Copyright by

Amaresh Kumar Mishra
2022

DEEP NEURAL NETWORK \& DYNAMIC FUNCTIONAL CONNECTIVITY ANALYSIS OF FUNCTIONAL MRI DATA

by

Amaresh Kumar Mishra, BS

THESIS
Presented to the Faculty of The University of Houston-Clear Lake In Partial Fulfillment Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

MAY, 2022

DEEP NEURAL NETWORK \& DYNAMIC FUNCTIONAL CONNECTIVITY ANALYSIS OF FUNCTIONAL MRI DATA

by

Amaresh Kumar Mishra

APPROVED BY

Unal 'Zak' Sakoglu, PhD, Committee Chair

Hisham Al-Mubaid, PhD, Committee Member

Jiang Lu, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Associate Dean

Miguel A Gonzalez, PhD, Dean

Dedication

I would like to dedicate this thesis to my late grandparents. They have been constant encouragement in my life.

Acknowledgements

I would like to thank my thesis advisor Dr. Unal 'Zak' Sakoglu for all his support on this work. I would like to thank him for being supportive and understanding throughout the entire time. He has given me a wonderful opportunity in the field of machine learning and brain magnetic resonance imaging data analyses.

I would like to acknowledge my thesis committee members Dr. Jiang Lu and Dr. Hisham Al-Mubaid for helping me with their input and comments. I would also like to extend my gratitude to Andrew James Hughes who has helped me during this project. I wish to extend my thanks to all the UHCL staff that contributed to this project. Finally, I would like to thank my family and friends who supported and encouraged me during difficult times.

ABSTRACT
 DEEP NEURAL NETWORK \& DYNAMIC FUNCTIONAL CONNECTIVITY ANALYSIS OF FUNCTIONAL MRI DATA

Amaresh Kumar Mishra
University of Houston-Clear Lake, 2022

Thesis Chair: Unal 'Zak' Sakoglu, PhD

This thesis work presents a dynamic functional connectivity (DFC)-based classification analysis of an already collected and completely de-identified functional magnetic resonance imaging (fMRI) dataset from two groups, veterans with Gulf War Illness (GWI), vs matched controls. Neuroimaging or brain imaging is the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. fMRI is a neuroimaging technique which is used to measure brain activity by detecting changes associated with blood oxygenation level dependence (BOLD), which is an indirect measure of neural activity, and it helps obtain three spatial dimensional (3D) brain activation maps associated with certain stimulus and/or a task, depending on the experiments performed during the fMRI scan. Whole-brain resting-state fMRI (rsfMRI) data which were scanned from 23 GWI veterans (mean age 49.4) and 30 normal control (NC) veterans (mean age 49.8) were used for analyses. A computational method using DFC features, deep learning, and machine learning techniques were used to correctly classify GWI vs NC. Results show that, support vector machine (SVM) -based machine learning technique, combined with simple t-test method for feature extraction (using the DFC), performed better than convolutional neural network (CNN) deep learning method, in
terms of classification accuracy (upwards of 98% accuracy for the former vs. upwards of 60% accuracy for the latter).

TABLE OF CONTENTS

List of Tables x
List of Figures xii
CHAPTER I: INTRODUCTION 1
1.1 Functional Connectivity (FC): 2
1.2 Dynamic Functional Connectivity (DFC): 3
1.2.1 Types of Analysis Technique: 4
1.2.2 Clinical Importance: 7
1.3 Problem Statement: 8
CHAPTER II: BACKGROUND WORKS 9
2.1 Demographics and Clinical Characteristics of the Samples [36]: 9
2.2 Understanding the AAL ATLAS region average DFC: 11
CHAPTER III: METHODS AND MATERIALS 13
3.1 Classification using R-CNN: 14
3.2 Classification using SVM: 21
CHAPTER IV: RESULTS 24
4.1 DFC R-CNN Results: 24
4.1.1 DFC Classification results utilizing all the features: 24
4.1.2 DFC Classification results utilizing mean and standard deviation: 30
4.1.3 DFC Classification results utilizing selective features (selective brain regions of AAL ATLAS): 33
4.2 FC R-CNN Results: 34
4.2.1 FC Classification results utilizing all the features: 34
4.2.2 FC Classification results utilizing mean and standard deviation: 35
4.2.3 FC Classification results utilizing selected brain region features using AAL ATLAS: 35
4.3 Comparative study of DFC and FC using R-CNN: 36
4.4 SVM-based classification results of DFC data set: 36
4.4.1 SVM-based classification results of DFC data set for different P Values: 37
4.5 SVM-based classification results of FC data set: 42
4.5.1 SVM-based classification results of FC data set for different P values: 43
4.6. Some Important Brain Region Pair Obtained: 49
4.7. List of AAL Brain Region Pair Obtained: 51
4.8. Discussion and Conclusion: 61
CHAPTER V: FUTURE WORK 63
REFERENCES 65
APPENDIX A 71
APPENDIX B 75
APPENDIX C 92
GLOSSARY 119

LIST OF TABLES

Table 1: Demographics and Clinical Characteristics of 60 from Gulf War Imaging and 30 Matched Control [2]
 10

Table 2: Training options name and descriptions [40]. 16
Table 3: Training options value set 1 18
Table 4: Training options value set 2 18
Table 5: Training options value set 3 19
Table 6: fitcsvm input parameters name and descriptions [40] 23
Table 7: Layers description for the first set of parameters while training of the data is on. 25
Table 8: First iteration training progression with validation accuracy, mini batch loss base learning rate, iterations, epoch, and time elapsed. 26
Table 9: Second iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed. 27
Table 10: Third iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed. 28
Table 11: Fourth iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed. 29
Table 12: Comparison of Mean Cross- Validation accuracy among different parameter sets 30
Table 13: Comparison of Mean Cross- Validation accuracy among different parameter sets using mean and standard deviation across one dimension. 33
Table 14: Comparison of Mean Cross- Validation accuracy among different parameter sets using selective brain region. 33
Table 15: List of selected brain regions used for calculating classification accuracy. 34
Table 16: Comparison of Mean Cross- Validation accuracy among different parameter sets utilizing all features for FC data set. 35
Table 17: Comparison of Mean Cross-Validation accuracy among different parameter sets utilizing mean and standard deviation for FC data set. 35
Table 18: Comparison of Mean Cross-Validation accuracy among different parameter sets utilizing selective features of FC data set. 36
Table 19: SVM AAL ATLAS Based Classification accuracy, Mean K fold cross- validation loss obtained for corresponding P DFC value. 42
Table 20: SVM AAL ATLAS based classification accuracy, Mean K fold cross- validation loss obtained for corresponding P FC value. 49
Table 21: Number of pairs obtained for each value of P DFC. 52

Table 22: List of corresponding actual AAL Region Pair for max P DFC of 0.05. 53
Table 23: List of corresponding actual AAL Region Pair for P DFC $<0.01,0.02$ and 0.03
55
Table 24: List of corresponding actual AAL Region Pair for P DFC $<0.001,0.002$ and 0.005.. 57

Table 25: Corresponding Actual AAL Region Pair for P DFC <0.04............................. 58
Table 26: Corresponding Actual AAL Region Pair for P FC <0.001 and 0.002............. 60

LIST OF FIGURES

Figure 1: Visualization of functional MRI (fMRI), 4-D data (3-D space and time) [4]..... 2
Figure 2: Pictorial representation of defining functional connectivity [10]. 3
Figure 3: Visualization of Dynamic Functional Connectivity (DFC) analysis on two brain regions. The two brain regions, each with their fMRI time course, constitute a "pair". For each pair, and for each time window, one DFC time point is obtained. By sliding the time window, the DFC time course for the pair is obtained [20].

Figure 4: Proposed framework DFC Based Classification of GWI fmri data using RCNN.14

Figure 5: Proposed framework DFC Based Classification of GWI fmri data using SVM. 21

Figure 6: First iteration training progression on MATLAB output window. 26
Figure 7: Second iteration training progression on MATLAB output window................ 27
Figure 8: Third iteration training progression on MATLAB output window................... 28
Figure 9: Fourth iteration training progression on MATLAB output window................. 29
Figure 10: First iteration training progression on MATLAB output window for
classification utilizing mean and standard deviation. ... 31
Figure 11: Second iteration training progression on MATLAB output window for
classification utilizing mean and standard deviation. ... 31
Figure 12: Third iteration training progression on MATLAB output window for classification utilizing mean and standard deviation. 32
Figure 13: Fourth iteration training progression on MATLAB output window for classification utilizing mean and standard deviation. 32
Figure 14: Histogram of the standard deviation of the DFC (Combining HC and S2). 37
Figure 15: Histogram of the standard deviation of the DFC HC group. 38
Figure 16: Histogram of the standard deviation of the DFC S2 group. 38
Figure 17: Probability of ttest2 between STD of DFC HC vs STD of DFC S2. 39
Figure 18: Hypothesis of ttest2 between STD of DFC HC vs STD of DFC S2 40Figure 19: The two AAL regions (left: Right Superior Occipital Gyrus, marked with red,and right: Left Medial Orbital Superior Frontal Gyrus, marked with blue) constituting theregion-pair with the most discriminating power across the two groups GWI vs NC, withstdDFC. The average standard deviation of the temporal-evolution/dynamics of the DFC(stdDFC) between these two regions was significantly lower in GWI than in NC($\mathrm{p}<0.001$). The classification accuracy of was 98% ($52 / 53$ or missing only oneparticipant) [42].42
Figure 20: Histogram of the of the FC (Combining HC and S2) 43

Figure 21: Histogram of the standard deviation of the FC HC group. 44
Figure 22: Histogram of the standard deviation of the FC S2 group................................ 45
Figure 23: Probability of ttest2 between FC HC vs FC S2... 46
Figure 24: Hypothesis of ttest2 between FC HC vs FC S2... 47
Figure 25: Pair two Parietal Sup R and Frontal Mid Orb L (AAL Region 60 and 25)..... 50
Figure 26: Pair three Left to right Caudate L and Olfactory R (AAL Region 71 and 22). 50
Figure 27: Pair three Left to right Putamen L and Olfactory R (AAL Region 73 and 22).

Figure 28: Pair three Left to right Frontal Inf Tri R and Frontal Sup L (AAL Region 14 and 3).51

Figure 29: Comparison of classification accuracy between DFC and FC for same value of P. ... 61

CHAPTER I:

INTRODUCTION

Human brain research is among the most complex areas of study for scientists. It is known that aging and other factors, such as brain disorders, can affect brain structure and function, but more research is needed into what specifically occurs within the brain. Neuroimaging, or brain imaging, is the use of different techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. With much of the research using magnetic resonance imaging (MRI) scans, data scientists are well-positioned to support future insights into the human brain, its functioning, and the way it is affected by various disorders and diseases [1].

Neuroimaging can be mainly classified into structural imaging and functional imaging. Structural neuroimaging is used for studying the structure of the nervous system and for the diagnosis of certain diseases such as brain tumors. Functional neuroimaging, on the other hand, is used for studying the functioning of the brain under different conditions and diseases such as mental disorders. This is done by tracking the dynamics of neural activity or neurovascular activity [2]. Functional magnetic resonance imaging (fMRI) is one of the most versatile noninvasive functional neuroimaging methods, which has been utilized over the past three decades to evaluate the effect of brain strokes, and to guide treatments [3]. It is a specialized form of MRI that uses the functional anatomy of the brain.

Normalization/Warping: Usually, individual subject brains are warped to a common template MRI brain before any analysis. If "tasks" are involved, usually, 3-D activation maps are produced. GBs of data per subject!

Figure 1: Visualization of functional MRI (fMRI), 4-D data (3-D space and time) [4].
A large amount of fMRI data from humans and animals have been collected by researchers to study the functioning of brain under various conditions, which include different stimuli and/or tasks that the participants were engaged with during the scans. Different types of advanced analysis methodologies have also been developed for fMRI data. This master's thesis work taps on some of these recently developed methodologies, using an already collected, completely de-identified fMRI data from two groups of subjects, Gulf War Illness (GWI) subjects and matched healthy control veterans. For this work, functional magnetic resonance imaging data, which was collected as part of a larger study at another institution, UTSouthwestern Medical Center in Dallas, TX, were utilized.

1.1 Functional Connectivity (FC):

FC has been characterized by the connectivity among different brain regions. Specifically, it is defined as temporal correlation between spatially remote neurophysiological events. That means two brain regions are considered to show functional connectivity if there is a statistical relationship between the measures of activity recorded for both of them [5]. This is applicable in both resting-state fMRI and task fMRI studies. While FC can refer to correlations across
subjects, runs, blocks, trials, or individual time points, resting-state FC functional connectivity focuses on connectivity assessed across individual BOLD time points during resting conditions [6]. Functional connectivity MRI (fcMRI), which can include resting-state fMRI and task-based MRI, might help provide more definitive diagnoses for mental health disorders such as bipolar disorder, and may also aid in understanding the development and progression of post-traumatic stress disorder (PTSD). Furthermore, it evaluates the effect of treatment [7] [8]. It is an expression of the network behavior underlying high-level cognitive function, partially unlike structural connectivity, as, structural connectivity looks for a physical connection between brain regions [8]. Since the brain is a highly dynamic system, functional connectivity has been shown to change on the order of seconds by analyses of dynamic functional connectivity [9].

- Functional connectivity (FC) is defined as the statistical association or dependency among two or more anatomically

Figure 2: Pictorial representation of defining functional connectivity [10].

1.2 Dynamic Functional Connectivity (DFC):

Dynamic functional connectivity (DFC) can be defined as functional connectivity (FC) of brain regions or networks over a relatively short period, when compared to the duration of the whole fMRI scan/experiment. DFC captures functional connectivity changes over a short time window [11, 12, 13]. DFC is a recent expansion on traditional FC analysis which typically assumes that functional networks are static in time. DFC analyses have been applied to different neurological disorders and have been suggested to be a more accurate representation of the behavior of functional brain networks $[14,15]$. The primary neuroimaging application of DFC is
fMRI, but DFC can also be applied to other functional neuroimaging data with time-varying signals, such as electroencephalography (EEG) [16, 17]. DFC is a relatively recent development within the field of functional neuroimaging whose discovery was motivated by the observation of temporal variability in the rising field of steady-state connectivity research [14, 18, 19].

1.2.1 Types of Analysis Technique:

Sliding window DFC Analyses: Sliding window DFC analysis is the most common method used in the analysis of functional connectivity, first introduced by Sakoglu and Calhoun in 2009, which was applied to schizophrenia [15, 18, 19]; since it was applied in conjunction with independent component analysis (ICA) which leads to brain "networks", it was dubbed "dynamic functional network connectivity". Sliding window analysis is performed by conducting analysis on a set number of scans in an fMRI session. The number of scans included is the length of the sliding window. The defined window is then moved a certain number of scans forward in time and additional analysis is performed. The movement of the window is usually referenced in terms of the degree of overlap between adjacent windows [20].

DFC results

Figure 3: Visualization of Dynamic Functional Connectivity (DFC) analysis on two brain regions. The two brain regions, each with their fMRI time course, constitute a "pair". For each pair, and for each time window, one DFC time point is obtained. By sliding the time window, the DFC time course for the pair is obtained [20].

One of the principal benefits of sliding window analysis is that almost any steady-state analysis can also be performed using sliding window if the window length is sufficiently large. This analysis has a benefit of being easy to understand and in some ways easier to interpret [21]. As the most common method of analysis, sliding window analysis has been used in many ways to investigate a variety of characteristics and implications of DFC. To be accurately interpreted, data from sliding window analysis generally must be compared between two different groups. Researchers have used this type of analysis to show different DFC characteristics in diseased and healthy patients, high and low performers on cognitive tasks, and between large-scale brain states.

Activation patterns: One of the first methods ever used to analyze DFC was pattern analysis of fMRI images which shows the patterns of activation in spatially separated brain
regions that tend to have synchronous activity. This makes it clear that there is a spatial and temporal periodicity in the brain that probably reflects some of the constant processes of the brain [22]. Repeating patterns of network information have been suggested to account for 25$50 \%$ of the variance in fMRI BOLD data [23, 24, 25]. Patterns of activity have primarily been seen in rats as a propagating wave of synchronized activity along the cortex. These waves have also been shown to be related to underlying neural activity and have been shown to be present in humans and rats [24].

Point process analysis: Departing from the traditional approaches, recently an efficient method was introduced to analyze rapidly changing functional activation patterns which transform the fMRI BOLD data into a point process [25, 26]. This is achieved by selecting for each voxel, the points of inflection of the BOLD signal (i.e., the peaks). These few points contain most of the information pertaining to functional connectivity because, it has been demonstrated that, despite the tremendous reduction on the data size (> 95\%), it compares well with inferences of functional connectivity $[27,28]$ obtained with standard methods, which uses the full signal.

The large information content of these few points is consistent with the results of Petridou et al. [29], who demonstrated the contribution of "spontaneous events" to the correlation strength and power spectra of the slow spontaneous fluctuations by deconvolving the task hemodynamic response function from the rest data. Subsequently, similar principles were successfully applied under the name of co-activation patterns (CAP) [30, 31].

Other methods: Time-frequency analysis has been proposed as an analysis method that can overcome many of the challenges associated with sliding windows. Unlike sliding window analysis, time-frequency analysis allows the researcher to investigate both frequency and amplitude information simultaneously. The wavelet transform has been used to conduct DFC analysis that has validated the existence of DFC by showing its significant changes in time. This same method has recently been used to investigate some of the dynamic characteristics of accepted networks. For example, time-frequency analysis has shown that the anticorrelation between the default mode network and the task-positive network is not constant in time but
rather is a temporary state [32]. Independent component analysis (ICA) has become one of the most common methods of network generation in steady-state functional connectivity. Spatial ICA divides fMRI signal into several spatial components that are spatially statistically independent, but have similar temporal patterns within. Recently, ICA has been also used to divide fMRI data into statistically independent temporal components, which has been termed temporal ICA, and it has been used to plot network behavior that accounts for 25% of the variability in the correlation of anatomical nodes in fMRI [33].

1.2.2 Clinical Importance:

The principal motivation of DFC analysis is that the brain function is highly dynamic; thus, DFC analysis tracks the dynamics of functional connectivity among different brain networks. Both static FC and DFC have been significantly helpful and related to a better understanding of the effects of a variety of diseases and disorders, including depression [33], cocaine-addiction [20], schizophrenia [34] and Alzheimer's disease [35]. For example, studies with Alzheimer's disease have shown that patients suffering from this ailment have altered network connectivity as well as altered time spent in the networks that are present [35]. The observed correlation between DFC and disease does not imply that the changes in DFC are the cause of any of these diseases, but information from DFC analysis may be used to better understand the effects of the disease and to diagnose them more quickly and accurately.

Exploratory analysis of ICA-based functional connectivity employing GWI veterans and veteran healthy controls yielded several significant insights into brain mechanisms underlying GWI [36]. The outcome of the experiment reveals that the impaired functional connectivity between brain function networks as a mechanism underlying GWI symptoms [36]. The results also provided strong evidence for the concept that GWI is indeed a disease of the brain, with rsfMRI results confirming self-reported symptoms and neurocognitive assessments in several functional domains [36].

1.3 Problem Statement:

Approximately 250,000 U.S. veterans out of almost 700,000 who were deployed in the 1991 Gulf War (GW) are affected by a chronic multi-symptom illness, a condition with serious consequences called GW illness (GWI), which is characterized by multiple deficits in cognitive, affective, sensory and nociception domains [36]. In this study data used is already-collected and completely de-identified resting-state fMRI (rsfMRI) data from GWI to apply deep neural network learning methods and dynamic functional connectivity methods to find the most discriminating brain networks or regions (GWI vs matched controls) and thus finding some of the involved functional brain regions or networks function in GWI. Prior works found impaired functional connectivity (FC) in GWI veterans among several brain function networks consistent with their self-reported symptoms, for example, they exhibited impaired FC between language networks and sensory input networks of all modalities as well as motor output networks and also showed impaired FC between different sensory perception and motor networks, and between different networks in the sensorimotor domain [36]. These FC impairments provide a putative mechanism of central nervous system dysfunction in GWI. We utilized fMRI data from these networks to construct features and perform deep neural net-based and SVM classification.

CHAPTER II:

BACKGROUND WORKS

About one-third of those deployed in the 1991 Gulf War (GW) suffer from GW illness (GWI). Since the war, GW veterans have shown higher than-average rate of developing certain sign or symptoms which cannot be explained by any specific medical problems. The symptoms include (In addition to what explained in Section 1.3) "Sustained and Debilitating Fatigue", "Headache and Migraines", "Difficult Sleeping", "Problems with Memory and Cognition" and "Digestive Ailments" [37].

2.1 Demographics and Clinical Characteristics of the Samples [36]:

Demographics and other clinical characteristics of the objects are listed below. The below list suggests that there were no significant differences in age and education between GWI and military controls. These demographics in the table refer to the larger dataset where GWI patients from three different symptom groups were combined; in this thesis work, we only used GWI "Symptom-2" data group ($\mathrm{n}=23$), from the GWI patients who report the symptoms with the most severity.

Table 1:
Demographics and Clinical Characteristics of 60 from Gulf War Imaging and 30 Matched Control [2].

Demographics and Clinical Characteristics	GWI (60 Participants)	NC (30 Participants)
Age in Years	50.1 ± 8	50.0 ± 8
Education in Years	5.2 ± 2	5.3 ± 2
Gender(F/M)	15	6
Right-handed in Sample	57	29
CDC GWI Case Definition	60	0
Modified Kansas GWI Case Definition	60	0
Chronic Fatigue Syndrome	6	0
Fibromyalgia	34	0
PTSD	24	0
Other Mood Disorders	40	3

In this study, we have used already collected and completely de-identified resting-state fMRI (rsfMRI) data from GWI to apply deep neural network learning methods, support vector machine and dynamic functional connectivity methods to find the most discriminating brain networks or regions (GWI vs matched controls) and thus finding some of the involved functional brain regions or networks function in GWI. Prior works found impaired functional connectivity (FC) in GWI veterans among several brain function networks consistent with their self-reported symptoms. For example, they exhibited impaired FC between language networks and sensory input networks of all modalities as well as motor output networks and showed impaired FC between different sensory perception and motor networks, and between different networks in the sensorimotor domain [36]. These FC impairments provide a putative mechanism of central nervous system dysfunction in GWI. We utilized fMRI data from these networks to construct features and perform deep neural-net based and SVM classification.

Let us begin with the underlying basics of DFC algorithm. DFC- based analysis involves windowed correlation operation over time courses of the brain signals [38].

2.2 Understanding the AAL ATLAS region average DFC:

Using the pseudocode below, we have calculated the region average DFC matrices for the two groups and used them in the following sections.

```
                    Pseudocode
Input
GWIRawData = This variables stores all the53 subjects' raw imaging data.
numOfSubj = length(GWIRawData)
WindowLenght = 32
StepSize = 8
NumRegion = 116(The AAL Atlas has 116 brain regions)
AalUtility = 3mm_SPMresliced_aal.nii
reSlicedAAL = spm_read_vol(spm_vol(GWIRawData,3mm_SPMresliced_aal.nii)
for i= 1:numOfSubj
    subjectNiiName=myFilenames(i).name
    my4Ddata=spm_read_vols(spm_vol(strcat(GWIRawData,subjectNiiName)))
    [m n k] = size(reSlicedAAL )
    for }a=1:NumRegio
        for b = 1:m
        for c = 1:n
            for d = 1:k
                if reSlicedAAL (a,b,c)==1
            tempsignal = squeeze(my4Ddata);
                finsignal = [finsignal tempsignal];
                end
            end
```

```
        end
    end
finavgsignal = median(finsignal);% calculate the median ignoring nulls.
finROIfc = correlation(finavgsignal);
    %This is the DFC loop
    for iw = 1:numWindows
        myavgsignal_window = finavgsignal (:,(iw-1)\timesstepSize +1:(iw-
1) }\times\mathrm{ stepSize +windowLength); %changed from myavgsignal to _allsubjects
        finalROIfc_window = corr(myavgsignal_window');
        finalROIDfc_allsubjects(is, :, :, iw)=myROIfc_window;
    end
end
```


CHAPTER III:

METHODS AND MATERIALS

A relatively recently developed fMRI analysis method is dynamic functional connectivity, which performs dynamic, temporally-evolving interactions among different brain networks [11]. DFC analyses also generate enormous amount of features. These features can be utilized by machine learning algorithms as well as more-recently developed deep learning algorithms. In this thesis, we performed DFC analysis on an already collected, de-identified and pre-processed fMRI data from Gulf War Illness [36]. We have performed DFC analyses, extracted DFC features and fed them into different machine learning algorithms including deep neural network algorithms to perform the classification of subjects and execute extensive crossvalidation to evaluate methodologies and identify the most-discriminating brain networks or regions.

The analyses and programming were mainly done and implemented using MATLAB scientific programming language since it provides a great programming environment including Deep Learning tools.

GWI data analysis was performed and converted into 4D dimensional MATLABreadable format files (.mat). These data were further divided into four categories such as, Controls, Syndrome 1, Syndrome 2 and Syndrome 3. Each category has been given a label from zero to three. Label zero is assigned to 'control veterans' and we call it "group zero", label two is 'Syndrome 2', called "group two". In this research our goal was to find out the best possible method to classify group zero vs group two.

In this work our data set is 4 D (number of object in a group x Number of Brain Regions x Number of Brain Regions x Windows). The total number of features of the dataset is close to half a million. Handeling such a huge number of features was a challenging part. In this process we mainly focussed to utlize R-CNN and SVM on DFC data set. Furthermore, to draw the conlusion, same methods have been utilized on FC data set. In this research work MATLAB and
its funtions have been used for all of the aforementioned methods. Details of each method are explained below.

3.1 Classification using R-CNN:

It begins by applying selective search to extract region-of-interest (ROI), where each ROI is a 3D shape which may represent the set of a specific brain region. Depending on the scenarios, there may be many ROIs. After that, each ROI is fed through neural network to produce output features [39].

Figure 4: Proposed framework DFC Based Classification of GWI fmri data using R-CNN.
In this process after receiving the input data(image), goal is to first prepare training images and test images. Once training and test images are prepared, select the best possible training options available in MATLAB, such as sgdm, Momentum, InitialLearningRate, LearnRateSchedule etc. Details about training options have been explained below in the tabular form.

Pseudocode:

training_images = [group_zero; group_two $]$
training_labels $=[z e r o s(30,1), 2 \times o n e s(23,1)]$
test_images $=$ training_images
$n=$ scalar
for $i=1: n$
set aside some percentage of training images for validation.
set training options viz, sgdm, momentum, etc.
set input_layer
[height, width, numChannels] $=$ size(training_image)
input_image_size $=[$ height, width, numChannels]
input_layer $=$ imageinputlayer(input_image_size $)$
set filter properties
set middle and final layer
combine all the layers defined above
train the network using "trainNetwork"
validate the network training
calculate the cross-validation accuracy in each cycle
end
calculate the mean cross-validation accuracy.

Table 2:
Training options name and descriptions [40].

Field	Description			
sgdm	Stochastic gradient descent with momentum			
Momentum	This parameter only applies if the solver is 'sgdm'. The momentum determines the contribution of the gradient step from the previous iteration to the current iteration of training. It must be a value between 0 and 1, where 0 will give no contribution from the previous step, and 1 will give a maximal contribution from the previous step. The default value is 0.9.			
InitialLearnRate	The initial learning rate that is used for training. If the learning rate is too low, training will take a long time, but if it is too high, the training is likely to get stuck at a suboptimal result. The default is 0.01 for solver 'sgdm' and 0.001 for solvers 'adam' and 'rmsprop'.			
LearnRateSchedule	This option allows the user to specify a method for lowering the global learning rate during training. Possible options include: - 'none' - The learning rate does not change and remains constant. - 'piecewise' - The learning rate is multiplied by a factor every time a certain number of epochs has passed. The multiplicative factor is controlled by the parameter 'LearnRateDropFactor', and the number of epochs between multiplications is controlled by 'LearnRateDropPeriod'. The default is 'none'.			
LearnRateDropFactor	This parameter only applies if the 'LearnRateSchedule' is set to 'piecewise'. It is a multiplicative factor that is applied to the learning rate every time a certain number of epochs has passed. The default is 0.1.			
LearnRateDropPeriod	This parameter only applies if the 'LearnRateSchedule' is set to 'piecewise'. The learning rate drop factor will be applied to the global learning rate every time this number of epochs is passed. The default is 10.			
Epoch	The factor for the L2 regularizer. Itshould be noted that each set of parameters in a layer can specify a multiplier for this L2 regularizer. The default is 0.0001.			
Epoch number. An epoch corresponds to a full pass of the data.		$	$	Earization
:---				

Field	Description
MaxEpochs	The maximum number of epochs that will be used for training. The default is 30.
MiniBatchSize	The size of the mini-batch used for each training iteration. The default is 128.
Verbose	If this is set to true, information on training progress will be printed to the command window. The default is TRUE.
Iteration	Iteration number. An iteration corresponds to a mini-batch.
Time Elapsed	Time elapsed in hours, minutes, and seconds.
Mini-batch Accuracy	Classification accuracy on the mini-batch.
Validation Accuracy	Classification accuracy on the validation data. If you do not specify validation data, then the function does not display this field.
Mini-batch Loss	Loss on the mini-batch. If the output layer is a ClassificationOutputLayer object, then the loss is the cross-entropy loss for multi-class classification problems with mutually exclusive classes.
Validation Loss	Loss on the validation data. If the output layer is a ClassificationOutputLayer object, then the loss is the cross-entropy loss for multi-class classification problems with mutually exclusive classes. If you do not specify validation data, then the function does not display this field.
Base Learning Rate	Base learning rate. The software multiplies the learn rate factors of the layers by this value.

Below are some training options along with the training parameter values that were selected during this process. Please note, training options have been selected and optimized looking at the results. The below list of training options values contains sample values, that have been used to get the results. During this process, many other 'training options' combinations have been used. Out of those training options, the below are the optimized ones.

Table 3:

Training options value set 1 .

Training Options	Value
sgdm	Plots, training-progress
Momentum	0.9
InitialLearnRate	0.01
LearnRateSchedule	piecewise
LearnRateDropFactor	0.1
LearnRateDropPeriod	8
L2Regularization	0.004
ValidationFrequency	15
MaxEpochs	20
MiniBatchSize	9
ValidationData	Xvalidation, Yvalidation
Verbose	TRUE

Table 4:
Training options value set 2.

Training Options	Value
sgdm	Plots, training-progress
Momentum	0.95
InitialLearnRate	0.015
LearnRateSchedule	piecewise
LearnRateDropFactor	0.1
LearnRateDropPeriod	8
L2Regularization	0.004
ValidationFrequency	15
MaxEpochs	20
MiniBatchSize	9
ValidationData	Xvalidation, Yvalidation
Verbose	TRUE

Table 5:

Training options value set 3 .

Training Options	Value
sgdm	Plots, training-progress
Momentum	0.95
InitialLearnRate	0.015
LearnRateSchedule	piecewise
LearnRateDropFactor	0.1
LearnRateDropPeriod	8
L2Regularization	0.004
ValidationFrequency	15
MaxEpochs	24
MiniBatchSize	9
ValidationData	Xvalidation, Yvalidation
Verbose	TRUE

Once training options are set, and all the training and test data sets are segregated, the goal in this exercise was to create a convolutional neural network (CNN). A CNN is composed of a series of layers, where each layer defines a specific computation. MATLAB deep learning toolbox provides the functionality to easily design a CNN layer-by-layer. In this case, the following layers are used to create CNN.
inputLayer, middleLayers and finalLayers.
imageInputLayer - Image input layer defines an image input layer input size is the size of the input images for the layer. It must be a row vector of two or three numbers. During this work imageInputLayer is a three number vector consisting of height width and number of channels. It is defined as follows.
[height, width,numChannels, \sim] = size(trainingImages).
imageSize $=$ [height width numChannels].
inputLayer $=$ imageInputLayer(imageSize)
middleLayers consists of convolutional2dLayer, reluLayer, maxPooling2dLayer
convolution2dLayer - 2D convolution layer for Convolutional Neural Networks. It is defined as follows.

Convolutional2dLayer. The first convolutional layer has a bank of $327 \times 7 \times 3$ filters. Symmetric padding of 2 pixels is added to ensure that image borders are included in the processing. This is important to avoid information at the borders being washed away too early in the network reluLayer - Rectified linear unit (ReLU) layer creates a rectified linear unit layer. This type of layer performs a simple threshold operation, where any input value less than zero will be set to zero.
maxPooling2dLayer - Max pooling layer creates a layer that performs max pooling. A max-pooling layer divides the input into rectangular pooling regions, and outputs the maximum of each region. poolSize specifies the width and height of a pooling region. It can be a scalar, in which case the pooling regions will have the same width and height, or a vector. It is defined as following during the classification process.
maxPooling2dLayer (3, 'Stride',2).
finalLayers consist of fullyConnectedLayer, reluLayer, softmaxLayer and classificationLayer.
fullyConnectedLayer is defined as it creates a fully connected layer output Size specifies the size of the output for the layer. A fully connected layer will multiply the input by a matrix and then add a bias vector.
softmaxLayer creates a softmax layer. This layer is very useful for classification problems.
classificationLayer() creates a classification output layer for a neural network. The classification output layer holds the name of the loss function that is used for training the network, the size of the output, and the class labels.

Once all the layers are set then the layers are combined as follow.
layers $=$ [inputLayer middleLayers finalLayers]

Once all the parameters are set then the value of those parameters is fed to the trainNetwork algorithm as follows.

GWI_RCNN= trainNetwork(trainingImages, trainingLabels, layers, opts);
Once all the parameters are set and fed it trainNetwork generates the classification accuracy results along with the progress and time elapsed to provide the results.

3.2 Classification using SVM:

In this case, the learning algorithm has to analyze the data for classification. It works by mapping data into a high-dimensional feature space. The reason for this mapping is to categorize the data points even if data sets can not be separated. A separator between the categories is found and once the separator is found, the data is transformed in such a way that it could be drawn as a hyperplane [41].

Figure 5: Proposed framework DFC Based Classification of GWI fmri data using SVM.

As GWI DFC data set is 4-D data set, the idea is to first calculate the standard deviation of group zero and group two together. After the standard deviation is calculated, the test 2 is performed between the group to reduce the feature, and only those features are selected, which are significant for this classification. Then, fitcsvm function of MATLAB is used with the selected input parameters and at the end the mean cross-validation accuracy is calculated and classifying pairs are found.

Pseudocode:

all_subject $=$ [group_zero; group_two $]$
for $i=1: 53$
for $u=1: 116$
for $v=1: 116$
all_subject_std $=$ squeeze $($ all_subject $(u, v,:, i)$
end
end
end
group_zero_std $=$ all_subject_std($:,:, 1$ to 30)
group_zero_std $=$ all_subject_std $(:,:, 31$ to 52$)$
$t _t e s t=t t e s t\left[g r o u p _z e r o _s t d ; g r o u p_{-} t w o _s t d\right]$
$x _$sel $=$select the feature using test value
for i $1=100$
svm_x_sel $=$ fitcsvm(x_sel, Y,Standarize, true, KernelFunction,
$R B F, \ldots$, KernalScale, auto)
cross_validation $=\operatorname{crossval}\left(\operatorname{svm} _x _\right.$sel $)$
end
mean(cross_validation)
fitcsvm fit a classification Support Vector Machine (SVM) (model = fitcsvm(data, Y$)$). It returns an SVM model for data in the input and response. The input contains the predictor variables and Y can be an array of class labels or the name of the variables or formula.

Table 6:
fitcsvm input parameters name and descriptions [40] .

Parameters	Description
Standardize	It is a logical scalar and defualt value is set to false. If it has the value true, it standardizes X by centering and dividing columns by their standard deviations. In this case true is selected
	It is defined as function G = KFUN (U, V). The value G is a matrix of size M by N where M and N are the number of rows in U and V. It is a string specifying function the for computing elements of the gram matrix. It can have linear, Gaussian, polynomial or the name of the user- defined function on the MATLAB path. The default value is linear. In this case RBF is selected
KernelFunction	It is the scaling factor it can have an auto or positive scalar specifying the scale factor. It selects an appropriate
scale factor using a	
specific procedure. In this case auto has	
been selected.	

CHAPTER IV:

RESULTS

4.1 DFC R-CNN Results:

During this work, several mechanisms were tried to calculate the classification using RCNN. Results obtained from some of them are explained below, such as, classification utilizing all the features, classification using reduced features (mean and standard deviation), and classification using selective features of AAL ATLAS.

4.1.1 DFC Classification results utilizing all the features:

All the features of the 4-D matrix were utilized to perform the classification. Close to half a million features were there in this case. Group zero and group two data were stored as shown below. Group zero's dimensions are $30 \times 116 \times 116 \times 37$ and group two's dimensions are $23 \times 116 \times 116 \times 37$, since group zero has 30 subjects,

GroupZero = myROIDFC_GroupZero.mat
GroupTwo $=$ myROIDFC_GroupTwo.mat
After the data were stored in these variables, as per the pseudo-code explained in section 3.1, the training labels were created, and converted into categorical. The reason we convert the label into categorical is that it provides efficient storage capabilities and convenient manipulation of data. After the data labels were created, the options and other parameters for the training algorithm were set and run for a few iterations. During each iteration, cross-validation accuracy was stored in a separate variable. After the $\mathrm{n}^{\text {th }}$ iteration mean cross-validation accuracy was calculated.

In this architecture we have one image input layer, nine middle layers and five final layers.

Table 7:

Layers description for the first set of parameters while training of the data is on.
$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Sequence } & \text { Layer } & \begin{array}{l}\text { Name of the } \\ \text { Layer }\end{array} & \text { Description During the Training Process }\end{array}\right] \begin{array}{l}116 \times 116 \times 37 \text { images with 'zerocenter' } \\ \text { normalization }\end{array}\right]$

Training progression for the first set of parameters stated in section 3.1 table 3 is explained below. The first iteration results are:

Table 8:
First iteration training progression with validation accuracy, mini batch loss base learning rate, iterations, epoch, and time elapsed.

1	Epoch	1	Iteration	I	Time Elapsed (hh:mm:ss)	1	Mini-batch Accuracy	1	Validation Accuracy	I	Mini-batch Loss	I	Validation Loss	1	Base Learning Rate
1	1	I	1	I	00:00:09	I	66.67%		57.69\%	1	0.6923		0.6894	I	0.0100
1	5	I	15	I	00:00:58	I	100.00\%		50.00\%	I	0.1499		1.8633	I	0.0100
1	10	I	30	I	00:01:56	I	88.89\%		65.38%	1	0.2272		4.0254	1	0.0010
I	15	I	45	I	00:02:45	I	100.00\%		61.54%	I	0.0366		3.5159	I	0.0010
1	17	I	50	I	00:03:01	1	88.89\%			1	0.1017			1	$1.0000 \mathrm{e}-04$
1	20	I	60	I	00:03:37	I	100.00\%	I	57.69\%	1	0.0071	I	4.5683	I	$1.0000 \mathrm{e}-04$

In this case, validation accuracy settled down around $0.5769(57.69 \%)$ and validation loss was close to 4.6. It took around 3 minutes and 40 seconds to complete the first iteration. The figure below shows the MATLAB training progression with details.

Figure 6: First iteration training progression on MATLAB output window.

Second iteration results are explained below.

Table 9:

Second iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed.

1	Epoch	1	Iteration	I	Time Elapsed (hh:mm:ss)	I	Mini-batch Accuracy	I	Validation Accuracy	1	Mini-batch Loss	I	Validation Loss	I	Base Learning Rate	
I	1	I	1	I	00:00:11	I	66.67\%	I	46.15\%	I	0.6929	I	0.7004		0.0100	
1	15	1	15	I	00:01:07	I	100.00\%		38.46\%	1	$2.0168 \mathrm{e}-05$		7.0552		0.0010	
I	20	I	20	1	00:01:25	I	100.00\%	I	38.46\%	I	-0.0000e+00	I	8.4737	\\|	$1.0000 \mathrm{e}-04$	

In the second iteration, case validation accuracy settled down around $0.3846(38.46 \%)$ and validation loss was close to 8.47 . It took around 1 minute and 27 seconds to complete the second iteration. The figure below shows the MATLAB training progression with details.

Results	
Validation accuracy:	38.46\%
Training finished:	Reached final iteration
Training Time	
Start time:	25-Feb-2022 00:52-58
Elapsed time:	1 min 27 sec
Training Cycle	
Epoch:	20 of 20
Iteration:	20 of 20
Iterations per epoch:	1
Maximum iterations:	20
Validation	
Frequency:	15 iterations
Other Information	
Hardware resource:	Single CPU
Learning rate schedule:	Piecewise
Learning rate:	0.0001
I Learm more	
Accuracy	
Training (smoothed)	
- Training	
---- Validation	
Loss	
Training (smoothed)	
-- Training	
- - Validation	

Figure 7: Second iteration training progression on MATLAB output window.

The third iteration results are explained below.
Table 10:
Third iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed.

I	Epoch	1	Iteration	I	Time Elapsed (hh:mm:ss)	I	Mini-batch Accuracy	1	Validation Accuracy	1	Mini-batch Loss	1	Validation Loss	I	Base Learning Rate
I	1	1	1	I	00:00:12	I	28.57\%	1	71.43%	1	0.6937	I	0.6906	I	0.0100
I	15	1	15	I	00:01:07	I	100.00\%	I	57.14%		0.0003		2.0620		0.0010
I	20	I	20	I	00:01:23	I	100.00\%	I	42.86%	I	$4.9387 \mathrm{e}-07$	I	3.3903	I	$1.0000 \mathrm{e}-04$

In the third iteration, case-validation accuracy started at approximately 71%. However, it settled down at around 43% and validation loss was close to 3.4. It took around 1 minute and 23 seconds to complete the third iteration. The figure below shows the MATLAB training progression with details.

Figure 8: Third iteration training progression on MATLAB output window.

The final iteration results are explained below.

Table 11:

Fourth iteration training progression with validation accuracy, mini-batch loss base learning rate, iterations, epoch, and time elapsed.

In the fourth and final iteration, case validation accuracy started at approximately 66.67% and settled down at around 66.67% and validation loss was close to 5.3 . It took around 1 minute and 27 seconds to complete this iteration. The figure below shows the MATLAB training progression with details.

Figure 9: Fourth iteration training progression on MATLAB output window.
After all the iterations were completed, the mean cross-validation accuracy was calculated as $0.5142(51.42 \%)$ and a similar approach was taken to execute it for the parameter set two and three. Comparison of all the three parameter-sets (Table 3, 4 and 5) results are explained below.

Table 12:
Comparison of Mean Cross- Validation accuracy among different parameter sets.

Parameter Sets	No of Iteration	Mean CV Accuracy
1	4	0.5142
2	4	0.4785
3	3	0.4963

For parameter set 3, we obtained the cross-validation accuracy of $0.4963(49.63 \%)$. The above table depicts that parameter sets do not vary the results much and the model settles down around 50% of accuracy.

4.1.2 DFC Classification results utilizing mean and standard deviation:

In this case mean and standard deviation were calculated across the DFC windows to reduce the number of features, but the results did not improve and settled down to 50%. Here, three different parameter sets were used to calculate the classification accuracy. In the first set of parameters, mean cross-validation accuracy came to $0.49(\sim 49 \%)$. It was run for four iterations. In the first iteration, cross-validation accuracy was calculated as 0.42 ; in the second iteration, it came to 0.46 ; in the third iteration, the mean CV accuracy was 0.538 and in the fourth iteration, it was 0.538 , averaging overall into 0.49 .

Training progresses in each iteration is explained below.

Figure 10: First iteration training progression on MATLAB output window for classification utilizing mean and standard deviation.

Figure 11: Second iteration training progression on MATLAB output window for classification utilizing mean and standard deviation.

Figure 12: Third iteration training progression on MATLAB output window for classification utilizing mean and standard deviation.

Results	
Validation accuracy:	53.85\%
Training finished:	Reached final iteration
Training Time	
Start time:	27-Feb-2022 01:31:06
Elapsed time:	12 min 41 sec
Training Cycle	
Epoch:	20 of 20
Iteration:	60 of 60
Iterations per epoch:	3
Maximum iterations:	60
Validation	
Frequency:	5 iterations
Other Information	
Hardware resource:	Single CPU
Learning rate schedule:	Piecewise
Learning rate:	0.0001
i Learn more	
Accuracy	
Training (smoothed)	
\longrightarrow Training	
$-\bigcirc-$ Validation	
Loss	
- Training (smoothed)	
-0-Trainin	
---- Valid	

Figure 13: Fourth iteration training progression on MATLAB output window for classification utilizing mean and standard deviation.

Classification using mean and standard deviation took significantly more time to train than utilizing all the features. For the same set of parameters, the latter took 20 minutes more than the former, and the results did not change much.

After running through the first set of parameters, it is important to check with the remaining two to see how results vary. Results from all three sets of parameters (Tables 3, 4, and 5) can be found below.

Table 13:

Comparison of Mean Cross- Validation accuracy among different parameter sets using mean and standard deviation across one dimension.

Parameter Sets	No of Iteration	Mean CV Accuracy
1	4	0.49
2	4	0.44
3	4	0.49

4.1.3 DFC Classification results utilizing selective features (selective brain regions of AAL

ATLAS):

Selective features were used in this case to check the results. The idea was to calculate the classification accuracy using selective brain region. Here, the selective brain regions for all the subjects were utilized to calculate the accuracy. Brain regions selected to calculate classification accuracy are listed below in the tabular form (table 15) [36]. These regions were tried for three different parameter sets, each for four iterations, but the results remained close to 50%. Consolidated results for each parameter set (Tables 3, 4, and 5) are stated below.

Table 14:

Comparison of Mean Cross- Validation accuracy among different parameter sets using selective brain region.

Parameter Sets	No of Iteration	Mean CV Accuracy
1	4	0.49
2	4	0.51
3	4	0.4808

Table 15:
List of selected brain regions used for calculating classification accuracy.

Brain Region Label	Brain Region Name
19	Supp_Motor_Area_L 2401
20	Supp_Motor_Area_R 2402
47	Lingual_L 5021
48	Lingual_R 5022
81	Temporal_Sup_L 8111
82	Temporal_Sup_R 8112
85	Temporal_Mid_L 8201
86	Temporal_Mid_R 8202

4.2 FC R-CNN Results:

To conclude on the results obtained in the previous section, it was important to perform a similar classification analysis on the FC data set. During this work, classification accuracies were calculated using R-CNN techniques. First, the accuracies were calculated using all the features. After that, the mean and standard deviation were calculated across one region dimension and were applied to the R-CNN techniques to find the accuracies; and lastly, we utilized the selective brain regions listed in table Table 16. During this process, we calculated the accuracies utilizing the parameter sets listed in Table 3, 4 and 5.

4.2.1 FC Classification results utilizing all the features:

FC data set is a 3D matrix (number of object vs number of brain regions vs number of brain regions). During this exercise, we utilized all the features and trained the network with same algorithms discussed in DFC with same parameter set.

Table 16:
Comparison of Mean Cross- Validation accuracy among different parameter sets utilizing all features for FC data set.

Parameter Sets	No of Iteration	Mean CV Accuracy for FC Data Set
1	4	0.4592
2	4	0.4341
3	4	0.5408

4.2.2 FC Classification results utilizing mean and standard deviation:

Like section 4.1.2, the mean and standard deviation across the 'brain region' were calculated, and the classification cross-validation accuracy and results were obtained for each parameter sets are shown below.

Table 17:
Comparison of Mean Cross-Validation accuracy among different parameter sets utilizing mean and standard deviation for FC data set.

Parameter Sets	No of Iteration	Mean CV Accuracy for FC Data Set
1	4	0.6062
2	3	0.4002
3	4	0.5215

4.2.3 FC Classification results utilizing selected brain region features using AAL ATLAS:

 As mentioned earlier, in this case, selective brains regions were taken which were selected based on the previous study [36]. During this, there were handful of brain regions (table 15).Table 18:
Comparison of Mean Cross-Validation accuracy among different parameter sets utilizing selective features of FC data set.

Parameter Sets	No of Iteration	Mean CV Accuracy for FC Data Set
1	3	0.5385
2	3	5256
3	4	0.50

4.3 Comparative study of DFC and FC using R-CNN:

The idea of this study was to draw some conclusions between DFC and FC using R-CNN. However, results in both cases were found around 50 percent. Even after increasing the number of iterations to 100 , classification accuracy was close to 50%. If we compare the Table 12 and Table 16, the results are not very distinguishable. Similarly, comparing tables 13 and 17 or 14 and 18 we see the minimal differences in the results. Comprehensively, we cannot draw any conclusion based on the results obtained using R-CNN on FC and DFC. However, the expectation from DFC based classification was to provide the better results, as it has significantly more features compared to FC.

4.4 SVM-based classification results of DFC data set:

During this research work, after obtaining the results using R-CNN, we implemented the same data set to SVM using fitcsvm. Results obtained from some of them are explained below. We used ttest 2 to find out the suitable pairs to be used for classification.

4.4.1 SVM-based classification results of DFC data set for different P Values:

During this exercise, we utilized AAL ATLAS based DFC group zero and group two data sets.

Figure 14: Histogram of the standard deviation of the DFC (Combining HC and S2).

Figure 15: Histogram of the standard deviation of the DFC HC group.

Figure 16: Histogram of the standard deviation of the DFC S2 group.
Histograms were obtained just to check the distribution of the standard deviations among all the features. After this, we calculated ttest2 utilizing below formula.
[h p c stats] = ttest2(__) [40].

In the above formula, h stands for hypothesis, and it has two values, 0 or 1 . If 0 , it indicates that the null hypothesis at the alpha significance level cannot be rejected at 5\% and if h has the value of 1 , the null hypothesis at the alpha significance level can be rejected at 5%.
p in the above formula stands for probability of observing a test statistic as extreme. It ranges values between 0 and 1 .
c stands for confidence intervals for the difference in population.

Test statistics for the two-sample t-test returned as a structure containing the following: tstat - Value of the test statistic.
df - Degrees of freedom of the test.
sd - Pooled estimate of the population standard deviation (for the equal variance case)
or a vector containing the unpooled estimates of the population standard deviations (for the
unequal variance case) [40].

Figure 17: Probability of ttest2 between STD of DFC HC vs STD of DFC S2.

Figure 18: Hypothesis of ttest2 between STD of DFC HC vs STD of DFC S2.
Once ttest 2 is performed on the data set, it provides the p, h, c, and stats values. The value obtained for p is 116X116 double and each element's value is greater than zero and less than 1 (except the diagonal element). Similarly, h is also a 116X116 double. c is a 116X116X2 double value and as mentioned above stats has three components $t s t a t, d f$, and $s d . t s t a t$ and $d f$ are 116X116 double and $s d$ are 116X116X2 double. Based on the results obtained above, first we preformed classification using default 10 -fold-cv and repeated it by 100x and took the average. Mean cross-validation loss utilizing all the features came around 0.3543 which is $\sim 35 \%$ crossvalidation loss and $\sim 65 \%$ classification accuracy. So, with SVM method, results improved, but no significant differences were seen if all the features were utilized in both SVM and R-CNN.

After this, we utilized the p value obtained during ttset 2 and checked how the results were coming along.

4.4.1.1 SVM-based classification for DFC data set for P <0.001:

Utilizing ttest2 results is a way of reducing the features which is not relevant for our exercise. So, only those features were selected, whose probability was less than 0.001 . With this probability, only one pair existed. This pair was identified as number 25 (Frontal_Med_Orb_L 2611) and 50 (Occipital_Sup_R 5102) of brain region.

In this case also, classification was calculated based on STD DFC with default 10 -fold-cv and repeated by 100 x and mean cross-validation loss of 0.3543 were obtained. It means, classification accuracy of 64.57% was obtained.

4.4.1.2 SVM-based classification for DFC data set for P <0.05:

We started with the minimum p value (<0.001) where only one pair was found, so we determined to increase the p value and calculated the cross-validation accuracy for several p values and listed down in Table 19. With p value $<0.05,113$ pairs were found. Classification was calculated based on STD DFC with default $10-$ fold-cv and repeated by 100 x and mean crossvalidation loss of 0.0191 were obtained, which means, classification accuracy was ~ 98 percent. In all the ten cases of PDFC value, one common pair was obtained as shown in figure 19.

Table 19:
SVM AAL ATLAS Based Classification accuracy, Mean K fold cross-validation loss obtained for corresponding P DFC value.

Maximum P DFC	Mean K fold Loss	Classification Accuracy	Number of Pairs
0.001	0.3543	0.6457	$2 / 2=1$
0.002	0.3934	0.6066	$4 / 2=2$
0.005	0.1792	0.8208	$8 / 2=4$
0.01	0.1932	0.8068	$24 / 2=12$
0.02	0.0628	0.9372	$64 / 2=32$
0.03	0.06	0.94	$124 / 2=62$
0.04	0.0358	0.9642	$174 / 2=87$
0.05	0.0191	0.9809	$226 / 2=113$
0.06	0.0494	0.9506	$298 / 2=149$
0.1	0.0492	0.9508	$610 / 2=305$

Figure 19: The two AAL regions (left: Right Superior Occipital Gyrus, marked with red, and right: Left Medial Orbital Superior Frontal Gyrus, marked with blue) constituting the region-pair with the most discriminating power across the two groups GWI vs NC, with stdDFC. The average standard deviation of the temporal-evolution/dynamics of the DFC (stdDFC) between these two regions was significantly lower in GWI than in NC ($\mathrm{p}<0.001$). The classification accuracy of was 98% (52/53 or missing only one participant) [42].

4.5 SVM-based classification results of FC data set:

After obtaining the results using R-CNN, we implemented the same data set to SVM using fitcsvm. Results obtained from some of them are explained below. In this process we used ttest 2 to find out the suitable pairs to be used for classification.

4.5.1 SVM-based classification results of $F C$ data set for different P values:

During this exercise we utilized AAL ATLAS based FC group zero and group two data set.

Figure 20: Histogram of the of the FC (Combining HC and S2).

Figure 21: Histogram of the standard deviation of the FC HC group.

Figure 22: Histogram of the standard deviation of the FC S2 group.
Histograms were obtained just to check the distribution of the standard deviations among all the features. After this we calculated the ttest2 utilizing formula explained in section 4.4.1.

Probability of ttest 2 between FC HC vs FC S2.

Figure 23: Probability of ttest2 between FC HC vs FC S2.

Figure 24: Hypothesis of ttest2 between FC HC vs FC S2.
When ttest 2 was performed on the FC data set, it provided the p, h, c and stat values. Dimensions of p, h, c and stat remained the same as in section 4.4.1, however, values to each component varied from what we obtained in DFC. With both FC and DFC data set, the dimension of p obtained was 116X116, h 116X116 and c 116X116X2. stats has three components: tstat, $d f$ and $s d$. tstat and $d f$ are 116X116 double and $s d$ is 116X116X2 double. Based on the results obtained above, first we preformed classification using default 10 -fold-cv and repeated it by 100x and took the average. Mean cross-validation loss utilizing all the features came around 0.3319 which was $\sim 33 \%$ cross-validation loss and $\sim 67 \%$ classification accuracy. So, results improved with SVM, but no significant improvement were seen utilizing all the features in both SVM and R-CNN. After this we utilized the p value obtained during ttset 2 and checked how the results were coming along.

4.5.1.1 SVM-based classification for $F C$ data set for $P<0.001$:

Utilizing ttest2 results is a way of reducing the features which is not relevant for our exercise. So, in this case only those features were selected whose probability was less than 0.001 . With this probability, only one pair existed. This pair was identified as number 74 (Putamen_R 7012) and 116 (Vermis_10 9170) of brain region.

Classification was calculated based on FC data with default 10 -fold-cv and repeated by 100x and mean cross-validation loss of 0.3319 was obtained. This means classification accuracy of 66.81% was found.

4.5.1.2 SVM-based classification for $F C$ data set for P < 0.05:

We started with the minimum p value (<0.001) where we found only one pair, so we determined to increase the p value and calculated the cross-validation accuracy for several p value and listed down in Table 20. With p value <0.05, 234 pairs were found. Classification was calculated based on FC with default 10 -fold-cv and repeated by 100x and mean cross-validation loss of 0.3174 was obtained that means classification accuracy was ~ 68 percent.

With FC data set ten different p value were tried (listed in Table 20). With p value $<$ 0.005 , best result of ~ 72 percent of classification accuracy was found. In all the ten cases, only one pair was common which was identified as number 74 (Putamen_R 7012) and 116 (Vermis_10 9170) of brain region.

Table 20:
SVM AAL ATLAS based classification accuracy, Mean K fold cross-validation loss obtained for corresponding P FC value.

Maximum P FC	Mean K fold Loss	Classification Accuracy	Number of Pairs
0.001	0.3319	0.6681	$2 / 2=1$
0.002	0.3108	0.6892	$10 / 2=5$
0.005	0.2764	0.7236	$26 / 2=13$
0.01	0.3026	0.6974	$62 / 2=31$
0.02	0.2885	0.7115	$168 / 2=84$
0.03	0.2962	0.7038	$262 / 2=131$
0.04	0.3055	0.6945	$360 / 2=180$
0.05	0.3174	0.6826	$468 / 2=234$
0.06	0.3268	0.6732	$560 / 2=280$
0.1	0.3423	0.6577	$960 / 2=480$

4.6. Some Important Brain Region Pair Obtained:

P DFC less than 0.005 resulted into four brain region pairs. Pair one was 'Superior frontal gyrus, medial orbital' and 'Superior occipital gyrus'. Pair two consisted of 'Superior frontal gyrus, medial orbital' and 'Superior parietal gyrus'. Pair three consisted of 'Olfactory cortex' and 'Caudate nucleus'. Pair four consisted of 'Olfactory cortex' and 'Lenticular nucleus, putamen'. There was one additional pair, 'Inferior frontal gyrus, triangular part' and 'Superior frontal gyrus, dorsolateral', which appeared in all the P DFC values greater than 0.03. Pair one also appeared always when P DFC >0.001. AAL region for pair one is already shown in the figure 19.

Figure 25: Pair two Parietal Sup R and Frontal Mid Orb L (AAL Region 60 and 25).

Figure 26: Pair three Left to right Caudate L and Olfactory R (AAL Region 71 and 22).

Figure 27: Pair three Left to right Putamen L and Olfactory R (AAL Region 73 and 22).

Figure 28: Pair three Left to right Frontal Inf Tri R and Frontal Sup L (AAL Region 14 and 3).

4.7. List of AAL Brain Region Pair Obtained:

This section illustrates the AAL region pair obtained for each P DFC Values. We used ten different values of P DFC, and for each P DFC value, the number of AAL region pairs obtained are listed below. Pair obtained for P DFC value 0.001 was common in all the cases.

Table 21:
Number of pairs obtained for each value of P DFC.

P DFC Value (Less Than)	Number of Pairs
0.001	$2 / 2=1$
0.002	$4 / 2=2$
0.005	$8 / 2=4$
0.01	$24 / 2=12$
0.02	$64 / 2=32$
0.03	$124 / 2=62$
0.04	$174 / 2=87$
0.05	$226 / 2=113$
0.06	$298 / 2=149$
0.1	$610 / 2=305$

Below are the lists of AAL region pairs obtained utilizing the DFC data set for maximum P DFC value of $0.05,0.01,0.02,0.03,0.001,0.002,0.005$ and 0.04 . Using appendix A , corresponding AAL region names can be obtained.

Table 22:
List of corresponding actual AAL Region Pair for max P DFC of 0.05.
$\left.\begin{array}{|c|c|}\hline \text { PDFC } & \begin{array}{l}\text { AAL } \\ \text { Region } \\ \text { Pair }\end{array} \\ \hline 0.05 & \left(\begin{array}{ll}14 & 3) \\ (71 & 3) \\ & (91 \\ \hline 1 & 4) \\ (25 & 9) \\ (87 & 9) \\ & (73 \\ 10\end{array}\right) \\ & (75 \\ \hline 10\end{array}\right)$

$\left(\begin{array}{ll}60 & 25\end{array}\right)$	
$(35$	$26)$
$(43$	$26)$
$(45$	$26)$
$\left(\begin{array}{ll}50 & 26) \\ (75 & 29\end{array}\right)$	
$\left(\begin{array}{ll}106 & 29) \\ (87 & 30) \\ (98 & 31) \\ (100 & 31) \\ (101 & 31) \\ (106 & 31) \\ (111 & 31) \\ (42 & 32) \\ (26 & 35) \\ (44 & 36) \\ (45 & 36) \\ (46 & 36) \\ (48 & 36) \\ (96 & 36) \\ (97 & 36) \\ (11 & 39) \\ (71 & 39) \\ (75 & 39) \\ (75 & 41) \\ (95 & 41) \\ (32 & 42) \\ (66 & 42) \\ (71 & 42) \\ (26 & 43) \\ (106 & 43) \\ (36 & 44) \\ (108 & 44) \\ (26 & 45) \\ (36 & 45) \\ (106 & 45) \\ (36 & 46)\end{array}\right.$	

$\left.\begin{array}{|c}\hline \\ \\ \left(\begin{array}{cc}108 & 46 \\ (106 & 47\end{array}\right) \\ (36 \\ \hline\end{array}\right)$

$\left(\begin{array}{ll}(21 & 106) \\ (22 & 106) \\ (23 & 106) \\ (29 & 106) \\ (31 & 106) \\ (43 & 106) \\ (45 & 106) \\ (47 & 106) \\ (50 & 106) \\ (51 & 106) \\ (52 & 106) \\ (54 & 106) \\ (71 & 106) \\ (83 & 106) \\ (87 & 107) \\ (21 & 108) \\ (44 & 108) \\ (46 & 108) \\ (52 & 108) \\ (87 & 108) \\ (91 & 108) \\ (71 & 109) \\ (103 & 109) \\ (110 & 109) \\ (74 & 110) \\ (109 & 110) \\ (111 & 110) \\ (31 & 111) \\ (110 & 111) \\ (102 & 113) \\ (22 & 114) \\ (95 & 115) \\ (57 & 116) \\ (65 & 116) \\ (77 & 116) \\ (87 & 116) \\ (88 & 116) \\ (90 & 116)\end{array}\right]$

Table 23:
List of corresponding actual AAL Region Pair for P DFC <0.01, 0.02 and 0.03.

PDFC	AAL Region Pair
0.01	$\left.\begin{array}{c}\left(\begin{array}{ll}25 & 9\end{array}\right) \\ (71 \\ \left(\begin{array}{ll}22\end{array}\right) \\ (73 \\ (106\end{array}\right)$
$\begin{gathered} \hline \text { PDFC } \\ 0.02 \end{gathered}$	$\left.\begin{array}{l} \left(\begin{array}{ll} (25 & 9 \end{array}\right) \\ (73 \\ 10 \end{array}\right)$

Table 24:
List of corresponding actual AAL Region Pair for P DFC <0.001, 0.002 and 0.005.

P DFC	AAL Region Pair
PDFC	(5025)
0.001	(5022)
PDFC	
0.002	(73225)
	(50250)
	(2273)
	(2273)
PDFC	(7122)
0.005	(7322)
	(5025)
	(6025)
	(2550)
	(2560)
	(2271)
	(2273)

Table 25:
Corresponding Actual AAL Region Pair for P DFC <0.04.

Table 26:
Corresponding Actual AAL Region Pair for P FC <0.001 and 0.002.

P FC	AAL Region Pair
0.001	(11674)
P FC	(7436)
0.002	(11656)
	(11674)
	(92116)
	(100116)

4.8. Discussion and Conclusion:

After analyzing the results obtained from both static FC and dynamic FC (DFC), it is evident that, dynamic functional connectivity between multiple brain networks appeared as having great group discriminating power with an average classification accuracy of up to 98%, whereas static FC-based method achieved at most 72% accuracy. The variation in the classification accuracy between DFC and FC has been presented in figure 29.

Figure 29: Comparison of classification accuracy between DFC and FC for same value of P .

It is also interesting to note that, the range of the fluctuations in the DFC between the Right Superior Occipital Gyrus and the Left Medial Orbital Superior Frontal Gyrus regions during the resting-state fMRI scan, as captured by stdDFC, was 17% lower for the GWI than the stdDFC of the NC group (significantly lower, with $\mathrm{p}<0.001$). This
result may potentially signal an impairment for the GWI group between these regions, which are involved in functions such as visual processing, multi-sensory input processing sensorimotor processing, and semantic processing. Consistent with these findings, GWI veterans were reported to exhibit deficits word-finding, visual processing, and fine motor skills. However, brain networks involved in successful classification need to be further interpreted and studied. Ongoing and future work involves different feature selection and classification algorithms to achieve a higher classification accuracy, and more detailed study of other region-pairs involved in group discrimination. Overall, the results are in line with other recent findings of widespread impairments in resting-state FC within brain function networks implicated by multiple symptoms in GWI patients. DFC-based metrics, such as, the stdDFC in our study, with their group-discriminating differences can potentially lead to resting-state fMRI / neuroimaging biomarkers for GWI, and potentially for other neurological disorders and conditions.

CHAPTER V:

FUTURE WORK

There are different ways available to do the classification. In the future, one can directly feed the fMRI time-series data and find out the classification results or try different feature reduction methods and apply recently developed deep learning classification algorithms, such as UNet, etc.

If fMRI time-series (data stamped with timestamp) data are available, then feeding time series data directly into some prebuilt data analysis tool like SensiML [43], Google Analytics, PowerBI etc. can provide the promising results. It has good deep learning algorithms along with tools which can be customized and utilized for classification problem.

Different deep learning techniques such as AlexNet, which is similar to R-CNN can also be applied. As we could not get a good result out of R-CNN, we did not spend time trying AlexNet. If one can wisely select the parameters/options in AlexNet and reduce the features before training the network, it may give better results, however, challenging part is to select the options, parameters, and the features.

In MATLAB, one can try "The classification learner" app as well. It trains the model to classify data. Utilizing this app, one can explore supervised learning, utilizing different classifier. One challenge that can be found using a classification learner is selecting the features. In this case, close to 0.5 million features are available and training with so many features were very time-consuming. It took overnight to load all the features in the classification learner tool. If one can identify the features to be selected, then the classification learner app can be used to perform the classification.

Principal component analysis (PCA) or linear discriminant analysis (LDA) can be implemented to find out the principal components and reduce the dimension and calculate the classification.

During this research, SVM has been used, but other supervised technique can also be used. As it is explained in the results section, SVM has provided better results compared to R-CNN. It will be very interesting to see if features are obtained from the SVM t-test and feed into to R-CNN model for both DFC and FC cases.

REFERENCES

[1] "TReNDS Neuroimaging," Jul 2020. [Online]. Available: https://www.kaggle.com/c/trends-assessment-prediction.
[2] "Neuroimaging," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Neuroimaging.
[3] S. Huettel, A. Song and G. McCarthy, Functional Magnetic Resonance Imaging, Sinauer Associates, Sunderland, MA, 2004.
[4] "BOLD fMRI signals, time-courses," [Online].
[5] B. Biswal, J. VanKylen and J. Hyde, "Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps," NMR in Biomedicine, pp. 165-170, 1997.
[6] K. Friston, "Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging.," PLOS Biology, pp. 220-225, 2009.
[7] M. Fernandez-Seara, "Effects on resting cerebral blood flow and functional connectivity induced by metoclopramide: a perfusion MRI study in healthy volunteers," Br J Pharmacol, 2011.
[8] S. M. Smith, "The future of FMRI connectivity," Neuroimage, vol. 62, no. 2, pp. 1257-1266, 2012.
[9] "Resting State fMRI," [Online]. Available: https://en.wikipedia.org/wiki/Resting_state_fMRI.
[10] K. J. Friston, "Functional and effective connectivity in neuroimaging: a synthesis," Hum. Brain Mapp, vol. 2, pp. 56-78, 1994.
[11] U. Sakoglu, G. D. Pearlson, K. A. Kiehl, Y. M. Wang, A. M. Michael and V. D. Calhoun, "A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia," Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 23, no. 5, pp. 351-366, 2010.
[12] U. Sakoglu, B. Huisa-Garate, G. Rosenberg and R. Sood, "Application of FT-based MMSE Deconvolution Method for Cerebral Blood Flow Measurement in Patients with Leukoaraiosis," Magnetic Resonance Imaging, Elsevier, vol. 27, pp. 625-630, 2009.
[13] M. Pai, U. Sakoglu, S. Peterson, C. Lyons and R. Sood, "Characterization of BBB permeability in a preclinical model of cryptococcal meningoencephalitis using magnetic resonance imaging," Journal of Cerebral Blood Flow and Metabolism, vol. 29, pp. 545-553, 2009.
[14] U. Sakoglu, G. Pearlson, K. Kiehl and e. al, "A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia," Magnetic Resonance Materials in Physics and Medicine (MAGMA), vol. 23, no. 5, pp. 351-366, 2010.
[15] U. Sakoglu and V. Calhoun, "Temporal Dynamics of Functional Network Connectivity at Rest: A Comparison of Schizophrenia Patients and Healthy Controls," Neuroimage, vol. 47, 2009.
[16] S. Jampana, "Novel Time-Series Classification Analysis of EEG Data," 2015.
[17] S. Bhamidipati, "Machine Learning Applications to Classify Events from EEG Data," MS Thesis.
[18] U. Sakoglu and V. D. Calhoun, "Dynamic windowing reveals task-modulation of functional connectivity in schizophrenia patients vs healthy controls," in ISMRM, Honolulu, 2009.
[19] U. Sakoglu, A. Michael and C. VD, "Classification of schizophrenia patients vs healthy controls with dynamic functional network connectivity," in Human Brain Mapping, San Francisco, 2009.
[20] U. Sakoglu, M. Mete, J. Esquivel, K. Rubia, R. Briggs and B. Adinoff, "Classification of Cocaine Dependent Subjects with Dynamic Functional Connectivity from Functional Magnetic Resonance Imaging Data," Journal of Neuroscience Research, vol. 97, no. 7, pp. 790-803, 2019.
[21] R. Hutchison, T. Womelsdorf, E. Allen, P. Bandettini, V. Calhoun, M. Corbetta, P. S. Della, J. Duyn, G. Glover, J. Gonzalez-Castillo, D. Handwerker, S. Keilholz, V. Kiviniemi, D. Leopold, P. F. de, O. Sporns, M. Walter and C. Chang, "Dynamic functional connectivity: promise, issues, and interpretations," Neuroimage, pp. 360378, 2013.
[22] "wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Dynamic_functional_connectivity.
[23] W. Majeed, M. Magnuson and S. D. Keilholz, "Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat," Journal of Magnetic Resonance Imaging, pp. 384-393, 2009.
[24] W. Majeed, M. Magnuson, W. Hasenkamp, H. Schwarb, E. H. Schumacher, L. Barsalou and S. D. Keilholz, "Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans," NeuroImage. , pp. 1140-1150, 2011.
[25] E. Tagliazucchi, P. Balenzuela, D. Fraiman, P. Montoya and D. R. Chialvo, "Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state," Neuroscience Letters, pp. 158-163, 2011.
[26] E. Tagliazucchi, P. Balenzuela, D. Fraiman and D. R. Chialvo, "Criticality in largescale brain fMRI dynamics unveiled by a novel point process analysis," Frontiers in Physiology, 2012.
[27] E. Tagliazucchi, R. Carhart-Harris, R. Leech, D. Nutt and D. R. Chialvo, "Enhanced repertoire of brain dynamical states during the psychedelic experience," Human Brain Mapping, 2014.
[28] E. Tagliazucchi, M. Siniatchkin, H. Laufs and D. R. Chialvo, "The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process," Frontiers in Neuroscience, 2016.
[29] N. Petridou, C. C. Gaudes, I. L. Dryden, S. T. Francis and P. A. Gowland, "Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity," Human Brain Mapping, vol. 34, no. 6, pp. 13191329, 2013.
[30] X. Liu and J. H. Duyn, "Time-varying functional network information extracted from brief instances of spontaneous brain activity".," Proceedings of the National Academy of Sciences, pp. 4392-4397, 2013.
[31] J. E. Chen, C. Chang, M. D. Greicius and G. H. Glover, "Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics," NeuroImage., pp. 476-488, 2015.
[32] C. Chang and G. H. Glover, "Time-frequency dynamics of resting-state brain connectivity measured with fMRI," NeuroImage. , pp. 81-98, 2010.
[33] "Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Dynamic_functional_connectivity.
[34] U. Sakoglu, G. D. Pearlson, K. A. Kiehl, Y. M. Wang, A. M. Michael and V. D. Calhoun, "A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia," in Magnetic Resonance Materials in Physics and Medicine (MAGMA), 2010.
[35] D. T. Jones, P. Vemuri, M. C. Murphy, J. L. Gunter, M. L. Senjem, M. M. Machulda, S. A. Przybelski, B. E. Gregg, K. Kantarci, D. S. Knopman, B. F. Boeve, R. C. Petersen and C. R. Jack Jr, "Non-Stationarity in the "Resting Brain's" Modular Architecture," PLOS ONE, 2012.
[36] K. Gopinath, U. Sakoglu, B. Crosson and R. Haley, "Exploring Brain Mechanisms Underlying Gulf War Illness with Group ICA based Analysis of fMRI Resting State Network,," Neuroscience Letters, Elsevier, vol. 710, pp. 136-141, 2019.
[37] "cck-law," [Online]. Available: https://cck-law.com/types-of-va-disabilities/gulf-war-syndrome/.
[38] D. Akgun, U. Sakoglu, J. Esquivel, B. Adinoff and M. Mete, "GPU accelerated dynamic functional connectivity analysis for functional MRI data," omputerized Medical Imaging and Graphics, Elsevier,, vol. 43, pp. 53-63, 2015.
[39] "Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Region_Based_Convolutional_Neural_Networks.
[40] [Online]. Available: http://matlab.mathworks.com.
[41] [Online]. Available: https://www.ibm.com/docs/it/spss-modeler/SaaS?topic=models-how-svm-works.
[42] U. Sakoglu, A. Mishra, K. Gopinath, B. Crosson and R. Haley, "Classification of Gulf War Illness Patients vs Control Veterans Using fMRI Dynamic Functional Connectivity," in ISMRM, London, 2022.
[43] " SensiML,," SensiML, [Online]. Available: https://sensiml.com/ .
[44] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix and B. M. \&. M. Joliot, "Automated Anatomical Labeling of activations in SPM using a Macroscopic Anatomical Parcellation of the MNI MRI single-subject brain," NeuroImage. , pp. 273-289, 2002.
[45] "cck-law," [Online]. Available: ttps://cck-law.com/types-of-va-disabilities/gulf-war-syndrome/.

APPENDIX A

AAL Brain Region Nomenclature [44]. The numbers after the region names represent number of voxels in the ROI.

Brain Region Label	Brain Region (ROI) Name
1	Precentral_L 2001
2	Precentral_R 2002
3	Frontal_Sup_L 2101
4	Frontal_Sup_R 2102
5	Frontal_Sup_Orb_L 2111
6	Frontal_Sup_Orb_R 2112
7	Frontal_Mid_L 2201
8	Frontal_Mid_R 2202
9	Frontal_Mid_Orb_L 2211
10	Frontal_Mid_Orb_R 2212
11	Frontal_Inf_Oper_L 2301
12	Frontal_Inf_Oper_R 2302
13	Frontal_Inf_Tri_L 2311
14	Frontal_Inf_Tri_R 2312
15	Frontal_Inf_Orb_L 2321
16	Frontal_Inf_Orb_R 2322
17	Rolandic_Oper_L 2331
18	Rolandic_Oper_R 2332
19	Supp_Motor_Area_L 2401
20	Supp_Motor_Area_R 2402
21	Olfactory_L 2501
22	Olfactory_R 2502
23	$\begin{aligned} & \hline \text { Frontal_Sup_Medial_L } \\ & 2601 \end{aligned}$
24	$\begin{aligned} & \hline \text { Frontal_Sup_Medial_R } \\ & 2602 \end{aligned}$
25	Frontal_Med_Orb_L 2611
26	Frontal_Med_Orb_R 2612
27	Rectus_L 2701
28	Rectus_R 2702

Brain Region Label	Brain Region (ROI) Name
29	Insula_L 3001
30	Insula_R 3002
31	Cingulum_Ant_L 4001
32	Cingulum_Ant_R 4002
33	Cingulum_Mid_L 4011
34	Cingulum_Mid_R 4012
35	Cingulum_Post_L 4021
36	Cingulum_Post_R 4022
37	Hippocampus_L 4101
38	Hippocampus_R 4102
39	ParaHippocampal_L 4111
40	ParaHippocampal_R 4112
41	Amygdala_L 4201
42	Amygdala_R 4202
43	Calcarine_L 5001
44	Calcarine_R 5002
45	Cuneus_L 5011
46	Cuneus_R 5012
47	Lingual_L 5021
48	Lingual_R 5022
49	Occipital_Sup_L 5101
50	Occipital_Sup_R 5102
51	Occipital_Mid_L 5201
52	Occipital_Mid_R 5202
53	Occipital_Inf_L 5301
54	Occipital_Inf_R 5302
55	Fusiform_L 5401
56	Fusiform_R 5402
57	Postcentral_L 6001
58	Postcentral_R 6002
59	Parietal_Sup_L 6101
60	Parietal_Sup_R 6102
61	Parietal_Inf_L 6201
62	Parietal_Inf_R 6202
63	SupraMarginal_L 6211

Brain Region Label	Brain Region (ROI) Name
64	SupraMarginal_R 6212
65	Angular_L 6221
66	Angular_R 6222
67	Precuneus_L 6301
68	Precuneus_R 6302
69	Paracentral_Lobule_L 6401
70	$\begin{aligned} & \text { Paracentral_Lobule_R } \\ & 6402 \\ & \hline \end{aligned}$
71	Caudate_L 7001
72	Caudate_R 7002
73	Putamen_L 7011
74	Putamen_R 7012
75	Pallidum_L 7021
76	Pallidum_R 7022
77	Thalamus_L 7101
78	Thalamus_R 7102
79	Heschl_L 8101
80	Heschl_R 8102
81	Temporal_Sup_L 8111
82	Temporal_Sup_R 8112
83	$\begin{array}{\|l} \hline \text { Temporal_Pole_Sup_L } \\ 8121 \\ \hline \end{array}$
84	$\begin{array}{\|l} \hline \text { Temporal_Pole_Sup_R } \\ 8122 \\ \hline \end{array}$
85	Temporal_Mid_L 8201
86	Temporal_Mid_R 8202
87	$\begin{array}{\|l\|} \hline \text { Temporal_Pole_Mid_L } \\ 8211 \\ \hline \end{array}$
88	$\begin{array}{\|l\|} \hline \text { Temporal_Pole_Mid_R } \\ 8212 \\ \hline \end{array}$
89	Temporal_Inf_L 8301
90	Temporal_Inf_R 8302
91	Cerebelum_Crus1_L 9001
92	Cerebelum_Crus1_R 9002
93	Cerebelum_Crus2_L 9011
94	Cerebelum_Crus2_R 9012

Brain Region Label	Brain Region (ROI) Name
95	Cerebelum_3_L 9021
96	Cerebelum_3_R 9022
97	Cerebelum_4_5_L 9031
98	Cerebelum_4_5_R 9032
99	Cerebelum_6_L 9041
100	Cerebelum_6_R 9042
101	Cerebelum_7b_L 9051
102	Cerebelum_7b_R 9052
103	Cerebelum_8_L 9061
104	Cerebelum_8_R 9062
105	Cerebelum_9_L 9071
106	Cerebelum_9_R 9072
107	Cerebelum_10_L 9081
108	Cerebelum_10_R 9082
109	Vermis_1_2 9100
110	Vermis_3 9110
111	Vermis_4_5 9120
112	Vermis_6 9130
113	Vermis_7 9140
114	Vermis_8 9150
115	Vermis_9 9160
116	Vermis_10 9170

APPENDIX B

This section contains the list of all indices of a brain region pair obtained for P
DFC Values. Each index represent a brain region pair (I and J). One can obtained I and J values using below formula in MATLAB.
[I J] = ind2sub (116, indices).
Here the value I and J represent the AAL brain region.

P-DFC Values and Corresponding AAL Region Indices										
P-DFC \rightarrow	0.001	0.002	0.005	0.01	0.02	0.03	0.04	0.05	0.06	0.1
Indices \downarrow	2834	2509	2507	953	953	246	246	246	102	55
	5709	2834	2509	2507	1117	303	303	303	246	100
		5709	2834	2509	2178	953	439	439	303	101
		8374	2844	2542	2424	1015	953	953	439	102
			5709	2658	2426	1117	1015	1015	440	116
			6869	2793	2428	1145	1117	1117	452	182
			8142	2834	2507	1199	1119	1119	602	232
			8374	2844	2509	1511	1145	1145	686	246
				3586	2523	1726	1199	1199	696	303
				4106	2542	2178	1235	1235	797	348
				4715	2658	2393	1511	1511	903	358
				5256	2793	2424	1726	1719	953	439
				5670	2834	2426	2178	1726	1015	440
				5709	2844	2428	2390	2178	1056	448
				5902	2950	2502	2393	2390	1117	452
				6869	3586	2507	2416	2393	1119	480
				8142	4106	2509	2424	2416	1145	602
				8374	4715	2523	2426	2422	1199	686
				8625	5256	2537	2428	2424	1235	696
				11765	5556	2542	2502	2426	1286	738
				11767	5670	2658	2507	2428	1511	797
				12202	5709	2750	2509	2502	1719	903
				12203	5710	2793	2523	2507	1726	916
				12211	5790	2834	2529	2509	2175	953

P-DFC Values and Corresponding AAL Region Indices						
	5902	2844	2537	2523	2178	954
	6018	2945	2542	2529	2390	1000
	6134	2950	2550	2537	2393	1006
	6869	3323	2658	2542	2416	1015
	7178	3578	2750	2550	2421	1048
	7296	3581	2793	2658	2422	1056
	7409	3586	2834	2718	2424	1066
	7642	4106	2844	2750	2426	1105
	8142	4419	2945	2793	2428	1117
	8362	4715	2950	2834	2442	1119
	8374	4822	3323	2844	2502	1145
	8625	4827	3354	2935	2507	1179
	8932	5096	3451	2943	2509	1185
	9618	5130	3578	2945	2514	1199
	9998	5210	3580	2950	2519	1235
	10083	5256	3581	3323	2523	1261
	10208	5328	3586	3354	2529	1286
	10343	5442	3638	3451	2537	1470
	10548	5556	4104	3578	2542	1493
	11664	5670	4105	3580	2550	1498
	11765	5709	4106	3581	2658	1511
	11767	5710	4108	3586	2718	1581
	11768	5790	4419	3591	2750	1701
	11769	5902	4479	3638	2793	1719
	11778	5988	4483	3970	2833	1724
	11782	6018	4715	4104	2834	1726
	11969	6022	4788	4105	2844	1736
	11996	6134	4822	4106	2935	1745
	12011	6612	4827	4108	2943	1776
	12201	6869	5024	4156	2945	1848
	12202	7178	5096	4157	2949	1878
	12203	7284	5130	4419	2950	1881
	12211	7292	5140	4479	3239	1895
	12230	7296	5210	4483	3323	1921
	12263	7409	5256	4715	3354	1943
	12383	7562	5328	4735	3451	1956
	12433	7582	5442	4788	3578	1972

P-DFC Values and Corresponding AAL Region Indices					
12503	7642	5488	4822	3580	2099
13417	8123	5556	4827	3581	2175
13428	8142	5640	4898	3582	2178
	8162	5670	4978	3584	2204
	8207	5709	5024	3586	2291
	8226	5710	5096	3591	2320
	8288	5748	5130	3638	2390
	8362	5790	5140	3897	2392
	8373	5902	5210	3915	2393
	8374	5906	5256	3970	2414
	8613	5988	5328	4104	2416
	8625	6018	5442	4105	2421
	8932	6022	5488	4106	2422
	9420	6134	5524	4108	2424
	9618	6612	5556	4156	2426
	9985	6869	5640	4157	2428
	9998	7178	5670	4276	2442
	10047	7284	5672	4419	2446
	10083	7292	5708	4479	2453
	10208	7296	5709	4483	2474
	10343	7358	5710	4715	2475
	10440	7397	5748	4735	2489
	10548	7409	5790	4788	2495
	10619	7562	5902	4822	2496
	11283	7582	5906	4827	2501
	11547	7642	5988	4898	2502
	11610	8025	6018	4976	2507
	11622	8123	6022	4978	2509
	11631	8142	6024	5024	2514
	11664	8159	6134	5096	2519
	11702	8162	6254	5130	2523
	11731	8207	6612	5140	2528
	11765	8226	6869	5210	2529
	11767	8285	7038	5256	2530
	11768	8288	7178	5328	2531
	11769	8320	7265	5442	2537
	11778	8362	7284	5488	2542

P-DFC Values and Corresponding AAL Region Indices				
11782	8373	7292	5524	2543
11817	8374	7296	5556	2550
11969	8578	7358	5593	2640
11996	8594	7397	5594	2644
12011	8595	7409	5640	2658
12201	8613	7540	5670	2698
12202	8623	7562	5672	2717
12203	8625	7582	5708	2718
12211	8932	7642	5709	2750
12225	9420	8025	5710	2754
12227	9612	8123	5748	2774
12230	9618	8142	5790	2793
12232	9700	8159	5797	2795
12251	9985	8162	5902	2801
12263	9998	8207	5906	2815
12383	10006	8226	5988	2822
12433	10047	8229	6018	2833
12456	10083	8284	6020	2834
12458	10208	8285	6022	2837
12503	10272	8288	6024	2844
12638	10343	8320	6134	2845
12753	10425	8362	6231	2856
13397	10440	8373	6250	2909
13417	10444	8374	6254	2935
13428	10548	8415	6612	2943
13430	10619	8578	6869	2945
	10694	8594	6931	2946
	11041	8595	6939	2949
	11283	8613	7038	2950
	11515	8623	7061	2953
	11547	8625	7178	2979
	11567	8917	7265	3009
	11610	8932	7284	3013
	11622	8993	7292	3180
	11631	9420	7296	3239
	11664	9612	7358	3323
	11690	9618	7397	3335

P-DFC Values and Corresponding AAL Region Indices				
	11702	9700	7409	3354
	11731	9733	7540	3388
	11765	9985	7562	3400
	11767	9998	7582	3451
	11768	10006	7641	3505
	11769	10047	7642	3522
	11778	10083	7762	3547
	11782	10084	7922	3558
	11817	10092	8025	3578
	11829	10208	8123	3580
	11969	10272	8142	3581
	11996	10343	8159	3582
	12011	10425	8162	3584
	12201	10440	8207	3586
	12202	10444	8226	3591
	12203	10548	8229	3638
	12209	10619	8284	3697
	12211	10694	8285	3781
	12225	10919	8288	3897
	12227	10945	8320	3915
	12230	11019	8337	3970
	12231	11041	8362	3989
	12232	11056	8373	3993
	12251	11172	8374	4028
	12263	11283	8415	4032
	12383	11515	8573	4049
	12433	11547	8578	4076
	12456	11567	8594	4090
	12458	11610	8595	4102
	12503	11622	8613	4104
	12638	11631	8623	4105
	12718	11664	8625	4106
	12753	11677	8700	4107
	13094	11690	8907	4108
	13130	11702	8917	4109
	13397	11704	8932	4110
	13417	11731	8954	4124

P-DFC Values and Corresponding AAL Region Indices			
13428	11737	8993	4128
13430	11765	9420	4156
	11767	9534	4157
	11768	9566	4171
	11769	9612	4248
	11778	9618	4276
	11782	9700	4278
	11817	9733	4282
	11829	9985	4288
	11941	9995	4314
	11969	9998	4317
	11996	10006	4419
	11997	10010	4425
	12011	10036	4430
	12049	10047	4479
	12148	10083	4483
	12201	10084	4513
	12202	10092	4595
	12203	10208	4715
	12209	10272	4735
	12211	10343	4763
	12223	10425	4787
	12225	10440	4788
	12227	10444	4792
	12230	10448	4822
	12231	10517	4827
	12232	10544	4836
	12234	10548	4852
	12251	10560	4898
	12263	10619	4976
	12383	10694	4978
	12433	10919	5024
	12456	10945	5092
	12458	10964	5096
	12464	11019	5130
	12499	11041	5139
	12503	11056	5140

P-DFC Values and Corresponding AAL Region Indices		
	11996	5988
	11997	6012
	12000	6014
	12011	6018
	12039	6020
	12049	6022
	12138	6024
	12148	6054
	12186	6057
	12201	6058
	12202	6130
	12203	6134
	12209	6136
	12211	6138
	12223	6231
	12225	6250
	12227	6254
	12230	6265
	12231	6366
	12232	6380
	12234	6597
	12247	6612
	12251	6728
	12263	6750
	12324	6800
	12383	6811
	12433	6866
	12456	6869
	12458	6911
	12464	6931
	12499	6939
	12503	6970
	12599	6985
	12631	7038
	12638	7061
	12718	7143
	12753	7178

P-DFC Values and Corresponding AAL Region Indices		
	12755	7244
	12791	7257
	12870	7265
	13042	7284
	13094	7292
	13130	7293
	13319	7296
	13346	7300
	13397	7344
	13405	7358
	13415	7374
	13417	7397
	13427	7409
	13428	7441
	13430	7446
		7469
		7487
		7540
		7542
		7562
		7582
		7604
		7641
		7642
		7687
		7702
		7716
		7718
		7762
		7808
		7921
		7922
		7958
		8004
		8025
		8073
		8123

P-DFC Values and Corresponding AAL Region Indices	
	8907
	8917
	8918
	8920
	8932
	8941
	8945
	8954
	8963
	8993
	9005
	9015
	9019
	9074
	9206
	9380
	9420
	9497
	9534
	9566
	9571
	9590
	9612
	9618
	9663
	9700
	9733
	9836
	9844
	9846
	9848
	9884
	9958
	9961
	9976
	9985
	9993

P-DFC Values and Corresponding AAL Region Indices		
		9995
		9996
		9998
		10005
		10006
		10010
		10022
		10036
		10047
		10051
		10054
		10083
		10084
		10085
		10092
		10115
		10127
		10168
		10208
		10272
		10323
		10343
		10425
		10432
		10440
		10444
		10448
		10517
		10542
		10544
		10548
		10560
		10578
		10579
		10619
		10641
		10657

P-DFC Values and Corresponding AAL Region Indices	
	11621
	11622
	11631
	11632
	11657
	11661
	11663
	11664
	11666
	11672
	11677
	11682
	11686
	11690
	11692
	11700
	11702
	11704
	11717
	11731
	11737
	11747
	11753
	11765
	11766
	11767
	11768
	11769
	11770
	11771
	11778
	11782
	11793
	11801
	11807
	11817
	11829

P-DFC Values and Corresponding AAL Region Indices		
		12229
		12230
		12231
		12232
		12233
		12234
		12247
		12251
		12263
		12318
		12324
		12383
		12428
		12433
		12456
		12458
		12464
		12475
		12488
		12499
		12502
		12503
		12511
		12554
		12599
		12615
		12631
		12633
		12638
		12639
		12718
		12753
		12755
		12791
		12796
		12869
		12870

P-DFC Values and Corresponding AAL Region Indices		
		12875
		12891
		12913
		13018
		13042
		13094
		13108
		13130
		13313
		13319
		13335
		13341
		13342
		13343
		13346
		13357
		13359
		13360
		13395
		13397
		13398
		13405
		13409
		13415
		13417
		13426
		13427
		13428
		13430
		13453

APPENDIX C

This section contains the list of all indices of a brain region pair obtained for certain P FC Values. Each index represent a brain region pair (I and J). Below formula can be utilized to obtained I and J values in MATLAB.
[I J] = ind2sub (116, indices). Here the value I and J represent the AAL brain region.

P-FC Values and Corresponding AAL Region Indices										
P-FC \rightarrow	0.001	0.002	0.005	0.01	0.02	0.03	0.04	0.05	0.06	0.1
Indices \downarrow	8584	4134	3480	1392	205	15	15	15	15	9
	13414	6496	4134	3480	232	205	205	151	151	15
		8504	4408	4003	552	232	232	182	182	151
		8584	5044	4018	928	552	348	205	205	152
		10672	6032	4134	1392	928	480	225	213	182
		11600	6264	4136	1677	1365	506	232	225	191
		13396	6424	4395	1681	1391	552	348	232	194
		13414	6496	4408	3248	1392	572	480	348	205
		13432	8504	4633	3321	1624	928	506	480	213
		13440	8584	4640	3399	1625	1160	540	506	219
			10672	5044	3400	1677	1365	551	540	221
			11484	5800	3479	1681	1391	552	551	225
			11600	6032	3480	1856	1392	572	552	232
			11948	6264	3781	3241	1623	812	568	320
			12528	6424	3782	3248	1624	928	572	341
			13370	6496	3898	3321	1625	1133	812	348
			13378	6763	3917	3399	1641	1160	928	464
			13392	8352	3974	3400	1667	1365	1032	474
			13394	8503	4000	3438	1675	1391	1133	476
			13396	8504	4003	3479	1677	1392	1160	480
			13414	8577	4004	3480	1681	1466	1365	501
			13432	8578	4008	3747	1703	1623	1391	504
			13439	8583	4014	3781	1709	1624	1392	505
			13440	8584	4018	3782	1745	1625	1466	506
			13443	8736	4090	3863	1849	1641	1623	540

P-FC Values and Corresponding AAL Region Indices								
		13448	8810	4098	3898	1856	1667	1624

P-FC Values and Corresponding AAL Region Indices						
	8037	4872	4098	3917	3747	1617
	8038	4919	4100	3946	3781	1623
	8039	5036	4116	3974	3782	1624
	8352	5044	4124	3977	3801	1625
	8381	5104	4134	3978	3863	1641
	8468	5336	4136	3983	3897	1667
	8503	5379	4328	3994	3898	1668
	8504	5452	4368	4000	3917	1671
	8557	5496	4375	4002	3946	1672
	8577	5568	4390	4003	3974	1675
	8578	5800	4391	4004	3977	1677
	8579	6032	4392	4008	3978	1681
	8583	6047	4395	4011	3983	1689
	8584	6264	4397	4012	3994	1703
	8666	6415	4401	4013	4000	1705
	8736	6416	4402	4014	4002	1709
	8738	6424	4403	4018	4003	1745
	8805	6489	4407	4034	4004	1775
	8809	6495	4408	4090	4006	1797
	8810	6496	4443	4098	4008	1849
	8816	6511	4483	4100	4011	1855
	9471	6763	4517	4116	4012	1856
	9512	6879	4518	4124	4013	1871
	9550	7192	4524	4134	4014	1929
	9976	7343	4560	4136	4018	1985
	10097	7397	4633	4328	4034	2038
	10201	7424	4634	4348	4090	2061
	10210	7807	4639	4368	4098	2071
	10242	7888	4640	4370	4100	2073
	10272	7921	4749	4375	4116	2077
	10282	7923	4761	4390	4124	2088
	10433	7958	4865	4391	4134	2111
	10440	8037	4871	4392	4136	2163
	10672	8038	4872	4395	4158	2195
	10904	8039	4887	4397	4328	2235
	11252	8073	4919	4401	4348	2262
	11290	8093	4926	4402	4366	2279

P-FC Values and Corresponding AAL Region Indices						
	13342	10208	7921	5815	5104	3475
	13348	10210	7923	5901	5336	3476
	13352	10220	7958	5916	5351	3479
	13368	10242	7997	6032	5379	3480
	13370	10272	8037	6047	5452	3500
	13378	10278	8038	6081	5496	3569
	13379	10281	8039	6148	5508	3747
	13380	10282	8073	6191	5568	3781
	13382	10433	8093	6241	5621	3782
	13388	10440	8113	6264	5669	3801
	13390	10556	8236	6415	5719	3863
	13392	10671	8346	6416	5793	3897
	13394	10672	8351	6418	5800	3898
	13396	10788	8352	6424	5815	3917
	13408	10904	8381	6428	5901	3925
	13412	11118	8441	6448	5916	3937
	13413	11252	8457	6456	6032	3946
	13414	11290	8467	6489	6047	3956
	13416	11348	8468	6492	6081	3960
	13422	11358	8497	6495	6133	3974
	13426	11362	8498	6496	6148	3977
	13430	11368	8503	6511	6191	3978
	13432	11442	8504	6647	6241	3983
	13434	11483	8551	6728	6264	3984
	13437	11484	8557	6763	6415	3990
	13439	11522	8567	6795	6416	3994
	13440	11599	8571	6879	6418	4000
	13443	11600	8573	7175	6424	4002
	13444	11716	8577	7192	6428	4003
	13447	11870	8578	7343	6442	4004
	13448	11906	8579	7344	6446	4006
	13452	11908	8580	7374	6448	4008
		11948	8583	7397	6456	4011
		12064	8584	7413	6479	4012
		12102	8603	7424	6480	4013
		12137	8623	7542	6489	4014
		12138	8666	7570	6491	4018

P-FC Values and Corresponding AAL Region Indices					
	13430	12284	8970	8567	5003
	13431	12288	9021	8571	5018
	13432	12405	9048	8573	5036
	13433	12412	9063	8577	5042
	13434	12417	9471	8578	5044
	13437	12518	9472	8579	5104
	13438	12527	9512	8580	5169
	13439	12528	9550	8582	5179
	13440	12544	9586	8583	5213
	13441	12556	9599	8584	5220
	13443	12558	9737	8603	5255
	13444	12566	9744	8613	5276
	13445	12567	9759	8614	5294
	13447	12568	9935	8623	5296
	13448	12569	9969	8651	5329
	13452	12570	9976	8657	5336
		12584	9981	8666	5351
		12597	10059	8667	5379
		12598	10085	8670	5390
		12602	10097	8674	5452
		12604	10201	8689	5467
		12616	10208	8700	5496
		12618	10210	8705	5508
		12631	10218	8736	5568
		12635	10220	8738	5619
		12682	10241	8756	5621
		12683	10242	8782	5669
		12684	10272	8783	5719
		12716	10278	8788	5749
		12718	10280	8792	5793
		12720	10281	8798	5800
		12742	10282	8799	5815
		12798	10286	8803	5849
		12834	10359	8805	5893
		12836	10399	8809	5901
		12856	10433	8810	5912
		12950	10440	8811	5916

P-FC Values and Corresponding AAL Region Indices					
		13384	11947	10241	6491
		13386	11948	10242	6492
		13387	12054	10272	6495
		13388	12064	10277	6496
		13390	12102	10278	6505
		13392	12128	10280	6509
		13393	12137	10281	6511
		13394	12138	10282	6512
		13396	12139	10286	6580
		13402	12140	10359	6632
		13404	12167	10399	6647
		13408	12180	10433	6701
		13411	12274	10439	6721
		13412	12278	10440	6728
		13413	12280	10556	6763
		13414	12284	10632	6795
		13416	12288	10665	6837
		13418	12405	10671	6879
		13422	12406	10672	6928
		13424	12412	10726	6953
		13426	12417	10788	7111
		13428	12518	10894	7132
		13430	12522	10903	7159
		13431	12527	10904	7165
		13432	12528	10973	7175
		13433	12530	11058	7181
		13434	12544	11118	7185
		13437	12556	11130	7192
		13438	12558	11131	7343
		13439	12566	11138	7344
		13440	12567	11200	7364
		13441	12568	11205	7374
		13443	12569	11210	7378
		13444	12570	11245	7383
		13445	12578	11252	7397
		13447	12584	11288	7402
		13448	12596	11290	7405

P-FC Values and Corresponding AAL Region Indices				
	13452	12597	11328	7407
	13454	12598	11348	7411
	13455	12600	11358	7413
		12602	11361	7417
		12604	11362	7423
		12612	11368	7424
		12614	11406	7439
		12615	11424	7469
		12616	11430	7474
		12618	11432	7497
		12631	11442	7536
		12635	11444	7540
		12682	11450	7542
		12683	11483	7558
		12684	11484	7570
		12716	11522	7596
		12718	11540	7604
		12720	11590	7614
		12742	11594	7616
		12751	11599	7622
		12752	11600	7626
		12798	11649	7630
		12832	11651	7656
		12834	11653	7691
		12836	11716	7715
		12856	11870	7730
		12876	11872	7731
		12932	11906	7765
		12950	11908	7807
		12990	11937	7808
		12991	11941	7828
		12992	11947	7846
		13220	11948	7848
		13224	11953	7871
		13236	11957	7877
		13238	12054	7881
		13254	12064	7888

P-FC Values and Corresponding AAL Region Indices				
		13262	12102	7921
		13264	12128	7922
		13266	12137	7923
		13280	12138	7958
		13296	12139	7963
		13297	12140	7977
		13298	12167	7983
		13300	12180	7985
		13316	12274	7997
		13323	12278	8037
		13324	12280	8038
		13327	12284	8039
		13332	12288	8068
		13336	12405	8073
		13340	12406	8093
		13342	12412	8101
		13343	12417	8113
		13347	12518	8120
		13348	12522	8229
		13350	12527	8235
		13352	12528	8236
		13354	12530	8325
		13356	12544	8332
		13358	12556	8345
		13368	12558	8346
		13370	12566	8347
		13378	12567	8351
		13379	12568	8352
		13380	12569	8363
		13382	12570	8369
		13384	12578	8381
		13386	12584	8382
		13387	12590	8408
		13388	12595	8417
		13390	12596	8427
		13391	12597	8433
		13392	12598	8441

P-FC Values and Corresponding AAL Region Indices				
		13393	12599	8451
		13394	12600	8453
		13396	12602	8455
		13398	12604	8457
		13402	12610	8467
		13404	12612	8468
		13408	12614	8481
		13411	12615	8497
		13412	12616	8498
		13413	12618	8503
		13414	12620	8504
		13416	12625	8506
		13417	12626	8514
		13418	12631	8524
		13422	12635	8534
		13424	12638	8535
		13426	12682	8536
		13428	12683	8543
		13430	12684	8550
		13431	12716	8551
		13432	12718	8556
		13433	12720	8557
		13434	12740	8558
		13437	12742	8560
		13438	12744	8565
		13439	12751	8567
		13440	12752	8569
		13441	12753	8571
		13443	12798	8573
		13444	12800	8577
		13445	12816	8578
		13447	12832	8579
		13448	12834	8580
		13451	12836	8581
		13452	12856	8582
		13454	12876	8583
		13455	12932	8584

P-FC Values and Corresponding AAL Region Indices						
		13440				
		13441				
		13442				
		13443				
		13444				
		13445				
		13447				
		13448				
		13451				
		13452				
		13454				
		13455				

GLOSSARY

fMRI functional magnetic resonance imaging.
FC functional connectivity.
DFC dynamic functional connectivity.
GWI Gulf War illness.
PTSD Post Traumatic Stress Disorder
BOLD Blood oxygen level dependent.
RCNN Region based convolutional neural network
SVM Support Vector Machine
4-D four dimensional
ICA Independent Component Analysis
GICA Group ICA
PCA Principal component analysis
LDA Linear Discriminant Analysis
SVM Support Vector Machine
AAL Automated Anatomical Labeling
TTEST2 Two sample ttest with pooled or unpooled variance estimates.

