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ABSTRACT

INDUSTRIAL STRENGTH DEPENDENCY PARSING SYSTEM

Han He

University of Houston-Clear Lake, 2018

Thesis Chair: Lei Wu, PhD

Dependency parsing is a useful task to help computer understand human language.

By parsing the dependency grammar of a sentence automatically, dependency parser

produces dependency-based syntactic representations which enhance performance of

many language applications, such as machine translation, question answering and

information extraction. Recently dependency parsing has attracted considerable in-

terest from researchers and developers in the Natural Language Processing field, and

many state-of-art works have achieved high accuracies. But not all of them are appli-

cable for industry applications in terms of runtime speed and memory efficiency. We

implemented and evaluated various dependency parsing algorithms, finding out the

most practical algorithm in consideration of tradeoff between accuracy and runtime

speed. The final achievement is a practically usable dependency parser, which can

parse raw sentences to grammar trees. Our parser has been released as open source

software and live demonstrated on http://iparser.hankcs.com/.
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CHAPTER 1

INTRODUCTION TO DEPENDENCY PARSING

Dependency parsing is a task of automatically parsing dependency grammar for

a sentence in natural language, which sustains advanced applications like machine

translation, question answering etc. Starting with a brief introduction to dependency

grammar and dependency parsing, this paper surveys influential and state-of-the-

art works of the two major classes of approaches: transition based and graph based

parsing. Instead of a through review, we mostly focus on fundamental concepts

and current trends. To make a concrete study, we also analyzed state-of-the-art

implementations of different approaches.

1.1 Introduction

Regarding automatic syntactic analysis of natural language, there are two families of

grammar formalisms: phrase structure grammars and dependency grammars. They

respectively correspond to constituent parsing and dependency parsing. Recently

dependency parsing has become increasingly popular, mainly due to its flexibility

and reliability for a wide range of different languages. Here we’ll briefly introduce the

dependency grammar as a background, then define the task of dependency parsing.

1.1.1 Dependency Grammar

Dependency grammar is a traditional concept dating back far to research work on

linguistics, syntax and semantics by an ancient Sanskrit grammarian called Pāṇini in

6th to 4th century BCE. Although modern linguistic researchers regard the influential

French linguist Lucien Tesnière as the founder of dependency theory, Pāṇini’s devel-

1
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The  boy  saw  a  girl with a  telescope
DT NN VBD DT NN IN DT NN

detdet nsubj det
dobj case

nmod

Figure 1.1: High attachment dependency tree

The  boy  saw  a  girl  with a  telescope
DT NN VBD DT NN IN DT NN

detdet nsubj prep det
dobj pobj

Figure 1.2: Low attachment dependency tree

opment of an approach to the syntax of natural languages is known as dependency

grammar.

1.1.1.1 Basic Concepts

The basic assumption of dependency grammar is that language has a defined syntactic

structure consisted of words and their relations. A dependency relation is a binary,

asymmetrical links between a syntactically subordinate word, called the dependent,

and another word on which it depends, called the head [47]. When every word

is linked to its dependent by arrow with a label indicating the dependency type, a

sentence is parsed into a dependency tree. For instance, given sentence ”The boy

saw a girl with a telescope”, there are two plausible dependency trees illustrated in

Figure 1.1 and Figure 1.2.

In dependency trees above, blue squares represent for part-of-speech tags listed

in Table 1.1, labels on arrows are dependency types listed in Table 1.2. For example,

the noun boy is a dependent of the verb saw with the dependency type noun subject

(nsubj). The rest of the sentence cause a noticeable ambiguity called prepositional

phrase (PP) attachment. Even based on lexical preferences, this PP attachment

ambiguity can’t be resolved. As Hassanien et al. [33] explained, if high attachment

is adopted, the PP (with a telescope) is attached to the verb (saw) which indicates

2
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Tag Description Tag Description
DT Determiner IN Preposition
NN Noun VBD Verb, past tense

Table 1.1: Part-Of-Speech Tags

Relation Description
det determiner

nsubj nominal subject
prep prepositional phrase
pobj object of preposition
dobj direct object
nmod nominal modifier
case case marking

Table 1.2: Dependency Relation Types

its relation to the verb (He used the telescope to see the girl). In the low attachment

case, PP is attached to the nearest word (girl), which marks the coexistence of the

PP with that word (He saw a girl who brings a telescope with her).

Corpora consisted of many parsed dependency trees are often called treebanks.

Different treebanks defined heterogeneous part-of-speech tagsets and dependency re-

lations. Our examples are instances of Penn Treebank part-of-speech tagset and

Stanford Dependencies.

1.1.1.2 Projective Dependency Tree

A formal definition of dependency tree needs extra notations. Define a sentence S

as a sequence of words S = w1w2 · · ·wn. Let R = {r1, · · · , rm} be a finite set of

dependency relation types. Then a dependency tree is an directed acyclic graph:

G = (V,A)

where V ⊆ {w0, w1, · · · , wn}, A ⊆ V × R × V and if arc (wi, r, wj) ∈ A then

(wi, r
′, wj) /∈ A for all r ̸= r′. Specially, the node w0 =ROOT is an artificial word

3
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simplifying both formal definitions and computational implementations. With its

existence, every real word of the sentence have a syntactic head.

A projective dependency tree has a stricter limitation on arcs. Every word between

arc (wi, r, wj) mustn’t have dependent out of range (i, j). Although one language

can have non-projective sentences, many recent dependency parsers only focus on

projective dependency trees. In this paper, we concentrate on projective parsers too.

1.1.2 Dependency Parsing

Having introduced the basic concepts of dependency grammar, the definition of de-

pendency parsing is to automatically analyze the dependency structure of a given

input sentence. Given a sentence S consisting of words w0w1w2 · · ·wn, the parsing

problem can be formally defined as mapping S to its dependency tree G.

Broadly speaking, there are two categories of parsing approaches, namely data-

driven and rule-based (grammar-based). If an approach essentially uses machine

learning techniques to learn patterns from dependency treebanks in order to parse

new sentences, then it falls into the data-driven class. A rule-based approach typically

relies on a formal grammar defining the rules a formal language should obey and apply

that rule to new sentences. Recently dependency parsing is dominated by statistical

methods on large treebanks. This paper only covers these data-driven solutions, or

more precisely supervised methods, that is inputs in training set have been annotated

with correct dependency structures.

In data-driven parsing, a dependency parsing model is denoted by

M = (Γ, θ, h)

where Γ stands for constraints like projective restrictions, θ is a set of parameters

belonging to that model, and h is a fixed parsing algorithm.

4
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Transition Definition Precondition
Shift (σ,wi|β,A)⇒ (σ|wi, β, A)

Left-Arcr (σ|wi|wj, β, A)⇒ (σ|wj, β, A ∪ (wj, r, wi)) i ̸= 0
Right-Arcr (σ|wi|wj, β, A)⇒ (σ|wi, β, A ∪ (wi, r, wj))

Table 1.3: Arc-Standard transition system

Transition Definition Precondition
Shift (σ,wi|β,A)⇒ (σ|wi, β, A)

Left-Arcr (σ|wi|wj, wk|β,A)⇒ (σ|wi, wk|β,A ∪ (wk, r, wj)) i ̸= 0
Right-Arcr (σ|wi|wj, β, A)⇒ (σ|wi, β, A ∪ (wi, r, wj))

Table 1.4: Arc-Hybrid transition system

Statistical approaches can be divided into different classes, based on type of pars-

ing model and algorithms. This paper focus on the two major classes, which are called

transition-based and graph-based in literature.

These two classes differ in views about whether target dependency tree pre-exists

or not. Transition-based methods assume no existence of tree at beginning. They

start by defining a set of actions or a transition system for building a parse tree

from scratch. Given input and current state including transition history, the learning

problem is to train a model for predicting the next action to take. In this way, parsing

problem is casted to construct the optimal transition sequence of the input sentence.

Instead of constructing, graph-based methods choose the tree with highest score in a

defined space of candidate dependency trees. They train a model to assign scores to

the candidate dependency trees for a sentence, with the goal of letting target tree have

the highest score. Then parsing problem becomes searching for the highest scoring

dependency tree of the input sentence. These two classes of methods are treated in

next two chapters in detail.

5
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1.2 Transition-based Parsing

A transition-based parser starts with defining configurations (a set of states) and a

set of possible actions for constructing a tree, called a transition system. A transition

system often defines the constraints Γ. For instance, the arc-standard transition

system ensures the output trees are projective.

After a transition system is fixed, dependency trees in training set are transformed

into sequences of transition actions called oracle. Then a machine learning model θ is

employed to recognize patterns between these transition sequences and input strings.

Although a sequence model seems capable of such task, but usually a classifier is

used instead. Because the interactions between adjacent actions are very limited.

Modeling unrelated action interactions will damage the learning of a sequence model.

The parsing algorithms h for transition-based parsing are often greedy for fast

runtime speed. Occasionally beam search algorithm is employed for slightly better

performance.

1.2.1 Transition Systems

The terminology transition indicates that a transition system shares some similarities

with a finite state automaton. By defining a finite set of configurations (states in

FSA) and transitions (transition table in FSA), a transition system acts like a FSA,

accepting an input string and performing a sequence of transitions from initial state

to terminal state.

Given a set R of dependency relations, for a sentence S = w0w1w2 · · ·wn, a con-

figuration is defined as a triple:

c = (σ, β, A)

6
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where σ is a stack of words wi ∈ S, β is a qunue of words wi ∈ S and A is a set of

dependency arcs (wi, r, wj) ⊆ V ×R× V .

A configuration is current state of the parsing process, representing an interme-

diate result of the input sentence. Concretely speaking the stack σ stores roots of

parsed subtrees, while words in the queue β are the remaining input words.

Under this definition, the initial configuration is ([w0]σ, [w1, . . . , wn]β, ∅), which

means all words are not parsed yet. A terminal configuration is (σ, []β, A) for any σ

and A, which indicates that all words are parsed.

A transition is a partial function from configurations to configurations. The most

widely used approach is stack-based transition systems implementing shift-reduce

actions, where shift means move head word in β to σ, reduce means connect head

word in β with top word in σ to build a tree. Yamada and Matsumoto [83] and

Nivre [63] first introduced greedy transition-based parsing. Then other extensions

are proposed to handle non-projective trees.

1.2.1.1 Arc-Standard

Arc-Standard [64] is the underlying system of many later extensions. It is consisted

of actions shown in Table 1.3.

When each of the three actions is performed, top two words on stack σ or head

word in queue β are the only elements to be operated, either connect top two words

with an arc labeled as r, or simply push the later into the stack.

The Left-Arcr transition removes the top word wi of the stack σ and attaches it as

a modifier to the second word wj in stack with label r, thus adding the arc (wj, r, wi).

The Right-Arcr transition acts similar to Left-Arcr except that direction of arc is

inverted, thus generating the arc (wi, r, wj). The Shift transition simply moves the

first word wi of the queue β to the stack σ.

7
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1.2.1.2 Arc-Hybrid

Similar to the more popular arc-standard system, arc-hybrid transition system [48]

is another implementation of shift-reduce actions. The difference between them is

which two elements to be operated in left-arc action. Instead of operating the top

two words in the stack, Arc-Hybrid system removes the first word on top of the stack

σ and attaches it as a modifier to the head element in queue β with label r.

1.2.2 Oracle

An oracle is an algorithm which takes a sentence’s gold parse tree as input, and

predicts the sequence(s) of actions the parsing algorithm should follow in order to

reproduce that gold tree, or at least the best reachable tree. Deterministic oracle is

called static oracle whereas non-deterministic oracle is called dynamic oracle.

1.2.2.1 Static Oracle

Several transition sequences can produce the same gold tree, static oracles only map

the gold tree to one of them. Thus they always produce one single static sequence of

transitions supposed to be followed by the parser. The proposed transition sequence

is not guaranteed to be the easiest or optimal one to learn.

Another limitation of static oracles is that, they are only defined as functions

from one gold tree to one transition sequence, not as functions from configurations

to transitions. When a parser makes mistakes, gold tree becomes unreachable, static

oracles can’t provide teaching signal of how to deal with such deviations. This leads

to error-propagation.
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1.2.2.2 Dynamic Oracle

Instead of being limited to a single static canonical transition sequence for producing

a given gold tree, Goldberg and Nivre [30] introduced the dynamic oracle, which

defines all transition sequences in a given configuration for producing a tree with

minimum loss compared to the gold tree.

Training When configuration is a part of a gold derivation, dynamic oracle permits

all valid transition sequences, otherwise it permits the most plausible ones for the best

reachable tree.

Decoding The parser learnt to choose the special configurations from which the

most gold arcs are still reachable. This preference can mitigate error-propagation

while presuming the gold tree.

1.2.3 Feature Function

When we converted trees into configurations (as input) and valid transitions (as out-

put), parsing task is then casted to the prediction of best transition given current

configuration. The very first step towards this classification problem is to represent

the configuration as a set of features which can be processed by a computer.

1.2.3.1 Traditional Feature Engineering

Traditionally, parsers rely on hand-crafted feature functions. These functions check

whether current configuration satisfy some conditions then produces binary outputs

like 1 for yes, 0 for no. For instance, ”distance between the head and the modifier
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words is 3 or not”, ”top word of the stack is ’he’ or not”, ”rightmost child of the first

word in queue is noun or not”.

These elements being considered are well defined by a human expert, as well as

the combinations of them. Zhang and Nivre [86] proposed an influential set of feature

functions consisted of 20 elements and 72 feature templates, which are widely adopted

in later works.

1.2.3.2 Feature Representation Learning

Recently, neural networks or deep learning brought automatically extracted, dense

feature vectors to replace the sparse, binary indicator features.

Chen and Manning [12] is the first to embed those raw features into dense low-

dimensional vector, and then feed those feature vectors into a two-layer perceptron,

letting it potentially produce arbitrary feature combinations. They abandoned feature

template completely. Then later works focusing on automatically feature combina-

tions, but with other improvements including beam search are presented [80].

More than just tackling the effort in feature combinations, representation learn-

ing also helps feature engineering. Le and Zuidema [52] encoded tree node as two

compositional representations built from both bottom-up and top-down. Dyer et al.

[25] employed stack-LSTMs to encode the entire stack and buffer. Apart from these

complex models, Kiperwasser and Goldberg [46] showed a simple Bi-LSTM can ef-

fectively capture enough feature information from each sentence token’s sentential

context, which will be covered in detail.

LSTM Long Short-term Memory Networks (LSTMs) are extensions of Recurrent

Neural Networks (RNNs). They are designed to combat gradient vanishing issue by

incorporating a memory-cell and are able to capture long-range dependencies.

10



Published as a conference paper at ICCD-2017 [35]

Denote (x1,x2, . . . ,xn) as a sequence of input vectors, the goal is to return another

sequence (h1,h2, . . . ,hn) representing some information about the inputs at every

time step. The following implementation is applied:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ct = (1− it)⊙ ct−1+

it ⊙ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ⊙ tanh(ct),

where σ is the element-wise sigmoid function.

Bi-LSTM Given a sentence (x1,x2, . . . ,xn) containing n words represented as a d-

dimensional vector, one LSTM can only produce a representation−→ht of the left context

at every token t. To incorporate a representation of the right context ←−ht, a second

LSTM which reads the same sequence in reverse is used. Pair of this forward and

backward LSTM is called bidirectional LSTM(Bi-LSTM) [31] in literature. There

are two directional LSTM producing two context representations of each word at

time step t. By concatenating its left and right context representations, the final

representation is produced as ht = [
−→ht;
←−ht].

Bi-LSTM Feature Function As a simple and effective feature detector for se-

quential, Bi-LSTM has been applied to various tasks from chunking to neural machine

translation. In dependency parsing, the feature function ϕ(c) is typically defined as

concatenated Bi-LSTM vectors of several items on the stack and buffer. I.e., for a

configuration c = (σ| . . . |s1|s0, b0|b1| . . . |β, A) the feature extractor may be defined
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as:

ϕ(c) = hs2 ◦ hs1 ◦ hs0 ◦ hb0

hi = BiLstm(x1:n, i)

where ◦ denotes for vector concatenation operation.

1.2.4 Scoring Function

In transition based parsing, classification scoring function is borrowed when casted

to classification task. When linear model is adopted, the scoring function will be:

ScoreW (x, t) = (W · x)[t]

where x = ϕ(c), W is the learnable model parameter, t is the transition being esti-

mated. The linearity of single layer perceptron required the feature function ϕ(·) to

encode non-linearities via a complex feature template.

Recently, multilayer perceptron is commonly adopted to replace linear models,

defined as:

Scoreθ(x, t) =MLPθ(x)[t]

where θ is a collection of trainable model parameters.

1.2.5 Training

The objective of training is similar to a common classification problem, thus to maxi-

mize the score of correct transitions above incorrect ones. The loss function is defined
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as:

max
tp∈T\G

MLP
(
ϕ(c)

)
[tp]−max

to∈G
MLP

(
ϕ(c)

)
[to]

where T is the set of possible transitions and G is the set of gold transitions at the

current stage.

1.2.6 Parsing Algoritm

In decoding phase, a greedy algorithm makes decision one configuration by one config-

uration, where as beam search algorithms keep track of the k most promising partial

transition sequences after each transition step and search for the maximal sum of tran-

sitions by dynamic programing. For instance, a greedy parsing algorithm is presented

in Algorithm 1 below.

Algorithm 1 Greedy transition-based parsing
1: Input: sentence S = w1, . . . , xw, possible transitions T = t1, . . . , tn, scoring

function Scoreθ(·) with parameters θ.
2: c← Initial(s)
3: while not Terminal(c) do
4: t̂← arg maxt∈Legal(c)Scoreθ

(
ϕ(c), t

)
5: c← t̂(c)

6: return tree(c)

1.3 Graph-based Parsing

A tree is essentially a directed acyclic graph, so it’s naturally to apply standard

graph algorithms to create dependency tree. In graph-based parsing, parser directly

model substructures of a dependency tree, instead of indirect modeling over transition

sequences to construct a tree. The target tree is hidden in a set of graphs consisted

of all the words and relations, graph-based parser learns how to find it out.
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PTB CTB
Model UAS LAS UAS LAS
Transition
Ballesteros et al. [2]1 93.56 91.42 87.65 86.21
Andor et al. [1]2 94.61 92.79 – –
Kuncoro et al. [49]3 95.8 94.6 – –

Graph
Kiperwasser and Goldberg [46]4 93.9 91.9 87.6 86.1
Cheng et al. [16]5 94.10 91.49 88.1 85.7
Dozat and Manning [22] 6 95.74 94.08 89.30 88.23

Table 1.5: Test-set parsing results of various state-of-the-art parsing systems on the
English (PTB) and Chinese (CTB) datasets. Table taken from Dozat and Manning [22].

Similar to transition-based model, a graph-based model M = (Γ, θ, h) consists

of constraints Γ, model parameters θ and a deterministic parsing algorithm h. The

parsing algorithm assigns a real value score to every dependency tree G = (V,A) ∈ PS

for a sentence S:

Score(G) = Score(V,A) ∈ R

where PS is all the possible trees satisfying constraints Γ for sentence S. This score

can be non-probabilistic values, conditional or joint probabilities.

Then this score for a whole tree G is assumed to factor through scores of subgraphs

in G:

Score(G) = f (ψ1, ψ2, . . . , ψq)

for all ψi ∈ ψG, where ψG is the set of all subgraphs of G, f is some function over

those subgraphs.
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1.3.1 Arc-factored Models

The most commonly used parameterization function f is a summation over single

dependency arcs (head, modifier in the arc and the arc’s label):

f (ψ1, ψ2, . . . , ψq) =
∑
ψi∈ψG

Score(ψi)

This makes arc-factored models follow the common structured prediction paradigm

[78]:

Ĝ = arg maxG∈PsScore(G)

=
∑
ψi∈ψG

Score(ψi)

In this way, score of whole graph is decomposed to the sum of arc scores in that

graph.

1.3.2 Feature Function and Score Function

This two parts are mostly the same with transition parsers introduced in previous

chapters.

Feature Function As there are no stacks and buffers, the core feature elements

used are features related to the head word and the modifier word, typically their

Bi-LSTM encodings [46].

Score Function Traditionally a linear model parameterized by a weight vector and

feature vector is used by many decent works, then MLP took the charge since Pei

et al. [66].
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1.3.3 Training and Decoding

Training Similar to transition-based parsing, loss function is defined to maximize

the score of gold parsing tree:

max
G′ ̸=G

Score(G′)− Score(G)

where G is the gold parsing tree.

1.3.4 Decoding

Once local score for an arc is computed, arc-factored dependency parsing is equal to

find the minimal spanning tree (MST) of a graph. To ensure projective constrains,

Eisner [26] introduced an effective algorithm by breaking arc construction into smaller

steps where a dynamic programming technique can be employed.

1.4 Implementations

In this chapter, we collect performance and implementations from several state-of-

the-art works listed in Table 1.5, which can serve as a reading list. We also notice

that Chinese dependency parsing is harder than English for both transition and graph

based parsers.

1.5 Conclusion

We conduct a brief and incomplete survey of dependency parsing via two different

approaches. Both of them shares similar feature extraction and scoring function,

but differs a lot in parsing algorithms. We hope this paper could serve as a brief

introduction to dependency parsing for beginners.
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The rest of this dissertation is organized as follows. In Chapter 2, we propose

a novel method for Chinese Word Segmentation, with consideration of components

inside Chinese characters. In Chapter 3, we propose a joint learning framework to

exploit heterogeneous corpora. In Chapter 4, we introduce our IParser, an indus-

trial strength multilingual parser for human language processing, which is capable of

parsing raw text to dependency grammar trees, with tokenizers and part-of-speech

taggers built-in.

Finally, in Chapter 5, we conclude this dissertation and discuss possible future

work.

1https://github.com/clab/lstm-parser-dynamic
2https://github.com/tensorflow/models/tree/master/research/syntaxnet
3https://github.com/clab/rnng/tree/master/interpreting-rnng
4https://github.com/elikip/bist-parser
5https://github.com/hao-cheng/biattdp
6https://github.com/tdozat/Parser
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CHAPTER 2

DUAL LONG SHORT-TERM MEMORY NETWORKS FOR

SUB-CHARACTER REPRESENTATION LEARNING

Characters have commonly been regarded as the minimal processing unit in Nat-

ural Language Processing (NLP). But many non-latin languages have hieroglyphic

writing systems, involving a big alphabet with thousands or millions of characters.

Each character is composed of even smaller parts, which are often ignored by the

previous work. In this paper, we propose a novel architecture employing two stacked

Long Short-Term Memory Networks (LSTMs) to learn sub-character level represen-

tation and capture deeper level of semantic meanings. To build a concrete study and

substantiate the efficiency of our neural architecture, we take Chinese Word Segmen-

tation as a research case example. Among those languages, Chinese is a typical case,

for which every character contains several components called radicals. Our networks

employ a shared radical level embedding to solve both Simplified and Traditional

Chinese Word Segmentation, without extra Traditional to Simplified Chinese con-

version, in such a highly end-to-end way the word segmentation can be significantly

simplified compared to the previous work. Radical level embeddings can also capture

deeper semantic meaning below character level and improve the system performance

of learning. By tying radical and character embeddings together, the parameter count

is reduced whereas semantic knowledge is shared and transferred between two levels,

boosting the performance largely. On 3 out of 4 Bakeoff 2005 datasets, our method

surpassed state-of-the-art results by up to 0.4%. Our results are reproducible, source

codes and corpora are available on GitHub1

1https://github.com/hankcs/sub-character-cws
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SC Sem. Pho. TC Sem. Pho.
鲤 鱼 ⾥ 鯉 ⿂ ⾥
鲢 鱼 连 鰱 ⿂ 連
河 ⽔ 可 河 ⽔ 可
沟 ⽔ 勾 溝 ⽔ 冓
捞 ⼿ 劳 撈 ⼿ 勞
捡 ⼿ 佥 撿 ⼿ 僉

Table 2.1: Illustration of semantic component (Sem.) and phonetic component
(Pho.) in Simplified Chinese (SC) and Traditional Chinese (TC).

2.1 Introduction

Unlike English, the alphabet in many non-latin languages is often big and complex. In

those hieroglyphic writing systems, every character can be decomposed into smaller

parts or sub-characters, and each part has special meanings. But existing methods

often follow common processing steps in latin flavor [57, 58, 4, 45, 69], and treat

character as the minimal processing unit, leading to a neglecting of information inside

non-latin characters. Early work exploiting sub-character information usually treat it

as a separate level from character [77, 53, 72, 21], ignoring the language phenomenon

that some of those sub-characters themselves are often used as normal characters.

From this phenomenon, we gained a new motivation to design a novel neural network

architecture for learning character and sub-character representation jointly.

In linguists’ view, Chinese writing system is such a highly hieroglyphic language,

and it has a long history of character compositionality. Every Chinese character has

several radicals (“部⾸”in Chinese), which serves as semantic component for encoding

meaning, or phonetic component for representing pronouciation. For instance, we

listed radicals of several Simplified and Traditional Chinese characters in Table 2.1.

Chinese characters with same semantic component are closely correlated in semantic.

As shown above, carp (鲤) and silverfish (鲢) are both fish (鱼). River (河) and gully
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(沟) are all filled with water (⽔). To catch (捞) or to pick up (捡) a fish, one needs

to use hands (⼿). To exploit those semantic meanings under character embedding

level, radical embedding emerged since 2014 [77, 72, 59, 21]. These early work treated

sub-character and character as two separate levels, omitting that they can actually

be unified as single minimal processing unit in language model. Instead of ignoring

linguistic knowledge, we respect the divergence of human language, and propose a

novel joint learning framework for both character and sub-character representations.

To verify the efficiency of our jointly learnt representations, we conducted ex-

tensive experiments on the Chinese Word Segmentation (CWS) task. As those lan-

guages often don’t have explicit delimiters between words, making it hard to per-

form later NLP tasks like Information Retrieval or Question Answering. Chinese

language is such a typical non-segmented language, which means unlike English

language having spaces between every word, Chinese has no explicit word delim-

iters. Therefore, Chinese Word Segmentation is a preliminary pre-processing step for

later Chinese language process tasks. Recently with the rapid rise of deep learning,

neural word segmentation approaches arose to reduce efforts in feature engineering

[90, 18, 65, 14, 6, 7].

In this paper, we propose a novel model to dive deeper into character embeddings.

In our framework, Simplified Chinese and Traditional Chinese corpora are unified via

radical embedding, growing an end-to-end model. Every character is converted to

a sequence of radicals with its original form. Character embeddings and radical

embeddings are pretrained jointly in Bojanowski et al. [4]’s subword aware method.

Finally, we conducted various experiments on corpora from SIGHAN bakeoff 2005.

Results showed that our jointly learnt character embedding outperforms conventional

character embedding training methods. Our models can improve performance by

transfer learning between characters and radicals. The final scores surpassed previous
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work, and 3 out of 4 even surpassed previous preprocessing-heavy state-of-the-art

learning work.

More specifically, the contributions of this paper could be summarized as:

• Explored a novel sub-character aware neural architecture and unified character

and sub-character as one same level embedding.

• Released the first full Chinese character-radical conversion corpus along with

pre-trained embeddings, which can be easily applied on other NLP tasks. Our

codes and corpora are freely available for the public.

2.2 Related Work

In this section, we review the previous work from 2 directions – radical embedding

and Chinese Word Segmentation.

2.2.1 Radical Embedding

To leverage the semantic meaning inside Chinese characters, Sun et al.[77] inaugu-

rated radical information to enrich character embedding via softmax classification

layer. In similar way, Li et al.[53] proposed charCBOW model taking concatenation

of the character-level and component-level context embeddings as input. Making

networks deeper, Shi et al.[72] proposed a deep CNN on top of radical embedding

pre-trained via CBOW. Instead of utilizing CNNs, following Lample et al.[51], Dong

et al.[21] used two level LSTMs taking character embedding and radical embedding

as input respectively.

Our work is closely related to Dong et al.[21], but there are two major differences.

In pre-training phase, their character embeddings were pre-trained separately, by
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utilizing conventional word2vec package, and the radical embeddings are randomly

initialized. While we considered radical units as sub-characters (parts of one charac-

ter) and trained the two level embeddings jointly, following Bojanowski et al. [4]’s

approach. In training and testing phases, our two-level embeddings are tied up and

unified as the sole minimal input unit of Chinese language.

2.2.2 Chinese Word Segmentation

Chinese Word Segmentation has been a well-known NLP task for decades[39]. After

pioneer Xue et al.[82] transformed CWS into a character-based tagging problem, Peng

et al. [67] adopted CRF as the sequence labeling model and showed its effectiveness.

Following these pioneers, later sequence labeling based work [79, 88, 89, 76] was

proposed. Recent neural models [90, 70, 65, 14, 21, 15] also followed this sequence

labeling fashion.

Our model is based on Bi-LSTM with CRF as top layer. Unlike previous ap-

proaches, the inputs to our model are both character and radical embeddings. Fur-

thermore, we explored which embedding level is more tailored for Chinese language,

either using both embeddings together, or even tying them up.

2.3 Joint Learning for Character Embedding and Radical

Embedding

Previous work treated character and radical as two different levels, used them sep-

arately or used one to enhance the other. Although radicals are components of a

character (belonging to a lower level), they can actually be learnt jointly. It is lin-

guistically more reasonable to put radical embeddings and character embeddings in
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exactly the same vector space. We propose to train character vector representation

being aware of its internal structure of radicals.

2.3.1 Character Decomposition

Every character can be decomposed into a list of radicals or components. To maintain

character information in radical list, we simply add the raw form of character to its

radical list. Taking the linguistic knowledge that semantic component contains richest

meaning of one character into consideration, we append the semantic component to

the end of its radical list, hence to make the semantic component appear more than

once.

Formally, denote c as a character, r as a radical, Lc = [r1, r2 · · · rn] as the original

radical list of c. Let rs ∈ Lc be the semantic component of c. Our decomposition of

c will be:

Rc = [c, r1, r2 · · · rn, rs] (2.1)

2.3.2 General Continuous Skip-Gram (SG) Model

Take a brief review of the continuous skip-gram model introduced by Mikolov et

al.[59], applied in character representation learning.

Given an alphabet, target is to learn a vectorial representation vc for each char-

acter c. Let c1, ..., cT be a large-scale corpus represented as a sequence of characters,

the objective function of the skipgram model is to maximize the log-likelihood of cor-

rect prediction. The probability of a context character cy given cx is computed by a

scoring function s which maps character and context to scores in R.
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The general SG model ignores the radical structure of characters, we propose a

different scoring function s, in order to capture radical information.

Let all radicals form an alphabet of size R. Given a character c and the radical list

Rc ⊂ {1, . . . , R} of c, a vector representation zr is associated to each radical r. Then

a character is represented by the sum of the vector representations of its radicals.

Thus the new scoring function will be:

s(cx, cy) =
∑
r∈Rcx

z⊤
r vcy . (2.2)

This simple model allows learning the representations of characters and radicals

jointly.

2.4 Radical Aware Neural Architectures for General Chinese

Word Segmentation

Once character and radical representations are learnt, one evaluation metric is how

much it improves a NLP task. We choose the Chinese Word Segmentation task as

a standard benchmark to examine their efficiency. One prevailing approach to CWS

is casting it to character based sequence tagging problem, where our representations

can be applied. A commonly used tagging set is T = {B,M,E, S}, representing the

begin, middle, end of a word, or single character forming a word.

Given a sequence X consisted of n features as X = (x1,x2, . . . ,xn), the goal of

sequence tagging based CWS is to find the most possible tags Y∗ = {y∗
1, . . . ,y∗

n}:

Y∗ = arg max
Y∈T n

p(Y|X), (2.3)

where T = {B,M,E, S}.
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Since tagging set restricts the order of adjacent tags, we model them jointly using

a conditional random field, mostly following the architecture proposed by Lample et

al.[51], via stacking two LSTMs with a CRF layer on top of them.

2.4.1 Radical LSTM Layer: Character Composition from Rad-

icals

In this section, we’ll review RNN with Bi-LSTM extension briefly, before introducing

our character composition network.

LSTM Long Short-Term Memory Networks (LSTMs) [38] are extensions of Recur-

rent Neural Networks (RNNs). They are designed to combat gradient vanishing issue

via incorporating a memory-cell which enables long-range dependencies capturing.

Bi-LSTM One LSTM can only produce the representation −→ht of the left context at

every character t. To incorporate a representation of the right context ←−ht, a second

LSTM which reads the same sequence in reverse order is used. Pair of this forward

and backward LSTM is called bidirectional LSTM (Bi-LSTM) [31] in literature. By

concatenating its left and right context representations, the final representation is

produced as ht = [
−→ht;
←−ht].

We apply a Bi-LSTM to compose character embeddings from radical embeddings

in both directions. The raw character is inserted as the first radical, and the semantic

component is appended as the last radical. The motivation behind this trick is to

make use of LSTM’s bias phenomena. In practice, LSTMs usually tend to be biased

towards the most recent inputs of the sequence, thus the first one or last one depends

on its direction.
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Figure 2.1: Radical LSTM Layer – composition of character representation from
radicals

As illustrated in Figure 2.1, the character 明 (bright) has the radical list of ⽇

(sun) and ⽉ (moon) with its raw form and duplicated semantic radical. Its compo-

sitional representation hri ∈ R2k is agglomerated via a Bi-LSTM from these radical

embeddings, where k is the dimension of radical embeddings.

2.4.2 Character Bi-LSTM Layer: Context Capturing

Once compositional character representation hri is synthesized, the contextual rep-

resentation hct ∈ R2d at every character t in input sentence can be agglomerated

by a second Bi-LSTM. The dimension d is a flexible hyper-parameter, which will be

explored in later experiments.

Our architecture for contextual feature capturing is shown in Figure 2.2. This

contextual feature vector contains the meaning of a character, its radicals and its

context.
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Figure 2.2: Character LSTM Layer – capture contextual representation

2.4.3 CRF Layer: Tagging Inference

We employed a Conditional Random Fields(CRF) [50] layer as the inference layer. As

first order linear chain CRFs only model bigram interactions between output tags, so

the maximum of a posteriori sequence Y∗ in Eq. 4.1 can be computed using dynamic

programming, both in training and decoding phase. The training goal is to maximize

the log-probability of the gold tag sequence.

2.5 Experiments

We conducted various experiments to verify the following questions:

1. Does radical embedding enhance character embedding in pre-training phase?
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2. Whether radical embedding helps character embedding in training phase and

test phase (by using character embedding solely or using them both)?

3. Can radical embedding replace character embedding (by using radical embed-

ding only)?

4. Should we tie up two level embeddings?

2.5.1 Datasets

To explore these questions, we experimented on the 4 prevalent CWS benchmark

datasets from SIGHAN2005 [27]. Following conventions, the last 10% sentences of

training set are used as development set.

2.5.2 Radical Decomposition

We obtained radical lists of character from the online Xinhua Dictionary2, which are

included in our open-source project.

2.5.3 Pre-training

Previous work have shown that pre-trained embeddings on large unlabeled corpus can

improve performance. It usually involves lots of efforts to preprocess those corpus.

Here we presented a novel solution.

The corpus used is Chinese Wikipedia of July 2017. Unlike most approaches,

we don’t perform Traditional Chinese to Simplified Chinese conversion. Our radical

decomposition is sufficient of associate character to its similar variants. Not only
2http://tool.httpcn.com/Zi/
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Models PKU MSR CityU AS
Tseng et al. [79] 95.0 96.4 - -

Zhang and Clark [85] 95.0 96.4 - -
Sun et al. [75] 95.2 97.3 - -
Sun et al. [76] 95.4 97.4 - -
Pei et al. [65] 95.2 97.2 - -

Chen et al. [15] 94.3 96.0 95.6 94.8
Cai et al. [7]♢ 95.8 97.1 95.6 95.3

baseline 94.6 96.0 94.7 94.8
+subchar 95.0 96.0 94.9 94.9
+radical 94.6 96.7 95.3 95.2

+radical -char 94.4 96.5 95.0 95.1
+radical +tie 94.8 96.8 95.3 95.1

+radical +tie +bigram 95.3 97.4 95.9 95.7

Table 2.2: Comparison with previous state-of-the-art models of results on all four
Bakeoff-2005 datasets.

traditional-simplified character pairs, those with similar radical decompositions will

also share similar vectorial representations.

Further, instead of the commonly used word2vec [58], we utilized fastText3 [4] to

train character embeddings and radical embeddings jointly. We applied SG model,

100 dimension, and set both maximum and minimal n-gram length to 1, as the radical

takes only one token.

2.5.4 Final Results on SIGHAN bakeoff 2005

Our baseline model is Bi-LSTM-CRF trained on each datasets only with pre-trained

character embedding (the conventional word2vec), no sub-character enhancement, no

radical embeddings. Then we improved it with sub-character information, adding

radical embeddings, tying two level embeddings up. The final results are shown in

Table 3.3.
3https://github.com/facebookresearch/fastText With tiny modification to output

n-gram vectors.
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All experiments are conducted with standard Bakeoff scoring program4 calculating

precision, recall, and F1-score. Note that results with ♢ expurgated long words in

test set.

2.5.5 Model Analysis

Sub-character information enhances character embeddings. Previous work showed

pre-trained character embeddings can improve performance. Our experiment showed

with sub-character information (+subchar), performance can be further improved

compared to no sub-character enhancement (baseline). By simply replacing the con-

ventional word2vec embeddings to radical aware embeddings, the score can benefit

an improvement as much as 0.4%.

Radical embeddings collaborate well with character embeddings. By building

compositional embeddings from radical level (+radical), performance increased by

up to 0.7% in comparison with model (baseline) on MSR dataset. But we also notice

that: 1) On small dataset such as PKU, radical embeddings cause tiny performance

drop. 2) With the additional bigram feature, performance can be further increased

as much as 0.6%.

Radical embeddings can’t fully replace character embeddings. Without character

embeddings but use radical embeddings solely (+radical -char), performance drops a

little (0.1% to 0.3%) compared to the model with character embeddings (+radical).

Tying two level embeddings up is a good idea. By tying radical embeddings and

character embeddings together (+radical +tie), the raw feature is unified into the

same vector space, knowledge is transferred between two levels, and performance is

boosted up to 0.2%.
4http://www.sighan.org/bakeoff2003/score This script rounds a score to one digit.
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2.6 Conclusions and Future Work

In this paper, we proposed a novel neural network architecture with dedicated pre-

training techniques to learn character and sub-character representations jointly. As

an concrete application example, we unified Simplified and Traditional Chinese char-

acters through sub-character or radical embeddings. We have utilized a practical

way to train radical and character embeddings jointly. Our experiments showed that

sub-character information can enhance character representations for a pictographic

language like Chinese. By using both level embeddings and tying them up, our model

has gained the most benefit and surpassed previous single criterial CWS systems on

3 datasets.

Our radical embeddings framework can be applied to extensive NLP tasks like

POS-tagging and Named Entity Recognition (NER) for various hieroglyphic lan-

guages. These tasks will benefit from deeper level of semantic representations encoded

with more linguistic knowledge.
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CHAPTER 3

EFFECTIVE NEURAL SOLUTION FOR MULTI-CRITERIA WORD

SEGMENTATION

We present a simple yet elegant solution to train a single joint model on multi-

criteria corpora for Chinese Word Segmentation (CWS). Our novel design requires no

private layers in model architecture, instead, introduces two artificial tokens at the

beginning and ending of input sentence to specify the required target criteria. The

rest of the model including Long Short-Term Memory (LSTM) layer and Conditional

Random Fields (CRFs) layer remains unchanged and is shared across all datasets,

keeping the size of parameter collection minimal and constant. On Bakeoff 2005 and

Bakeoff 2008 datasets, our innovative design has surpassed both single-criterion and

multi-criteria state-of-the-art learning results. To the best knowledge, our design

is the first one that has achieved the latest high performance on such large scale

datasets. Source codes and corpora of this paper are available on GitHub1.

3.1 Introduction

Unlike English language with space between every word, Chinese language has no

explicit word delimiters. Therefore, Chinese Word Segmentation (CWS) is a pre-

liminary pre-processing step for Chinese language processing tasks. Following Xue

[82], most approaches consider this task as a sequence tagging task, and solve it

with supervised learning models such as Maximum Entropy (ME) [43] and Condi-

tional Random Fields (CRFs) [50, 67]. These early models require heavy handcrafted

feature engineering within a fixed size window.
1https://github.com/hankcs/multi-criteria-cws
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With the rapid development of deep learning, neural network word segmentation

approach arose to reduce efforts in feature engineering [90, 18, 65, 14, 6, 7]. Zheng

et al. [90] replaced raw character with its embedding as input, adapted the sliding-

window based sequence labeling [18]. Pei et al. [65] extended Zheng et al. [90]’s

work by exploiting tag embedding and bigram features. Chen et al. [14] employed

LSTM to capture long-distance preceding context. Noteworthily, a novel word-based

approach [6, 7] was proposed to model candidate segmented results directly. Despite

the outstanding runtime performance, their solution required the max word length

L to be a fixed hyper-parameter and replaced those words that longer than L into

a unique character. Thus their performance relies on an expurgation of long words,

which is not practical.

Novel algorithms and deep models are not omnipotent. Large-scale corpus is

also important for an accurate CWS system. Although there are many segmentation

corpora, these datasets are annotated in different criteria, making it hard to fully

exploit these corpora, which are shown in Table 3.1.

Corpora Li Le reaches Benz Inc
pku 李 乐 到达 奔驰 公司
msr 李乐 到达 奔驰公司
as 李樂 到達 賓⼠ 公司

cityu 李樂 到達 平治 公司

Table 3.1: Illustration of different segmentation criteria of SIGHAN bakeoff 2005.

Recently, Chen et al. [15] designed an adversarial multi-criteria learning framework

for CWS. However, their models have several complex architectures, and are not

comparable with the state-of-the-art results.

In this paper, we propose a smoothly jointed multi-criteria learning solution for

CWS by adding two artificial tokens at the beginning and ending of input sentence
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to specify the required target criteria. We have conducted various experiments on

8 segmentation criteria corpora from SIGHAN Bakeoff 2005 and 2008. Our models

improve performance by transferring learning on heterogeneous corpora. The final

scores have surpassed previous multi-criteria learning, 2 out of 4 even have surpassed

previous preprocessing-heavy state-of-the-art single-criterion learning results.

The contributions of this paper could be summarized as:

• Proposed an simple yet elegant solution to perform multi-criteria learning on

multiple heterogeneous segmentation criteria corpora;

• 2 out of 4 datasets have surpassed the state-of-the-art scores on Bakeoff 2005;

• Extensive experiments on up to 8 datasets have shown that our novel solution

has significantly improved the performance.

3.2 Related Work

In this section, we review the previous works from 2 directions, which are Chinese

Word Segmentation and multi-task learning.

3.2.1 Chinese Word Segmentation

Chinese Word Segmentation has been a well-studied problem for decades [39]. After

pioneer Xue [82] transformed CWS into a character-based tagging problem, Peng

et al. [67] adopted CRF as the sequence labeling model and showed its effectiveness.

Following these pioneers, later sequence labeling based works [79, 88, 89, 76] were

proposed. Recent neural models [90, 65, 14, 21, 15] also followed this sequence labeling

fashion.
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3.2.2 Multi-Task Learning

Compared to single-task learning, multi-task learning is relatively harder due to the

divergence between tasks and heterogeneous annotation datasets. Recent works have

started to explore joint learning on Chinese word segmentation or part-of-speech

tagging. Jiang et al. [41] stacked two classifiers together. The later one used the

former’s prediction as additional features. Sun and Wan [74] proposed a structure-

based stacking model in which one tagger was designed to refine another tagger’s

prediction. These early models lacked a unified loss function and suffered from error

propagation.

Qiu et al. [71] proposed to learn a mapping function between heterogeneous cor-

pora. Li et al. [54], Chao et al. [8] proposed and utilized coupled sequence labeling

model which can directly learn and infer two heterogeneous annotations simulta-

neously. These works mainly focused on exploiting relationships between different

tagging sets, but not shared features.

Chen et al. [15] designed a complex framework involving sharing layers with Gener-

ative Adversarial Nets (GANs) to extract the criteria-invariant features and dataset

related private layers to detect criteria-related features. This research work didn’t

show great advantage over previous state-of-the-art single-criterion learning scores.

Our solution is greatly motivated by Google’s Multilingual Neural Machine Trans-

lation System, for which Johnson et al. [44] proposed an extremely simple solution

without any complex architectures or private layers. They added an artificial token

corresponding to parallel corpora and train them jointly, which inspired our design.
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3.3 Neural Architectures for Chinese Word Segmentation

A prevailing approach to Chinese Word Segmentation is casting it to character based

sequence tagging problem [82, 76]. One commonly used tagging set is T = {B,M,E, S},

representing the begin, middle, end of a word, or single character forming a word.

Given a sequence X with n characters as X = (x1,x2, . . . ,xn), sequence tagging based

CWS is to find the most possible tags Y∗ = {y∗
1, . . . ,y∗

n}:

Y∗ = arg max
Y∈T n

p(Y|X), (3.1)

We model them jointly using a conditional random field, mostly following the

architecture proposed by Lample et al. [51], via stacking Long Short-Term Memory

Networks (LSTMs) [38] with a CRFs layer on top of them.

We’ll introduce our neural framework bottom-up. The bottom layer is a character

Bi-LSTM (bidirectional Long Short-Term Memory Network) [31] taking character

embeddings as input, outputs each character’s contextual feature representation:

ht = Bi-LSTM(X, t) (3.2)

After a contextual representation ht is generated, it will be decoded to make a

final segmentation decision. We employed a Conditional Random Fields (CRF) [50]

layer as the inference layer.

First of all, a linear score function s(X, t) ∈ R|T | is used to assign a local score for

each tag on t-th character:

s(X, t) = W⊤
s ft + bs (3.3)

where ft = [ht; et] is the concatenation of Bi-LSTM hidden state and bigram feature

embedding et, Ws ∈ Rdf×|T | and bs ∈ R|T | are trainable parameters.

Then, for a sequence of predictions:

Y = (y1, y2, . . . , yn) (3.4)
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first order linear chain CRFs employed a Markov chain to define its global score as:

s(X,Y) =
n∑
i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi (3.5)

where A is a transition matrix such that Ai,j represents the score of a transition from

the tag yi to tag yj. y0 and yn are the start and end tags of a sentence, that are added

to the tagset additionaly. A is therefore a square matrix of size 4 + 2.

Finally, this global score is normalized to a probability in Equation (4.1) via a

softmax over all possible tag sequences:

p(Y|X) =
es(X,Y)∑

Ỹ∈YX
es(X,Ỹ)

(3.6)

In decoding phase, first order linear chain CRFs only model bigram interactions

between output tags, so the maximum of a posteriori sequence Y∗ in Eq. 4.1 can be

computed using dynamic programming.

3.4 Elegant Solution for Multi-Criteria Chinese Word Seg-

mentation

For closely related multiple task learning like multilingual translation system, Johnson

et al. [44] proposed a simple and practical solution. It only needs to add an artificial

token at the beginning of the input sentence to specify the required target language,

no need to design complex private encoder-decoder structures.

We follow their spirit and add two artificial tokens at the beginning and ending

of input sentence to specify the required target criteria. For instance, sentences in

SIGHAN Bakeoff 2005 will be designed to have the following form:

These artificial tokens specify which dataset the sentence comes from. They are

treated as normal tokens, or more specifically, a normal character. With their help,
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Corpora Li Le reaches Benz Inc
PKU <pku> 李乐到达奔驰公司 </pku>

MSR <msr> 李乐到达奔驰公司 </msr>

AS <as> 李樂到達賓⼠公司 </as>

CityU <cityu> 李樂到達平治公司 </cityu>

Table 3.2: Illustration of adding artificial tokens into 4 datasets on SIGHAN
Bakeoff 2005. To be fair, these <dataset> and </dataset> tokens will be removed
when computing scores.

instances from different datasets can be seamlessly put together and jointly trained,

without extra efforts. These two special tokens are designed to carry criteria related

information across long dependencies, affecting the context representation of every

character, and finally to produce segmentation decisions matching target criteria. At

test time, those tokens are used to specify the required segmentation criteria. Again,

they won’t be taken into account when computing performance scores.

3.5 Training

The training procedure is to maximize the log-probability of the gold tag sequence:

log(p(Y|X)) = score(X,Y)

− logadd
Ỹ∈YX

score(X, Ỹ), (3.7)

where YX represents all possible tag sequences for a sentence X.

3.6 Experiments

We conducted various experiments to verify the following questions:

1. Is our multi-criteria solution capable of learning heterogeneous datasets?
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2. Can our solution be applied to large-scale corpus groups consisting of tiny and

informal texts?

3. More data, better performance?

Our implementation is based on Dynet [62], a dynamic neural net framework for

deep learning. Additionally, we implement the CRF layer in Python, and integrated

the official score script to verify our scores.

3.6.1 Datasets

To explore the first question, we have experimented on the 4 prevalent CWS datasets

from SIGHAN2005 [27] as these datasets are commonly used by previous state-of-

the-art research works. To challenge question 2 and 3, we applied our solution on

SIGHAN2008 datasets [61], which are used to compare our approach with other state-

of-the-art multi-criteria learning works under a larger scale.

All datasets are preprocessed by replacing the continuous English characters and

digits with a unique token. For training and development sets, lines are split into

shorter sentences or clauses by punctuations, in order to make faster batch.

Specially, the Traditional Chinese corpora CityU, AS and CKIP are converted to

Simplified Chinese using the popular Chinese NLP tool HanLP2.

3.6.2 Results on SIGHAN bakeoff 2005

Our baseline model is Bi-LSTM-CRFs trained on each datasets separately. Then we

improved it with multi-criteria learning. In naive treatment (+naive), artificial tokens
2https://github.com/hankcs/HanLP

39



Published as a conference paper at SCI-2018 [37]

Models PKU MSR CityU AS
Tseng et al. [79] 95.0 96.4 - -

Zhang and Clark [85] 95.0 96.4 - -
Zhao and Kit [87] 95.4 97.6 96.1 95.7

Sun et al. [75] 95.2 97.3 - -
Sun et al. [76] 95.4 97.4 - -

Zhang et al. [84]♣ 96.1 97.4 - -
Chen et al. [13]♠ 94.5 95.4 - -
Chen et al. [14]♠ 94.8 95.6 - -
Chen et al. [15] 94.3 96.0 - 94.8
Cai et al. [7]♢ 95.8 97.1 95.6 95.3

baseline 95.2 97.3 95.1 94.9
+naive 90.5 92.1 91.3 94.3
+multi 95.9 97.4 96.2 95.4

Table 3.3: Comparison with previous state-of-the-art models of results on all four
Bakeoff-2005 datasets. Results with ♣ used external dictionary or corpus, with ♠ are
from Cai and Zhao [6]’s runs on their released implementations without dictionary,
with ♢ expurgated long words in test set.

are not used when corpora are combined, in contrast to our method (+multi). The

final F1 scores are shown in Table 3.3.

According to this table, we find that naive way of mixing corpora brings much

noise and errors, while our multi-criteria learning boosts performance on every single

dataset. Compared to single-criterion learning models (baseline), multi-criteria learn-

ing model (+multi) outperforms all of them by up to 1.1%. Our joint model doesn’t

rob performance from one dataset to pay another, but share knowledge across datasets

and improve performance on all datasets.

3.6.3 Results on SIGHAN bakeoff 2008

SIGHAN bakeoff 2008 [61] provided as many as 5 heterogeneous corpora. With

another 3 non-repetitive corpora from SIGHAN bakeoff 2005, they form a large-scale

standard dataset for multi-criteria CWS benchmark. We repeated our experiments
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Models MSR AS PKU CTB CKIP CITYU NCC SXU Avg.

Single-Criterion Learning

Chen et al. [15]

P 95.70 93.64 93.67 95.19 92.44 94.00 91.86 95.11 93.95
R 95.99 94.77 92.93 95.42 93.69 94.15 92.47 95.23 94.33
F 95.84 94.20 93.30 95.30 93.06 94.07 92.17 95.17 94.14

Ours

P 97.17 95.28 94.78 95.14 94.55 94.86 93.43 95.75 95.12
R 97.40 94.53 95.66 95.28 93.76 94.16 93.74 95.80 95.04
F 97.29 94.90 95.22 95.21 94.15 94.51 93.58 95.78 95.08

Multi-Criteria Learning

Chen et al. [15]

P 95.95 94.17 94.86 96.02 93.82 95.39 92.46 96.07 94.84
R 96.14 95.11 93.78 96.33 94.70 95.70 93.19 96.01 95.12
F 96.04 94.64 94.32 96.18 94.26 95.55 92.83 96.04 94.98

Ours

P 97.38 96.01 95.37 95.69 96.21 95.78 94.26 96.54 95.82
R 97.32 94.94 96.19 96.00 95.27 95.43 94.42 96.44 95.64
F 97.35 95.47 95.78 95.84 95.73 95.60 94.34 96.49 95.73

Table 3.4: Results on test sets of 8 standard CWS datasets. Here, P, R, F indicate
the precision, recall, F1 value respectively. The maximum F1 values are highlighted
for each dataset.

on these 8 corpora and compared our results with state-of-the-art scores, as listed in

Table 3.4.

In the first block for single-criterion learning, we can see that our implementation

is generally more effective than Chen et al. [15]’s. In the second block for multi-

criteria learning, this disparity becomes even significant. And we further verified

that every dataset benefit from our joint-learning solution. We also found that more

data, even annotated with different standards or from different domains, brought

better performance. Almost every dataset benefited from the larger scale of data. In

comparison with large datasets, tiny datasets gained more performance growth.
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3.7 Conclusions and Future Works

3.7.1 Conclusions

In this paper, we have presented a practical way to train multi-criteria CWS model.

This simple and elegant solution only needs adding two artificial tokens at the begin-

ning and ending of input sentence to specify the required target criterion. All the rest

of model architectures, hyper-parameters, parameters and feature space are shared

across all datasets. Experiments showed that our multi-criteria model can transfer

knowledge between differently annotated corpora from heterogeneous domains. Our

system is highly end-to-end, capable of learning large-scale datasets, and outperforms

the latest state-of-the-art multi-criteria CWS works.

3.7.2 Future Works

Our effective and elegant multi-criteria learning solution can be applied to sequence

labeling tasks such as POS tagging and NER. We plan to conduct more experiments

of using our effective technique in various application domains.
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CHAPTER 4

INDUSTRIAL STRENGTH DEPENDENCY PARSING SYSTEM

runtime speed We introduce the design and usage of IParser, an industrial strength

multilingual parser for human language processing. This parser is capable of pars-

ing raw text to dependency grammar trees, it also has tokenizers and part-of-speech

taggers built-in. We address the runtime efficiency and memory usage over the accu-

racy digits after decimal mark. Our parser builds on recent state-of-the-art models,

and comes with a friendly interface design. We evaluated several models and vali-

dated the minimal cost to build a concise network structure for production use. This

implementation has been open sourced on GitHub1.

4.1 Introduction

Dependency parsing is a useful and non-trial task among the many sub-tasks of Nat-

ural Language Processing (NLP). It is to analyze the dependency grammar structure

of a given input sentence automatically. Many and various kinds of applications have

exploited the power of dependency parsing, ranging from language modeling [11, 9],

machine translation [20, 28, 3], question answering [19] to information retrieval [29].

For researchers and engineers, there has been some packages ready to use, including

the well-known Stanford CoreNLP [55] for multilingual languages, the LTP [10] and

HanLP [34] for Chinese language.

This paper describes yet another choice: IParser, a light-weighted Pythonic pipeline

framework, which features with more recent models, easier installation, intergraded

visualization tools and more friendly interfaces. IParser supports 3 common NLP
1https://github.com/hankcs/iparser
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Segmenter

I looove iparser!

! iparserloooveI

Tagger . NNJJPRP

Parser

I  looove  iparser !
PRP JJ NN .

nsubj dobj
punct

Server

1  I  PRP  2  nsubj 
2  looove  JJ  0  root 
3  iparser NN  2  dobj 
4  !  .  2  punct 

Figure 4.1: Overall system architecture of IParser.

steps: tokenization (word segmentation), part-of-speech tagging and dependency

parsing, the main task.

We start with an overview of the system design and most distinguished features

in section 2. Then we show simple usage and interface design in section 3. The

algorithms, models and performance evaluations are given in section 4 and 5. We

finish this paper with a brief conclusion and some tips for extending this parser.

4.2 System Design Overview

Our parser is a pipeline system, starting from raw text segmented to words, then

tagged with part-of-speech labels, finally parsed to a dependency tree. The overview

of architecture design is shown in Figure 4.4.
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4.2.1 Pipeline Design

From bottom up, IParser transforms the input into temporary outputs, then the final

dependency tree shown in user’s browser. Our system is highly modularized. Every

intermediate result can be retrieved without touching the blocks in higher level. This

is important for users who only want partial results, like segmented words or tagged

labels.

Although there is a trending to perform end-to-end dependency parsing jointly

with segmentation and part-of-speech tagging [32], we didn’t adopt such techniques.

An end-to-end design can be expensive in corpora, and complex in system design.

Joint segmentation, tagging and parsing systems require all corpora to be fully

annotated in dependency parsing level. But size of corpora tends to decrease with the

increasing of task level, due to the increasing time and efforts for high level annotation.

So, total amount of treebanks are relatively smaller than part-of-speech tagging cor-

pora, and the later is generally smaller than segmentation corpora. Instead, pipeline

systems can make use of rich corpora in lower level. Corpora in different levels don’t

have to come from the same source, thus they can be replaced flexibly.

In real life problems, joint learning systems suffer from the complexity both in

implementation and runtime. They are highly end-to-end, require all tasks to be

performed simultaneously. This requirement results in higher peak value of memory

usage.

4.2.2 Multilingual Language

IParser is designed to be language-agnostic, it has universal language support. Users

only need to feed it with some corpora of a desired language.
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Although language-independent, we do provide mechanisms to perform prepro-

cessing for particular languages, like the well-studied Chinese Word Segmentation.

Besides, we provide pre-trained models for both English and Chinese, shipped in the

installation package.

4.2.3 Interface Overview

Regarding user interface, we provide 3 types of interfaces:

1. Command Line Interface (CLI)

2. Application Interface (API)

3. Web based visualization and demonstration server (Server).

The API is designed for programmers who want to integrate IParser in their

projects. It is flexible but requires some minimal Python codes. The CLI is intended

for researchers for convenient access to segmentation, tagging and parsing functional-

ities. Then, the parsed dependency trees can be visualized by the server side, which

generates a web page containing a tree structure in SVG (Scalable Vector Graphics)

format. We will describe those interfaces in section 3.

4.3 Interfaces and Usage

The design goal of interfaces is to provide easy access to NLP pipelines with minimal

effort, whether via API, CLI or browser. We hide most technique details in the

configuration files, even provide default values for the only required parameter: the

path to configuration file, which defaults to the bundled models.
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4.3.1 Install

We have uploaded IParser distribution to PyPI2 (the default Package Index for the

Python community). So, it is possible to install via pip (the package management

system for Python):

$ pip3 install iparser

Listing 4.1: Install via pip

The pre-trained models are bundled in Python package, ready for loading.

4.3.2 CLI

Getting started with one line of command is often attractive for new users. We

provide such an on-the-fly command:

$ iparser segment <<< '商品和服务'

商品和服务

$ iparser tag <<< 'I looove iparser!'

I/PRP looove/VBP iparser/NN !/.

$ iparser parse <<< 'I looove iparser!'

1 I _ _ PRP _ 2 nsubj _ _

2 looove _ _ VBP _ 0 root _ _

3 iparser _ _ NN _ 2 dobj _ _

4 ! _ _ . _ 2 punct _ _

Listing 4.2: Get started

2https://pypi.org/
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Here user inputs some sentences, IParser performs segmentation, tagging and

parsing for them. IParser is a compatible pipeline for standard I/O redirection. It is

able to read inputs from console or files, and write outputs to them. By assembling

these pipelines, user can handle normal NLP tasks without writing codes.

CLI can also help users with the training of new models. Every command (seg-

ment, tag, parse) share the same parameters for training. Take segmentation for an

example, it only requires a configuration file from user:

$ iparser segment --help

usage: iparser segment [-h] [--config CONFIG] [--action ACTION]

optional arguments:

-h, --help show this help message and exit

--config CONFIG path to config file

--action ACTION which action (train, test, predict)?

Listing 4.3: CLI for Training

The required format of corpus varies with tasks. Generally speaking, segmentation

and part-of-speech tagging are treated as tagging problem, so they share the same

format. The format of dependency parsing corpora is CoNLL [5]. Regarding how

to prepare corpora in those formats, readers are suggested to make use of the open

source project TreebankPreprocessing3.
3https://github.com/hankcs/TreebankPreprocessing
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4.3.3 API

IParser provides full support for training, evaluation and prediction in Python API.

We gathered everything in a single Python package called iparser. Minimal code for

Python users are demonstrated in List 4.4:

$ python3

>>> from iparser import *

>>> iparser = IParser(pos_config_file=PTB_POS, dep_config_file=

PTB_DEP)

>>> print(iparser.tag('I looove iparser!'))

[('I', 'PRP'), ('looove', 'VBP'), ('iparser', 'NN'), ('!', '.')]

>>> print(iparser.parse('I looove iparser!'))

1 I _ _ PRP _ 2 nsubj _ _

2 looove _ _ VBP _ 0 root _ _

3 iparser _ _ NN _ 2 dobj _ _

4 ! _ _ . _ 2 punct _ _

Listing 4.4: Minimal Python Code

Here PTB_POS is the path to configuration file of part-of-speech tagging model

trained on Penn Treebank [56], and PTB_DEP stands for dependency parsing model.

User can load models trained on different corpora to support multilingual lan-

guages:

>>> iparser = IParser(seg_config_file=CTB_SEG, pos_config_file=

CTB_POS, dep_config_file=CTB_DEP)

>>> print(iparser.parse('我爱依存分析！'))

1 我 _ _ PN _ 2 nsubj _ _

2 爱 _ _ VV _ 0 root _ _

3 依存 _ _ VV _ 2 ccomp _ _
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4 分析 _ _ VV _ 3 comod _ _

5 ！ _ _ PU _ 2 punct _ _

Listing 4.5: Support for Chinese

Those variables with names starting with CTB_ are the configuration files to models

trained on Chinese Treebank [81].

For users who don’t need such an all-in-one interface, they can use indivisual

interfaces for each task, as introduced in the next chapters.

4.3.3.1 Word Segmentation

The built-in word segmentation can be invoked via class Segmenter:

$ python3

>>> from iparser import *

>>> segmenter = Segmenter(CTB_SEG).load()

>>> segmenter.segment('下⾬天地⾯积⽔')

['下⾬天', '地⾯', '积⽔']

Listing 4.6: Word Segmentation

Notice that users should remember to call load in order to ensure a pre-trained

model is loaded, otherwise an empty model will be created for training.

4.3.3.2 Part-of-Speech Tagging

The tagger POSTagger shares similar interfaces with Segmenter:

$ python3

>>> from iparser import *

>>> tagger = POSTagger(PTB_POS).load()

>>> tagger.tag('I looove languages'.split())
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[('I', 'PRP'), ('looove', 'VBP'), ('languages', 'NNS')]

Listing 4.7: Part-of-Speech Tagging

POSTagger is not responsible for word segmentation. User should perform seg-

mentation in advance or use IParser for convenience.

4.3.3.3 Dependency Parsing

The parser can be called through class DepParser:

$ python3

>>> from iparser import *

>>> parser = DepParser(PTB_DEP).load()

>>> sentence = [('Is', 'VBZ'), ('this', 'DT'), ('the', 'DT'), ('

future', 'NN'), ('of', 'IN'), ('chamber', 'NN'), ('music', 'NN

'), ('?', '.')]

>>> print(parser.parse(sentence))

1 Is _ _ VBZ _ 4 cop _ _

2 this _ _ DT _ 4 nsubj _ _

3 the _ _ DT _ 4 det _ _

4 future _ _ NN _ 0 root _ _

5 of _ _ IN _ 4 prep _ _

6 chamber _ _ NN _ 7 nn _ _

7 music _ _ NN _ 5 pobj _ _

8 ? _ _ . _ 4 punct _ _

Listing 4.8: Dependency Parsing

DepParser is neither responsible for segmentation nor tagging. The input should

be a list of tuples, each tuple is consisted of word and tag.
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4.3.3.4 Training and Evaluating

The training APIs for segmentation, part-of-speech tagging and dependency parsing

are similar to each other. We take dependency parsing for an example. Assume that

we have already prepared a configuration file config_file and corresponding corpus,

the training can be done in one line of code:

parser = DepParser(config_file).train()

Listing 4.9: Train a Dependency Parser

We can also evaluate it on-the-fly:

parser.evaluate()

Listing 4.10: Evaluate a Dependency Parser

The outputs of evaluate() are the UAS (Unlabeled Attachment Score) and LAS

(Labeled Attachment Score). Those scores will be stored in the log file test.log in

the same folder with model.

4.3.4 Visualization

We have implemented and intergraded a http server for visualization of dependency

trees. This server can be started via command line:

$ iparser serve --help

usage: iparser serve [-h] [--port PORT]

A http server for IParser

optional arguments:

-h, --help show this help message and exit
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IParser  builds  on state­of­the­art models , and comes  with friendly interfaces .
NNP VBZ IN JJ NNS , CC VBZ IN JJ NNS .

prep prepnsubj amodamod
pobjpobj

punct
cc

conj
punct

Figure 4.2: A tree generated by IParser server.

--port PORT

Listing 4.11: Visualization server

We also provide a public server which is hosted at http://iparser.hankcs.com/.

Users can input a sentence, hit enter to get the visualization of dependency tree in

SVG format. A typical tree is illustrated in Figure 4.2.

4.3.5 Configuration File

Many parsers or softwares in academia often put all parameters in command line,

requiring users to execute commands containing exactly the same parameters during

the training and testing. This can lead to several issues. Firstly, one may need to type

the parameters every time in terminal, bringing unnecessary efforts. Secondly, those

parameters must be stored along with the serialized models, in order to keep model

consistent when loading models, resulting extra efforts for maintenance of parameters.

Finally, shell systems vary a lot, which may not ensure the universality of commands.

Instead, IParser employs configuration files to ensure the same network is created

before and after serialization, in training phase and testing phase accordingly. This

is important for research engineers who want to fine-tune those hyper parameters, or

train new models on other corpora of a third language. We provide well documented

configuration template files, containing all configurable parameters for users to adjust.

In this way, the only parameter users need to specify in command line is the path
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to the configuration file. Along with serialization of model, the configuration file will

be copied to the same place where model is stored. So, the meta info contained in

configuration can easily be distributed with model itself.

A typical configuration file is shown in Listing 4.12.

1 [Data]

2 data_dir = data/ptb/pos

3 train_file = %(data_dir)s/train.tsv

4 dev_file = %(data_dir)s/dev.tsv

5 test_file = %(data_dir)s/test.tsv

6

7 [Save]

8 save_dir = iparser/static/ptb/pos

9 config_file = %(save_dir)s/config.ini

10 save_model_path = %(save_dir)s/model.txt

11 save_vocab_path = %(save_dir)s/vocab.pkl

12

13 [Network]

14 word_embedding_dim = 100

15 dropout = 0.2

16

17 [Optimizer]

18 learning_rate = 1e-2

19

20 [Run]

21 batch_size = 20

22 num_epochs = 60

Listing 4.12: Configuration File
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4.3.6 Meta Information

The configuration of model is not the only meta information, we also distribute log

files generated in training and testing along with serialized models. So, user can

always check the statistics of training, development and test datasets, the performance

of model on those datasets. A typical folder structure for a serialized model is shown

in Listing 4.13.

1 iparser/static

2 |-- ptb

3 |-- dep

4 |-- config.ini

5 |-- model.txt

6 |-- test.log

7 |-- train.log

8 |-- vocab.pkl

Listing 4.13: Folder Structure

Here config.ini is the configuration file, model.txt and vocab.pkl are the serialized

model and vocabulary respectively, train.log and test.log are the log files in training

and testing phases.

PTB CTB
Task Tagging Parsing Tagging Parsing
Train 0-18 02-21 001–270, 400–1151 001–815, 1001–1136
Dev 19-21 22 301–325 886–931, 1148–1151
Test 22-24 23 271-300 816–885, 1137–1147

Table 4.1: Splits for part-of-speech tagging and dependency parsing. The split for
tagging is taken from Collins [17], while the parsing splits are taken from Chen and
Manning [12].
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4.4 Tagger for Segmentation and Part-of-Speech Tagging

In this chapter, we give a short review of the tagging algorithms.

4.4.1 Tagging Models

The tagging model is Bi-LSTM-CRF (bi-directional Long Short-term Memory Net-

works with Conditional Random Fields layer). Readers are suggested to refer to

Huang et al. [40] and Lample et al. [51] for more information. We only give a short

review for completeness.

LSTM Long Short-Term Memory Networks [38] are extensions of Recurrent Neural

Networks (RNNs) designed to solve gradient vanishing issue by adding a memory-

cell. This dedicated cell enables RNNs to capture long-range dependencies, which

emancipates sequential model from fixed size windows.

Denote (x1,x2, . . . ,xn) as a sequence of input vectors, the goal is to return another

sequence (h1,h2, . . . ,hn) representing some information about the inputs at every

time step. The following variant is adopted:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ct = (1− it)⊙ ct−1+

it ⊙ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot ⊙ tanh(ct),

where σ is the element-wise sigmoid function.
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Bi-LSTM Pair of forward and backward LSTM is called bidirectional LSTM (Bi-

LSTM) [31] in literature. By concatenating the forward and backward hidden states,

the final contextual representation is produced as ht = [
−→ht;
←−ht].

CRF Conditional Random Fields are probabilistic graphical models which model

the global tagging sequence instead of a local one. So adding a CRF layer can

help tagging model to overcome label bias problem. Given a sequence X with n

characters as X = (x1,x2, . . . ,xn), CRF model tries to find the most possible tags

Y∗ = {y∗
1, . . . ,y∗

n}:

Y∗ = argmaxY∈T np(Y|X), (4.1)

where T is the tagging set.

Character Model To solve the OOV (Out Of Vocabular) problem, rather than

replace them with UNK symbol, we adopted the character LSTM layer introduced by

Lample et al. [51] for part-of-speech tagging. This Bi-LSTM layer takes character

embeddings as input, and concatenates the last hidden states of them to produce a

vectorial representation for each word.

The part-of-speech tagging is already a tagging problem. Besides, we cast word

segmentation into tagging problem following Xue [82]. The tag set for segmentation

is T = {B,M,E, S}, respectively standing for the begin, middle, end of a word, or

single character forming a word.

4.4.2 Performance

We conducted experiments on PTB and CTB, using the conventional splits of dataset

for each task.
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CTB Dev Test
F1 95.56 97.01

Table 4.2: Segmentation score on CTB

PTB CTB
Accuracy 97.39 95.69

Table 4.3: Part-of-Speech tagging score on PTB and CTB

4.4.2.1 Word Segmentation

For Chinese, we follow Jiang et al. [42], split the CTB into portions:

• Training: 001–270, 400–1151.

• Development: 301–325.

• Test: 271-300.

We adopted the radical enhanced character embeddings released by He et al. [36],

which brings slightly better performance than embeddings trained via the conven-

tional word2vec [60].

The performance of segmentation model is shown in Table 4.2.

For English, we used a rule-based tokenizer called segtok4.

4.4.2.2 Part-of-Speech Tagging

The dataset splits are listed in Table 4.1.

For English, we exploited pre-trained GloVe embeddings [68]. For Chinese, we

adopted embeddings trained by HanLP5 on Chinese Wikipedia. The performances

are recorded in Table 4.3.
4https://github.com/fnl/segtok
5https://github.com/hankcs/HanLP/wiki/word2vec
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4.5 Dependency Parsing

PTB CTB
Model UAS LAS UAS LAS
Bi-Affine 96.14 95.03 90.41 88.44
+char model 96.00 94.89 90.21 88.20

Table 4.4: Test-set parsing results on English (PTB-SD 3.3.0) and Chinese (CTB-
SD 3.3.0) datasets.

In this section, we’ll review the parsing models, then report performances on

standard datasets.

4.5.1 Parsing Models

The implemented parsing model is the deep bi-affine model [23] with triple word

embeddings [24].

4.5.1.1 Tripartie Word Embeddings

In NLP tasks, OOV often hurts performance on test set. Dozat et al. [24] designed 3

embeddings for each word.

Pre-trained Word Embedding This copy of pre-trained embedding e(pre) won’t

be updated during the training, in order to retain similarity with its neighbor.

Randomly Initialized Word Embedding This randomly initialized embedding

e(freq) is trainable and shares the same dimension with pre-trained word embedding.

Character LSTM Hidden State with Attention For languages with rich mor-

phology, a character level LSTM layer with attention mechanism is applied to each
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word, generating a hidden state for attention and the cell state. The concatenation

of those two states is used as the final summary vector v(char)for each word.

The final word embedding e(word) is computed as the element-wise sum of pre-

trained embedding, the trainable embedding and character-level embedding:

e(word) = e(pre) + e(freq) + v(char) (4.2)

This eword will be concatenated together with POS embedding etag.

x = e(word) ⊕ e(tag) (4.3)

The resulting vector is used as the final input to the deep bi-affine parser in next

section.

4.5.1.2 Deep Bi-Affine Parser

The first layer of this parser is a Bi-LSTM feature detector:

hi = BiLSTM((x1, · · · ,xn))i (4.4)

where (x1, · · · ,xn) is the vectorial representation of n words from a sentence.

We need to predict dependency arcs (arc) and relations (rel) given a pair of words

as dependent or head, thus we have 4 kinds of predictions. So, 4 distinct multi-

layer perceptrons (MLPs) are used to extract prediction related features from the

raw feature hi:
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hi(arc−dep) = MLP(arc−dep) (hi)

hi(arc−head) = MLP(arc−head) (hi)

hi(rel−dep) = MLP(rel−dep) (hi)

hi(rel−head) = MLP(rel−head) (hi)

(4.5)

where arc− dep means predicting the arc given the token i is dependent, and so on.

To make a prediction of what the arc is for token i, a bi-affine classifier is applied:

si(arc) =
(
H(arc−head) 1

)
 W (arc)

b(arc)T

hi(arc−dep)

yi′(arc) = arg max
j
sij

(arc)

(4.6)

where H(arc−head) is the stack of hi(arc−dep), W (arc) and b(arc) are MLP parameters.

After the best arc yi′(arc) is decided, a second bi-affine classifier is applied to predict

the best label:

si(rel) = h⊤(rel−head)

yi′(arc) U(rel)h(rel−dep)
i

+

 W (rel)

b(rel)T


 hi(rel−dep)

h(rel−head)

yi′(arc)

1


yi′(rel) = arg max

j
sij

(rel)

(4.7)

where U(rel) ∈ Rm×k×k is a rank 3 tensor, m is the number of possible relations, k is

the dimension of hi(rel).

The loss function is the sum of softmax cross-entropy losses of these two bi-affine

classifiers:
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CE(y, ŷ) = −
∑
i

yi × log(ŷi) (4.8)

J = CE(y(arc), ŷ(arc))+

CE(y(rel), ŷ(rel)) (4.9)

where y and y are predictions, ŷ and y are gold answers. For relation prediction, the

gold relation is still used even if arc prediction is wrong.

4.5.2 Performance

On standard splits shown in Table 4.1, this implementation achieved scores listed in

Table 4.4.

These scores are higher than reported in Dozat and Manning [23]’s original paper,

we assume that the preprocessing is different. They omitted punctuations, while we

kept them. Because IParser is intended for practical scenario, where punctuations

are very common in natural languages.

The character model doesn’t bring benefit for English and Chinese, but slows

down runtime speed. So, we disabled it in the release version.

4.6 Conclusion

In this paper, we introduced the design, interfaces, algorithms and performances of

IParser, an industrial strength dependency parsing pipeline. Rather than simply

showing the codes, we have explained the motivations and reasons for the design, the

underlying algorithms to support those features.
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The last piece of puzzle is about how to extend IParser. Users are welcomed to

upload models trained on more languages, and join the development on GitHub. We

made the source available under the GNU General Public License v3.0 6, with the

purpose of encouraging scholars to release their codes along with papers.

Acknowledgments
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions presented in this dissertation.

We then discuss the possible directions for our future research work.

5.1 Summary

Dependency parsing is a non-trivial and useful task for Natural Language Processing.

To build an industrial strength parsing system, we explored word segmentation and

part-of-speech tagging in advance.

To make this study concrete, we implemented a pipeline parsing system called

IParser, which is a lightweight and integrated parser with built-in tokenizer, tagger

and visualization tool. We then open sourced IParser for academic or commercial

use, and hosted a live demo website.

5.2 Future Work

Aiming at dependency parsing, IParser is designed as a pipeline system with replace-

able sub-systems.

In the future, we can extend our research on a variety of models and algorithms,

such as transition-based parsing, end-to-end or joint learning.

In summary, our research is of practical significance and has immediate relevance

and huge impact in industry. We are looking forward to continuing and making an

impact in the emerging NLP area.
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