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ABSTRACT 

CLASSIFICATION OF COCAINE ADDICTED PATIENTS USING 3D TO 1D 

HILBERT SPACE-FILLING CURVE ORDERING  

OF FMRI ACTIVATION MAPS  
 

 
 

Jessica De Leon 
University of Houston-Clear Lake, 2018 

 
 
 

Thesis Chair: Dr. Unal “Zak” Sakoglu 
 
 
 

In analysis of functional magnetic resonance imaging (fMRI), transformation of 

the 3D brain imaging data to 1D is required for further analyses, which often includes the 

classification of different groups of participants. The conventional transformation method 

is linear ordering, which results in a 1D vector that has a high amount of discontinuity 

which does not preserve the structure of the brain. A Hilbert space-filling curve can better 

preserve the structure of the brain after the transformation. Features obtained after a 

transformation based on Hilbert space-filling curve should lead to better classification 

performance.  

In this work, we applied Hilbert curve transformation to completely de-identified 

brain fMRI activation maps from 59 cocaine-addicted and 25 age-matched control 

participants and classify them as controls vs. patients using machine learning algorithms. 

Classification based on features from Hilbert space-filling curve ordering resulted in 

higher classification accuracy of cocaine-addicted patients vs. controls than those of 

conventional linear ordering.  



 
 

vi 

TABLE OF CONTENTS 
 

List of Figures ................................................................................................................... vii 
 

Chapter              Page 

CHAPTER I: INTRODUCTION ........................................................................................ 1 

CHAPTER II: PROBLEM STATEMENT ......................................................................... 6 

CHAPTER III: METHODS AND MATERIALS .............................................................. 9 

CHAPTER IV: PRELIMINARY RESULTS ................................................................... 22 

CHAPTER V: CLASSIFICATION RESULTS ................................................................ 24 

CHAPTER VI: RESULTS AND DISCUSSION ............................................................. 33 

CHAPTER VII: FUTURE WORK ................................................................................... 36 

CHAPTER VIII: CONCLUSION ..................................................................................... 37 

REFERENCES ................................................................................................................. 39 

APPENDIX A ................................................................................................................... 41 
Sample of Matlab script producing the Hilbert Space Filling Curve .................... 41 

APPENDIX B ................................................................................................................... 44 
Sample of Matlab script producing the Linear Ordering Data ............................. 44 

APPENDIX C ................................................................................................................... 47 
Sample of Matlab script producing the Three Dimensional Reconstruction 
(Used for both Hilbert and Linear Data) ............................................................... 47 

 
  



 
 

vii 

LIST OF FIGURES 

Figure               Page 

Figure 1.1  The Steps in the Analytical Representation of the Hilbert Space-
Filling Curve [12] ............................................................................................................... 2 

Figure 1.2  Geometric Generation of the Hilbert Space-Filling Curve [12] ....................... 3 

Figure 1.3  Linear Ordering of a 3D Array in Row-Major [13] ......................................... 4 

Figure 2.1  3rd Order Hilbert Curve .................................................................................... 7 

Figure 2.2  6th Order Hilbert Curve ..................................................................................... 7 

Figure 3.1  Sample fMRI Activation Map from a Participant .......................................... 10 

Figure 3.2  MRIcron User Interface .................................................................................. 10 

Figure 3.3  SPM (Statistical Parametric Mapping) Toolbox ............................................ 11 

Figure 3.4  SPM Batch Editor Tool .................................................................................. 12 

Figure 3.5  Standard Linear Ordering of a Single Participant Volume Data: 
Scattered Brain Features ................................................................................................... 13 

Figure 3.6  6th Order Hilbert Curve Ordering of Two Participant’s Volume Data: 
Clustered ........................................................................................................................... 14 

Figure 3.7  Traditional Linear Ordering with portions of data removed at a 
threshold of 0.1 ................................................................................................................. 15 

Figure 3.8  Hilbert-Space Filling data with portions of data removed at a threshold 
of 0.1 ................................................................................................................................. 15 

Figure 3.9  17 participants Traditional Linear ordering data ............................................ 16 

Figure 3.10  17 participants Traditional Linear ordering data with zero removal ............ 16 

Figure 3.11  17 participants Hilbert Space Filling Curve data ......................................... 17 

Figure 3.12  17 participants Hilbert Space Filling Curve data with zero removal ........... 17 

Figure 3.13  Traditional Linear Ordering binned for every stretch of 2000+ zero 
values; Bin size at 500 ...................................................................................................... 18 

Figure 3.14  Hilbert-Space Filling data binned for every stretch of 2000+ zero 
values; Bin size at 500 ...................................................................................................... 19 

Figure 3.15  Preliminary Activation Map Overlay ........................................................... 21 

Figure 4.1   Classification results for the linear ordered data ........................................... 22 

Figure 4.2  Classification results for the Hilbert-Curve data ............................................ 23 



 
 

viii 

Figure 6.1  Brain Activation Map at point (27, 44, 24) Axial, Coronal, Sagittal 
View (Linear Features are in Blue and Hilbert Features are in Green) ............................ 34 

Figure 6.2  Brain Activation Map Multi-slice View of Hilbert (Green) and Linear 
(Blue) Activation Points Overlaid on a Brain Activation Map ......................................... 35 



 
 

1 

CHAPTER I: INTRODUCTION 

The human brain has fascinated researchers and scientists for years. Various 

neuroimaging technologies have enabled the imaging of the brain and its activity. There 

have been many theories trying to provide insight to how the brain functions and how we 

can interpret neuroimaging data. The activity of neurons in the human brain constantly 

fluctuate as one engages with environment. Even simple motor tasks such as reaching out 

for a cup of coffee to complex cognitive activities such as language translation each 

involve different neuronal activation patterns in the brain. Functional magnetic resonance 

imaging (fMRI) is a neuroimaging technique used for measuring and mapping brain 

activity in a noninvasive way. This method can provide high resolution images of 

different portions of the brain over time. In fMRI, neural activity is indirectly measured 

as a blood oxygen level dependent (BOLD) imaging signal. BOLD fMRI can map brain 

activity using the difference in magnetic properties between oxygen-rich and oxygen-

poor regions of the brain, while the participants engage in different tasks or stimuli, or 

while they are just at rest [1]. Activation patterns of different participant groups are 

usually of interest in fMRI studies. 

 

In analysis of fMRI, and as well as in any brain imaging modality such as PET, 

CT, SPECT, etc., transformation of the 3D spatial brain imaging data to 1D is required 

for further analyses. The 3D spatial data can be 3D structural data or 3D brain activation 

maps obtained from multiple functional 3D datasets. The conventional method for such 

transformation is linear ordering, which results in a 1D vector that has a very high 

amount of discontinuity in which the information of the brain structure or the activation is 

almost completely lost. A space-filling curve instead can better preserve the structure of 

the brain after the transformation.  
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A space-filling curve is a curve that passes through each point of a square at least 

once without ever crossing itself. It is a continuous curve mapping from a closed and 

bounded line segment and is designed to fill a unit square while limited by the iteration 

amount set [12]. The optimal transformation will minimize discontinuity of the brain 

elements and will capture each of the elements as a single continuous 1D structure. This 

ensures that the anatomically close 3D volume elements, referred to as “voxels”, will 

appear near each other in the ordered 1D array [2].  

 

 
Figure 1.1 

 
The Steps in the Analytical Representation of the Hilbert Space-Filling Curve [12] 

 

A Hilbert curve, among many space-filling curves, is a relatively easy curve to 

generate often used in image processing and pattern recognition. It has shown that it 

preserves the 3D spatial structure better by traversing all the voxels of the brain with 

minimal to no change in the brain signal it once represented [2]. Hilbert curves are able to 

map between different dimensions while also preserving the locality of the signal. This 

will result in a clustering effect on the brain image signal that will allow for a better 
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feature extraction of the signal. Features obtained after a transformation based on Hilbert 

space-filling curve should lead to better classification performance. 

 

 

 

Figure 1.2 
 

Geometric Generation of the Hilbert Space-Filling Curve [12] 

 

Classification of cocaine-addicted patients using brain imaging techniques such as 

fMRI and pinpointing to the brain regions which contribute to the classification features 

the most would help scientists understand the physical and mental manipulations of 
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cocaine addiction better. Performance of classification algorithms depend highly on the 

selection process of appropriate features used to determine the algorithm result. fMRI 

data has much more features (voxels) than samples/instances (in our case participants), 

therefore the number of voxels must be reduced before performing the classification 

process. Before the reduction, fMRI data is generally transformed from 3D to 1D. 

Traditionally, this transformation has been based on linear ordering in Cartesian (x,y,z) 

coordinates. It is noted as a “naïve” conversion of multidimensional values to a 1D linear 

sequence that read the brain imaging signal in a left to right, top to bottom, and front to 

back positionings. Then the data is down-sampled usually after 1D ordering (and/or some 

before the ordering). This causes loss in information of brain structure or activation 

information in that the structural information of the signal is lost in the transformation of 

the points. Attempting to interpret a Linear ordered brain signal has proven rather 

difficult as the structure is no longer there to help visualize the brain and relies on 

interpolation of the data points which builds on the algorithm complexity [2].  
 

Figure 1.3 
 

Linear Ordering of a 3D Array in Row-Major [13] 
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On the other hand, transformation from 3D to 1D can be done using space-filling 

curves as we have described before and have been noted to create better localization of 

the data and better features to select from before classification processing. 

 

In this work, we applied Hilbert curve transformation to completely de-identified 

brain fMRI activation maps from 59 cocaine-addicted and 25 age-matched control 

participants and classify them as controls vs. patients using machine learning algorithms. 

After gathering preliminary results from a smaller group of participants showcasing that 

the proposed approach could result in higher classification accuracy than that of 

conventional linear ordering, we applied the classification to a larger group of 

participants. We describe the methodology and the results in the following chapters.  
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CHAPTER II: PROBLEM STATEMENT 

We aim to classify cocaine-addicted participants by utilizing differences in the 

patterns of fMRI activation maps related to cocaine drug use from fMRI images. fMRI 

volumes are acquired in 3 spatial dimensions (3D) and the volumes as with any computed 

activation maps must be converted to one dimensional (1D) arrays prior to further 

classification analysis. The traditional method of conversion to 1D has been linear 

ordering, which results in a 1D vector that has high number of discontinuities in the 

dataset. In linear ordering, the 3D data is scanned consecutively along the first, the 

second, and then the third dimension to obtain a 1D ordering of volumes. Linear ordering 

therefore results in big "jumps" or "discontinuities"; hence, it does not preserve the 

inherent clusters and locality of the brain structures or any focal brain activity.  

 

To address this issue, we propose using a Hilbert-Space Filling curve (SFC) for 

1D ordering which results in a smaller number of discontinuities in the ordered image. A 

space-filling curve (SFC) can define a continuous path in a multidimensional grid that 

visits each point exactly once and never crosses itself. This provides a more continuous 

and smoother dataset that is resistant to "jumps" in the dataset [2]. The Hilbert SFC 

proceeds recursively, in a fractal-like manner, following the same rotation and reflection 

pattern at each vertex of the basic curve. This recursive structure can be seen below as 

samples of the fractal curve in the 3rd and 6th order.  
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Figure 2.1 
 

3rd Order Hilbert Curve 

 

 
 

Figure 2.2 
 

6th Order Hilbert Curve 

 

By traversing the 3D space of fMRI maps (e.g. usually a 64×64×64 matrix) using 

the Hilbert SFC, the 3D image can be linearly mapped into 1D space which is a 1D 
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vector (643 ×1). The Hilbert-curve has been shown to better preserve the structure of the 

brain after ordering it to lower dimensions such as in 1D [2] and it was already utilized in 

classification based on fMRI activation maps in classifying Alzheimer’s [3].  

 

In this work, we applied Hilbert-curve ordering to fMRI activation maps in 

classifying cocaine-addicted patients vs. control patients. We used completely de-

identified fMRI activity maps from the two groups of participants, drug-addicted patients 

and healthy controls. In this work, we utilized machine learning algorithms such as 

Bayesian networks and support vector machines to classify patients vs. controls, and the 

results are compared to the same dataset with linear ordering and processed through the 

same classification algorithm. Once preprocessed, we studied the most discriminative 

brain regions, by mapping them back their original 3D form. Good classification results 

combined with confident findings of focal brain regions in discrimination can provide 

more information and insight into cocaine drug addiction and its effects on the brain.  
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CHAPTER III: METHODS AND MATERIALS 

We are using completely de-identified fMRI activation maps from 84 participants, 

59 cocaine-addicted (CA) and 25 controls, provided in a .nii file format, each calculated 

based on a stop-signal test. Stop-signal tests is a test which measures ability to self-

control/inhibit [11]. CA patients met the criteria for SCI DSM-IV Axis I Disorders, and 

the commonly-practiced criteria for exclusion were used. Research protocol for the scans 

was reviewed and approved by the IRB of the local institution, University of Texas 

Southwestern Medical Center (UTSW) – Dallas. Permission to use the completely de-

identified data for data analysis was obtained from the PI at UTSW. fMRI scans were 

acquired using a 3T Philips scanner, with 3.25mm×3.25mm in-plane resolution, 36 slices 

(thickness/gap=3/0mm), 208×208×108mm FOV, 64×64×36 matrix, TR/TE/flip 

angle=1700/25ms/70°, gradient echo EPI with 384 volumes over the duration of about 

653 seconds [7]. 

 

The .nii format is typically used in the medical imaging field which is ready to 

view in neuroimaging data viewing software such as MRIcron. This allows for medical 

personnel and researchers to be able to view the brain from several angles and note 

different regions of the brain. MRIcron is an image viewer that can load multiple layers 

of fMRI images, generate volume renderings, and draw volumes of interest [5]. We used 

this program to view our original image data and later our reconstructed images. 
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Figure 3.1 
 

Sample fMRI Activation Map from a Participant 

  

 
 

Figure 3.2 
 

MRIcron User Interface 
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Each fMRI file provided is originally a 91×109×91 volume matrix containing t-

values of activation with 2mm×2mm×2mm voxel resolution. For preprocessing, in order 

to fit the dimensions into our 643 matrix scope; each data set is resampled and co-

registered to a 53×63×46 common matrix with 3mm×3mm×3mm voxel resolution, 

known as the common brain template. This was done using the MATLAB-based 

Statistical Parametric Mapping (SPM) toolbox, a free and open source software program.  

 

 

 
Figure 3.3 

 
SPM (Statistical Parametric Mapping) Toolbox 
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This tool is widely used for the analysis of brain imaging data sequences [4]. 

Most importantly this program offers a function to convert the .nii file format to a .mat 

file that is ready to be used in MATLAB software.  

 

 

 
 

Figure 3.4 
 

SPM Batch Editor Tool 

 

Our script files were written using MATLAB, a high-performance language 

commonly used for technical computing in science and engineering disciplines. Short for 

Matrix Laboratory, MATLAB has many functions that help process our matrix datasets 

[5].  
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The compressed matrices were then be zero-padded to 64×64×64 matrix 

dimensions so that we could apply a sixth order Hilbert curve. After the application, the 

images were transformed into one-dimensional arrays. We then implemented a “zero-

removal” script to get rid of non-brain portions, which have small values that fall below a 

minimum threshold. The zero-removal script can change the threshold and consecutive 

sequence values depending on how aggressive we want the function to be. The same 

zero-adding and zero-removal functions are applied both to the linear-ordered dataset, and 

the Hilbert curve application. We used the same preprocessing parameters for Hilbert 

curve data and the linear ordering data in order to have fair comparisons of the 

classification results. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5 

 
Standard Linear Ordering of a Single Participant Volume Data: Scattered Brain 

Features 
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Figure 3.6 
 

6th Order Hilbert Curve Ordering of Two Participant’s Volume Data: Clustered 

 

The 3D maps for each participant were converted to 1D using Hilbert ordering 

and linear ordering, which resulted in 64 ×1 series of arrays. The sections of the arrays 

which had long consecutive stretches (ls >2000, 1000, 500, or 100) of practically very 

low t-values (<0.1) were removed from both arrays (our "zero-removal" or “zero-

activation points”). The Hilbert dataset then showed distinct clusters of activation points 

compared to the linear dataset which showed many more continuous clusters.  
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Figure 3.7 
 

Traditional Linear Ordering with portions of data removed at a threshold of 0.1 
 

 
 

Figure 3.8 
 

Hilbert-Space Filling data with portions of data removed at a threshold of 0.1 
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Figure 3.9 
 

17 participants Traditional Linear ordering data 
 

 
 

Figure 3.10 
 

17 participants Traditional Linear ordering data with zero removal 
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Figure 3.11 
 

17 participants Hilbert Space Filling Curve data 
 

 
 

Figure 3.12 
 

17 participants Hilbert Space Filling Curve data with zero removal 
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Binning is a strategy we used to divide the data into discrete sets; each is the same 

in size, containing an equal number of voxels. This makes the feature extraction process 

easier to select as the Hilbert processed data created bins each containing a different 

localized region of the brain. This is opposed to the linear ordering method that contains 

less localized data sets per each bin and leads to overlapping of more than one bin in a 

brain region. Depending on the length of the stretch, ls, wee constructed the 

corresponding bins, each containing the average/mean activation values of the ls number 

of voxels in each bin.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.13 

 
Traditional Linear Ordering binned for every stretch of 2000+ zero values; Bin size at 

500 
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Figure 3.14 
 

Hilbert-Space Filling data binned for every stretch of 2000+ zero values; Bin size at 500 
 

 

Any extra bins containing zero values were manually removed after the extraction 

algorithm, this is due to our zero-removal function's conservative nature. Different bin 

sizes may improve the feature extraction methods for the neural network as each bin 

becomes more descriptive of the brain region with the more constrained our binning 

becomes. Once the data was binned, we exported the bin values to a .CSV (Comma 

Separated Values) file in preparation for the classification techniques.  

 

Before applying a neural network algorithm, we first preprocessed our data to 

restrict the inputs for the network in order to create better classification results. We used 

an open source software, Weka. This software offers a wide range of machine learning 

algorithms on an interface designed for data mining-based problems. The software 
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creates its own file type (.ARFF) that is an Attribute-Relation File Format that contains 

the list of instances from a set of data that share a set of attributes. An instance is 

considered a row of data as in an observation from the problem domain and an attribute 

that is a column of data as a feature of the observation [8]. We used the Correlation 

Feature Selection (CFS) subset evaluator as our feature reduction algorithm. The premise 

of the computation is to select the attributes that have a higher probability of containing 

features corresponding to each class. It can identify and screen irrelevant data, redundant 

or noisy features, and provide an output of only strongly correlated features. The 

algorithm does not require any user specified threshold values or restrictions, this is a 

fully automatic algorithm that works as a filter on the dataset provided [9].  

 

Once the features are selected for each data, the selected bins are ready for 

training a neural network. We utilized the Bayesian Network (BayesNet) supervised 

learning algorithm that creates a directed probabilistic graphical model that is also 

available in the Weka software tool. The BayesNet is selected for its ability to create 

causal relationships between the features and outputs expected. Each feature is used as an 

input to the network and is then represented as a node within the network. Each node in 

the graph represents a variable and the edges between each node represent the 

probabilistic dependencies of the corresponding variables [10].  

 

To better visualize and understand the features selected, we back-traced the 

columns selected by the network to create a brain activation map. This is a brain activity 

map that highlights the areas of interest that were used during classification. Using the 

.CSV file with no columns removed, we found the index ranges of feature columns. The 

original 1D Hilbert matrix was reconstructed, containing only its index values, referred to 
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as our “indexed array”.  The same cells that were removed by the zero-removal algorithm 

from the data that will be fed into the neural network were also removed from our 

“indexed array”. The “indexed array” then contained the true index values of our original 

1D Hilbert array. A transformation is applied, recreating a 3D matrix from our 1D array, 

with the X, Y, Z coordinates of our new 3D matrix which will constitute the binary 

“indexed array”, containing the locations of the feature brain regions, which we saved as 

a .nii file for easy 3D browsing. This will constitute our activation map, containing the 

features driven by the neural network. We then used this .nii file to overlay with one of 

our patient activation maps, this figure may be used to attempt to identify what brain 

regions are being affected by cocaine addiction. 

 

 
 

 
 

Figure 3.15 
 

Preliminary Activation Map Overlay 
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CHAPTER IV: PRELIMINARY RESULTS 

We have done preliminary analysis in a small subset of 9 cocaine-addicted (CA) 

patients and 8 age matched healthy controls (HC) from the larger study of total of 84 

participants. We used our processed data to train the network and fed the set using 17-

fold cross validation (leave-one-out cross validation). We have seen an accuracy of 100% 

as the algorithm is able to correctly identify all 17 of the activation maps, whereas 6/8 

HC and 9/9 CA were classified correctly using the linear ordering at an 88.2% accuracy. 

Hilbert ordering resulted in better classification accuracy. We hoped that by expanding 

the dataset the high classification of accuracy of Hilbert-curve-based ordering will hold. 

 

 
 

Figure 4.1  
 

Classification results for the linear ordered data 
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Figure 4.2 

 
Classification results for the Hilbert-Curve data 
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CHAPTER V: CLASSIFICATION RESULTS 

After applying the analysis to smaller preliminary dataset with 17 participants, we 

analyzed the entire dataset with the 84 participants provided, which also includes the 

preliminary dataset. Overall, there are 25 control patients and 59 cocaine-addicted 

participants in the entire dataset. Due to the overall small number of instances/samples, 

the problem of class imbalance is introduced here as control patients are only represented 

by roughly 30% of the complete problem dataset. It is possible that if the overall dataset 

was larger than there would not be an issue due to the increase of control data points 

could lead to a stronger control model.  

 

The class imbalance calls for an additional step in the classification model. When 

starting the Weka program and uploading our processed dataset, a filter was applied to 

the total dataset that resamples the data by a specific set of parameters. The new sample 

was a 50/50 split of the two classes while only using 50% of the total set for each sample 

set. Each time this resample is used on our data the subsample of 21 control and 21 drug 

using patients is created. This allowed us a fair dataset to design a model after that will 

not bias one class over the other.  

 

To get the most use out of our dataset, we repeat the Resample filter multiple 

times to create an attribute pool. Below are five iterations of the resample function, each 

uses the same Correlation Feature Selection (CFS) subset evaluator for feature reduction. 

The seed corresponds to the random seed number that is used for the random subsample 

and each iteration reduces to different attribute selections. The accuracy percentage 

corresponds to the classification result for that sample using the same Bayesian network 

algorithm described before.  
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5 Initial Iterations; Used to Gather Common Attributes 

Hilbert: 

Seed 7: 93% Accuracy 

Attributes (20): 

39,55,70,76,97,109,153,183,187,189,197,198,237,240,244,253,277,286,293,307 

=== Confusion Matrix === 

  a  b   <-- classified as 

 20  1 |  a = C 

  2 19 |  b = P 

 

Seed 18: 71% Accuracy 

Attributes (20): 

16,54,55,56,57,61,63,67,68,77,81,122,129,194,198,221,244,252,267,279 

=== Confusion Matrix === 

  a  b   <-- classified as 

 17  4 |  a = C 

  8 13 |  b = P 

 

Seed 26: 76% Accuracy 

Attributes (12): 14,20,62,63,76,81,109,116,118,132,205,253 

=== Confusion Matrix === 

  a  b   <-- classified as 

 15  6 |  a = C 

  4 17 |  b = P 
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Seed 52: 83% Accuracy 

Attributes (18): 

11,31,62,70,154,194,197,198,206,240,247,252,285,290,298,304,311,315 

=== Confusion Matrix === 

  a  b   <-- classified as 

 17  4 |  a = C 

  3 18 |  b = P 

 

Seed 31: 74% Accuracy 

Attributes (15): 1,2,19,20,31,39,63,115,183,200,224,225,252,267,315 

=== Confusion Matrix === 

  a  b   <-- classified as 

 13  8 |  a = C 

  3 18 |  b = P 

 

5 Initial Iterations; Used to Gather Common Attributes 

Linear:  

 

Seed 9: 55% Accuracy 

Attributes (21): 

14,16,38,48,51,61,75,100,125,158,165,169,182,247,261,286,294,303,333,348,355 

=== Confusion Matrix === 

  a  b   <-- classified as 

 16  5 |  a = C 

 14  7 |  b = P 
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Seed 42: 64% Accuracy 

Attributes (12): 2,20,25,42,103,161,235,263,300,344,351,355 

=== Confusion Matrix === 

  a  b   <-- classified as 

  7 14 |  a = C 

  1 20 |  b = P 

 

Seed 27: 79% Accuracy  

Attributes (14): 11,13,49,197,256,268,276,309,310,311,317,325,326,350 

=== Confusion Matrix === 

  a  b   <-- classified as 

 18  3 |  a = C 

  6 15 |  b = P 

 

Seed 32: 69% Accuracy 

Attribute (13): 21,78,107,109,161,163,194,210,276,300,324,335,349  

=== Confusion Matrix === 

  a  b   <-- classified as 

 13  8 |  a = C 

  5 16 |  b = P 
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Seed 1: 74% Accuracy 

Attributes (12): 21,82,129,157,161,241,261,300,315,325,328,361 

=== Confusion Matrix === 

  a  b   <-- classified as 

 18  3 |  a = C 

  8 13 |  b = P 

 

 From the five Hilbert iterations we collected the most commonly repeated 11 

attributes which are [39, 55, 70, 76, 109, 197, 198, 240, 244, 252, 253]. The five Linear 

iterations gave us a different selection of 5 attributes [261, 276, 300, 325, 355]. From 

here we took five more resamples for each Hilbert and Linear data to run through our 

final classification.  

 

After Resampling for 5 more iterations and using the common features 

selected before 

Hilbert: 

Common Attributes (11): 39, 55, 70, 76, 109, 197, 198, 240, 244, 252, 253 

 

Seed 2:  

81% Accuracy  

=== Confusion Matrix === 

  a  b   <-- classified as 

 15  6 |  a = C 

  2 19 |  b = P 
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Seed 9:  

76% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 17  4 |  a = C 

  6 15 |  b = P 

 

Seed 5:  

74% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 18  3 |  a = C 

  8 13 |  b = P 

 

Seed 33:  

76% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 18  3 |  a = C 

  7 14 |  b = P 
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Seed 6: 

79% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 15  6 |  a = C 

  3 18 |  b = P 

 

 

Linear: 

Common Attributes (5): 261, 276, 300, 325, 355  

 

Seed 8:  

69% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 18  3 |  a = C 

 10 11 |  b = P 

 

Seed 17: 

69% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 20  1 |  a = C 

 12  9 |  b = P 

 



 
 

31 

Seed 34: 

67% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

  8 13 |  a = C 

  1 20 |  b = P 

 

Seed 23:  

64% Accuracy 

=== Confusion Matrix === 

  a  b   <-- classified as 

 20  1 |  a = C 

 14  7 |  b = P 

 

Seed 10: 

67% 

=== Confusion Matrix === 

  a  b   <-- classified as 

 19  2 |  a = C 

 12  9 |  b = P 
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We then averaged each of the five iterations to create the following Average 

Accuracy percentage and the Average Confusion Matrix.  

 

Final Hilbert Classification Results 

Average Accuracy: 77.2% 

 === Average Confusion Matrix === 

  a  b   <-- classified as 

 17  4 |  a = C 

 5  16 |  b = P 

 

Final Linear Classification Results 

Average Accuracy: 67.2% 

 === Average Confusion Matrix === 

  a  b   <-- classified as 

 17  4   |  a = C 

 10  11 |  b = P 
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CHAPTER VI: RESULTS AND DISCUSSION 

Our final classification results are 77% for Hilbert data and 67% accuracy for the 

Linear Ordering data set. After the class imbalance adjustments, we were able to retain a 

higher accuracy record for Hilbert data. Both sets of features were then “traced-back” to 

the original index values prior zero-removal and binning procedures to create a highlight 

of regions that were used to in the classification algorithm. We were then able to view the 

areas of the brain that correlate to identifying a cocaine-addicted patient. The areas of 

selected in green note the Hilbert selected features while the blue is associated to the 

Linear points of interest. Overall, classification based on features from Hilbert space-

filling curve ordering resulted in about 10% higher classification accuracy than based on 

features from traditional linear ordering, as we had anticipated, with better structure-

preserving nature of space-filling curves. 

 

When we overlay the brain regions which contribute to the classification, we 

observe that, for both Hilbert and Linear ordering, there are regions outside the brain. 

This is due to binning size which include large number of voxels which mix brain data 

with non-brain data. If the binning size is reduced, we anticipate it can pinpoint to more 

brain-only data. However, decreasing the binning size will increase the number of 

features, which are already a lot (hundreds) for a limited sample size of 84. If the number 

of features is much more than the number of samples, machine learning algorithms 

usually fail, due to classification models are drawing regions in a sparser 

multidimensional space, a phenomenon known as “curse of dimensionality”.  

 

It is possible that some of the activation points that are common among the 

cocaine-addicted patients were not considered during the classification algorithm and are 
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therefore not shown in the activation maps we have created. This is due to the selective 

nature of our binning and feature extraction that attempts to restrict the amount of 

variance among the data. This is a strength of our approach and it shows the most 

significant portions of the brain that is related to the two separate classes. Due to the 

relatively small dataset, it is possible that there are more activation points that could be 

considered for classification use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.1 
 

Brain Activation Map at point (27, 44, 24) Axial, Coronal, Sagittal View (Linear 
Features are in Blue and Hilbert Features are in Green) 
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Figure 6.2 
 

Brain Activation Map Multi-slice View of Hilbert (Green) and Linear (Blue) Activation 
Points Overlaid on a Brain Activation Map 
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CHAPTER VII: FUTURE WORK 

Future work can involve applying different feature selection and classification 

algorithms, using a much larger cohort. Hilbert SFC can also be potentially used to better 

reorder fMRI volumes, comparing, sorting and matching independent components, and 

for comparing activation maps, among many other applications. 

 

 Finding an optimal space-filling curve can also be a separate research topic in 

itself; however, it was previously demonstrated that finding such a curve for any given 

3D brain image is a modified “traveling-salesman” problem, and hence it can be 

extremely computationally demanding, warranting heuristics and suboptimal 

approximations instead.    

 

Expanding may also include gathering an even larger dataset than the original 84 

participant data to gather a clearer attribute selection to highlight the key parts of the 

brain with more resolution.  
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CHAPTER VIII: CONCLUSION 

Traditional Linear ordering methods in fMRI analysis does not preserve the brain 

structure required for effective studies to be proposed on. These methods are naïve in 

nature and lose localization information during the transform. When a Hilbert curve is 

applied to the same 3D dataset, you can expect to see a better visualization of your data 

points and its location within the brain structure. Each voxel is now a representation of a 

specific piece of brain imaging data instead of several continuous points along a path.  

 

From the Linear and Hilbert processed datasets we select a group of features to 

represent each type. The intent of these features is to represent a point of activation 

within the brain that could lead to points of interest to scientists studying the effects of 

cocaine addiction to the brain. As described before, it is thought that the Hilbert dataset 

will select a range of features that are more constructive to in providing better areas to 

study within the brain [2]. 

 

In this proposed work, we expected that the Hilbert-curve based classification of 

the cocaine-addicted patients vs. healthy controls would have a higher classification 

accuracy than that of the traditional linear ordering-based method. The Hilbert-curve was 

applied in hopes of creating fewer and more distinct features than the many continuous 

features that are produced by Linear ordering methods. Our preliminary results based on 

a very small subset of the data using a wide range of preprocessing and analysis 

parameters suggest great classification accuracy using the Hilbert-curve based mapping.  

 

When the same methods are applied to the rest of the dataset, the discovery of a 

class imbalance was made and required the data to undergo further preprocessing before 
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loading into the neural network design. After resampling methods were applied, we were 

able to showcase results that still show a higher classification accuracy than traditional 

linear methods. Based on the higher classification results, Hilbert curve selected features 

could be used for further scientific research as strong indicator points of cocaine 

addiction within the brain.  
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APPENDIX A 

Sample of Matlab script producing the Hilbert Space Filling Curve 

 
% Generate the Hilbert curve  
n=6,[x,y,z] = hilbert3(n); 
XYZ=[x;y;z]; 
format long  
xv = [x(1):-(x(1)-x(5)):-x(1)]; 
format long 
m = [xv(1)-xv(64)]/63; %0.0156 
L =(2^n)^3; %262,144 
maxNum =((L/2-1)+.5)*(1/L); %0.5 
minNum =-((L/2-1)+.5)*(1/L); %-0.5 
XYZ_newtemp = -(round(([x;y;z]-x(1))/m)-1); 
XYZ_new = XYZ_newtemp; 
  
for i=size(XYZ_newtemp,1), 
    for j=size(XYZ_newtemp,2), 
        if XYZ_newtemp(i,j)<33, 
            XYZ_new(i,j)=XYZ_new(i,j)+1; 
        end 
    end 
end 
x_new = XYZ_new(1,:); 
y_new = XYZ_new(2,:); 
z_new = XYZ_new(3,:); 
  
%Load the indexed matrix variable  
load('indexed_p_vols.m','indexed_p_vols', '-mat') 
  
%Transform all 3D Hilbert curve maps to 1D 
%Generate box Hilbert-curve optimized brain maps 
arr_1_D = zeros(1,L); %262,144 
box_of_arr_1_D = zeros(84,L); 
tic 
for index= 1:84 
   current_vols=indexed_p_vols(:,:,:,index); %Creates a 64x64x64 matrix 
   for inner_index = 1:L 
       arr_1_D(inner_index) = 
current_vols(x_new(inner_index),y_new(inner_index),z_new(inner_index));  
   end 
   box_of_arr_1_D(index,:) = arr_1_D; 
   arr_1_D = zeros(1,L); 
end 
toc %Elapsed time is 0.150524 seconds. 
save('box_of_arr_1_D.m','box_of_arr_1_D') 
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% Gets index of islands of zeros using first array 
%------------------------------------------------ 
single_arr = box_of_arr_1_D(1,:); 
%---------------------------------------------- 
zero_amt_check = 2000;  
threshhold_value =.1; 
t_single_arr = (abs(single_arr) >= threshhold_value);  
  
%Y = diff(X,n,dim) is the nth difference function calculated along the 
dimension specified by scalar dim.  
%If order n equals or exceeds the length of dimension dim, diff returns 
an empty array. 
d_single_arr = diff([1 t_single_arr 1]); 
startIndex = find(d_single_arr < 0); 
endIndex = find(d_single_arr > 0)-1; 
duration = endIndex-startIndex+1; 
stringIndex = (duration >= zero_amt_check); 
startIndex = startIndex(stringIndex); 
endIndex = endIndex(stringIndex); 
indices = zeros(1,max(endIndex)+1); 
indices(startIndex) = 1; 
indices(endIndex+1) = indices(endIndex+1)-1; 
indices = find(cumsum(indices)); 
% -------------------------------------------------------------- 
% Builds box of shortened brain maps 
% Use whenever we want to change the number of zeros to remove 
shortened_arr = zeros(1,(length(single_arr) - length(indices))); 
box_of_short_arr = zeros(84,length(shortened_arr)); 
offset_end_index = zeros(1,1); 
offset_end_index = cat(2,offset_end_index, endIndex); 
  
offset_start_index = length(single_arr) + 1; 
offset_start_index = cat(2,startIndex,offset_start_index ); 
shorty_arr = []; 
  
for i = 1:84 
    new_short_arr = box_of_arr_1_D(i,:); 
    for j = 1:length(offset_start_index) 
        shorty_arr = 
cat(2,shorty_arr,new_short_arr(offset_end_index(j)+1:offset_start_index
(j)-1)); 
    end 
    box_of_short_arr(i,:) = shorty_arr; 
    shorty_arr = []; 
end 
 
save('box_of_zero_removed_arr.m','box_of_short_arr', 'zero_amt_check', 
'threshhold_value') 
csvwrite('box_of_zero_removed_arr.csv',box_of_short_arr) 
load('box_of_zero_removed_arr.m','box_of_short_arr','zero_amt_check','t
hreshhold_value', '-mat') 
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%Pull nii files into array 
Files=dir('test_*_*_cope1.nii'); %test_CHD_P_cope1 
FileNames={Files.name}; 
%Strip .nii substring 
ConcatFN=strrep(FileNames,'.nii',''); 
%Bin by mean - hilbert 
for i = 1:84 
    single_binned_array = box_of_short_arr(i,:); 
    BinSize = 500; %500 originally 
    VectorLength = length(single_binned_array); 
    DecimateRatio=round(VectorLength/BinSize); 
    %Does it only for one array     
    for iBin=1:DecimateRatio-1 
        my3Dmatrix_zeropadded_1D_binned(iBin)= 
mean(single_binned_array((iBin-1)*BinSize+1:iBin*BinSize)); 
    end 
    %Save the binned arrays (Run whenever we change bin size) 
    FileName1DbinnedMat=char(strcat(ConcatFN(i), '_1D_binned.m')); 
    save(FileName1DbinnedMat,'my3Dmatrix_zeropadded_1D_binned', 
'BinSize') 
end 
figure,plot(my3Dmatrix_zeropadded_1D_binned) 
clear my1DbinnedMatrixAllSubjs 
for iFile = 1:84 
    FileName1Dbinned=char(strcat(ConcatFN(iFile), '_1D_binned.m')); 
    load(FileName1Dbinned,'-mat'); 
    my1DbinnedMatrixAllSubjs(iFile,:)=my3Dmatrix_zeropadded_1D_binned; 
    clear my3Dmatrix_zeropadded_1D_binned 
end 
numBinCols=size(my1DbinnedMatrixAllSubjs,2);  
HeaderRow=[1:numBinCols]; 
my1DbinnedMatrixAllSubjs_wHeaderRow=[HeaderRow;my1DbinnedMatrixAllSubjs
]; 
  
save('my1DbinnedMatrixAllSubjs.m','my1DbinnedMatrixAllSubjs') 
  
% Generate csv file 
csvwrite('my1DbinnedMatrixAllSubjs.csv',my1DbinnedMatrixAllSubjs); 
csvwrite('my1DbinnedMatrixAllSubjs_wHeaderRow.csv',my1DbinnedMatrixAllS
ubjs_wHeaderRow); 
  
% Load the binned matrix box 
load('my1DbinnedMatrixAllSubjs.m', 
'my1DbinnedMatrixAllSubjs','BinSize', '-mat') 
 

 
  



 
 

44 

APPENDIX B 

Sample of Matlab script producing the Linear Ordering Data 
 
n=6 
L =(2^n)^3; 
%Generate traditional linearized array from brain maps 
load('indexed_p_vols.m','indexed_p_vols', '-mat') 
lin_x = 1:64; 
lin_y = 1:64; 
lin_z = 1:64; 
count = 1; 
linear_1_D = zeros(1,L); 
box_of_arr_1_D_linear = zeros(84,L); 
for index = 1:84; 
    index_p_vols =indexed_p_vols(:,:,:,index); 
    for lin_z_index = 64:-1:1 
        for lin_y_index = 64:-1:1 
           for lin_x_index = 64:-1:1 
              linear_1_D(count) = 
index_p_vols(lin_x_index,lin_y_index,lin_z_index); 
              count = count + 1;  
           end 
        end 
    end 
    box_of_arr_1_D_linear(index,:) = linear_1_D; 
    linear_1_D = zeros(1,L); 
    count=1; 
end 
figure, plot(box_of_arr_1_D_linear(1,:)), axis tight; 
xlabel('Index'),ylabel('t-values'), 
save('box_of_arr_1_D_linear.m','box_of_arr_1_D_linear') 
csvwrite('box_of_arr_1_D_linear.csv',box_of_arr_1_D_linear) 
load('box_of_arr_1_D_linear.m', 'box_of_arr_1_D_linear', '-mat') 
% Gets index of islands of zeros using first array 
%------------------------------------------------ 
single_arr = box_of_arr_1_D_linear(1,:); 
%---------------------------------------------- 
zero_amt_check = 2000; 
threshhold_value =.1; 
t_single_arr = (abs(single_arr) >= threshhold_value);  
d_single_arr = diff([1 t_single_arr 1]); 
startIndex = find(d_single_arr < 0); 
endIndex = find(d_single_arr > 0)-1; 
duration = endIndex-startIndex+1; 
stringIndex = (duration >= zero_amt_check); 
startIndex = startIndex(stringIndex); 
endIndex = endIndex(stringIndex); 
indices = zeros(1,max(endIndex)+1); 
indices(startIndex) = 1; 
indices(endIndex+1) = indices(endIndex+1)-1; 
indices = find(cumsum(indices)); 
% --------------------------------------------------------------- 



 
 

45 

% Builds box of shortened brain maps 
% Use whenever we want to change the number of zeros to remove 
shortened_arr = zeros(1,(length(single_arr) - length(indices))); 
box_of_short_arr = zeros(84,length(shortened_arr)); 
offset_end_index = zeros(1,1); 
offset_end_index = cat(2,offset_end_index, endIndex); 
offset_start_index = length(single_arr) + 1; 
offset_start_index = cat(2,startIndex,offset_start_index ); 
shorty_arr = []; 
 
for i = 1:84 
    new_short_arr = box_of_arr_1_D_linear(i,:); 
    for j = 1:length(offset_start_index) 
        shorty_arr = 
cat(2,shorty_arr,new_short_arr(offset_end_index(j)+1:offset_start_index
(j)-1)); 
    end 
    box_of_short_arr(i,:) = shorty_arr; 
    shorty_arr = []; 
end 
%save zero-removed array box for traditional method 
save('box_of_zero_removed_arr_linear.m','box_of_short_arr', 
'zero_amt_check', 'threshhold_value') 
csvwrite('box_of_zero_removed_arr_linear.csv',box_of_short_arr) 
load('box_of_zero_removed_arr_linear.m','box_of_short_arr','zero_amt_ch
eck','threshhold_value', '-mat') 
for i = 1:84 
    plot(box_of_short_arr(i,:)),hold on,axis tight; 
xlabel('Index'),ylabel('t-values') 
end 
figure, plot(box_of_short_arr(1,:)), hold on, axis tight; 
xlabel('Index'),ylabel('t-values'), 
%Pull nii files into array 
cd '/Volumes/DE LEON J/Thesis/Resized Data' 
Files=dir('test_*_*_cope1.nii'); 
FileNames={Files.name}; 
%Strip .nii substring 
ConcatFN=strrep(FileNames,'.nii',''); 
%Bin by mean-traditional 
for i = 1:84 
    single_binned_array = box_of_short_arr(i,:); 
    BinSize = 500; 
    VectorLength = length(single_binned_array); 
    DecimateRatio=round(VectorLength/BinSize); 
    %Does it only for one array     
    for iBin=1:DecimateRatio-1, 
        my3Dmatrix_zeropadded_1D_binned_linear(iBin)= 
mean(single_binned_array((iBin-1)*BinSize+1:iBin*BinSize)); 
    end 
    %Save the binned arrays (Run whenever we change bin size) 
    FileName1DbinnedMat=char(strcat(ConcatFN(i), 
'_1D_binned_linear.m')); 
    save(FileName1DbinnedMat,'my3Dmatrix_zeropadded_1D_binned_linear', 
'BinSize') 
end 
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for iFile = 1:84 
    FileName1Dbinned=char(strcat(ConcatFN(iFile), 
'_1D_binned_linear.m')); 
    load(FileName1Dbinned,'-mat'); 
my1DbinnedMatrixAllSubjs_linear_mean(iFile,:)=my3Dmatrix_zeropadded_1D_
binned_linear; 
    clear my3Dmatrix_zeropadded_1D_binned_linear 
end 
  
numBinCols=size(my1DbinnedMatrixAllSubjs_linear_mean,2);  
HeaderRow=[1:numBinCols]; 
my1DbinnedMatrixAllSubjs_linear_mean_wHeaderRow=[HeaderRow;my1DbinnedMa
trixAllSubjs_linear_mean]; 
% Run save if we want to bin by a different size or change threshold 
value traditional 
save('my1DbinnedMatrixAllSubjs_linear_mean.m','my1DbinnedMatrixAllSubjs
_linear_mean') 
  
%Generate csv file for linear mean 
csvwrite('my1DbinnedMatrixAllSubjs_linear_mean.csv', 
my1DbinnedMatrixAllSubjs_linear_mean) 
csvwrite('my1DbinnedMatrixAllSubjs_linear_mean_wHeaderRow.csv', 
my1DbinnedMatrixAllSubjs_linear_mean_wHeaderRow) 
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APPENDIX C 

Sample of Matlab script producing the Three Dimensional Reconstruction (Used for 

both Hilbert and Linear Data) 
spm fmri 
  
load('box_of_arr_1_D_linear.m', 'box_of_arr_1_D_linear', '-mat') 
load('indexed_p_vols.m','indexed_p_vols', '-mat') 
single_arr = box_of_arr_1_D_linear(1,:); 
 
%Verify that the offset start and stop indices are correct for the 
amount 
%of zeros checked, otherwise we do not get accurate index values 
% 
index_box = (1:262144); 
index_of_data = []; 
for j = 1:length(offset_start_index) 
    index_of_data = 
cat(2,index_of_data,index_box(offset_end_index(j)+1:offset_start_index(
j)-1)); 
end 
save('index_of_data.m','index_of_data', 'zero_amt_check', 
'offset_start_index', 'offset_end_index' ) 
load('index_of_data.m','index_of_data', 'zero_amt_check', 
'offset_start_index', 'offset_end_index', '-mat') 
 
features = [261, 276, 300, 325, 355]; %Enter selected features of 
interest here 
index_of_features = []; 
for il = 1:length(features) 
    findex_start = features(il)*500 + 1; 
    findex_end = findex_start + 499; 
    for indef = findex_start:findex_end 
       index_of_features = 
cat(2,index_of_features,index_of_data(indef)); 
    end 
    findex_start = 0; 
    findex_end = 0; 
end 
save('index_of_features.m', 'index_of_features') 
load('index_of_features.m', 'index_of_features', '-mat') 
activ_map = zeros(53,63,46); 
Files=dir('test_*_cope1.nii'); 
FileNames={Files.name}; 
%Strip .nii substring 
ConcatFN=strrep(FileNames,'.nii','') 
temp_3D_array = zeros(3,length(index_of_features)); 
for i = 1:length(index_of_features) 
    %Get the three-dimensional index values of the original map 
    temp_3D_array(:,i) = XYZ_new(:,index_of_features(i));  
end 
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for i = 1:length(index_of_features) 
    %row selectors 
    r1= temp_3D_array(1,i); 
    r2= temp_3D_array(2,i); 
    r3= temp_3D_array(3,i); 
    if r1 <54 && r2 <63 && r3 <47 
        activ_map(r1,r2,r3) = 1;  
    end 
end 
save('activity_map.m','activ_map') 
load('activity_map.m', 'activ_map', '-mat') 
V=spm_vol(FileNames{1}); 
Vnew=V; 
Vnew.descrip = 'Brain map with activation points' 
Vnew.fname = 'Linear_Brain_activation_map.nii' 
Vnew = spm_write_vol(Vnew,activ_map); 
 

 


