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ABSTRACT 

IMPROVING RELIABILITY AND LATENCY OF HIGH CRITICAL TASKS IN 

MIXED CRITICALITY SYSTEMS THROUGH TASK RESCHEDULING  

 

 

Vamsi Krishna Karanam 

University of Houston-Clear Lake, 2019 

 

 

Thesis Chair: Hakduran Koc, PhD 

 

A Mixed Criticality System (MCS) consists of various hardware and software 

components executing tasks with different criticality levels. The criticality of a task is 

determined by its impact on the overall system output (e.g., safety critical and mission 

critical tasks or low critical and high critical tasks). In today’s world, such systems can be 

found almost everywhere including cars, airplanes, remotely piloted vehicles and so on. 

An MCS needs to be designed considering different criticality scenarios depending on the 

requirements of the operating environment. Significant amount of research has been 

dedicated to improve various parameters of MCSs such as reliability, performance, and 

power consumption. 



 

 

vii 

In this thesis, we focus on improving the reliability and execution latency of high 

critical tasks in mixed criticality systems running on a Hardware/Software codesign 

environment. The system can run in two different operating modes: low criticality mode, 

which is the normal operating mode of the system, and high criticality mode. We propose 

two different algorithms: Reliability Priority Algorithm and Latency Priority Algorithm. 

In reliability priority approach, the algorithm schedules all tasks in the system and returns 

the final reliability and the latency of the system in low criticality operating mode. In 

high criticality mode, the algorithm gives priority to high critical (HC) tasks over low 

critical (LC) ones during the scheduling process. The LC tasks are scheduled in the gaps 

available considering the latency constraints. The algorithm returns the overall reliability 

of the system and the reliability of the HC tasks in both modes of operation. In latency 

priority approach, we prioritize the execution latency of HC tasks over their reliability. In 

the low criticality mode, the algorithm schedules the tasks to the fastest components 

available at the point of arrival. In the high criticality mode, HC tasks are scheduled 

before LC tasks in order to improve the latency of HC tasks.  

The results of the experimental evaluation clearly show the viability of the 

proposed algorithms. The reliability priority algorithm increases the reliability of the HC 

tasks by 6.6% on the average and the latency priority algorithm improves the execution 

latency of the HC tasks by 23.8% on the average for the automatically generated task 

graphs. 
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CHAPTER I:  

INTRODUCTION 

In today’s world, we are surrounded by electronically controlled systems 

enhancing our daily lives. Mixed Criticality Systems (MCS) are predominantly becoming 

a part of modern-day systems. These systems contain various hardware and software 

components executing tasks of different criticality such as safety critical and mission 

critical. Such systems can be found almost everywhere including cars, airplanes, remotely 

piloted vehicles (whether a toy or a tool). A significant amount of research has been 

dedicated to improving various parameters of MCSs such as reliability, performance, and 

power consumption [5, 6].  

Task criticality is an important driver in real time systems in order to effectively 

utilize the limited processing elements with tight constraints. Classifying tasks as High 

Critical (HC) or Low Critical (LC) is also important for scheduling tasks efficiently to 

ensure available computing power. While LC tasks do not have a significant impact on 

the system performance, HC task execution is the deciding factor of the quality of the 

result and even affect the correctness of a result. This directs the research into treating the 

tasks with separate approaches based on their criticality such as dual criticality of a 

system. With dual criticality scheduling, the system schedules tasks based on their 

criticality levels within a given latency constraint. The criticality of a task is subject to 

change. It can change with the focus of the system and with the time the system has been 

in operation. Tasks changing the criticality levels in the course of execution bring 

additional challenges to task scheduling. The system must consider the change and adjust 

the operation to cater to the HC tasks. The system used this work is designed to operate in 

two execution modes. In low criticality mode, all tasks are treated to be of equal 

criticality, and they are scheduled accordingly in order to meet the design constraints. In 
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high criticality mode, the HC tasks are held in priority and some LC tasks may be 

excluded from scheduling in order to achieve the highest possible value for the 

optimization metric targeted. 

The approach presented in this thesis partitions the tasks as high and low critical 

ones and prioritize HC tasks. This allows the system to schedule tasks based on either 

reliability or latency when needed while also moving between high criticality and low 

criticality operation modes as dictated by the system requirements. The execution latency 

and reliability of tasks are provided in the form of a technology library to the algorithms 

which start scheduling process by choosing the tasks to schedule based on the predefined 

rules of priority and assigning them to the appropriate processing elements. These rules 

take into consideration the number of tasks dependent on the current task, criticality, and 

the distance to the sink node to compare the priority of the task in question. In case of a 

tie between tasks in all conditions stated above, the task that can run with the highest 

performance in the available processing element is considered. 

More specifically, in low criticality mode, the algorithm schedules all tasks in the 

system and returns with the final reliability and the latency of the system. In high 

criticality mode, the algorithm first considers the HC tasks during the scheduling process. 

Only after assuring that all HC tasks have been scheduled, the LC tasks are considered 

for scheduling. The LC tasks are scheduled in the gaps generated by the HC tasks and can 

be run till all of them are scheduled or a few LC tasks can be excluded if the overall 

latency exceeds the latency constraint. The algorithm returns the overall reliability of the 

system and the reliability of the HC tasks in both the modes of operation. By prioritizing 

HC tasks, we intend to assure the survival of the system by ensuring the completion of 

HC tasks as early as possible, and then, incorporating the LC tasks. This set of algorithms 



 

 

 

3 

prioritizes the reliability of the system over its execution latency, so we refer it as 

Reliability Priority approach.  

A similar approach is utilized to formulate another set of algorithms that prioritize 

the execution latency of High Critical tasks over their reliability hereby referred to as 

Latency Priority approach. This approach intends to execute the tasks at a quicker pace in 

order to be able to implement other reliability measures such as duplication in the slack 

generated. The low criticality mode of the system accepts the data of each task excluding 

criticality and schedules the tasks to the fastest components available at the point of 

arrival. This results in a schedule faster than the reliability approach but at a cost of 

performance. 

The high criticality mode in Latency Priority approach processes HC tasks ahead 

of LC tasks in order to improve the latency of HC tasks. LC tasks are scheduled in the 

time leftover or some are dropped if they cannot be accommodated within the constraints 

imposed on the system. 

The experimental evaluation conducted using automatically generated task graphs 

clearly shows that the proposed algorithms successfully improves the reliability and the 

execution latency of the HC tasks in the system. More specifically, the Reliability 

Priority approach increases the reliability of the HC tasks and the Latency Priority 

approach improves the execution latency for the HC tasks in the system. 
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CHAPTER II:  

REVIEW OF LITERATURE 

The Research on task scheduling of mixed criticality systems in recent years by S 

K Baruah [1] presents a hybrid system model utilizing Federated Scheduling, (i.e., each 

individual task is either restricted to execute on a specific processor or has exclusive 

access to all processors.) The Algorithm proposes an improvement to the existing 

deadline by introducing Mixed Criticality as a parameter. A model is proposed for mixed-

criticality recurrent tasks that extend the (previously proposed) implicit-deadline sporadic 

DAG tasks model to account for mixed criticalities. A federated scheduling algorithm is 

presented and proven.  A quantitative evaluation of its efficacy is derived via the widely 

used speedup factor metric. This model considers tasks that are allocated by Federated 

Scheduling while remaining tasks are partitioned amongst a pool of shared processors. 

Thus, the simplicity of partitioned scheduling is maintained, and capacity loss due to 

partitioning is capped at no larger a fraction of the platform capacity than was the case 

with partitioned scheduling of sequential tasks. 

D. Tamas-Selicean et al [2] offer a system composed of heterogeneous processing 

elements (PEs) to implement hard real-time applications with different Safety Integrity 

levels, to include non-critical functions. It is stated that the positivity towards this 

approach is that the combination of hardware and software architecture allows for both 

spatial and temporal partitioning. A Simulated Annealing-based approach determines a 

task map for PEs and the sequence and length of time partitions for each PE such that 

applications are scheduled utilizing a Tabu Search-based approach. 

This model considers a set of tasks that must be run on specific cores only in 

addition to three different task sets that can be run on multiple cores. The tasks that have 

a Specific core requirement are scheduled first, then the paper compares the performance 
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between three different scheduling implementations for the remaining task sets; regular 

mapping without partitioning, mapping with partitions, and simultaneous mapping and 

partitioning. A second approach results in the system going over the deadline, while the 

third case achieves a significant improvement in the Degree of Schedulability, showing 

that tasks can be scheduled on a slower or cheaper platform. 

R. Medina et al [3] considers the concept of dual criticality:  High Criticality (HC) 

and Low Criticality (LC).  Two Task Graphs are created for each function and each graph 

is assigned HC Task Nodes. The graphs show dependencies and precedent tasks for each 

individual task in detail. 

The Scheduling Algorithm functions on HC task deadlines. HC tasks are 

scheduled using the as late as possible method. When the algorithm is in LC mode, and a 

HC task exceeds its allotted execution time, a Timing Failure Event occurs.  This 

switches the algorithm to HC mode, where all LC tasks are abandoned. HC tasks are 

scheduled first to allow ample execution time within their respective deadlines, then LC 

tasks are assigned in the gaps. This is a variation of Federated Scheduling from the first 

paper. 

This Algorithm is tested with multiple cases differing the frequency of 

applications, the number of tasks in each application, and the number of cores. When a 

higher number of cores are used the system is scheduled easily but system usage is 

reduced below its potential.  

M. Bagheri et al [4] address the under-utilization problem found in Mixed-Critical 

systems by proposing a scheduling method that increases overall performance but all 

deadlines of SC tasks are met even in the presence of transient faults with a fault tolerant 

scheme of task-level temporal redundancy implemented by check-pointing with rollback 

capabilities. 
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Pessimistic estimations made while designing an SC system are:  

a) Worst-case execution time (WCET) used in schedule tables 

b) Fault-tolerance using redundant spatial or temporal resources for the 

maximum number of anticipated tolerable faults 

The paper also compares three different models 

1) Non mixed criticality Fault tolerant where every task has a recovery slack 

including Safety critical and non-safety critical tasks and schedules within 

the runtime 

2) Mixed Critical Fault Tolerant which considers redundancy and re-

computation for only SC and eliminates FT schemes for NSC tasks 

3) This final model has an additional runtime monitoring which adds slack to 

the NCS in case of a transient fault but still has FT slacks for SC 

scheduled always keeping in the actual time budget. 

Fault Tolerant schemes use re-execution. Faulty hard processes are recovered. 

Faulty soft processes are recovered only if hard processes will not miss deadlines, 

otherwise, the soft process is dropped. 

A new metric of Criticality is introduced to task scheduling by S. Vestal [5] and 

further surveyed by A. Burns et al [6] in their survey. HC tasks are required to be 

executed within the assigned deadline whereas LC tasks may be rescheduled or 

rearranged to accommodate a HC task. Criticality can be related to the importance of the 

task to the whole system function. Some tasks change criticality based on the Goal set. 

Some tasks can be Mission Critical when there is no collateral damage by a system 

failure or Safety Critical if there is a possibility of damage to surroundings of the system 

which is when tasks change their criticality levels. 
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Tasks can change criticality over time.  If a task exceeds its execution deadline it 

triggers the system to High Criticality execution mode until all HC Tasks are executed.  It 

then switches back to the less critical mode. 

Different types of scheduling techniques are employed in MCS a few of which 

are: 

a) Real Time Analysis: monitoring the deadlines of the critical tasks and 

execution times and scheduling to prevent going over the deadline. 

b) Slack Scheduling: a LC task is scheduled in the slack created by HC tasks 

executed ahead of the deadline. 

c) Period Transformation: slashing a lengthy LC task into parts and 

scheduling it in wherever possible in order to avoid excessive delay 

d) Earliest Deadline First: scheduling all the HC tasks using the ALAP 

algorithm and schedule all the LC tasks in the gaps created by the HC 

tasks. 

In multiprocessor mixed criticality systems there arises the problem of task 

allocations to the different processors based on the processor capability and the 

requirement of the critical task. 

E. Azari et al [7] and S. Tosun et al [8] discuss A hardware software Co-Design 

environment consisting of Hardware ASIC components and Software components that 

function together to improve efficiency better than either only hardware or software 

components. Software components perform tasks utilizing less area and less energy.  

Hardware components execute significantly faster but consume more area and energy. 

Hardware components can be expensive to modify or correct after the initial design. 

This research provides a way to identify tasks which when assigned to hardware 

components would significantly improve the design.  
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A hot path is tasks that are executed frequently and usually dictate total execution 

time.  Other paths are cold paths.  A Critical Path would be the path that has the longest 

execution latency in the design. The hot path and the critical path are mutually exclusive 

and can share some, all, or no, nodes. 

Identifying a specific node in the hot path that decreases overall latency when 

assigned to a hardware component is done by the algorithm provided. Once nodes are 

assigned latencies are re-computed and area constraint is determined as well. S. Tosun’s 

paper discusses also of reliability of the ASIC or the software components as well along 

with time and energy constraints. 

 Task Re-computation and Scheduling has been discussed by Giovanni De 

Micheli [25] Some Scheduling Algorithms discussed in Synthesis and optimization of 

Digital Circuits. 

a) ASAP: Starts scheduling basic tasks in cycle 1 and fills in the dependent 

tasks after that. Tends to complete branches as soon as possible. 

b) ALAP: Starts by scheduling final tasks and adjusting the predecessors 

after. It needs the final time constraint so that it can assign the tasks in the 

last possible clock cycle.  

c) Hu’s Algorithm: It schedules the starting tasks from a pool of tasks based 

on the resource constraint given. 

d) LIST L: a scheduling algorithm for achieving minimum latency 

e) LIST R: for achieving minimum resource usage 

f) Force Directed: a new Metric Force is calculated for each task and of 

those available to be scheduled in the first cycle the task with the least 

force is scheduled first. 
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In P. K. Saraswat et al [10] Critical tasks, called hard tasks, are scheduled using 

the EDF algorithm and a Constant Bandwidth Server (CBS) to schedule soft or LC tasks. 

CBS enables QoS calculations for soft tasks and provides temporal isolation. 

Hard real time tasks missing a deadline can lead to failure of the system. Worst 

case estimates (WCET) are used while scheduling and mapped in a heterogeneous 

architecture system. Soft task missing a deadline won’t induce a failure but could affect 

system performance. Tasks can be completed in variable execution times.  If we use 

WCET for soft tasks it will be a costly implementation and if we use the average 

execution time, there will be an increase in deadline misses. 

Quality of service is the probability of completion of a soft task in the deadline 

given. A table with execution times of the task with each processor is given and their 

deadlines stated. Using a tabu search algorithm the tasks are mapped to the optimal 

processor. 

V. Izosimov [11] states that for fault tolerant real time systems three types of 

faults occur. Permanent faults that require a hardware fix, transient faults which can be 

fixed by a fault tolerant procedure and intermittent faults which occur randomly. This 

paper considers both transient and intermittent faults as the same and applies corrections 

as such. 

The fault tolerance methods proposed in the work are checkpointing, rollback 

recovery and active replication. Tasks are scheduled through quasi-static cyclic 

scheduling. Hardware replication for transient faults is costly.  That leaves checkpointing 

recovery and re-execution. When applied in a straightforward manner the result is going 

over the estimated deadline. Rollback recovery and checkpointing provide time 

redundancy while active replication gives space redundancy. Dividing a task and having 

checkpoints at the end of each division identifies a fault. The part of the task where the 
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fault occurred is re-executed. Replication can be done in two ways. Active replication is 

the execution of the task simultaneously in two different processors. Backup replication 

runs the task on a different processor after an error is detected in the previous iteration. 

S. K. Baruah et al [12] discuss the criteria to be fulfilled by a Mixed Critical 

System to be deemed operational. Safety critical embedded systems are required to go 

through certification processes. These certification requirements in mix criticality 

systems cause very different scheduling problems and are not satisfactorily addressed 

using techniques from conventional scheduling theory. This paper studies a formal model 

that represents such mixed criticality workloads. It also demonstrates the intractability of 

the system and if it could meet all its certification requirements and specifically 2 sets of 

certification requirements.  

This paper also discusses the metric of processor speed up factor and the 

effectiveness of two techniques namely reservation-based scheduling and priority-based 

scheduling and proves that priority-based scheduling is the superior of the two. 

Using the example of an unmanned aerial vehicle also known as UAV which 

consists of two different criticality functionalities; mission critical and flight critical. 

Flight critical functionalities would be certified by authorities such as the US Federal 

Aviation Administration. Certification authorities are not concerned with mission critical 

functionalities of the system which are validated by system designers separately.  

 C. Bolchini et al [13] talk about a design methodology that improves the system 

level design flow for embedded systems in order to increase reliability awareness. A 

mapping and scheduling algorithm are used for the application of hardening techniques to 

fulfill the required fault management properties that the final system must exhibit. Not all 

parts of the system need to be hardened against faults. The reference architecture is a 
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complex distributed platform with resources in terms of performance and fault 

detection/tolerance mechanisms  

For a specific mission or safety critical application scenario dependability 

attributes such as reliability availability and safety are the primary concern. With 

technology scaling, higher frequencies and power densities the probability of components 

being affected negatively or being susceptible to environmental disturbances such as 

radiation and electromagnetic interference. This results in transient or soft errors which 

do not damage the hardware permanently but still affect the result. 

The reliability driven system level design methodology for embedded systems is a 

performance optimized hardened implementation of a design space exploration process 

that implements a set of techniques exploiting fault management features provided by the 

target architecture. Key features include the following:  

• Support of mixed critical management properties 4 different parts of the 

application  

• Customizable and extendable set of fault tolerant techniques  

• Voting and checking activities knew light  

• Fault management features of existing processing units to be used  

• Transparency of reliability design stage so the consumer can select reliability 

features 

V. Izosimov et al [14] present an approach to fault tolerant scheduling for 

embedded applications with soft and hard real time constraints which guarantee the 

deadline for hard processes even in fault cases. Processor re-execution is employed to 

recover from multiple faults. A static scheduled computer is not fault tolerant.  

Computing a new schedule every process failure incurs inaccessible overhead. The 

proposal is a quasi-static scheduling strategy where a set of schedules is synthesized 
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offline and a runtime scheduler selects the appropriate schedule based on fault occurrence 

and execution time.  

Faults can be differentiated into three types, permanent, transient, and 

intermittent. Permanent faults are mostly hardware faults and are not repaired easily, 

whereas transient faults and intermittent faults appear for a short time and can be dealt 

with by restarting the system or re-executing a task. Transient faults are the most 

common due to greater complexity higher frequency and smaller transistor sizes. 

Every system has a timing constraint. System behavior does not depend solely on 

logical results but also on the time it takes to produce a result. Real time systems have 

hard tasks and soft tasks. When a hard task fails the result is a critical failure.  When a 

soft task fails the result is a reduction of effectiveness. 

The proposed approach integrates fault tolerance into the framework of static 

scheduling. Static schedules are generated beforehand and inserted into the application 

depending on process criticality. A mapping and scheduling algorithm for transparent re-

execution is implemented on a multiprocessor system. Re-execution and active 

replication can be combined to develop a fault tolerant application without increasing the 

number of required processors or system overhead.  

In M. S. Mollison et al [15] tracking the slack created by the variance between 

worst case execution time and actual execution time frees computational power for 

redistribution to less critical tasks and provides temporal isolation. 

The workload of a UAV can be divided into 3 categories safety critical, mission 

critical, and background. Implementing a multicore mixed criticality environment would 

be advantageous to multiple single core systems connected via the network, which would 

increase cost and limit computational throughput. 
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Two problems with multicore systems are underutilization due to high WCET’s 

and the need for temporal isolation of critical tasks. As the criticality rises the WCET 

becomes more pessimistic, which results in an idle processor once the task is complete.  

This paper proposes an architecture that treats HC tasks as slack generators. 

Lower critical tasks are budgeted into this slack thereby utilizing the hardware more 

efficiently and scheduling the more demanding tasks first. 

H. Li and S. Baruah [16] discuss the implementation of a mixed criticality 

implicit deadline for sporadic task systems on identical multiprocessor platforms is 

considered where inter processor migration is permitted. A theoretical analysis of both 

speed factor and schedulable conditions is discussed in this paper focusing on mixed 

criticality and scheduling algorithms.  

Most algorithmic research focuses on single core processor systems.  Recent HC 

systems are being implemented on multicore CPUs. Multicore CPUs increase complexity 

and sophistication resulting in the system becoming less uniform and more unpredictable 

allowing greater variation. This affects the certification authorities estimated execution 

times thereby increasing the time deadline for the system. The paper discusses 

transferring a scheduling algorithm application from a single core processor system to a 

multicore processing system efficiently.    

D. D. Niz et al [17] present the impact of Economic trends in embedded systems 

forcing tasks of different criticality to share processors and potentially interfere with each 

other. Temporal isolation techniques prevent LC tasks from appropriating time intended 

for a HC task.  These techniques can also work in reverse order, preventing a HC task 

from completing via symmetric enforcement. This phenomenon is known as criticality 

inversion. To circumvent criticality inversion, we assign priorities to tasks according to 
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their criticalities. This approach leads to lower utilization of the resources and affects the 

system negatively.  

This paper proposes a new algorithm called zero slack scheduling which provides 

a new form of defense called asymmetric protection. The zero slack algorithm minimizes 

occurrences of high criticality tasks preempting low criticality tasks. When used in 

conjunction with a priority based preemptive scheduler algorithm, this proves to be an 

effective solution. Unlike zero slack scheduling, each algorithm performs slack analysis 

differently. This asymmetric protection negates the impact on the deadline due to 

criticality inversion while reducing the penalty on schedulable utilization. 

In P. Penil et al [18] HC tasks with non-critical activities tend to share available 

hardware resources to optimize costs and reduce power consumption. The design of 

mixed critical systems requires the integration of design flows and tools to handle this. 

This paper presents a single source proposal where UML models analyze the flow of 

different design tools in a mixed critical context.  

Integrating multiple functionalities in a shared computing architecture presents 

design complexity challenges due to interactions from different hardware resources. The 

design requires power optimization to reduce consumption, software packages with 

predesigned functionality to reduce design time, and heterogeneous hardware resources 

to minimize mean execution times. 

This paper proposes a UML model that can create specific tool files to calculate 

the worst-case execution time while considering concurrency, different resource 

allocations, and multiple platform configurations. These estimates also apply static 

schedulability analysis tools. This infrastructure generates a cold synthesis for the 

deployment to run system tasks and obtain evaluations of runtime performance enabling 

to estimate final slack times to implement noncritical tasks. 
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A. Namazi et al [19] discuss a reliability aware hard real time task scheduling 

method for multicore systems with a quantitative reliability model. The model uses 

clustered replication to attain the desired reliability threshold by achieving minimum 

replication overhead and a latency increase also considering single and multiple soft 

errors. 

In recent generations, multi core platforms have both bandwidth and scalability 

issues. The trend shifted to using the network on chip architectures to overcome these 

issues as the core count increased. Two major constraints for today’s digital systems are 

real time performance and reliability. The digital systems of today must satisfy hard real 

time constraints by achieving both temporal and logical correctness in their results. 

Susceptibility to errors has increased due to continuous transistor scaling. Different 

criticality levels introduce the requirement for different levels of reliability systems.  

Task mapping holds the key to these crucial issues as it specifies which task 

should run on which core in the system. The proposed reliability aware task scheduling 

on NoC based platform uses modified clustered replication with the majority voting to 

achieve reliability. A multi-step heuristic algorithm can drastically reduce time to find a 

probable task mapping solution for hard real time applications while reducing the 

replication overhead to maintain a reliability threshold.  the proposed method schedules 

hard real time tasks with minimum redundancy overhead and better communication 

overhead in comparison with the conventional replication method also giving a bonus 

execution latency in the simple re-execution method. 

R. I. Davis et al [20] talks about the problems of priority assignment in 

multiprocessor real time systems using global fixed priority preemptive scheduling. It 

demonstrates that an optimal priority assignment algorithm usually designed for single 



 

 

 

16 

processor scheduling can also be applied to the multiprocessor case upon satisfying three 

conditions with respect to schedulability tests.  

Multiprocessor real time scheduling can be divided into two segments.  A global 

partitioned approach allocates each task to one processor approaching it like single 

processor scheduling. The global priority approach switches tasks from one processor to 

another during runtime. These scheduling algorithms can be divided into 3 types, fixed 

task priority, fixed job priority, and dynamic priority. The paper discusses priority 

assignment policies for global fixed task priority preemptive scheduling referred to as 

global FP scheduling. 

J. Theis et al [21] adapts the research for event triggered systems to time triggered 

approach which has better certification feasibility and compares their resource utilization 

guarantees for TT systems. Adding mixed critical scheduling to legacy TT systems while 

leaving the existing schedule unchanged adds a simple change to adapt to criticality. 

Although TT systems are favored by certification authorities, they ensure noninterference 

by strict isolation between components, thus causing low resource utilization.  

The proposed model studies the existing schedule table, run a simple online 

execution, and emulates criticality change. Changes are suggested only if required by the 

system, thereby reducing effort. If changes are made the system must be recertified but 

this is not a frequent occurrence. The algorithm analyses the runtimes and slack which it 

uses to provide flexibility for the system. 

A federated scheduling algorithm MCFQ is presented by R.M. Pathan [22]. The 

feature of this algorithm is having alternative schedules computed to assign each HC task 

to the processors. The algorithm carefully selects the schedule which enables all other 

tasks to be scheduled on remaining processors. This method has a higher likelihood to 

satisfy the total resource requirement. Slack generated by the selection minimizes the 
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total resource utilization by the tasks and can be used to improve system QoS. The 

parallel programming paradigm enables to utilize the processing capabilities of the multi 

core architecture. Thereby seeing each parallel task as an individual DAG.  

The algorithm calculates nominal and overload values for total work and length of 

every task. Each task is assigned a virtual and critical deadline. In the beginning, tasks 

run in virtual deadlines. The task with the highest overload value is assigned to dedicated 

processors while the residual tasks are scheduled on the remaining processors. The 

system can run in either typical or critical state, and switches between them when a task 

isn’t complete by end of its virtual deadline. Low tasks are dumped to allocate processing 

power to high tasks. By maximizing the number of LC tasks not discarded in critical 

mode the QoS of the system is improved. 

 M. Hassan [23] discusses the challenges and research opportunities in the 

combination of Mixed critical systems with the Multiprocessor system on chip 

architecture. The proposed model gives flexibility to scheduling a HC task to a higher 

order PE to negate the execution latency. The criticality is not restricted to two or three 

levels, as recent studies are considering as many as five to six levels of assurance in tasks. 

MPSoC’s provide cost, area, power, and performance improvements to the MC system. 

The paper focuses on four parameters, theoretical model, timing interface, data sharing, 

and security.   

The challenges of the theoretical model to consider are as follows: 

• Switching constraints due to heterogeneity of SoC’s 

• Scalability and switching overheads 

• Worst case ET’s 

• Timing interface 

• Many of PE’s 
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• Different memory for each PE 

• Can’t have tight bounds. 

Implementing a mixed critical system single ASICs and programmable processors 

is discussed by Kalavade et al [24]. Custom hardware is used to implement the intense 

portions of the system and the rest are implemented by software. This allows the system 

to meet performance requirements with reduced design costs. Using only application 

specific integrated circuits increases the performance of the system but is a very costly 

approach in mixed criticality systems, so a hybrid approach is used to implement the 

system called the hardware software co-design. 

The problem with this model is managing its four processing stages; partitioning, 

synthesis, co-simulation, and design methodology. In a DAG each node has four 

parameters; area, code size, hardware ET and Software ET. The partitioning problem is to 

find a mapping of nodes to hardware and software taking into consideration the 

communication between the nodes and keeping the area occupied by nodes mapped to 

hardware to a minimum. 

In B. Nimer et al [9] the Freedom of each task is calculated and is used to 

determine the priority of competing tasks to schedule to earlier control steps. Tasks with 

lower freedom value get priority in scheduling. This will result in the initial and most 

reliable schedule.  

If the resulting schedule exceeds the latency deadline, performance optimization 

techniques are applied. To decrease overall latency, tasks that can be scheduled 

concurrently are identified and assigned to different PEs without violating dependency 

conditions. The task with the highest delay is assigned to a faster and more reliable PE 

among other candidates. If both tasks have the same latency value, we choose the one 

with the lowest criticality value and assign it to the next PE.  
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If the deadline is still not achieved, slower tasks in the critical path are iteratively 

assigned to faster PEs starting with the least critical tasks and repeated until the 

performance deadline is met. If area constraint is not met, tasks are iteratively re-assigned 

with higher freedom values going to a candidate PE with the highest reliability among 

others. If this approach is determined to increase latency upon calling the original 

scheduling algorithm again, a less reliable PE is assigned. If none of the PEs work, tasks 

are reassigned to slower ASICs with lower area costs until area bound is met. 

Tasks are re-computed on idle processors for later tasks instead of storing data 

when done first to reduce memory time. 

Theis et al [26] talk about Mixed critical systems are usually event triggered but 

many safety critical domains favor a time triggered approach. This paper presents an 

effective flexible approach for transition of mode change before time triggered systems in 

mixed criticality jobs. The time triggered application in which all the activities of the 

system are triggered by time progression only so that a schedule for the entire duration of 

the system is drawn before runtime. the decisions made are determined by the 

precomputed schedule also known as the schedule table. This table is easier to verify 

hence more popular in certification authorities.  

However, in mixed criticality systems, the inflexibility of time triggered approach 

has the drawback when it comes to the task with different assumptions that can't fit in a 

single table. The research conducted for even triggered systems can be applied for time 

triggered systems as well such as having two different schedule tables one based upon the 

system designer and gather according to the certification authority parameters. The 

system starts with the system designer schedule table end proceeds to run along with it. 

When there is a fault, or a task goes beyond the execution time during runtime a switch 
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happens, and the table is switched with the certification parameters and proceeds to run 

till the end with the same parameters.  

While building two matching schedule tables we need to consider feasible and 

consistent switching during runtime and transferring the computational requirements for 

the ongoing jobs. Since these have two different execution times one for each criticality 

level the standard algorithm cannot be applied directly. The algorithm proposed succeeds 

in transferring which criticality principles the time triggered domain, time triggered 

framework designed for Mixed criticality systems, generating the schedule tables needed 

by this framework also. The algorithm constructs schedule tables for runtime execution is 

far more efficient resource utilization and improved flexibility. 

A Namazi et al [27] proposes new reliability centered task mapping approach in a 

multi-core platform at design time for applications with DAG-based task graphs. The 

main goal is to devise a task mapping algorithm that meets a target reliability threshold at 

the cost of a controlled performance degradation. The proposed approach uses a majority-

voting replication technique to achieve error-masking capability. 

Zhang et al [28] introduce a novel swarm intelligence optimization algorithm 

called the firework algorithm (FWA) and applies it to hardware/software partitioning. In 

Yao et al [29] a mixed-criticality sporadic task model with multiple virtual deadlines is 

built and a certification-cognizant dynamic scheduling approach referred to as the earliest 

virtual-deadline first with mixed-criticality (EVDF-MC) is considered, which exploits 

different relative deadlines of tasks in different criticality modes. Wang et al [30] propose 

a multi-criticality graph-based end-to-end (MCE2E) task model. This task model is 

abstracted from the fault diagnosing and fixing the process of the industrial control 

systems. The task in this model consists of a collection of nodes representing mixed 
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criticality modes. Each node is defined by a parallel directed acyclic graph, the subtasks 

of which are pre-allocated to multiprocessors. 

R. Trub et al [31] develop a mixed-criticality runtime environment on the Kalray 

MPPA-256 Andey many-core platform. The runtime environment implements a 

scheduling policy based on adaptive temporal partitioning. They develop models, 

methods and implementation principles to implement the necessary scheduling 

primitives, to achieve high platform utilization and to perform a compositional worst-case 

execution time analysis. A. Thekkilakattil et al [32] present a method for scheduling 

mixed criticality real-time tasks on a distributed platform in a fault tolerant manner while 

taking into account the recommendations given by the reliability studies like Zonal 

Hazard Analysis (ZHA) and Fault Hazard Analysis (FHA).  L. Sigrist et al [33] discusses 

how to combine this policy with an optimization method for the partitioning of tasks to 

cores as well as the static mapping of memory blocks, i.e., task data and communication 

buffers, to the banks of shared memory architecture.  

L. Sha et al [34] discusses how mode changes can be accommodated within a 

given framework of priority driven real-time scheduling. R. Schneider et al [35] present a 

multi-layered schedule synthesis scheme for MCCPS that aims to jointly schedule 

deadline-critical and QoC-critical tasks at different scheduling layers. Y. Zhou et al [36] 

propose a design framework comprising a hyper-period optimization algorithm, which 

reduces the size of the schedule table and preserves schedulability, and a re-scheduling 

algorithm to reduce the number of preemptions.  

L. Zeng et al [37] presents design methodologies to guarantee both safety and 

schedulability for real-time mixed-criticality systems on identical multicores. Assuming 

hardware/software transient errors, model safety requirements on different criticality 

levels explicitly according to safety standards; based on this, they further propose fault-
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tolerant mixed-criticality scheduling techniques with task replication and re-execution to 

enhance system safety. R. M. Pathan et al [38] comes up with an effective scheduling 

policy and its analysis that can guarantee certification of the system at each criticality 

level while maximizing the utilization of the processors. D. Müller et al [39] review EDF-

VD's schedulability criteria and determine its schedulability region to better understand 

and design mixed-criticality systems. S. Maurer et al [40] present a generic component 

and communication model for CPS that not only allows the co-existence of computing 

paradigms of different criticality but also supports the data exchange between them. 

J. Lin et al [41] study a problem of scheduling real-time, mixed-criticality tasks 

with fault tolerance. An off-line algorithm is proposed to enhance the performance of the 

system when it runs into a high criticality mode from a low-criticality mode. A novel on-

line slack-reclaiming algorithm is also proposed to recover from as many faults as 

possible before the jobs’ deadline.  

Z. Li et al [42] proposes a two-phase execution model is proposed for mixed-

criticality (MC) tasks. Different from traditional MC tasks with a computation phase 

only, the two-phase execution model requires a memory-access phase first to fetch the 

instructions and data, and then computation. Theoretical foundations are first established 

for a schedulability test under given memory-access and computation priority 

assignment. Based on the established theoretical conclusions, a two-stage priority 

assignment algorithm, which can find the best priority assignment for both memory-

access and computation phases under fixed-priority scheduling, is further developed. V. 

Legout et al [43] approach exploit the ability of tasks with low-criticality levels to cope 

with deadline misses. On multiprocessor systems, our scheduling algorithm handles tasks 

with high-criticality levels such that no deadline is missed. For tasks with low-criticality 
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levels, it finds an appropriate trade-off between the number of missed deadlines and their 

energy consumption.  

J. Lee et al [44] propose a new scheduling algorithm and develop its runtime 

schedulability analysis capable of capturing the dynamic system state. Our proposed 

algorithm adaptively determines which task to drop based on the runtime analysis. To 

determine the quality of task dropping solution, we propose the speedup factor for task 

dropping while the conventional use of the speedup factor only evaluates MC scheduling 

algorithms in terms of the worst-case schedulability.  

K. Lakshmanan et al [45] present a ductility-maximization packing algorithm to 

complement our previous work on mixed-criticality uniprocessor scheduling. Our 

packing algorithm, known as Compress-on-Overload Packing (COP) is a criticality-aware 

greedy bin-packing algorithm that maximizes the tolerance of high-criticality tasks to 

overloads. 

P. Huang et al [46] model explicitly the safety requirements for tasks of different 

criticalities according to safety standards, assuming hardware transient faults. We further 

provide analysis techniques to bound the effects of task killing and service degradation 

on system safety and schedulability. N. Guan et al [47] present an algorithm called PLRS 

to schedule certifiable mixed-criticality sporadic task systems. PLRS uses fixed-job-

priority scheduling and assigns job priorities by exploring and balancing the asymmetric 

effects of the workload on different criticality levels. D. Socci et al [48] present a state-

of-the-art STTM algorithm that works optimally on a single core and shows good 

preliminary results for multi-cores. D. Socci et al [49] propose an algorithm that is proved 

to dominate OCBP, a state-of-the-art algorithm for this problem that is optimal over fixed 

job priority algorithms. J. Ren et al [50] present a partitioned scheduling scheme for 

mixed-criticality tasks on multiprocessor platforms that address both issues. Our 
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scheduling scheme consists of (i) a task-to-processor packing algorithm that takes into 

account the demands of tasks with respect to their criticality levels, and (ii) a mixed-

criticality uniprocessor scheduling strategy that is based on task grouping. 
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CHAPTER III:  

SYSTEM MODELLING 

3.1 Target Architectural Model 

A Processor comprises an electronic circuit that performs operations on data and 

provides a required output. Processors have developed through history and evolved into 

multiple variations. Predominantly among those are two types of processing units namely 

hardware processors and software processors. Hardware processors are built to perform a 

preset operation on the data and are not easily modified whereas a software processor is a 

user programmable device that can be molded according to the requirements.  

Some common type of hardware processors is Application Specific Integrated 

Circuits or ASIC’s. ASICs are modeled according to a pre-defined requirement and 

designed using a hardware description language (HDL) accordingly. Once defined and 

implemented it is not a simple process to alter the functionality of an ASIC. These are 

produced on a huge quantity for a particular use. Microprocessors are a type of ASIC’s. 

The most common form of Software Processors are Central Processing Units or 

CPUs. These form the basic block of every modern-day computer. CPU’s are 

programmed to follow a set of instructions given by the user. These instructions can be 

modified according to the requirements and the CPU can be easily reprogrammed to 

execute a different operation with each set of instructions. 

ASIC’s are best utilized in environments that require a task to be repeated over 

and over in a little span of time. ASIC’s fulfill that criterion by being able to perform 

operations very quickly compared to a software processor and more efficiently. A 

downside of using ASICs is the huge power requirement, expensive design cost and lack 

the freedom to rectify the chip after design. 
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CPU’s are flexible, reprogrammable and utilize less space. Which makes them the 

perfect choice for environments where the requirements change frequently. They perform 

the required operation reliably and can modify operation with just a change of 

instructions. CPU’s are more user friendly and easy to design but takes time to process 

the instructions and risk missing the deadlines for systems. 

Current day demands have outgrown the utilization of a single processor and are 

requiring a multi core architecture to implement their functions. This arises 22 types of 

architectures namely homogeneous and heterogeneous architectures. Homogeneous 

architectures are basically formed with the same type of processors, either hardware 

processors our software processors. Having an architecture solely dependent on hardware 

processor arises the problem of expensive design costs and large space requirements. On 

the other hand, using only software processors would risk the system to go beyond the 

time constraint and frequent failure to meet deadlines.  

These drawbacks introduced the need for heterogeneous architectures where a 

combination of CPUs and ASICs to be used in conjunction with each other in order to 

reach the expectations of the modern-day requirements. A heterogeneous architecture 

would negate most of the individual negatives by assigning repetitive tasks to faster 

GPU's end the complicated tasks to the CPUs thereby creating an environment that is 

immune to the individual fallbacks off the processing components. A few examples of 

heterogeneous architectures in real life would be microwave ovens telephone applications 

etc.  

In the current thesis, we use a system which utilizes 2 CPUs and 2 ASIC’s to 

process the given tasks according to the algorithms discussed later in the document. This 

provides the flexibility to switch between hardware and software components according 

to the requirement of that instant. The CPUs have a longer latency period compared to the 
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ASIC's but offer lesser power consumption and reduction in design space requirements. 

The ASICs help process repeating tasks at a faster rate thereby decreasing the overall 

time overheads. 

Depicted below is the model of architecture utilized for the experiments in this 

thesis. 

Figure 3.1 Target Architectural Model 

 

3.2 Task Graph 

A task graph is a graphical representation of a system utilizing nodes or vertices 

and lines traveling between these vertices. each vertex represents a task in the system and 

the closer to the source it is the faster it arrives. This graph depicts the flow of data from 

the source to the sink through the network of vertices and each connecting edge 

representing the dependency with its predecessor or successor within the network. 

Synchronizing and Communications Unit 

ASIC 1 

Memory 

ASIC 2 

CPU 1 CPU 2 
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Figure 3.2 Task Graph 

In Fig 3.2 The interconnections between tasks in a task graph represent the data 

dependency between them. This data dependency implies that without the predecessor of 

a certain task being executed it can't be available for scheduling in the system.  Each task 

cannot occur without it's preceding task being executed. If there are multiple predecessors 

for a certain task it won't be available for Scheduling until and unless all its predecessors 

have been scheduled and executed. A task can have multiple predecessors and multiple 

successors. The same theory applies to the successors of a task as well.  

The task graph used in this thesis does not have loops or decision blocks. They 

represent the data flow between the tasks from the source and till the sink. we state the 

fact that if a task is deemed critical all its predecessors would be considered critical tasks 
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as well. This fact is based on the logic that if a predecessor is not considered critical then 

the system risks failure in the task by not executing its predecessor in time. 

 

3.3 Mixed Criticality Systems 

We define a system as a set of tasks interconnected with each other and working 

together towards producing an output. There can be many types of systems simple, 

complex, hybrid, etc. Each system has a different set of tasks and each task different from 

each other. Tasks of a system are arranged according to a priority that facilitates a 

smoother scheduling process. These priorities vary with the requirements, such as the 

earliest arriving tasks. Tasks with a longer path to completion. A more important priority 

assignment in contemporary usage is Criticality. 

The criticality of a task defines the impact of its execution on the outcome or the 

status of the system itself. Criticality also helps determine the importance of the task in 

the system. A Critical task example would be, brakes in a Vehicle, without these the 

safety of the car will be compromised and poses a risk to the users operating the car. 

Critical tasks are further classified into Safety-Critical tasks and Mission Critical tasks.  

Safety-Critical tasks are the set of tasks that ensure the safe operation of the 

system and its surroundings in all modes of operation. Mission-critical tasks ensure the 

proper execution of the basic system function with no failures. To illustrate the difference 

between these tasks, consider a surveillance drone. The tasks that work to keep the 

drone’s navigation and control are categorized under Safety-Critical so that in times of an 

emergency the drone can make a controlled exit and not cause damage to itself or its 

surroundings. The surveillance and data transmission of the system is mission-critical, 

ensuring that the data is collected and transmitted, fulfilling the purpose of the drone. In 

case of an emergency, all these tasks must work to operate the drone.  
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Every system has some critical tasks and non-critical tasks that contribute to the 

success of the system. Execution of critical tasks ensures the system works and produces 

and output while non-critical task execution improves the quality of the result obtained. 

This combined system of critical tasks and non-critical tasks is called a mixed critical 

system. A common mixed critical system is commercial aircraft. In an Aircraft, the 

system that works to navigate and keep the craft airborne is considered critical than the 

inflight entertainment. In times of an emergency, the priority would be to keep the 

Critical tasks running and the non-critical tasks would be dropped as they can’t affect or 

help improve the operation of the system.  

 Mixed critical systems have further divisions based on the criticality 

levels, Dual Critical and multi critical, etc. These systems drop LC tasks in case of an 

emergency. This although doesn’t affect the working of the system but reduces the 

quality of the output produced. Algorithms that consider the non-critical tasks to an 

extent in scheduling are designed to deal with this drawback. 

 

3.3.1 High Critical and Low Critical Tasks 

We consider a Dual Critical system where the tasks are divided into two types of 

Criticality, High critical (HC) tasks, and Low Critical (LC) tasks. HC tasks are given 

priority during scheduling over LC tasks. HC tasks are essential to the survival of the 

system whereas the LC tasks improve the effectiveness of the system. When scheduling 

the tasks, the algorithm has to schedule all the tasks within the time constraint and may 

ignore LC tasks for a HC task. 

We state the fact that a High Critical task cannot have a LC task as a predecessor 

thereby declaring all the predecessors of a HC task to be assigned HC priority. This is 
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due to the problem that if a HC task depends on a LC task for data which may be ignored 

in some cases subsequently affecting the HC task risking the whole system. 

In Fig 3.3 A depiction of the task graph is presented where each node represents a 

task and each line represents the data flow and dependencies between each task. HC tasks 

are filled in color. 

 

Figure 3.3 Criticality of tasks distinguished 

 

3.3.2 Criticality Modes of the System 

The system discussed in this thesis operates in 2 different modes namely High 

criticality mode and low criticality mode. Low criticality mode considers all the tasks to 

be of equal priority and work towards scheduling all the tasks in time without dropping or 
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interrupting any task. low criticality mode can also be considered as the normal operating 

mode for the system. The system transitions into high criticality mode under certain 

conditions predefined by the design. Having a HC task error while executing in low 

criticality mode, and approaching emergency, manual override are a few ways of 

triggering high criticality mode.  

When the system is in high criticality mode it ignores all the LC tasks for the time 

being and schedules the HC tasks according to the priority assignment. After all the HC 

tasks have been scheduled the LC tasks are scheduled in the slack generated between and 

after the scheduling of HC tasks. If in the case of any LC task going beyond the desired 

deadline it can be dropped and the system can proceed into the next cycle of execution. 

The design tries to accommodate as many LC tasks as possible into the schedule in order 

to improve the overall efficiency of the system simultaneously ensuring the safety of the 

system.  

The task graph can be reimagined into the following way to provide a clearer 

understanding of the about statements all the HC tasks are arranged to the left and all the 

LC tasks are arranged to the right of the graph. The dependencies between these 2 

categories only extend from HC tasks to LC tasks and not the other way around. 

 

3.4 Constraints 

A perfect system without failure is impossible to achieve. So, the system is 

assigned some constraints that would deem the system viable in a real time environment. 

These constraints define the system limitations and set a target to achieve utilizing 

limited resources. 
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Reliability constraint is the target reliability the system must achieve in order to 

be put into practical usage. Reliability is essential to systems running in populated 

environments to ensure the safety of the system  

Latency constraints are set to achieve the maximum reliability possible while 

executing the system within a time bound. Latency is prioritized when the system is 

under threat and must transfer data collected so far. 

The system can have many constraints to consider at a time. In this case, we try to 

achieve the highest possible reliability by utilizing all the processors optimally. While a 

second scenario the system is executed in an as fast as possible method. 

 

3.5 Reliability Modelling 

Reliability is defined by how successful the task can run on a specific processor. 

The Reliability of each task is different on each of the processors in the architecture. the 

total reliability of a system with multiple units is always the product of each individual 

task Reliability in the system. As in a case of two numbers, both lesser than 1 their 

product is always lesser than each multiplicand. This phenomenon also shows up in 

system reliability as any task reliability is always less than 1, with 1 being perfect 

execution the overall Reliability is always lower than any individual task Reliability. 

 

𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙  =  ∏(𝑅𝑖)

𝑛

𝑖=1

 

To improve the reliability of the system the individual Reliability of the tasks 

must be improved. This is achieved by adding a redundant component to each task. This 

can be accomplished in two types of configurations, series, and parallel. 
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A series configuration affects the overall reliability in a negative way. The 

reliability of a component multiplies with the reliability of every other component in the 

series and reduces the overall reliability less than the individual reliability of each 

component.  With series redundancy, lower reliability is a compounding problem.  The 

formula for the series reliability is below. 

 

𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  ∏ 𝑅𝑖

𝑛

𝑖=1

 

When we configure redundancy in parallel, the components are connected such 

that the input divides into all the components and the outputs of the components combine 

into one, thereby increasing overall reliability. The formula for parallel reliability is 

below. 

 

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =  1– ∏(1 −  𝑅𝑖)

𝑛

𝑖=1

 

 

3.6 Technology Library 

The performance details of the tasks on each of the processors are tabulated into a 

tech library. This would contain the data required for the algorithm to make decisions. In 

this case, the tech library consists of the Reliability of each task on each of the processors 

and the time taken to complete the execution. This will later be utilized by the algorithm 

to decide which processor is the best to achieve the best Reliability or faster latency.



 

35 

 

Table 3.1  

Technology Library 

 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 

ASIC 1 

Reliability 0.995 0.996 0.998 0.992 0.991 0.994 0.979 0.970 0.986 0.992 0.998 0.969 0.989 0.979 0.978 0.998 0.974 0.976 0.990 0.997 0.997 0.995 

Delay 8 10 12 6 7 9 10 15 5 13 16 12 12 15 6 12 9 6 12 15 14 10 

ASIC 2 

Reliability 0.997 0.998 0.994 0.995 0.985 0.979 0.993 0.996 0.988 0.955 0.991 0.987 0.993 0.971 0.990 0.991 0.971 0.998 0.993 0.995 0.986 0.993 

Delay 10 12 9 8 10 11 12 12 7 17 12 7 10 10 12 8 9 8 8 12 8 11 

CPU 1 

Reliability 0.994 0.994 0.986 0.987 0.989 0.969 0.995 0.993 0.972 0.989 0.985 0.990 0.987 0.973 0.985 0.987 0.973 0.989 0.980 0.996 0.993 0.984 

Delay 50 40 35 45 35 50 25 25 35 30 50 30 35 20 55 55 30 25 65 40 25 30 

CPU 2 

Reliability 0.993 0.980 0.980 0.977 0.975 0.976 0.999 0.995 0.980 0.985 0.990 0.978 0.996 0.991 0.987 0.983 0.970 0.985 0.990 0.995 0.987 0.995 

Delay 55 45 30 65 55 35 35 50 65 35 30 45 25 40 50 60 35 30 50 35 45 50 
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CHAPTER IV:  

MOTIVATIONAL EXAMPLE 

To illustrate our approach, we work with the given task graph and associated 

technological library in Table 3.1 above. The sample task graph in Fig 3.1 contains 22 

task nodes to be executed in from source to sink. The technological library in provides 

the reliability and execution time for each tasks on each of the processors. The algorithm 

is designed to tackle shortage of resources. So, the task graphs we use as an example are 

configured such that there are more tasks than processors available throughout the 

runtime to illustrate the algorithms effectiveness in such scenarios. 

The algorithm runs in multiple iterations, in each iteration selecting the task with 

the highest priority and assigning to the appropriate processor available. The priority 

conditions can be configured ahead based on the user requirement. In this case the 

different parameters of each task such as longest path to sink, etc are looked in to 

determine the priority. In case of a task has no idle processor to be executed upon the 

algorithm waits till the time one of the current tasks completes its execution. As tasks 

become available to be scheduled, task priority is recalculated at the start of each iteration 

and the current top priority task is chosen to be scheduled over a previously higher 

priority task which wasn’t scheduled due to lack of idle processor. 

Two Algorithms operating in two different criticality modes of the system are 

designed for each of the two desired results. First of which is the reliability priority 

approach which prioritizes task reliability during task assignment. By prioritizing each 

tasks reliability, the overall system reliability is bound to improve. In LC mode of the 

system the task priority order of the algorithm uses task criticality as a last tie breaker in 

case of all other parameter matching up for the tasks in contention. This is designed so 
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that the algorithm schedules each task irrespective of its criticality. In HC mode the 

algorithm works the iterations only on the HC tasks in the first cycle following a slightly 

modified priority assignments. After scheduling all the HC tasks onto the processors, the 

LC tasks are then put through the iterations to complete the system scheduling. 

The same approach is also utilized in a latency priority algorithm with the 

intention of executing the tasks at a higher rate while watching the overall system 

reliability. A noticeable improvement in latency is achieved with a corresponding 

decrease in reliability. 

After taking in the inputs from the tech library. We instruct the algorithm to list 

out all the tasks available for scheduling into a set T. the algorithm will choose the task 

with the greatest number of successors to schedule. This decision is made because the 

distance from each task to the sink cannot be determined until all the tasks are scheduled. 

So, the decision to choose the task with the number of successors such that the next tasks 

in line would be available earlier and the longer path getting struck in slower processors 

is avoided. Once the first tasks are scheduled the algorithm updates its set of available 

tasks as new tasks arrive and compare them with their priority. The priority of tasks in 

case of an equal number of successors is determined by the following conditions in that 

order respectively.  The task with higher criticality is preferred first. The task with a 

greater number of HC task successors is preferred first. The task nearest to the source is 

preferred first. If there is still a tie the task that can run with the best latency in the 

available processor is chosen. This order is devised keeping in mind the survival of the 

system by preferring criticality and attaining better execution latency. 

When the system switches into High Criticality mode the LC tasks are not 

considered for the scheduling in the first cycle. All the HC tasks are scheduled first 

following the order with the task having the greatest number of successors scheduled 
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first. After all the HC tasks are scheduled the algorithm now processes the LC tasks and 

completes the system. 

The results obtained after putting the sample task graph through the algorithms 

discussed are depicted in table 4.1 below. 

 

Table 4.1  

Results of Motivational Example 

 

The results show that the algorithms succeed in creating an improvement in 

reliability while operating in HC mode of the system and also for the overall system at a 

cost of increased latency. This is a fixable tradeoff as LC tasks can be dropped, this 

latency overrun can be rectified. When comparing the HC task execution in both the 

algorithms, low criticality mode has lower reliability than high criticality mode. This 

proves the success of high criticality mode's ability to increase the reliability of HC tasks 

Observing the latency priority approach there is a significant improvement in 

latency without sacrificing much the reliability of the system. This tradeoff is utilized in 

scenarios where all the data collected by the system has to be transmitted as soon as 

possible due an approaching emergency or imminent destruction of the system. 

The next sections discuss the algorithms in detail and the results obtained from 

each algorithm by referencing the generated schedules given in figure 6.1. 

  

Properties 

Reliability Priority Scheduling Latency Priority Scheduling 

LC mode HC mode LC mode HC mode 

Overall 
Only HC 

tasks 
Overall 

Only HC 

tasks 
Overall 

Only HC 

tasks 
Overall 

Only HC 

tasks 

Reliability 0.786 0.854 0.831 0.897 0.743 0.837 0.776 0.887 

Latency 110 107 162 73 107 79 97 71 
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CHAPTER V: 

LATENCY CONSTRAINED RELIABILITY IMPROVEMENT 

Improving the reliability of the system is the primary focus of the algorithms in 

this approach. Algorithm 1 operates in the LC mode of the system and prioritizes 

reliability in scheduling the tasks to the available processors. Whereas algorithm 2 

operates in HC mode processing HC tasks ahead of LC tasks thereby providing access to 

better reliable processors. Improvement of HC task reliability is prioritized over LC task 

Execution. 

 

5.1 Low Criticality System Mode 

Tech Library provides the algorithm with the reliability (Rji) and latency (Lji) 

values where ‘j’ refers to processor index and ‘i’ denotes the task number from the task 

graph. The algorithm now forms the set ‘Icurrent’ which has all the tasks that are available 

to be scheduled and a set ‘Jcurrent’ with the idle processors. These sets are updated at the 

start of each iteration. A subset of ‘I’ is created with the tasks with the longest path to 

sink from ‘Icurrent’.  The set I is checked if it has multiple elements and put through further 

priority filters until it has only one task. a few of the priority filters consider better 

latency on the processors available, shortest from source, better reliability. the task that 

passes through all the filters is scheduled onto its ideal processor. This process is repeated 

until all the tasks in the task graph are scheduled that is Icurrent is empty and has no further 

tasks. 

Algorithm 1 takes the input data. In steps 1 to 4, it compiles the data and arranges 

tasks in the order of their predecessors. From steps 5 to 18 the algorithm selects the task 

that has the highest priority and assigns it to the best reliable processor, the rest of the 

algorithm loops back to select the next task to be scheduled.  
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Algorithm 1: Scheduling with Low Criticality System Mode 

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) refers to 

processors and i ∈ I (1, n) denotes the tasks in task graph,  

OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc 

1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I} 

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J} 

3. Form the set of ‘Iʹ where 

4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}  

5. if |I| = 1  

6. then Tcurrent = Ti 

7.     else Iʹ = I  

8.    I = {i | i is High Critical task, i ∈ Iʹ} 

9.   if |I| = 1  

10.   then Tcurrent = Ti 

11.    else Iʹ = I 

12.             I = {i | i is nearest to the source, i ∈ Iʹ} 

13.    if |I| = 1  

14.     then Tcurrent = Ti 

15.     else Iʹ = I 

16.      I = {i | i has greatest Rj(i), i ∈ Iʹ & j ∈ Jcurrent} 

17.     if |I| = 1  

18.     then Tcurrent = Ti 

19. Assign Tcurrent to j ∋ Rj(i) is the highest, j ∈ Jcurrent 

20. if | Jcurrent | = 0  

21. then wait for time T 

22. Update Icurrent & Jcurrent 

23. if | Icurrent | = 0 

24. then wait for time T 

25. Update Icurrent & Jcurrent 

26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled 

 

5.2 High Criticality System Mode 

In Algorithm 2, the first four steps separate the tasks as HC and LC. As the steps 

1 to 4 brings out all the HC tasks into set Hcurrent. Then, steps 5 to 15 sorts the HC tasks 

based on priority and assigns the task on top to its ideal processor steps 16 to 22 loops 

back until all the HC tasks are scheduled. The steps form 23 till the end schedules the rest 

of the LC tasks in the same manner of priority order as the previous cycle. 
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Algorithm 2: Scheduling with High Criticality System Mode 

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) 

refers to processors and I ∈ I (1, n) denotes the tasks in task graph, 

OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc, Rhc 

1. Update Hcurrent = {h | h are High Critical tasks that are available to be scheduled, h ∈ 

I} 

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J} 

3. Form a set of ‘H’ where 

4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}  

5. if |H| = 1  

6. then Tcurrent = Th 

7.        else Hʹ = H  

8.                H = {h | h is nearest to the source, h ∈ Hʹ} 

9.        if |H| = 1 

10. then Tcurrent = Th 

11.  else Hʹ = H  

12.   H = {h | h has greatest Rj(h), h ∈ Hʹ & j ∈ Jcurrent} 

13.   if |H| = 1  

14.   then Tcurrent = Th 

15. Assign Tcurrent to j ∋ Rj(h) is the highest, j ∈ Jcurrent 

16. if | Jcurrent | = 0  

17. then wait for time T  

18. Update Hcurrent & Jcurrent 

19. if | Hcurrent | = 0  

20. then wait for time T  

21. Update Hcurrent & Jcurrent 

22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled 

23. Form a set of tasks Lcurrent where 

24. Lcurrent = {l | l are the remaining tasks that are available to be scheduled with greatest 

number of successors, l ∈ I} 

25.  if |L| = 1  

26.  then Tcurrent = Tl 

27.        else Lʹ = L  

28.                L = {l | l is nearest to the source, l ∈ Lʹ} 

29.      if |L| = 1 

30.   then Tcurrent = Tl 

31.              else Lʹ = L  

32.   L = {l | l has greatest Rj(l), l ∈ Lʹ & j ∈ Jcurrent} 

33.   if |L| = 1  

34.     then Tcurrent = Tl 

35. Assign Tcurrent to j ∋ Rj(l) is the highest, j ∈ Jcurrent 

36. if | Jcurrent | = 0  
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37. then wait for time T  

38. Update Lcurrent & Jcurrent 

39. if | Lcurrent | = 0  

40. then wait for time T  

41. Update Lcurrent & Jcurrent 

42. Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled 

 

After executing above algorithms until all the tasks in the motivational example 

are scheduled the resulting schedule is presented in Fig 5.1.a, 5.1.b. The schedule of low 

criticality mode algorithm has the tasks scattered around the timeline irrespective of 

criticality which obstructs the availability of better processors to the HC tasks. This 

although does not pose any serious issues in normal operation modes it does affect the 

system effectiveness in critical environments. This is corrected by making the system run 

in two different operating modes. A low criticality mode to accommodate all the tasks 

equally and a HC mode where the sole aim of the system is to improve the reliability of 

HC tasks.  

Looking at the scheduled tasks the HC mode of the system will follow the same 

order of priority with a small change in operation. The algorithm sorts out the HC tasks 

from the pool of tasks and assign the HC task with the greatest number of successors to 

be scheduled first following the same order from the low criticality mode to determine 

tiebreakers. After all the HC tasks are scheduled the algorithm moves on to schedule the 

LC tasks. In Figure 5.1 b the HC tasks are being executed on processors with better 

reliability such as T11 and T19 which are scheduled on more suitable processors which 

wasn’t possible due to LC tasks being executed in the low criticality mode. 

The high criticality mode schedule also goes beyond the execution time of the low 

criticality mode. This is dealt by dropping the LC tasks that cause the system to work 

beyond deadlines as the impact of LC tasks doesn’t affect the correctness of the result. 
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Figure 5.1 Task Schedule for Reliability Priority Apporach 
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CHAPTER VI: 

RELIABILITY AWARE EXECUTION LATENCY REDUCTION 

Reduction in latency of the system is the primary focus of the algorithms in this 

approach. Algorithm 3 operates in the LC mode of the system and prioritizes latency in 

scheduling the tasks to the available processors. Whereas algorithm 4 operates in HC 

mode processing HC tasks ahead of LC tasks thereby providing access to faster 

processors. Reduction of HC task latency is prioritized over LC task Execution 

 

6.1 Low Criticality System Mode 

Following a similar procedure from the previous approach the LC mode of the 

system all the tasks are grouped into a set. The tasks with the greatest number of 

successors to the sink are singled out. If there are multiple tasks fitting the criteria, they 

are further filtered out with other characteristics such as criticality, distance from source 

and latency on the available processors. This process is repeated until we remain with a 

single task and assign it to the best available processor for the task depending on the 

approach used. 

Algorithm 3 takes the input data. In steps 1 to 4, it compiles the data and arranges 

tasks in the order of their predecessors. From steps 5 to 18 the algorithm selects the task 

that has the highest priority and assigns it to the fastest processor, the rest of the 

algorithm loops back to select the next task to be scheduled 
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Algorithm 3: Scheduling with Low Criticality System M ode 

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) refers to 

processors and i ∈ I (1, n) denotes the tasks in task graph,  

OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc 

1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I} 

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J} 

3. Form the set of ‘Iʹ where 

4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}  

5. if |I| = 1  

6. then Tcurrent = Ti 

7.     else Iʹ = I  

8.    I = {i | i is High Critical task, i ∈ Iʹ} 

9.   if |I| = 1  

10.   then Tcurrent = Ti 

11.    else Iʹ = I 

12.             I = {i | i is nearest to the source, i ∈ Iʹ} 

13.    if |I| = 1  

14.     then Tcurrent = Ti 

15.     else Iʹ = I 

16.      I = {i | i has lowest Lj(i), i ∈ Iʹ & j ∈ Jcurrent} 

17.     if |I| = 1  

18.     then Tcurrent = Ti 

19. Assign Tcurrent to j ∋ Lj(i) is the lowest, j ∈ Jcurrent 

20. if | Jcurrent | = 0  

21. then wait for time T 

22. Update Icurrent & Jcurrent 

23. if | Icurrent | = 0 

24. then wait for time T 

25. Update Icurrent & Jcurrent 

26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled 

 

6.2 High Criticality System Mode 

In Algorithm 4, the first four steps separate the tasks as HC and LC. Then, steps 5 

to 15 select the highest critical task and assigns it to the fastest processor. Steps 16 to 22 

loops back until all the HC tasks are scheduled. The steps form 23 till the end schedules 

the rest of the tasks accordingly.  
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Algorithm 4: Scheduling with High Criticality System Mode 

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) 

refers to processors and I ∈ I (1, n) denotes the tasks in task graph, 

OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc, Rhc 

1. Update Hcurrent = {h | h are High Critical tasks that are available to be scheduled, h ∈ 

I} 

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J} 

3. Form a set of ‘H’ where 

4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}  

5. if |H| = 1  

6. then Tcurrent = Th 

7.        else Hʹ = H  

8.                H = {h | h is nearest to the source, h ∈ Hʹ} 

9.        if |H| = 1 

10. then Tcurrent = Th 

11.  else Hʹ = H  

12.   H = {h | h has lowest Lj(h), h ∈ Hʹ & j ∈ Jcurrent} 

13.   if |H| = 1  

14.   then Tcurrent = Th 

15. Assign Tcurrent to j ∋ Lj(h) is the lowest, j ∈ Jcurrent 

16. if | Jcurrent | = 0  

17. then wait for time T  

18. Update Hcurrent & Jcurrent 

19. if | Hcurrent | = 0  

20. then wait for time T  

21. Update Hcurrent & Jcurrent 

22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled 

23. Form a set of tasks Lcurrent where 

24. Lcurrent = {l | l are the remaining tasks that are available to be scheduled with greatest 

number of successors, l ∈ I} 

25.  if |L| = 1  

26.  then Tcurrent = Tl 

27.        else Lʹ = L  

28.                L = {l | l is nearest to the source, l ∈ Lʹ} 

29.        if |L| = 1 

30.   then Tcurrent = Tl 

31.                  else Lʹ = L  

32.   L = {l | l has lowest Lj(l), l ∈ Lʹ & j ∈ Jcurrent} 

33.   if |L| = 1  

34.     then Tcurrent = Tl 

35. Assign Tcurrent to j ∋ Lj(l) is the lowest, j ∈ Jcurrent 

36. if | Jcurrent | = 0  
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37. then wait for time T  

38. Update Lcurrent & Jcurrent 

39. if | Lcurrent | = 0  

40. then wait for time T  

41. Update Lcurrent & Jcurrent 

42. Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled 

We repeat the above steps until all the tasks are scheduled. When tried with the 

motivational example the resulting schedule is presented in Fig 6.1.a, 6.1.b.  

The low criticality mode schedule executes all the tasks without considering the 

task criticality. This results in longer wait times for HC tasks such as T9 and longer 

execution times such as T9. Although this is still better latency than the reliability priority 

approach in Figure 5.1.a, the overall system latency still needs improvement. 

In the high criticality mode of the system the drawbacks are taken care of. HC 

tasks are scheduled far ahead with better latency values and leave enough slack for all the 

LC tasks to be executed at a faster pace too. Tasks T9 and T19 are scheduled into faster 

processors and all the LC tasks also have access to the faster ASIC’s once HC tasks are 

executed. This improves the HC task latency and as an added bonus also helps the overall 

latency of the system as well. The algorithm also watches the reliability values for the 

system in the priority conditions so as to not just achieve a faster execution time but also 

succeed with as less affect to reliability as possible.  
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Figure 6.1 Task Schedule for Latency Priority Approach 
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CHAPTER VII: 

 EXPERIMENTAL EVALUATION 

Assuming the target architecture described in Chapter III, the proposed algorithms 

are tested using task graphs randomly generated using the TGFF tool. Each graph has a 

unique technology library containing the . The task graphs named as TG1 (Fig7.1. (a)), 

TG2 (Fig7.1. (b)), TG3(Fig7.1. (c)), TG4 (Fig7.1. (d)), and TG5 (Fig7.1. (e)) are depicted 

in the following pages. 

A detailed experimental evaluation using these five graphs is presented in Table 

6.1. The reliability values and the execution latencies for each graph in low criticality and 

high criticality modes are presented along with the percentage of reliability improvement. 

As seen in the table, the proposed reliability priority algorithm is successful in increasing 

the reliability of the HC tasks by prioritizing them over other tasks. This resulted in lesser 

holdup times for HC tasks and making more reliable processors to be available when they 

are scheduled. We compare the HC task reliabilities in both system modes for each task 

graph to obtain reliability improvement. The algorithm aims at increasing the HC tasks’ 

reliability to ensure the system's success in critical times and emergencies. Scheduling 

LC tasks after HC tasks gives HC tasks better access to reliable processors, thereby 

inducing an improvement in HC task reliability. The improvement is consistent in tasks 

with a higher number of task graphs than in graphs with fewer tasks. 



 

50 

 

 

                  

   (a) Task Graph 1 (TG1) – 22 tasks     (b) Task Graph 2 (TG2) – 16 tasks 

          

(c) Task Graph 3 (TG3) – 26 tasks  (d) Task Graph 4 (TG4) – 31 tasks 
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(e) Task Graph 5 (TG5) – 43 tasks 

 

Figure 7.1 Experimental Task Graphs 

 

TG1 is our sample task graph. TG2, which has 16 tasks, has high criticality 

reliability improvement of just 0.19 %. This is due to the lesser number of tasks available 

to schedule at any given point in the execution. Owing to this most of the tasks have the 

more reliable processors readily available in both operating modes. Although the 

algorithm returns high reliability it does not improve the reliability of HC tasks much. It 

is also observed that in the cases where the system reliability is increased, it comes at the 

cost of increased latency. HC tasks being assigned to highly reliable but slower processor 

cause this. However, prioritizing HC tasks in high criticality system mode ensures that all 

tasks are scheduled ahead of LC tasks and no stalling occurs due to a LC task occupying 

a better processor. This overall latency overhead can be avoided as the LC tasks can be 
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dropped to run within the time bound. This does not affect the primary goal of the 

algorithm which is improving the reliability of HC tasks in the system. The algorithms 

also keep track of HC task latency as achieving reliability at a huge cost to latency is not 

a viable option. 

The overall system reliability gradually decreases as the number of tasks increases 

as we discussed in reliability modeling. As explained in previous sections this occurs due 

to the reliabilities of each task multiplying with each other thereby scaling up the error 

percentage along with it. 
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Table 6.1  

Reliability Priority Approach 

 

Task 

graph 

Number 

of tasks 

Low Criticality mode High Criticality mode 
% Reliability 

Improvement. 

Reliability Latency Reliability Latency 
Overall 

system 

High 

Critical 

tasks Overall 
HC 

task 
Overall 

HC 

task 
Overall 

HC 

task 
Overall 

HC 

task 

TG1 22 0.7863 0.8548 110 107 0.8317 0.8978 162 73 6.41 4.71 

TG2 16 0.7839 0.9263 155 155 0.7879 0.9281 157 157 0.51 0.19 

TG3 25 0.5680 0.7301 164 162 0.6440 0.8067 255 125 13.38 10.49 

TG4 31 0.6459 0.7789 243 173 0.6933 0.8933 233 171 7.34 14.69 

TG5 43 0.6097 0.7549 205 205 0.6518 0.7773 245 160 6.91 2.97 
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The latency priority approach from the adjacent table shows a much better 

improvement rate of latency by mapping tasks to the fastest available processor, the 

system succeeds in attaining better execution latency values. This method improves 

latency values but watches the drop in reliability in the process. The focus is on 

improving the latency of HC tasks ahead of the overall system. As HC tasks are assigned 

to faster processors, LC tasks run on slower processors. LC tasks which decrease the 

latency will be dropped so that the system can proceed into the next cycle. These cases 

can be observed in TG3 and TG5 in the table above. In these examples, the system 

succeeded in decreasing execution times for HC tasks but went over the specified time. 

This is rectified by dropping low criticality tasks and bringing the system under the 

required time deadline. The results indicate that the algorithm can be utilized for systems 

to transfer the data collected at a faster rate when time is of utmost priority than accuracy. 
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Table 6.2  

Latency Priority Approach 

 

Task 

graph 

Number 

of tasks 

Low Criticality mode High Criticality mode 
% Latency 

improvement 

Reliability Latency Reliability Latency 
Overall 

system 

High 

Critical 

tasks Overall 
HC 

task 
Overall 

HC 

task 
Overall 

HC 

task 
Overall 

HC 

task 

TG1 22 0.7431 0.8378 107 79 0.7769 0.8870 97 71 9.35 10.13 

TG2 16 0.6963 0.8503 103 72 0.7114 0.8546 103 60 0 16.67 

TG3 25 0.5314 0.7183 110 110 0.4742 0.6644 160 68 -45.45 38.18 

TG4 31 0.5366 0.7122 205 200 0.5536 0.7355 178 116 13.17 42 

TG5 43 0.5742 0.7045 157 135 0.5595 0.7216 200 118 -27.38 12 
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CHAPTER VIII: 

CONCLUSION 

In this thesis, we worked on improving the reliability and execution latency of 

high critical tasks in mixed criticality systems in the context of HW/SW codesign. The 

system can operate in two modes: low criticality operation mode and high criticality 

operation mode. We introduced two new algorithms improving each optimization metric. 

The proposed algorithms operating in high criticality mode outperform their low 

criticality mode algorithms through providing HC tasks with better choice of processors. 

In the reliability priority approach, the execution latency provided by the first algorithm 

is used as an upper bound for the second algorithm which aims at improving the 

reliability of high critical tasks in the system without incurring any latency overhead. The 

experimental evaluation conducted using automatically generated task graphs shows an 

average 6.61% reliability improvement for HC tasks. The latency priority approach 

utilizes the execution time of the system as the deadline when operating in high criticality 

operation mode. The proposed algorithm schedules HC tasks before looking into LC 

tasks and achieves a significant latency improvement (23.8% on the average) for HC 

tasks without exceeding the low criticality mode latency. The algorithms work better for 

task graphs with higher number of task graphs. Whenever a high criticality mode 

schedule goes beyond the latency or reliability constraints, the system rectifies by 

dropping LC tasks which do not affect the final output. The planned future work includes 

focusing on more control over choosing the tasks to deem critical and investigating the 

scenarios where the criticality of tasks change in the course of execution when the system 

is in high criticality mode. 
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