Linear layouts play an important role in many applications including networks and VLSI design. Stack and queue layouts are two important types of linear layouts. We consider the stack number, $s(G)$, and queue number, $q(G)$, for multidimensional k-ary hypercubes and toruses. Heath, Leighton, and Rosenberg showed that d-dimensional ternary hypercubes have stack number $\dot{\iota},\left(\begin{array}{l}1 / 9\end{array}\right)$, with $\mathrm{N}=3^{\text {d }}$ nodes. Malitz showed that E edges implies stack number $\mathrm{O}(¿ E)$. For k-ary d-dimensional hypercubes, with $\mathrm{N}=\mathrm{k}$ d vertices, Malitz's bound is $\mathrm{O}\left(\mathrm{k}^{d / 2}\right)$. We improve this to $2^{d+1}-3$. The $2^{d+1}-3$ bound holds for arbitrary d-dimensional toruses. The queue number of d-dimensional k-ary hypercubes or toruses is bounded by $\mathrm{O}(\mathrm{d})$. Hence, Heath, Leighton, and Rosenberg exhibit an exponential tradeoff between s(G) and $q(G)$ for multidimensional ternary hypercubes. Conversely, they conjectured that, for any $G, q(G)$ is $O(s(G))$. We present a family $\{H\}$ of modified multidimensional toruses and conjecture that $\mathrm{q}(\mathrm{H})$ is not $\mathrm{O}(\mathrm{s}(\mathrm{H}))$.

