG image. 

Step 3 shows the first image processor. Data is sent to the Frame Buffer 0, the 

buffer reads the data to the Grayscale Converter where the data is converted into 

grayscale (8-bit) format. The simulation results show the components of the single pixel 

which are red, green, and blue, and the resultant grayscale pixel value after conversion. 

As you can see from Figure 2.5.1, the grayscale converter passes it’s result to the VGA 

master as well as the frame buffer. The resulting grayscale pixel can be used again by 
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anything that the frame buffer can pass information to. This is an important step for the 

Sobel integration because it uses the grayscale formatted pixel to run its algorithm. 

In Step 4 the grayscale pixel that was passed back to the frame buffer is sent to 

the Sobel Edge in Figure 2.5.1. The ‘sobel detection’ result is calculated from these 

grayscale converted values, its result read into a MUX, and the VGA master sends the 

result to its region of the VGA monitor. 

Step 5 is the VGA scoreboard from 2.5.2. It confirms each output pixel by pixel in 

each region.  
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CHAPTER III: 

IMPLEMENTATION 

3.1 Hardware Implementation 

The design of the adder, subtractor, and Sobel engine were presented in the 

proposed design section. In the following section, the functionality of the register-transfer 

(RT) level design is tested. This test is done by comparing the results produced by 

MATLAB to the results of the RTL design. 

3.1.1 Adder  

 The implementation of the approximate adders is a continuation of 

previous work done in [21]. The adders shown below are the RTL configurations based 

on the K-Maps in Figure 2.2.1. Each figure, 3.1.1.1 – 3.1.1.5, is the result of the 

elaborated design supplied by Vivado for the exact design, AP1, AP2, AP3, and AP4 

respectively. 

 

 
Figure 3.1.1.1 

Exact Design: Adder 
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Figure 3.1.1.2 

Approximate Design: AP1 

 

 
Figure 3.1.1.3 

Approximate Design: AP2 
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Figure 3.1.1.4 

Approximate Design: AP3 

 

 
Figure 3.1.1.5 

Approximate Design: AP4 

 

Table 3.1.1 shows the number of gates within each design. The number of OR 

gates, denoted “RTL_OR”, and AND gates, denoted “RTL_AND”.  

This table shows the level of approximation relative to the exact design. The 

output will become less accurate as the approximation level goes up. However, the 

reduced number of gates leads to less power and space consumption. 
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Table 3.1.1 

 

Adder Gate Count 

Design Name AND Gate OR Gate 

Exact 10 5 

AP1 7 3 

AP2 3 3 

AP3 1 1 

AP4 0 0 

 

The gate count saving between AP1 and exact design is 29%. The gate count 

savings between AP2 and exact is 57%. AP3 has a saving of 86%. AP4 is a special case 

where no logic is being done, we are simply connecting the inputs to outputs with a wire. 

This should yield the greatest amount of space and power saving but at the cost of the 

greatest amount of accuracy.  

 

3.1.2 Subtractor 

The subtractor designs shown below are the RTL configurations based on the K-

Maps in Figure 2.3.1. Each figure, 3.1.2.1 – 3.1.2.5, is the result of the elaborated design 

supplied by Vivado for the exact design, subApprox1, subApprox2, subApprox3, and 

subApprox4 respectively. Each of the design’s gate counts are provided in Table 3.1.2 at 

the end of this section.  
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Figure 3.1.2.1 

Exact Design: Subtractor 

 

 
Figure 3.1.2.2 

Approximate Design: SubApprox1 

 

 
Figure 3.1.2.3 

Approximate Design: SubApprox2 
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Figure 3.1.2.4 

Approximate Design: SubApprox3 

 

 
Figure 3.1.2.5 

Approximate Design: SubApprox4 

 

Table 3.1.2 shows the number of gates within each design. The number of OR 

gates, denoted “RTL_OR”, and AND gates, denoted “RTL_AND” for each subtractor 

design.  

This table shows the level of approximation relative to the exact design. Like the 

adder, the output will become less accurate as the approximation level goes up. However, 

the reduced number of gates leads to less power and space consumption. 
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Table 3.1.2 

 

Subtractor Gate Count 

Design Name AND Gate OR Gate 

Exact 10 5 

subApprox1 6 3 

subApprox2 4 3 

subApprox3 1 1 

subApprox4 0 0 

 

We can see from the table that compared to the exact design, the subApprox1 is a 

gate count savings of 40%. The design subApprox2 saves 53%, subapprox3 saves 86%. 

Like AP4, out subApprox4 is a straight connection between input and output so therefore 

there is no gate logic. This will give us the greatest savings in energy and space at the the 

greatest cost of accuracy.  

 

3.1.3 Sobel Algorithm 

Sobel design was used as a case study of approximate design method. The Sobel 

design was implemented structurally. Each module represents a step in the process to the 

edge detected result. 
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Figure 3.4.1 

Sobel Implementation 

The Sobel algorithm is broken down into two components. These components 

scan an image for edges in the x-direction, labeled Gx, and the y-direction, Gy. They 

calculate the gradient level of each direction. Below are the equations representing these 

two masks.  

𝐺𝑋 = (𝑝2 − 𝑝0) +  2 ∗ (𝑝5 − 𝑝3) + (𝑝8 − 𝑝6) 

 

𝐺𝑌 = (𝑝6 − 𝑝0) +  2 ∗ (𝑝7 − 𝑝1) + (𝑝8 − 𝑝2) 

 

Once the gradients are calculated they are finally summed together with their 

respective absolute values. 

𝑆 =  |𝐺𝑋| + |𝐺𝑌| 

 

As discussed earlier, the Sobel engine was implemented structurally. This allowed 

for quick access to submodules to test accuracy in MATLAB and energy usage in 



 

 

32 

Vivado. Each stage within Sobel algorithm is broken into what are called modules as 

shown by Figure 3.4.1. 

Module A is a signed 8-bit subtractor. It takes two unsigned 8-bit pixel values and 

outputs a 9-bit signed value. Each pixel will first be subtracted, and their sign maintained. 

The maximum possible values of Module A are (28 – 1) to (– (28) +1) or 255 to -255 so 

we need 8 bits to hold the value and an additional leading most significant bit (MSB) to 

retain our sign.  

Module A is responsible for taking the difference between p2 and p0 (p2 – p0) for 

the x-gradient and the difference between p0 and p6 for the y-gradient.  

 

X – Gradient: (p2 – p0) 

Y -Gradient: (p5 – p3) 

 

Module B is responsible for taking the difference between two pixels and left 

shifting multiplying it by two or left shifting it by one in order to multiply the result by 2. 

The important distinction in this step is that the sign bit is preserved by adding an 

addition bit to the bus size to represent the sign. Typically, only 9 bits are required to 

represent the signed difference of two 8-bit inputs, but an additional 10th bit is created to 

left shift the difference by 1. This multiplies the result by two without having to create a 

multiplier. 

X – Gradient: 2 * (p5 – p3) 

Y -Gradient: 2 * (p1 – p7) 

 

Module C adds the two differences in module A and B together and retains the 

sign.  
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X – Gradient: (p2 – p0) + 2 * (p5 – p3) 

Y -Gradient: (p5 – p3) + 2 * (p1 – p7) 

 

Module D adds the sum of module C to the difference of module A, p8 – p6, for 

the x-direction mask. Module D then outputs the absolute value of that sum.  

 

X – Gradient: Absolute Value [(p8 – p6) + Module Cx] 

Y -Gradient: Absolute Value [(p2 – p8) + Module Cy] 

 

Module E adds both Module D outputs together. The sum will show the areas in 

which there is overlap between the x and y gradient values. This will make edges within 

an image more conspicuous.  

 

𝑆 =  |𝐺𝑋| + |𝐺𝑌| 

 

A multiplexer (MUX) that limits the output of the Sobel engine so that more 

definitive edges are shown. As discussed at the beginning of this section, the Sobel 

algorithm is intended to calculate the difference between sections of a pixel kernel in the 

x and y direction. It does this calculation for all pixels within a picture or video. The 

intent of this case study is to show all relevant edges in a picture or video. The final 

portion of Module E has a MUX that sets the out to “1” for any final sum that exceeds 

512. This is particularly low cost to implement thanks to the 9th bit begins 512. The final 

sum is read, the top n-to-9 bits are OR-ed together to be used as a select signal. Anything 

bit above 8 that contains a “1” will be used to set the entire sum to 8 bits all reading “1”. 



 

 

34 

If the number is below 512 the sum reads “0”. Since our image is being processed in the 

grayscale color scheme. 

 

3.1.3.1 Sobel RTL 

Sobel algorithm was then transferred to RTL level design. A structural approach 

was implemented. This allowed for the designs to be interchanged quickly and without 

excessive troubleshooting. Figure 3.1.3.1 is the exact design of the Sobel algorithm with 

each module being represented by a component box with the module’s name underneath. 

Each adder and subtractor within the exact Sobel design uses the exact models of the 

adders and subtractors. 

 

 
Figure 3.1.3.1 

Exact Sobel Design RTL 

 

Figure 3.1.3.2 shows the expanded view of module_A which is responsible for the 

difference between p2 and p0. It is implemented by instantiating 8 exact subtractors. 
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Figure 3.1.3.2 

Exact Sobel: Structural Expansion  

3.1.3.2 Sobel Approximate Designs 

From the list of approximate adder and subtractor designs discussed in Section 

2.3, 6 custom Sobel filters were created. Each module uses a subtractor or adders, so each 

module was given an approximation design and an approximation level. The 

approximation designs are outlined in the following graphs. The approximation level is a 

value that dictates how many bits, from least significant bit to most significant bit, using 

a specific design. 
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Figure 3.1.3.2.1 

Sobel Design: Custom 1 

 

Custom model 1 from Figure 3.1 uses approximate subtractor 1 (subApprox1) for 

the lowest 5 bits of the 8-bit subtractor for horizontal gradient (x_diff1, x_diff2, x_diff3) 

and the vertical gradient (y_diff1, y_diff2, y_diff3). The approximate adder 1 

(addApprox1) was used for the lowest 5 bits in the adders and the remaining higher bits 

used the exact design.  
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Figure 3.1.3.2.2 

Sobel Design: Custom 2 

Custom model 2 from the figure above uses approximate subtractor 1 

(subApprox1) for the lowest 5 bits of the 8-bit subtractor for horizontal gradient (x_diff1, 

x_diff2, x_diff3) and the vertical gradient (y_diff1, y_diff2, y_diff3). The approximate 

adder 1 (addApprox1) was used for the lowest 6 bits in the adders and the remaining 2 

higher bits used the exact design. Custom models 1 and 2 share the same arithmetic 

approximate designs sub1 and ap1. The number of bits approximated by sub1 was 

increased from 5 to 6 in order to test the amount of error introduced to the entire system 

by each bit approximated. 
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Figure 3.1.3.2.3 

Sobel Design: Custom 3 

Custom model 3 from the figure above uses approximate subtractor 2 

(subApprox2) for the lowest 4 bits. The approximate adder 2 (ap2) was used for the 

lowest 6 bits.  
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Figure 3.1.3.2.4 

Sobel Design: Custom 4 

Custom model 4 integrates the same approximate designs as custom 3. The level 

of approximation was increased by 1 for both the subtractors and the adders.  
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Figure 3.1.3.2.5 

Sobel Design: Custom 5 

Custom model 5 utilizes subApprox3 for the lowest 4 bits of all of its subtractors. 

All adders in this custom design use AP3 for the lowest 4 bits. The rest of the higher bits 

use the exact design. This design should give a significant power and space savings. 
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Figure 3.1.3.2.6 

Sobel Design: Custom 6 

 

Custom model 46integrates the same approximate designs as custom 5. The level 

of approximation was increased by 1 for both the subtractors and the adders. This is to 

demonstrate the difference in accuracy while decreasing the power and space 

consumption. 
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CHAPTER IV: 

EXPERIMENTAL RESULTS 

4.1 Image Output 

The following images were generated using results created by MATLAB. Each 

custom Sobel design was implemented in both RTL and MATLAB. 

Figure 4.1.1 is the image used as a static input to the system. 4.1.2 is the grayscale 

conversion. The Sobel algorithm is designed to take an 8-bit grayscale data input to 

perform calculations.  

 
Figure 4.1.1 

Input Image 

 
Figure 4.1.2 

Grayscale Converted Image 
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Figure 4.1.3 

Sobel Exact Design 

 

`  

 

Figure 4.1.4 

Sobel Custom Image 1 
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Figure 4.1.5 

Sobel Custom Image 2 

 

 
 

Figure 4.1.6 

Sobel Custom Image 3 
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Figure 4.1.7 

Sobel Custom Image 4 

 

 
 

Figure 4.1.8 

Sobel Custom Image 5 
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Figure 4.1.9 

Sobel Custom Image 6 

Each figure from Figure 4.1.3 to 4.1.9 is the result of the Sobel algorithm finding 

edges from the image in Figure 4.1.2. The graysale image was transferred in a 3×3 

kernel, pixel by pixel, to the Sobel algorithm. 

Each design was implemented to study the affect, if any, that increasing 

approximation has on the accuracy of the edge detection. The designs were created by 

adjusting the knob of accuracy to decrease the resource usage at the cost of accuracy.  

Looking back at the designs outlined in Section 3.1.3.2, we know that the image 

outputs are paired by approximate design. The intent was to show a qualitative loss of the 

image for the reader to see. Table 4.1.1 shows the quantitative difference between the 

exact and approximated design. 

 

4.2 FPGA Resources and Error Rate 

 Xilinx Vivado was used to implement the designs, and power and 

ultilization reports were used to get power and look-up table (LUT) usage.  
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Table 4.2.1 

 

Power and Slice Count 

Design Name Power (W) LUTs Slice as LUTs 

Exact Design 18.813 118 38 

Custom 1 16.877 125 38 

Custom 2 16.705 125 40 

Custom 3 15.953 124 40 

Custom 4 15.446 127 40 

Custom 5 16.076 101 32 

Custom 6 13.937 93 29 

 

The results show that the highest level of power usage came from the exact 

design, as we expected. This design has the longest critical path and the most components 

used. The amount of LUTs increased by a max of 7.1%, however that same comparison 

resulted in a decrease of power usage from 18.813 W to 15.446 W.  

Looking at Section 3.1.3.2 we see that Sobel approximate designs are paired 

together by approximate adder and subtractor design. Custom designs 1 and 2 use the 

same approximators while increasing the amount approximated. Continuing this trend, 

we link 3 and 4 by approximator 2 in both the adder and subtractor. Custom design 5 and 

6 are linked by approximation 3’s design of the adder and subtractor.  

This fact helps explain the image error rate between each custom model which is 

gathered in Table 4.1.1. 
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Table 4.1.1 

 

Custom Sobel Error Rate 

Custom Model Image Error 

1 0.75% 

2 1.80% 

3 0.60% 

4 1.39% 

5 1.14% 

6 2.68% 

 

Image Error = [
𝑆𝑜𝑏𝑒𝑙𝐸𝑥𝑎𝑐𝑡[𝑖,𝑗]−𝑆𝑜𝑏𝑒𝑙𝐶𝑢𝑠𝑡𝑜𝑚[𝑖,𝑗]

𝑆𝑜𝑏𝑒𝑙𝐸𝑥𝑎𝑐𝑡[𝑖,𝑗]
 × 100%] ×   

1

𝐼𝑚𝑎𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

 

The equation above was used to calculate the image error amount. The resultant 

image is scanned by its row, denoted i, and columns, denoted j, and compared to the 

Sobel exact design. The first portion of the equation in brackets calculates the error 

within a single pixel. The error rate is then divided by the image resolution in order to 

determine the percentage difference between the two images’ pixel values. The difference 

between the SobelExact and the SobelCustom The same picture was used to test the accuracy 

of each Sobel custom model. The SobelExact image was recorded and used as a rule 

against each custom design. Comparing the two images pixel by pixel and taking the 

average against the size of the image. This way we can show the accuracy of each binary 

image output. 
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CHAPTER V: 

CONCLUSION 

5.1 Conclusion 

This chapter concludes the contributions presented in this dissertation are 

summarized. First the alogrithm of quality and space tradeoff is presented and explained. 

This is followed by the concept of approximate design methodology, approximate design 

library, Sobel core design, proposed designs, and testing the validity of the energy to 

quality tradeoff. 

The implementation of 6 approximate Sobel designs and 4 subtractor approximate 

designs. Each increase in approximation reduced the amount of energy required at the 

cost of accuracy. This was a demonstration of the original quality knob algorithm 

suggested at the beginning of this disertation. It was expressed by incrementally 

increasing the approximation level of the Sobel design to showcase the tradeoff cost of 

accuracy with energy. 

 

5.2 Future Work 

Future wor could include the considering the implementation of the approximate 

design methodology into areas that require high volume processing with with low 

accuracy. For instance, an image processing system that can detect fruits or vegetables 

that are not ripe or overipened. This would be a high volume application, where the 

stakes are low when mistakes are made. 
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