

Copyright

by

Veneela Nagabandi

2018

DESIGNING TO LEARN TANGIBLE PROGRAMMING

by

Veneela Nagabandi, B. Tech

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Software Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2018

DESIGNING TO LEARN TANGIBLE PROGRAMMING

by

Veneela Nagabandi

APPROVED BY

 __

 Soma Datta, Ph.D., Chair

 __

 Michael Findler, Ph.D., Committee Member

 __

 Khondker Hasan, Ph.D., Committee Member

APPROVED/RECEIVED BY THE COLLEGE OF UNIVERSITY OF
HOUSTON- CLEAR LAKE:

Dr. Said Bettayeb, Ph.D., Associate Dean

__

Ju H. Kim, Ph.D., Dean

Dedication

To

The Field of Software Engineering and My family

v

Acknowledgements

I would like to express my sincere thanks, appreciation, and gratitude to all of those

who have directly or indirectly contributed to my research work and those who have

supported me throughout the entire process. I will always be grateful for that.

I would like to thank my supervisor Dr. Soma Datta for her excellent guidance and

engagement through my thesis period. She has been supportive since the day I began

working on my research. Her insightful discussions and suggestions on the research helped

me finish this thesis successfully. Moreover, I would like to thank my thesis committee,

Dr. Michael Findler, and Dr. Khondker Hasan, for their encouragement and their helpful

advice.

My immense love goes to my grandparents, Tataya(Grand Father) Lakshmi

Narayana Daram, Amma(Mummy) Rama Devi Nagabandi, Nana(Daddy) Ram Badraiah

Nagabandi, (Mavaya) Jaya Prakash Daram. I cannot thank them enough for their

unconditional love, support and care through all these years. I would not have made it this

far without them. Loads of love and thanks to my brother’s Karthik Nagabandi and Tarun

Kumar Reddy Mudireddy, who blossomed and cherished with me every great moment and

supported me by keeping me harmonious and helping me putting pieces together.

Finally, I would like to thank my friends, roommates, Sasank Ambadasugari for the

User Interface. Vamshi Krishna Velishetti, Sai Kumar Reddy Sheru, Sai Kiran Ippili, Sai

Charith Daggupati, Deepika Rapolu, Veena Namani, Sruthi Paritala, and Varsha

Bondugula for tapping me all the time to get my thesis progressed and for a wonderful love

they pour on me, making my life joyful.

vi

ABSTRACT

DESIGNING TO TANGIBLE PROGRAMMING

Veneela Nagabandi

University of Houston-Clear Lake, 2018

Thesis Chair: Dr. Soma Datta

The thesis describes a ubiquitous technique for learning tangible coding in R programming

language for middle and late elementary school students. It emphasizes the use of

inexpensive and durable wooden blocks with no embedded power supplies. These blocks

are shaped like the pieces of wooden cubes which contains basic syntax, functions, decision

making. Students integrate these wooden blocks to create a R programming statement in

offline settings such as on desks or floor in the classroom. An image of the tangible code

is captured using phone and uploaded to ‘R’ programming language through command

line. The image representation is finally executed using R interpreter. Alternatively, they

can also learn programming through drag and drop Interface. This tangible programming

technique stimulates interests among young students. It can help middle and high school

students to develop analytical skills, logical thinking, and affection for coding. The

hypothesis of this pedagogy is “Programming can be for all ages and be learnt by

vii

themselves with minimal given tools”. Moreover, this learning approach at an early age

helps remembering code syntax and offers more retention of programming syntax rate than

traditional classroom intangible programming [1].

viii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

Chapter Page

CHAPTER I: INTRODUCTION .. 1

CHAPTER II: MOTIVATION AND CONTEXT .. 6

What is programming? .. 6
What is tangible programming? .. 6

Why tangible programming? .. 6
Collaborative Programming .. 7

Debugging ... 7
Limitations of “visual” programming languages .. 7

CHAPTER III: RELATED WORK .. 9

CHAPTER IV: METHODOLOGY .. 12

Capturing the images using Camera ... 13

Wooden blocks.. 13
Importing the images into R software ... 14

Applying image processing techniques on the captured images using

imager package ... 15

Overview of imager package .. 15
Grayscale image .. 15
Thresholding ... 16

Pixel .. 16
Shrink and grow pixels ... 17

Extracting text from images using Optical Character Recognition 18
Evaluating the extracted text using R software... 18

Automating the tangible programming using the User-interface 19

User interface .. 19

CHAPTER V: EXPERIMENTAL AND RESULTS .. 20

Minimum function .. 20

VI. CONCLUSION AND FUTUREWORK .. 31

Conclusion .. 31

ix

Future Work .. 31

REFERENCES ... 33

APPENDIX A: OTHER EXPERIMENTAL RESULTS ... 35

Square root Function ... 35

Sum Function .. 39
Maximum Function ... 43
Log Function ... 47
Round Function ... 51
Mean Function .. 55

x

LIST OF TABLES

Table Page

Table 4.1 Syntax and cube color ... 13

Table 4.2 Threshold value for respective function image ... 16

Table 4.3 Shrink and grow values for respective function image 17

xi

LIST OF FIGURES

Figure Page

Figure 4.1 Overall workflow.. 12

Figure 4.2 An example captured image ... 13

Figure 4.3 Importing an image into R software ... 14

Figure 4.4 Input and Output to R software .. 18

Figure 5.1 A colored image which contains minimum function 20

Figure 5.2 After converting the minimum colored image to greyscale image 20

Figure 5.3 After converting the greyscale image into data frame.................................... 21

Figure 5.4 After applying the linear model on the minimum function greyscale

image data frame ... 21

Figure 5.5 Plot before and after trend removal from the greyscale minimum

function image .. 22

Figure 5.6 Plot before and after shrink, then grow pixels of the minimum function

greyscale image ... 22

Figure 5.7 Displaying the number of pixels in a minimum function greyscale

image ... 23

Figure 5.8 Extracting the text from image and evaluation ... 23

Figure 5.9 User Interface of UHCL e-learning system .. 24

Figure 5.10 Calculating the sum of 6 numbers .. 25

Figure 5.11 Evaluating the print function .. 26

Figure 5.12 Passing the value to the variable and displaying .. 27

Figure 5.13 Evaluating the if statement and displaying ... 28

Figure 5.14 Evaluating the switch statement and displaying ... 29

Figure 5.15 Reset the user interface ... 30

Figure A.1 A colored image which contains square root function 35

Figure A.2 After converting the square root image into greyscale image 35

Figure A.3 After converting the greyscale image into data frame 36

Figure A.4 Applying linear model on the data frame of square root function

greyscale image ... 36

Figure A.5 Before and after trend removal from square root function greyscale

image ... 37

xii

Figure A.6 Before and after shrink, then grow pixels of square root function

greyscale image ... 37

Figure A.7 Displaying the number of pixels in a square root function grey scale

image ... 38

Figure A.8 Extracting and evaluating text from square root function greyscale

image ... 38

Figure A.9 A colored image which contains sum function ... 39

Figure A.10 After converting the sum function colored image into greyscale

image ... 39

Figure A.11 After converting the sum function greyscale image into data frame 40

Figure A.12 Applying linear model on the data frame of sum function greyscale

image ... 40

Figure A.13 Before and after trend removal from sum function greyscale image 41

Figure A.14 Before and after shrink, then grow pixels from sum function

greyscale image ... 41

Figure A.15 Displaying the number of pixels in a sum function grey scale image 42

Figure A.16 Extracting and evaluating text from sum function greyscale image 42

Figure A.17 A colored image which contains maximum function 43

Figure A.18 After converting the maximum function image into greyscale image 43

Figure A.19 After converting the maximum function greyscale image into data

frame ... 44

Figure A.20 Applying linear model on the data frame of maximum function

greyscale image ... 44

Figure A.21 Before and after trend removal from maximum function greyscale

image ... 45

Figure A.22 Before and after shrink, then grow pixels from maximum function

greyscale image ... 45

Figure A.23 Displaying the number of pixels in a maximum function grey scale

image ... 46

Figure A.24 Extracting and evaluating text from maximum function greyscale

image ... 46

Figure A.25 A colored image which contains log function ... 47

Figure A.26 After converting the log function colored image into greyscale

image ... 47

Figure A.27 After converting the log function greyscale image into data frame 48

xiii

Figure A.28 Applying linear model on the data frame of log function greyscale

image ... 48

Figure A.29 Before and after trend removal from log function greyscale image 49

Figure A.30 Before and after shrink, then grow pixels from log function

greyscale image ... 49

Figure A.31 Displaying the number of pixels in a log function greyscale image 50

Figure A.32 Extracting and evaluating from log function greyscale image 50

Figure A.33 A colored image which contains round function ... 51

Figure A.34 After converting the round function colored image into greyscale

image ... 51

Figure A.35 After converting the round function greyscale image into data frame 52

Figure A.36 Applying linear model on the data frame of round function greyscale

image ... 52

Figure A.37 Before and after trend removal from round function greyscale image 53

Figure A.38 Before and after shrink, then grow pixels from round function

greyscale image ... 53

Figure A.39 Displaying the number of pixels in a round function grey scale

image ... 54

Figure A.40 Extracting and evaluating text from round function greyscale image 54

Figure A.41 A colored image which contains mean function ... 55

Figure A.42 After converting the mean function colored image into greyscale

image ... 55

Figure A.43 After converting the mean function greyscale image into data frame 56

Figure A.44 Applying linear model on the data frame of mean function greyscale

image ... 56

Figure A.45 Before and after trend removal from mean function greyscale image 57

Figure A.46 Before and after shrink, then grow pixels from mean function

greyscale image ... 57

Figure A.47 Displaying the number of pixels in a mean function grey scale image 58

Figure A.48 Extracting and evaluating text from mean function greyscale image 58

1

CHAPTER I: INTRODUCTION

Programming provides a way to understand information and content in almost

every aspect of daily life. The major difference between a traditional programming

language and a tangible programming language is that programming is explained in a more

theoretical manner in the former, while the latter explains programming in a more

actionable or practical manner. This helps in the process of learning and understanding the

concept of programming and helps students to retain these concepts in the later stages of

their lives. Integrating and teaching computer programming into classroom curriculum at

an early age with limited resources can be a massive task.

Learning a programming language for novice programmers contains several

activities, e.g., learning the language features, program design, and program

comprehension. Distinctive approach in textbooks and programming courses is to start with

declarative knowledge about a programming language. Several common deficits in

novices' understanding of definite programming language include variable initialization

which seems to be more difficult to understand rather than updating or testing variables.

Bugs with especially loops and conditionals are common and actions that take place

"behind the scene", like updating loop variables in "for" loops, are difficult for novice

programmers.

Students have often many misconceptions in their understanding or implementing

of recursion. Expressions that are syntactically close to each other or mean different things

in different contexts cause practical difficulties, e.g. "123" and 123, in programming

language. It is very important to distinguish between programming knowledge and

programming strategies. A student can learn to explain and understand a programming

concept, e.g., what does a loop mean, but still fail to use it appropriately in a program. A

few students may know the syntax and semantics of individual statements, but they do not

2

know how to combine these features into valid programs. Even when they know how to

solve the problem by hand, they have trouble translating it into an equivalent computer

program. It takes quite a long time to learn the relation between a program on the page and

the mechanism it describes.

Students have difficulties in understanding that each instruction is executed in the

state that has been created by the previous instructions. For example, tangible computer

programming language is an example of this kind of approach and was commonly used in

the 80's in introductory programming education. It is since, all the instructions which

include creating programs to control a robot movement on a display, thus making the

program state and transformations clearly visible. There is often little correspondence

between the ability to write a program and the ability to read one. Programming courses

should include them both. In addition, some basic test and debugging strategies should be

taught.

Another issue that complicates the learning of programming is the distinction

between the model of the program as it was intended, and the program as it is. There are

often mistakes in the design and bugs in the code. Also in working life, programmers need

to understand a program that is running in an unexpected way. This requires an ability to

trace code and to build a mental model of the program to predict its behavior. This is one

of the skills that could be developed by emphasizing program comprehension and

debugging strategies in the programming courses. Many classrooms have only limited

computers available for writing programs due to lack of funding. Furthermore, since the

lack of funding limits the number of teachers a school can hire, the students cannot learn

and understand the syntax by teaching programming through limited resources. This is

evident in countries like India where the resources are limited. The students needed to be

divided into small teams to teach programming in such an environment. Learning

3

programming syntax for novice students will be difficult and need teachers’ help

frequently.

Tangible programming is very similar to text-based and visual programming

language. However, instead of using pictures and words on a computer screen, a tangible

programming language uses physical objects such as wooden blocks, to represent various

programming elements, commands, and flow-of-control structures. Students integrate

these wooden blocks to form a physical construction that describes a computer syntax. By

giving programming a physical form, we believe that tangible languages have the potential

to ease the learning of complicated syntax, to improve the style and tone of student

collaboration, and to make it easier for teachers to maintain a positive learning environment

in the class. The programming languages explained using this approach at an early age

offers more retention rate than traditional screen-based classroom teaching. However,

Tangible User Interfaces (TUI) in other researches are not without drawbacks; the

technology involved is often delicate, expensive, and nonstandard, causing significant

problems in classroom settings where cost is always a factor and technology is not

dependable. Thus, to better explore potential benefits of tangible programming, this study

began with the development of tangible computer programming languages that are

inexpensive, reliable, and practical for classroom use.

This study attempts to address most of the aforementioned problems using teaching

programming in a tangible way. It employs in-class room kinetic based tangible technology

to teach computer statement to novice students while helping them to overcome possible

fears of learning programming.

This thesis describes a unique technique for designing, implementing and teaching

R language in a tangible way for middle and late elementary school students. It emphasizes

the use of inexpensive and durable wooden blocks with no embedded power supplies.

4

These wooden blocks which contain basic syntax, functions, decision making and many

more. Students integrate these wooden cubes to create a computer statement in offline

settings such as on desks or on a floor and use a portable scanning camera which can be

attached to the laptop or desktop to capture the pictures. The captured images are imported

into R console and image processing is performed using various image processing

techniques available in R packages such as EBImage, Magick, Imager and other similar

packages. The text is extracted from the processed images using Optical Character

Recognition (OCR) which is available in “tesseract” package in R. The common string

operations on the extracted text are performed by using “stringr” package in R

programming language. Finally, evaluation of the extracted text is performed using the

“eval” function in R programming language.

Alternatively, the students can also learn programming automatically through

Interface. The Interface contains drag and drop elements. Whenever user drags and drops

the elements and click the submit button the syntax is evaluated in R interpreter and results

are displayed on the User Interface. There is a “clear” button to clear the User Interface.

This helps novice programmers to learn and understand the syntax while overcoming the

problems faced due to limited resources such as desktops, laptops, tablets or teachers and

difficulties associated with learning programming.

It is important to note that tangible programming languages are not yet

commercially available, and their use has been restricted almost entirely to laboratory and

research settings. This study teaches R programming language which is a data science

language; learning in this language could help people understand the syntax of other

commercial programming languages [1]. Thus, the advantages outlined above are

hypothetical. Indeed, one of the primary goals of this project is to better understand how

5

commercial programming languages are taught using tangible methods, which might affect

student learning in classroom environments compared to more conventional learning.

6

CHAPTER II: MOTIVATION AND CONTEXT

Here, the motivation and context of the thesis is explained using various

programming contexts such as a tangible programming which explains the “tangible

programming language” was initially coined by Suzuki and Kato [1] to describe their

AlgoBlock, collaborative programming explains the teamwork, visual programming and

the most problematic part of learning how to program i.e., Debugging.

What is programming?

For the purposes of this thesis, programming is defined very broadly. Programming

ranges from simple to complex. It nearly takes years, for a software engineers to write

programs that varies from some hundreds to thousands of pages but programs written by

children are immensely small and uncomplicated which produces very intriguing

outcomes. The thesis primarily focuses on programs of this scale. Simple programs can be

greatly empowering to children and adults alike.

What is tangible programming?

The term “tangible programming language” was initially coined by Suzuki and

Kato [1] to describe their AlgoBlock collaborative programming environment for kids. The

unique feature that separates AlgoBlock apart from other programming environments is

the understandable nature of its user interface. Instead of manipulating virtual objects

displayed on a computer screen, users of AlgoBlock arranged physical blocks on a table to

communicate to the computer. “Tangible programming” refers to the activity of arranging

the blocks to build computer programs.

Why tangible programming?

There are several reasons why one might want to program by manipulating physical

objects. Some people, mostly children, learn more readily when physical objects are

involved in the learning process. The primary motivation is to make programming an

7

activity that is accessible to the hands and minds of younger children by making it more

direct and less abstract. Tangible programming may have an appeal even to experienced

abstract thinkers.

Collaborative Programming

One of my original motivations for pursuing tangible programming is to design a

programming environment where small group children can build programs together. Like

Suzuki and Kato, I am very much interested in programming environments which

encourages teamwork. This is difficult using traditional screen-based programming

environments because only one user can type on the keyboard at a time. When a program

is constructed out of physical objects i.e., in the tangible way, several children sitting

around a table can work together to integrate or modify the program as a team or each

person can create or modify their own methods independently of their teammates.

 Debugging

The problematic part of learning how to program is learning how to debug

programs. Debugging is a difficult activity to teach beginners, because the process of

debugging is largely a process driven by knowing what to look for and having an extremely

clear idea of what is going on inside the computer. Since it is exactly this modeling of these

invisible blocks that one is trying to teach when teaching students how to program, learning

how to program is hard. One of my goals is to make these invisible blocks visible by

making programs something that you can watch as it runs, thereby making debugging a

skill with a lower learning curve.

Limitations of “visual” programming languages

Screen-based graphical programming languages suffer from a numerous limitation;

Tools for manipulating textual-based programming languages are much more mature than

graphical programming tools. Textual programming languages make better use of screen

8

real estate than graphical programming languages, which often include extra decorations

around each functional block. In the domain of programming languages for children, this

is less of an issue because novice programmers need to gain experience while writing

simple programs before they start writing larger, more complex programs. A common

approach for evaluating and comparing visual languages is to quantify how sophisticatedly

and briefly an algorithm can be implemented.

9

CHAPTER III: RELATED WORK

Research studies about tangible programming languages using tangible

programming interface influenced us to implement and teach programming syntax to the

young school students. The earliest and most popular tangible programming language is

Suzuki and Kato’s AlgoBlocks [1], which looks identical to the Logo programming with

interlocking aluminum blocks containing programming syntax on it. These aluminum

blocks are integrated to form programs.

Most recently, Horn and Jacob [2] developed tangible programming language

called Tern, which emphasized on designing an inexpensive, durable, and practical system

for classroom use. It consists of a collection of wooden blocks which looks alike to the

pieces of Jigsaw puzzle. Students integrate these pieces to form computer programs which

may include action, commands, loops, branches, and subroutines.

In a similar project, Horn, Solovey, and Jacob [3] at Tufts University designed an

initial evaluation of a tangible computer programming for young children on display at the

Boston Museum of Science. The results from their evaluation at the science museum

indicate that passive tangibles can preserve many of the pros of tangible interaction for

informal science learning while remaining cost-effective and reliable.

Zukerman and Resnick’s [4] system blocks project that provides a physical tangible

interface for kids to model and explore dynamic systems. These system blocks with

embedded electronics express simple behaviors in a system. Their hope is that System

Blocks will enable children younger than sixth grade to model, simulate and analyze

dynamic systems that are meaningful to them.

McNerney’s [5] article from Springer research at MIT developed a tangible

programming bricks system- a platform for creating microworlds that help children to

explore computation and lateral thinking through free-form play.

10

Wyeth and Purchase [6] from the University of Queensland have designed

Electronic Blocks are tangible programming elements – blocks can be stacked and arranged

to form structures that interact with the physical world. By stacking Electronic Blocks,

young children build “computer programs” where each stack of Electronic Blocks is

capable of a different function.

Wellner [7] at Cambridge Laboratory has written a technical report which describes

the thresholding problem which must be overcome by Digital Desk applications and have

developed a quick adaptive thresholding algorithm that has proven to be quite suitable for

current purposes and which probably can be implemented in hardware.

 Blackwell and Hague [8] at University of Cambridge created a novel programming

language, Media Cubes, which supports end-user programming for domestic contexts.

Media Cubes are wooden blocks with bidirectional, infrared communication capabilities.

The Induction coil antenna detects direct proximity of another cube and is also used to

establish a relationship between an appliance and a cube.

de Ipina, Mendonca and Hopper [9] at University of Cambridge have developed

TRIP (Target Recognition using Image Processing) which is a novel cost-effective and

easily deployable sensor technology that offers an excellent degree of accuracy and

performance for the identification and 3-D location of tagged entities.

 Finally, Maloney, Burd, Kafai, Rusk, Silverman, and Resnick [10] from Lifelong

Kindergarten Group have developed an educational language called Scratch, which is not

tangible and adds programmability to the media-rich and networked-based activities that

are most popular among youth to further the development of technological applications at

after-school centers in economically-disadvantaged communities.

In most of the above examples, the wooden blocks or bricks that make up the

programming language contains some form of nested electronic components. When these

11

blocks are integrated, they provide dynamic behavior by sequentially executing algorithms

through integrating blocks. Our model differs from the experiments on a tangible

programming. It is a ubiquitous technique for implementing and teaching tangible

programming using Image processing techniques in R programming for middle and late

elementary school students. It emphasizes the use of inexpensive and durable blocks with

no embedded electronic supplies. Students integrate these wooden blocks to create a

computer program in offline settings such as on desks and use R software to compile their

code. The programming languages explained through this approach at an early age offers

more retention rate of syntax and semantics of the programming than traditional screen-

based classroom teaching.

12

CHAPTER IV: METHODOLOGY

Here, the overall workflow of the thesis is explained in the Figure 4.1. Initially the

students integrate the colored wooden blocks which contains R syntax and the image are

captured using phone and are imported into R software, then various image processing

techniques are applied on the captured images and then the text is extracted using Optical

Character Recognition (OCR) and various string operations are performed on the evaluated

text is evaluated by eval function.

Figure 4.1

Overall workflow

Capturing images using Camera and importing into R

Applying Image Processing techniques on captured Images

Extracting text from image using Optical Character Recognition

Performing common string operations on the extracted text

Evaluating text using R software

13

Capturing the images using Camera

Students integrate the wooden cubes on the floor or a desk and then the image

representation are captured using a Camera. A java application controls the flash, optical

zoom, and image resolution. Captured images are saved as JPEG type on the file system

and are imported into R programming software.

Figure 4.2

An example captured image

Wooden blocks

The prototype uses tangible wooden blocks. These blocks are 2 X 2 X 2 dimensions

in length, breadth and height respectively. The R programming syntax are imprinted on the

colored papers and are pasted on the wooden blocks. The style of the text is Times New

Roman for the text on all the cubes and font of the text varies depending on the

programming syntax.

Table 4.1

Syntax and cube color

Syntax Cube Color

Function pink

variables blue

operators green

numbers yellow

Special characters white

14

 The numbers, variables, special characters and operators have the font size

of 85 points whereas the functions have 54 points except the round function which is 36

points. Based on the syntax the colored papers are chosen. The colored paper for the

programming syntax is very essential because it makes the children to integrate the blocks

very easily. There is a rule while integrating the wooden cubes i.e., no two cubes which

has the same color should not be integrated together.

Importing the images into R software

The images are imported into R studio via the command line. Whenever the

command is executed on the R interpreter a pop-up box shows up asking you to select the

image and when the image is selected by the user and clicked open, the image gets imported

into R software. The Figure 4.3 shows importing an image into R software.

Figure 4.3

Importing an image into R software

15

Applying image processing techniques on the captured images using imager package

The various image processing techniques are applied to captured image by using a

“imager” package.

Overview of imager package

The imager package in R makes the image processing work much easier. It is based

on CImg, a C++ library which provides an easy-to-use and consistent Application

Programming Interface(API) for image processing, which imager largely replicates. CImg

supports images in up to four dimensions, which makes it suitable for basic video

processing/hyperspectral imaging as well. The imager aims to be fast, but also R-friendly,

and defines many convenience functions that make it easy to work with native R datatypes

and functions.

Grayscale image

A greyscale image is only one image which contains shades of grey color. The

reason for differentiating grey scale image from color image is that fewer information

needs to be provided for each pixel. In fact, a ‘grey’ color is one in which the red, green

and blue components have identical intensity in RGB space, and so it is essential to specify

a single intensity value for each pixel, as opposed to the three intensities needed to specify

each pixel in a full color image.

Frequently, the greyscale intensity is stored as 8-bit integer which gives 256

possible different shades of gray from black to white. If the levels are evently spaced then

the differences between successive graylevels is meaningfully better than the grayscale

resolving power of the human eye.

Greyscale images are most common because most of the today's display and image

capture hardware can only support 8-bit images. In addition, grayscale images are

16

completely sufficient for most of the tasks and so there is no need to use more complicated

and harder-to-process color images.

Thresholding

Thresholding corresponding to setting all values below a threshold to 0, all above

to 1. If you call threshold with thr="auto" a threshold will be computed automatically

using kmeans. This works well if the pixel values have a clear bimodal distribution. If you

call threshold with a string argument of the form "XX%" (e.g., "98%"), the threshold will

be set at percentile XX. Computing quantiles or running kmeans is expensive for large

images, so if approx == TRUE threshold will skip pixels if the total number of pixels is

above 10,000. Note that thresholding a color image will threshold all the color channels

jointly, which may not be the desired behavior.

Pixel

The Pixel is the smallest element of an image. Each pixel corresponds to any one

value. In a gray scale image, the value of the pixel is between 0 and 255. The value of the

pixel at any point correspond to the intensity of the light photons striking at that point.

Table 4.2

Threshold value for respective function image

Function image Threshold value

Minimum 5

Square root 6

Sum 4.75

Maximum 5.5

Log 5.5

Round 11.40

Mean 2.5

17

Since each imported image has different number of pixels and different illumination

of light, the threshold value of every image varies. The above Table 2 shows the various

threshold values and respective function.

Shrink and grow pixels

The Grow/shrink a pixel set through morphological dilation/erosion. The default is

to use square or rectangular structuring elements, but an arbitrary structuring element can

be given as input. A structuring element is a pattern to be moved over the image:

For Example: A 3*3 square.

In “shrink” mode, an element of the pixset is retained if and only if the structuring

element fits entirely within the pixset. In “grow” mode, the structuring element acts like a

neighbourhood: all pixels that are in the original pixset “or” in the neighbourhood defined

by the structuring element belong to the new pixset.

Table 4.3

Shrink and grow values for respective function image

Function image Shrink and grow value

Minimum 3

Square root 5

Sum 10

Maximum 11

Log 12

Round 2

Mean 7

18

Extracting text from images using Optical Character Recognition

Text extraction from the processed image is performed using a package called

“Tesseract” which is an open source (Optical Character Recognition) OCR Engine for R.

Optical character recognition (OCR) is the process of extracting written or printed text

from the images such as photos and scanned documents into machine-encoded text. It uses

training data for the language you are reading to perform OCR and works best for images

with high contrast, little noise and horizontal text.

Evaluating the extracted text using R software

Finally, the evaluation of the extracted text is performed by using a function called

“eval” which is available in R programming language.

Figure 4.4

Input and Output to R software

In the above Figure 4.4, the input is a JPEG or PNG image which is imported into

R Software and image processing techniques, text extraction and text evaluation is

performed. The output of the R software is the evaluated text.

Image

 Evaluated text Text extraction

Text Evaluation

Image Processing Techniques

19

Automating the tangible programming using the User-interface

User interface

The user interface is designed using html, CSS, JavaScript, and R software. It

contains the drag and drop elements, buttons. The student or the user drags and drops the

elements and clicks on the submit button. The syntax written by the user is evaluated using

the R compiler and displayed on the user interface. To make the user interface easy

accessible for the students, it is hosted on the shiny server and is accessible using the single

link.

20

CHAPTER V: EXPERIMENTAL AND RESULTS

Here, the results that is the final output where the text is detected and extracted

from the image and evaluated in R Programming language software for the output by

using the methodology as explained in earlier chapters.

Minimum function

The Figure 5. 1 shows A minimum function colored images which is captured using

phone and imported into R software and displayed.

Figure 5.1

A colored image which contains minimum function

The Figure 5. 2 shows the application of an image processing technique on the

minimum function colored image to greyscale image using imager package in R software.

Figure 5.2

After converting the minimum colored image to greyscale image

21

The Figure 5. 3 shows the conversion of minimum function greyscale image to data

frame in R

Figure 5.3

After converting the greyscale image into data frame

The Figure 5. 4 shows the application of a linear model on the minimum function

greyscale image data frame

Figure 5.4

After applying the linear model on the minimum function greyscale image data frame

22

The Figure 5. 5 shows the plot before and after trend removal from the minimum

function greyscale image

Figure 5.5

Plot before and after trend removal from the greyscale minimum function image

The Figure 5. 6 shows the plot before and after shrink, then grow pixels of the

minimum function greyscale image.

Figure 5.6

Plot before and after shrink, then grow pixels of the minimum function greyscale image

23

The Figure 5. 7 shows the number of pixels in a minimum function greyscale image

Figure 5.7

Displaying the number of pixels in a minimum function greyscale image

The Figure 5. 8 shows the extracting text from the minimum function greyscale

image using optical character recognition and applying the string operations on the

extracted text using stringr package. The output after applying the string operation is

evaluated using eval function and display the results.

Figure 5.8

Extracting the text from image and evaluation

24

Alternatively, the programming can also be learnt through the Interface. The

below Figure 5.9 shows the user interface

Figure 5.9

User Interface of UHCL e-learning system

25

The Figure 5.10 shows the calculating the sum of 6 numbers. Whenever user

drags and drops the elements and click the submit button the result is displayed.

Figure 5.10

Calculating the sum of 6 numbers

26

The Figure 5.11 shows the print function. The text passed to the print function will

be displayed as a result to the user.

For Example: In the below Figure 5.11, the text “min” is passed to the print

function. When the user clicks the submit button, the text min is displayed as an output and

when the user clicks the Reset button, the interface will be cleared.

Figure 5.11

Evaluating the print function

27

The Figure 5.12 shows the passing the value to the variable and displaying it.

For Example: In the Figure 5.12 the value “2” is passed to the variable “a” and

displayed to the user.

Figure 5.12

Passing the value to the variable and displaying

28

The Figure 5.13 shows evaluating the decision making “if statement” and

displaying it on the user interface.

For Example: The integer value “3L” is passed to the variable “a”. The decision

making if statement is evaluated for is.integer. If the statement is evaluated true then it

prints “a”.

Figure 5.13

Evaluating the if statement and displaying

29

The Figure 5.14 shows evaluating the decision making “switch statement” and

displaying it on the user interface.

For Example: The variable “a” is passed as a first element to the switch decision

making statement and printing the variable a on the user Interface.

Figure 5.14

Evaluating the switch statement and displaying

30

The Figure 5.15 shows resetting the user interface by clicking on the reset button.

Figure 5.15

Reset the user interface

31

VI. CONCLUSION AND FUTUREWORK

Conclusion

This thesis intends to explain a ubiquitous technique for designing and learning

tangible programming using manually through image processing techniques and

automatically using the user interface. These introduce the programming language at an

early age for late elementary and middle school students. Our tangible programming

language consists of inexpensive and durable wooden cubes, which have no embedded

power supplies. The programs would be written by students on a physical desk or a floor

and then the pieces would be integrated to form a computer program [4]. The programs

would then compile in R software using image processing techniques. This practical

approach expects to help students to learn programming in their classrooms with minimal

tools (limited desktops or laptop computers) and limited adult guidance.

Alternatively, the students or the user can also learn programming automatically

through the user interface designed in R using shiny package. Whenever user drags and

drops the elements and click the submit button, the results are evaluated in R software and

displayed on the user interface.

Future Work

Firstly, this research can be used to create an accurate machine learning models

capable of localizing and identifying multiple objects in a single image. After detecting the

objects, the text can extracted by identifying the labels and can evaluated using R software

for the result.

Secondly, stencils can be used for writing programming syntax and to recognize,

extract and evaluate using the interpreter or the compiler for results

Finally, magnetic blocks could be used instead of wooden blocks to recognize the

programming syntax. The magnetic blocks are designed such that, two same-colored

32

magnetic blocks would not be attracted. When the last magnetic block is integrated, the

mobile app could automatically capture the image and give the result.

33

REFERENCES

1. Suzuki, H. and Kato, H. Interaction-level support for collaborative learning:

Algoblock–an open programming language. In Proc. CSCL ’95, Lawrence Erlbaum

(1995).

2. Horn, M. and Jacob, R.J.K. Tangible Programming in the Classroom: A Practical

Approach. Extended Abstracts CHI 2006, ACM Press (2006).

3. Horn, M. S., Solovey, E. T., & Jacob, R. J. K. (2008). Tangible programming and

informal science learning: making TUIs work for museums. Paper presented at the

Proceedings of the 7th international conference on Interaction design and children,

Chicago, Illinois.

4. Zuckerman, O. and Resnick, M. A physical interface for system dynamics

simulation. Extended Abstracts CHI 2003, ACM Press (2003), 810-811.

5. McNerney, T.S. From turtles to Tangible Programming Bricks: explorations in

physical language design. Personal Ubiquitous Computing, 8(5), Springer Verlag

(2004), 326–337.

6. Wyeth, P. and Purchase, H.C. Tangible programming elements for young children.

Extended Abstracts CHI 2002, ACM Press (2002), 774–775.

7. Wellner, P.D. Adaptive thresholding for the DigitalDesk. Technical Report EPC-

93-110, Euro PARC (1993).

8. Blackwell, A.F. and Hague, R. Autohan: An architecture for programming in the

home. In Proc. IEEE Symposia on Human-Centric Computing Languages and

Environments 2001, 150-157.

9. de Ipina, D.L., Mendonca, P.R.S. and Hopper, A. TRIP: A low-cost vision-based

location system for ubiquitous computing. Personal and Ubiquitous Computing, 6

(2002), 206–219.

34

10. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and Resnick, M. Scratch:

a sneak preview. In Proc. Second International Conference on Creating,

Connecting, and Collaborating through Computing C5 ‘04. IEEE (2004), pp 104-

109.

11. Mayer, R. (1981). The Psychology of How Novices Learn Computer Programming.

ACM Computing Surveys (CSUR), 13(1), 121-141. doi:10.1145/356835.356841.

12. Pane, J. F., Ratanamahatana, C., & Myers, B. A. (2001). Studying the language and

structure in non-programmers' solutions to programming problems.

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 54(2), 237-

264.

13. Pea, R. D., & Kurland, D. M. (1984). ON THE COGNITIVE EFFECTS OF

LEARNING COMPUTER-PROGRAMMING. NEW IDEAS IN PSYCHOLOGY,

2(2), 137-168.

14. Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13(2), 137-

172. doi:10.1076/csed.13.2.137.14200.

15. R.J.K. Jacob. "CHI 2006 Workshop Proceedings: What is the Next Generation of

Human-Computer Interaction?," Technical Report 2006-3, Dept. of Computer

Science, Tufts University, Medford, Mass. (2006).

35

APPENDIX A: OTHER EXPERIMENTAL RESULTS

Square root Function

Figure A.1

A colored image which contains square root function

Figure A.2

After converting the square root image into greyscale image

36

Figure A.3

After converting the greyscale image into data frame

Figure A.4

Applying linear model on the data frame of square root function greyscale image

37

Figure A.5

Before and after trend removal from square root function greyscale image

Figure A.6

Before and after shrink, then grow pixels of square root function greyscale image

38

Figure A.7

Displaying the number of pixels in a square root function grey scale image

Figure A.8

Extracting and evaluating text from square root function greyscale image

39

Sum Function

Figure A.9

A colored image which contains sum function

Figure A.10

After converting the sum function colored image into greyscale image

40

Figure A.11

After converting the sum function greyscale image into data frame

Figure A.12

Applying linear model on the data frame of sum function greyscale image

41

Figure A.13

Before and after trend removal from sum function greyscale image

Figure A.14

Before and after shrink, then grow pixels from sum function greyscale image

42

Figure A.15

Displaying the number of pixels in a sum function grey scale image

Figure A.16

Extracting and evaluating text from sum function greyscale image

43

Maximum Function

Figure A.17

A colored image which contains maximum function

Figure A.18

After converting the maximum function image into greyscale image

44

Figure A.19

After converting the maximum function greyscale image into data frame

Figure A.20

Applying linear model on the data frame of maximum function greyscale image

45

Figure A.21

Before and after trend removal from maximum function greyscale image

Figure A.22

Before and after shrink, then grow pixels from maximum function greyscale image

46

Figure A.23

Displaying the number of pixels in a maximum function grey scale image

Figure A.24

Extracting and evaluating text from maximum function greyscale image

47

Log Function

Figure A.25

A colored image which contains log function

Figure A.26

After converting the log function colored image into greyscale image

48

Figure A.27

After converting the log function greyscale image into data frame

Figure A.28

Applying linear model on the data frame of log function greyscale image

49

Figure A.29

Before and after trend removal from log function greyscale image

Figure A.30

Before and after shrink, then grow pixels from log function greyscale image

50

Figure A.31

Displaying the number of pixels in a log function greyscale image

Figure A.32

Extracting and evaluating from log function greyscale image

51

Round Function

Figure A.33

A colored image which contains round function

Figure A.34

After converting the round function colored image into greyscale image

52

Figure A.35

After converting the round function greyscale image into data frame

Figure A.36

Applying linear model on the data frame of round function greyscale image

53

Figure A.37

Before and after trend removal from round function greyscale image

Figure A.38

Before and after shrink, then grow pixels from round function greyscale image

54

Figure A.39

Displaying the number of pixels in a round function grey scale image

Figure A.40

Extracting and evaluating text from round function greyscale image

55

Mean Function

Figure A.41

A colored image which contains mean function

Figure A.42

After converting the mean function colored image into greyscale image

56

Figure A.43

After converting the mean function greyscale image into data frame

Figure A.44

Applying linear model on the data frame of mean function greyscale image

57

Figure A.45

Before and after trend removal from mean function greyscale image

Figure A.46

Before and after shrink, then grow pixels from mean function greyscale image

58

Figure A.47

Displaying the number of pixels in a mean function grey scale image

Figure A.48

Extracting and evaluating text from mean function greyscale image

