

Copyright

by

Vamsi Krishna Karanam

2019

IMPROVING RELIABILITY AND LATENCY OF HIGH CRITICAL TASKS IN

MIXED CRITICALITY SYSTEMS THROUGH TASK RESCHEDULING

by

Vamsi Krishna Karanam, BTech

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

December, 2019

IMPROVING RELIABILITY AND LATENCY OF HIGH CRITICAL TASKS IN

MIXED CRITICALITY SYSTEMS THROUGH TASK RESCHEDULING

by

Vamsi Krishna Karanam

APPROVED BY

 __

 Hakduran Koc, PhD, Chair

 __

 Jian Lu, PhD, Committee Member

 __

 Xiaokun Yang, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING

David Garrison, PhD, Associate Dean

__

Miguel Gonzalez, PhD, Dean

Dedication

To

My Family

v

Acknowledgments

I would like to express my sincere appreciation and gratitude to all of those who

have contributed to my master’s thesis and those who have supported me throughout the

entire process. I will always be grateful for that.

I would like to thank my supervisor Dr. Hakduran Koc for his excellent guidance

and engagement throughout my thesis period. He has been supportive since the day I

began working on my research. His insightful discussions and suggestions on the

research helped me finish this thesis successfully. Moreover, I would like to thank my

thesis committee, Dr. Jiang Lu, and Dr. Xiaokun Yang, for their encouragement and their

helpful advice.

My greatest love and respect for my mother Dr. C. Madhumathi, father

Lokanadha Naidu. I cannot thank them enough for their love and trust they had in me

through all these years. I would not have made it this far without them. Loads of love and

thanks to my sibling Sai Krishna, who stood by me in my times of need and helped work

through rough patches.

I would like to thank my friends, Deepthi, Raveesh, Greeshma, Anupama, Lohit,

for their constant support and for making life more fun and enjoyable. Thanks to my

roommates Aslesh and Bhargav for bearing with me for the last two years. Thanks to my

colleagues at Indian Students Association (’17, ’18, ’19) and my fellow research students

for making my student life an interesting journey so far.

vi

ABSTRACT

IMPROVING RELIABILITY AND LATENCY OF HIGH CRITICAL TASKS IN

MIXED CRITICALITY SYSTEMS THROUGH TASK RESCHEDULING

Vamsi Krishna Karanam

University of Houston-Clear Lake, 2019

Thesis Chair: Hakduran Koc, PhD

A Mixed Criticality System (MCS) consists of various hardware and software

components executing tasks with different criticality levels. The criticality of a task is

determined by its impact on the overall system output (e.g., safety critical and mission

critical tasks or low critical and high critical tasks). In today’s world, such systems can be

found almost everywhere including cars, airplanes, remotely piloted vehicles and so on.

An MCS needs to be designed considering different criticality scenarios depending on the

requirements of the operating environment. Significant amount of research has been

dedicated to improve various parameters of MCSs such as reliability, performance, and

power consumption.

vii

In this thesis, we focus on improving the reliability and execution latency of high

critical tasks in mixed criticality systems running on a Hardware/Software codesign

environment. The system can run in two different operating modes: low criticality mode,

which is the normal operating mode of the system, and high criticality mode. We propose

two different algorithms: Reliability Priority Algorithm and Latency Priority Algorithm.

In reliability priority approach, the algorithm schedules all tasks in the system and returns

the final reliability and the latency of the system in low criticality operating mode. In

high criticality mode, the algorithm gives priority to high critical (HC) tasks over low

critical (LC) ones during the scheduling process. The LC tasks are scheduled in the gaps

available considering the latency constraints. The algorithm returns the overall reliability

of the system and the reliability of the HC tasks in both modes of operation. In latency

priority approach, we prioritize the execution latency of HC tasks over their reliability. In

the low criticality mode, the algorithm schedules the tasks to the fastest components

available at the point of arrival. In the high criticality mode, HC tasks are scheduled

before LC tasks in order to improve the latency of HC tasks.

The results of the experimental evaluation clearly show the viability of the

proposed algorithms. The reliability priority algorithm increases the reliability of the HC

tasks by 6.6% on the average and the latency priority algorithm improves the execution

latency of the HC tasks by 23.8% on the average for the automatically generated task

graphs.

viii

TABLE OF CONTENTS

List of Tables ... ix

List of Figures ... x

CHAPTER I: INTRODUCTION ... 1

CHAPTER II: REVIEW OF LITERATURE .. 4

CHAPTER III: SYSTEM MODELLING .. 25

3.1 Target Architectural Model... 25
3.2 Task Graph .. 27

3.3 Mixed Criticality Systems... 29
3.3.1 High Critical and Low Critical Tasks .. 30
3.3.2 Criticality Modes of the System .. 31

3.4 Constraints .. 32

3.5 Reliability Modelling .. 33
3.6 Technology Library .. 34

CHAPTER IV: MOTIVATIONAL EXAMPLE ... 36

CHAPTER V: LATENCY CONSTRAINED RELIABILITY IMPROVEMENT 39

5.1 Low Criticality System Mode ... 39
5.2 High Criticality System Mode .. 40

CHAPTER VI: RELIABILITY AWARE EXECUTION LATENCY REDUCTION 44

6.1 Low Criticality System Mode ... 44
6.2 High Criticality System Mode .. 45

CHAPTER VII: EXPERIMENTAL EVALUATION ... 49

CHAPTER VIII: CONCLUSION... 56

REFERENCES ... 57

ix

LIST OF TABLES

Table 3.1 Technology Library ... 31

Table 4.1 Results of Motivational Example .. 38

Table 6.1 Reliability Priority Approach... 53

Table 6.2 Latency Priority Approach... 55

x

LIST OF FIGURES

Figure 3.1 Target Architectural Model ... 27

Figure 3.2 Task Graph .. 28

Figure 3.3 Criticality of tasks distinguished ... 31

Figure 5.1 Task Schedule for Reliability Priority Apporach .. 43

Figure 6.1 Task Schedule for Latency Priority Approach .. 48

Figure 7.1 Experimental Task Graphs .. 51

1

CHAPTER I:

INTRODUCTION

In today’s world, we are surrounded by electronically controlled systems

enhancing our daily lives. Mixed Criticality Systems (MCS) are predominantly becoming

a part of modern-day systems. These systems contain various hardware and software

components executing tasks of different criticality such as safety critical and mission

critical. Such systems can be found almost everywhere including cars, airplanes, remotely

piloted vehicles (whether a toy or a tool). A significant amount of research has been

dedicated to improving various parameters of MCSs such as reliability, performance, and

power consumption [5, 6].

Task criticality is an important driver in real time systems in order to effectively

utilize the limited processing elements with tight constraints. Classifying tasks as High

Critical (HC) or Low Critical (LC) is also important for scheduling tasks efficiently to

ensure available computing power. While LC tasks do not have a significant impact on

the system performance, HC task execution is the deciding factor of the quality of the

result and even affect the correctness of a result. This directs the research into treating the

tasks with separate approaches based on their criticality such as dual criticality of a

system. With dual criticality scheduling, the system schedules tasks based on their

criticality levels within a given latency constraint. The criticality of a task is subject to

change. It can change with the focus of the system and with the time the system has been

in operation. Tasks changing the criticality levels in the course of execution bring

additional challenges to task scheduling. The system must consider the change and adjust

the operation to cater to the HC tasks. The system used this work is designed to operate in

two execution modes. In low criticality mode, all tasks are treated to be of equal

criticality, and they are scheduled accordingly in order to meet the design constraints. In

2

high criticality mode, the HC tasks are held in priority and some LC tasks may be

excluded from scheduling in order to achieve the highest possible value for the

optimization metric targeted.

The approach presented in this thesis partitions the tasks as high and low critical

ones and prioritize HC tasks. This allows the system to schedule tasks based on either

reliability or latency when needed while also moving between high criticality and low

criticality operation modes as dictated by the system requirements. The execution latency

and reliability of tasks are provided in the form of a technology library to the algorithms

which start scheduling process by choosing the tasks to schedule based on the predefined

rules of priority and assigning them to the appropriate processing elements. These rules

take into consideration the number of tasks dependent on the current task, criticality, and

the distance to the sink node to compare the priority of the task in question. In case of a

tie between tasks in all conditions stated above, the task that can run with the highest

performance in the available processing element is considered.

More specifically, in low criticality mode, the algorithm schedules all tasks in the

system and returns with the final reliability and the latency of the system. In high

criticality mode, the algorithm first considers the HC tasks during the scheduling process.

Only after assuring that all HC tasks have been scheduled, the LC tasks are considered

for scheduling. The LC tasks are scheduled in the gaps generated by the HC tasks and can

be run till all of them are scheduled or a few LC tasks can be excluded if the overall

latency exceeds the latency constraint. The algorithm returns the overall reliability of the

system and the reliability of the HC tasks in both the modes of operation. By prioritizing

HC tasks, we intend to assure the survival of the system by ensuring the completion of

HC tasks as early as possible, and then, incorporating the LC tasks. This set of algorithms

3

prioritizes the reliability of the system over its execution latency, so we refer it as

Reliability Priority approach.

A similar approach is utilized to formulate another set of algorithms that prioritize

the execution latency of High Critical tasks over their reliability hereby referred to as

Latency Priority approach. This approach intends to execute the tasks at a quicker pace in

order to be able to implement other reliability measures such as duplication in the slack

generated. The low criticality mode of the system accepts the data of each task excluding

criticality and schedules the tasks to the fastest components available at the point of

arrival. This results in a schedule faster than the reliability approach but at a cost of

performance.

The high criticality mode in Latency Priority approach processes HC tasks ahead

of LC tasks in order to improve the latency of HC tasks. LC tasks are scheduled in the

time leftover or some are dropped if they cannot be accommodated within the constraints

imposed on the system.

The experimental evaluation conducted using automatically generated task graphs

clearly shows that the proposed algorithms successfully improves the reliability and the

execution latency of the HC tasks in the system. More specifically, the Reliability

Priority approach increases the reliability of the HC tasks and the Latency Priority

approach improves the execution latency for the HC tasks in the system.

4

CHAPTER II:

REVIEW OF LITERATURE

The Research on task scheduling of mixed criticality systems in recent years by S

K Baruah [1] presents a hybrid system model utilizing Federated Scheduling, (i.e., each

individual task is either restricted to execute on a specific processor or has exclusive

access to all processors.) The Algorithm proposes an improvement to the existing

deadline by introducing Mixed Criticality as a parameter. A model is proposed for mixed-

criticality recurrent tasks that extend the (previously proposed) implicit-deadline sporadic

DAG tasks model to account for mixed criticalities. A federated scheduling algorithm is

presented and proven. A quantitative evaluation of its efficacy is derived via the widely

used speedup factor metric. This model considers tasks that are allocated by Federated

Scheduling while remaining tasks are partitioned amongst a pool of shared processors.

Thus, the simplicity of partitioned scheduling is maintained, and capacity loss due to

partitioning is capped at no larger a fraction of the platform capacity than was the case

with partitioned scheduling of sequential tasks.

D. Tamas-Selicean et al [2] offer a system composed of heterogeneous processing

elements (PEs) to implement hard real-time applications with different Safety Integrity

levels, to include non-critical functions. It is stated that the positivity towards this

approach is that the combination of hardware and software architecture allows for both

spatial and temporal partitioning. A Simulated Annealing-based approach determines a

task map for PEs and the sequence and length of time partitions for each PE such that

applications are scheduled utilizing a Tabu Search-based approach.

This model considers a set of tasks that must be run on specific cores only in

addition to three different task sets that can be run on multiple cores. The tasks that have

a Specific core requirement are scheduled first, then the paper compares the performance

5

between three different scheduling implementations for the remaining task sets; regular

mapping without partitioning, mapping with partitions, and simultaneous mapping and

partitioning. A second approach results in the system going over the deadline, while the

third case achieves a significant improvement in the Degree of Schedulability, showing

that tasks can be scheduled on a slower or cheaper platform.

R. Medina et al [3] considers the concept of dual criticality: High Criticality (HC)

and Low Criticality (LC). Two Task Graphs are created for each function and each graph

is assigned HC Task Nodes. The graphs show dependencies and precedent tasks for each

individual task in detail.

The Scheduling Algorithm functions on HC task deadlines. HC tasks are

scheduled using the as late as possible method. When the algorithm is in LC mode, and a

HC task exceeds its allotted execution time, a Timing Failure Event occurs. This

switches the algorithm to HC mode, where all LC tasks are abandoned. HC tasks are

scheduled first to allow ample execution time within their respective deadlines, then LC

tasks are assigned in the gaps. This is a variation of Federated Scheduling from the first

paper.

This Algorithm is tested with multiple cases differing the frequency of

applications, the number of tasks in each application, and the number of cores. When a

higher number of cores are used the system is scheduled easily but system usage is

reduced below its potential.

M. Bagheri et al [4] address the under-utilization problem found in Mixed-Critical

systems by proposing a scheduling method that increases overall performance but all

deadlines of SC tasks are met even in the presence of transient faults with a fault tolerant

scheme of task-level temporal redundancy implemented by check-pointing with rollback

capabilities.

6

Pessimistic estimations made while designing an SC system are:

a) Worst-case execution time (WCET) used in schedule tables

b) Fault-tolerance using redundant spatial or temporal resources for the

maximum number of anticipated tolerable faults

The paper also compares three different models

1) Non mixed criticality Fault tolerant where every task has a recovery slack

including Safety critical and non-safety critical tasks and schedules within

the runtime

2) Mixed Critical Fault Tolerant which considers redundancy and re-

computation for only SC and eliminates FT schemes for NSC tasks

3) This final model has an additional runtime monitoring which adds slack to

the NCS in case of a transient fault but still has FT slacks for SC

scheduled always keeping in the actual time budget.

Fault Tolerant schemes use re-execution. Faulty hard processes are recovered.

Faulty soft processes are recovered only if hard processes will not miss deadlines,

otherwise, the soft process is dropped.

A new metric of Criticality is introduced to task scheduling by S. Vestal [5] and

further surveyed by A. Burns et al [6] in their survey. HC tasks are required to be

executed within the assigned deadline whereas LC tasks may be rescheduled or

rearranged to accommodate a HC task. Criticality can be related to the importance of the

task to the whole system function. Some tasks change criticality based on the Goal set.

Some tasks can be Mission Critical when there is no collateral damage by a system

failure or Safety Critical if there is a possibility of damage to surroundings of the system

which is when tasks change their criticality levels.

7

Tasks can change criticality over time. If a task exceeds its execution deadline it

triggers the system to High Criticality execution mode until all HC Tasks are executed. It

then switches back to the less critical mode.

Different types of scheduling techniques are employed in MCS a few of which

are:

a) Real Time Analysis: monitoring the deadlines of the critical tasks and

execution times and scheduling to prevent going over the deadline.

b) Slack Scheduling: a LC task is scheduled in the slack created by HC tasks

executed ahead of the deadline.

c) Period Transformation: slashing a lengthy LC task into parts and

scheduling it in wherever possible in order to avoid excessive delay

d) Earliest Deadline First: scheduling all the HC tasks using the ALAP

algorithm and schedule all the LC tasks in the gaps created by the HC

tasks.

In multiprocessor mixed criticality systems there arises the problem of task

allocations to the different processors based on the processor capability and the

requirement of the critical task.

E. Azari et al [7] and S. Tosun et al [8] discuss A hardware software Co-Design

environment consisting of Hardware ASIC components and Software components that

function together to improve efficiency better than either only hardware or software

components. Software components perform tasks utilizing less area and less energy.

Hardware components execute significantly faster but consume more area and energy.

Hardware components can be expensive to modify or correct after the initial design.

This research provides a way to identify tasks which when assigned to hardware

components would significantly improve the design.

8

A hot path is tasks that are executed frequently and usually dictate total execution

time. Other paths are cold paths. A Critical Path would be the path that has the longest

execution latency in the design. The hot path and the critical path are mutually exclusive

and can share some, all, or no, nodes.

Identifying a specific node in the hot path that decreases overall latency when

assigned to a hardware component is done by the algorithm provided. Once nodes are

assigned latencies are re-computed and area constraint is determined as well. S. Tosun’s

paper discusses also of reliability of the ASIC or the software components as well along

with time and energy constraints.

 Task Re-computation and Scheduling has been discussed by Giovanni De

Micheli [25] Some Scheduling Algorithms discussed in Synthesis and optimization of

Digital Circuits.

a) ASAP: Starts scheduling basic tasks in cycle 1 and fills in the dependent

tasks after that. Tends to complete branches as soon as possible.

b) ALAP: Starts by scheduling final tasks and adjusting the predecessors

after. It needs the final time constraint so that it can assign the tasks in the

last possible clock cycle.

c) Hu’s Algorithm: It schedules the starting tasks from a pool of tasks based

on the resource constraint given.

d) LIST L: a scheduling algorithm for achieving minimum latency

e) LIST R: for achieving minimum resource usage

f) Force Directed: a new Metric Force is calculated for each task and of

those available to be scheduled in the first cycle the task with the least

force is scheduled first.

9

In P. K. Saraswat et al [10] Critical tasks, called hard tasks, are scheduled using

the EDF algorithm and a Constant Bandwidth Server (CBS) to schedule soft or LC tasks.

CBS enables QoS calculations for soft tasks and provides temporal isolation.

Hard real time tasks missing a deadline can lead to failure of the system. Worst

case estimates (WCET) are used while scheduling and mapped in a heterogeneous

architecture system. Soft task missing a deadline won’t induce a failure but could affect

system performance. Tasks can be completed in variable execution times. If we use

WCET for soft tasks it will be a costly implementation and if we use the average

execution time, there will be an increase in deadline misses.

Quality of service is the probability of completion of a soft task in the deadline

given. A table with execution times of the task with each processor is given and their

deadlines stated. Using a tabu search algorithm the tasks are mapped to the optimal

processor.

V. Izosimov [11] states that for fault tolerant real time systems three types of

faults occur. Permanent faults that require a hardware fix, transient faults which can be

fixed by a fault tolerant procedure and intermittent faults which occur randomly. This

paper considers both transient and intermittent faults as the same and applies corrections

as such.

The fault tolerance methods proposed in the work are checkpointing, rollback

recovery and active replication. Tasks are scheduled through quasi-static cyclic

scheduling. Hardware replication for transient faults is costly. That leaves checkpointing

recovery and re-execution. When applied in a straightforward manner the result is going

over the estimated deadline. Rollback recovery and checkpointing provide time

redundancy while active replication gives space redundancy. Dividing a task and having

checkpoints at the end of each division identifies a fault. The part of the task where the

10

fault occurred is re-executed. Replication can be done in two ways. Active replication is

the execution of the task simultaneously in two different processors. Backup replication

runs the task on a different processor after an error is detected in the previous iteration.

S. K. Baruah et al [12] discuss the criteria to be fulfilled by a Mixed Critical

System to be deemed operational. Safety critical embedded systems are required to go

through certification processes. These certification requirements in mix criticality

systems cause very different scheduling problems and are not satisfactorily addressed

using techniques from conventional scheduling theory. This paper studies a formal model

that represents such mixed criticality workloads. It also demonstrates the intractability of

the system and if it could meet all its certification requirements and specifically 2 sets of

certification requirements.

This paper also discusses the metric of processor speed up factor and the

effectiveness of two techniques namely reservation-based scheduling and priority-based

scheduling and proves that priority-based scheduling is the superior of the two.

Using the example of an unmanned aerial vehicle also known as UAV which

consists of two different criticality functionalities; mission critical and flight critical.

Flight critical functionalities would be certified by authorities such as the US Federal

Aviation Administration. Certification authorities are not concerned with mission critical

functionalities of the system which are validated by system designers separately.

 C. Bolchini et al [13] talk about a design methodology that improves the system

level design flow for embedded systems in order to increase reliability awareness. A

mapping and scheduling algorithm are used for the application of hardening techniques to

fulfill the required fault management properties that the final system must exhibit. Not all

parts of the system need to be hardened against faults. The reference architecture is a

11

complex distributed platform with resources in terms of performance and fault

detection/tolerance mechanisms

For a specific mission or safety critical application scenario dependability

attributes such as reliability availability and safety are the primary concern. With

technology scaling, higher frequencies and power densities the probability of components

being affected negatively or being susceptible to environmental disturbances such as

radiation and electromagnetic interference. This results in transient or soft errors which

do not damage the hardware permanently but still affect the result.

The reliability driven system level design methodology for embedded systems is a

performance optimized hardened implementation of a design space exploration process

that implements a set of techniques exploiting fault management features provided by the

target architecture. Key features include the following:

• Support of mixed critical management properties 4 different parts of the

application

• Customizable and extendable set of fault tolerant techniques

• Voting and checking activities knew light

• Fault management features of existing processing units to be used

• Transparency of reliability design stage so the consumer can select reliability

features

V. Izosimov et al [14] present an approach to fault tolerant scheduling for

embedded applications with soft and hard real time constraints which guarantee the

deadline for hard processes even in fault cases. Processor re-execution is employed to

recover from multiple faults. A static scheduled computer is not fault tolerant.

Computing a new schedule every process failure incurs inaccessible overhead. The

proposal is a quasi-static scheduling strategy where a set of schedules is synthesized

12

offline and a runtime scheduler selects the appropriate schedule based on fault occurrence

and execution time.

Faults can be differentiated into three types, permanent, transient, and

intermittent. Permanent faults are mostly hardware faults and are not repaired easily,

whereas transient faults and intermittent faults appear for a short time and can be dealt

with by restarting the system or re-executing a task. Transient faults are the most

common due to greater complexity higher frequency and smaller transistor sizes.

Every system has a timing constraint. System behavior does not depend solely on

logical results but also on the time it takes to produce a result. Real time systems have

hard tasks and soft tasks. When a hard task fails the result is a critical failure. When a

soft task fails the result is a reduction of effectiveness.

The proposed approach integrates fault tolerance into the framework of static

scheduling. Static schedules are generated beforehand and inserted into the application

depending on process criticality. A mapping and scheduling algorithm for transparent re-

execution is implemented on a multiprocessor system. Re-execution and active

replication can be combined to develop a fault tolerant application without increasing the

number of required processors or system overhead.

In M. S. Mollison et al [15] tracking the slack created by the variance between

worst case execution time and actual execution time frees computational power for

redistribution to less critical tasks and provides temporal isolation.

The workload of a UAV can be divided into 3 categories safety critical, mission

critical, and background. Implementing a multicore mixed criticality environment would

be advantageous to multiple single core systems connected via the network, which would

increase cost and limit computational throughput.

13

Two problems with multicore systems are underutilization due to high WCET’s

and the need for temporal isolation of critical tasks. As the criticality rises the WCET

becomes more pessimistic, which results in an idle processor once the task is complete.

This paper proposes an architecture that treats HC tasks as slack generators.

Lower critical tasks are budgeted into this slack thereby utilizing the hardware more

efficiently and scheduling the more demanding tasks first.

H. Li and S. Baruah [16] discuss the implementation of a mixed criticality

implicit deadline for sporadic task systems on identical multiprocessor platforms is

considered where inter processor migration is permitted. A theoretical analysis of both

speed factor and schedulable conditions is discussed in this paper focusing on mixed

criticality and scheduling algorithms.

Most algorithmic research focuses on single core processor systems. Recent HC

systems are being implemented on multicore CPUs. Multicore CPUs increase complexity

and sophistication resulting in the system becoming less uniform and more unpredictable

allowing greater variation. This affects the certification authorities estimated execution

times thereby increasing the time deadline for the system. The paper discusses

transferring a scheduling algorithm application from a single core processor system to a

multicore processing system efficiently.

D. D. Niz et al [17] present the impact of Economic trends in embedded systems

forcing tasks of different criticality to share processors and potentially interfere with each

other. Temporal isolation techniques prevent LC tasks from appropriating time intended

for a HC task. These techniques can also work in reverse order, preventing a HC task

from completing via symmetric enforcement. This phenomenon is known as criticality

inversion. To circumvent criticality inversion, we assign priorities to tasks according to

14

their criticalities. This approach leads to lower utilization of the resources and affects the

system negatively.

This paper proposes a new algorithm called zero slack scheduling which provides

a new form of defense called asymmetric protection. The zero slack algorithm minimizes

occurrences of high criticality tasks preempting low criticality tasks. When used in

conjunction with a priority based preemptive scheduler algorithm, this proves to be an

effective solution. Unlike zero slack scheduling, each algorithm performs slack analysis

differently. This asymmetric protection negates the impact on the deadline due to

criticality inversion while reducing the penalty on schedulable utilization.

In P. Penil et al [18] HC tasks with non-critical activities tend to share available

hardware resources to optimize costs and reduce power consumption. The design of

mixed critical systems requires the integration of design flows and tools to handle this.

This paper presents a single source proposal where UML models analyze the flow of

different design tools in a mixed critical context.

Integrating multiple functionalities in a shared computing architecture presents

design complexity challenges due to interactions from different hardware resources. The

design requires power optimization to reduce consumption, software packages with

predesigned functionality to reduce design time, and heterogeneous hardware resources

to minimize mean execution times.

This paper proposes a UML model that can create specific tool files to calculate

the worst-case execution time while considering concurrency, different resource

allocations, and multiple platform configurations. These estimates also apply static

schedulability analysis tools. This infrastructure generates a cold synthesis for the

deployment to run system tasks and obtain evaluations of runtime performance enabling

to estimate final slack times to implement noncritical tasks.

15

A. Namazi et al [19] discuss a reliability aware hard real time task scheduling

method for multicore systems with a quantitative reliability model. The model uses

clustered replication to attain the desired reliability threshold by achieving minimum

replication overhead and a latency increase also considering single and multiple soft

errors.

In recent generations, multi core platforms have both bandwidth and scalability

issues. The trend shifted to using the network on chip architectures to overcome these

issues as the core count increased. Two major constraints for today’s digital systems are

real time performance and reliability. The digital systems of today must satisfy hard real

time constraints by achieving both temporal and logical correctness in their results.

Susceptibility to errors has increased due to continuous transistor scaling. Different

criticality levels introduce the requirement for different levels of reliability systems.

Task mapping holds the key to these crucial issues as it specifies which task

should run on which core in the system. The proposed reliability aware task scheduling

on NoC based platform uses modified clustered replication with the majority voting to

achieve reliability. A multi-step heuristic algorithm can drastically reduce time to find a

probable task mapping solution for hard real time applications while reducing the

replication overhead to maintain a reliability threshold. the proposed method schedules

hard real time tasks with minimum redundancy overhead and better communication

overhead in comparison with the conventional replication method also giving a bonus

execution latency in the simple re-execution method.

R. I. Davis et al [20] talks about the problems of priority assignment in

multiprocessor real time systems using global fixed priority preemptive scheduling. It

demonstrates that an optimal priority assignment algorithm usually designed for single

16

processor scheduling can also be applied to the multiprocessor case upon satisfying three

conditions with respect to schedulability tests.

Multiprocessor real time scheduling can be divided into two segments. A global

partitioned approach allocates each task to one processor approaching it like single

processor scheduling. The global priority approach switches tasks from one processor to

another during runtime. These scheduling algorithms can be divided into 3 types, fixed

task priority, fixed job priority, and dynamic priority. The paper discusses priority

assignment policies for global fixed task priority preemptive scheduling referred to as

global FP scheduling.

J. Theis et al [21] adapts the research for event triggered systems to time triggered

approach which has better certification feasibility and compares their resource utilization

guarantees for TT systems. Adding mixed critical scheduling to legacy TT systems while

leaving the existing schedule unchanged adds a simple change to adapt to criticality.

Although TT systems are favored by certification authorities, they ensure noninterference

by strict isolation between components, thus causing low resource utilization.

The proposed model studies the existing schedule table, run a simple online

execution, and emulates criticality change. Changes are suggested only if required by the

system, thereby reducing effort. If changes are made the system must be recertified but

this is not a frequent occurrence. The algorithm analyses the runtimes and slack which it

uses to provide flexibility for the system.

A federated scheduling algorithm MCFQ is presented by R.M. Pathan [22]. The

feature of this algorithm is having alternative schedules computed to assign each HC task

to the processors. The algorithm carefully selects the schedule which enables all other

tasks to be scheduled on remaining processors. This method has a higher likelihood to

satisfy the total resource requirement. Slack generated by the selection minimizes the

17

total resource utilization by the tasks and can be used to improve system QoS. The

parallel programming paradigm enables to utilize the processing capabilities of the multi

core architecture. Thereby seeing each parallel task as an individual DAG.

The algorithm calculates nominal and overload values for total work and length of

every task. Each task is assigned a virtual and critical deadline. In the beginning, tasks

run in virtual deadlines. The task with the highest overload value is assigned to dedicated

processors while the residual tasks are scheduled on the remaining processors. The

system can run in either typical or critical state, and switches between them when a task

isn’t complete by end of its virtual deadline. Low tasks are dumped to allocate processing

power to high tasks. By maximizing the number of LC tasks not discarded in critical

mode the QoS of the system is improved.

 M. Hassan [23] discusses the challenges and research opportunities in the

combination of Mixed critical systems with the Multiprocessor system on chip

architecture. The proposed model gives flexibility to scheduling a HC task to a higher

order PE to negate the execution latency. The criticality is not restricted to two or three

levels, as recent studies are considering as many as five to six levels of assurance in tasks.

MPSoC’s provide cost, area, power, and performance improvements to the MC system.

The paper focuses on four parameters, theoretical model, timing interface, data sharing,

and security.

The challenges of the theoretical model to consider are as follows:

• Switching constraints due to heterogeneity of SoC’s

• Scalability and switching overheads

• Worst case ET’s

• Timing interface

• Many of PE’s

18

• Different memory for each PE

• Can’t have tight bounds.

Implementing a mixed critical system single ASICs and programmable processors

is discussed by Kalavade et al [24]. Custom hardware is used to implement the intense

portions of the system and the rest are implemented by software. This allows the system

to meet performance requirements with reduced design costs. Using only application

specific integrated circuits increases the performance of the system but is a very costly

approach in mixed criticality systems, so a hybrid approach is used to implement the

system called the hardware software co-design.

The problem with this model is managing its four processing stages; partitioning,

synthesis, co-simulation, and design methodology. In a DAG each node has four

parameters; area, code size, hardware ET and Software ET. The partitioning problem is to

find a mapping of nodes to hardware and software taking into consideration the

communication between the nodes and keeping the area occupied by nodes mapped to

hardware to a minimum.

In B. Nimer et al [9] the Freedom of each task is calculated and is used to

determine the priority of competing tasks to schedule to earlier control steps. Tasks with

lower freedom value get priority in scheduling. This will result in the initial and most

reliable schedule.

If the resulting schedule exceeds the latency deadline, performance optimization

techniques are applied. To decrease overall latency, tasks that can be scheduled

concurrently are identified and assigned to different PEs without violating dependency

conditions. The task with the highest delay is assigned to a faster and more reliable PE

among other candidates. If both tasks have the same latency value, we choose the one

with the lowest criticality value and assign it to the next PE.

19

If the deadline is still not achieved, slower tasks in the critical path are iteratively

assigned to faster PEs starting with the least critical tasks and repeated until the

performance deadline is met. If area constraint is not met, tasks are iteratively re-assigned

with higher freedom values going to a candidate PE with the highest reliability among

others. If this approach is determined to increase latency upon calling the original

scheduling algorithm again, a less reliable PE is assigned. If none of the PEs work, tasks

are reassigned to slower ASICs with lower area costs until area bound is met.

Tasks are re-computed on idle processors for later tasks instead of storing data

when done first to reduce memory time.

Theis et al [26] talk about Mixed critical systems are usually event triggered but

many safety critical domains favor a time triggered approach. This paper presents an

effective flexible approach for transition of mode change before time triggered systems in

mixed criticality jobs. The time triggered application in which all the activities of the

system are triggered by time progression only so that a schedule for the entire duration of

the system is drawn before runtime. the decisions made are determined by the

precomputed schedule also known as the schedule table. This table is easier to verify

hence more popular in certification authorities.

However, in mixed criticality systems, the inflexibility of time triggered approach

has the drawback when it comes to the task with different assumptions that can't fit in a

single table. The research conducted for even triggered systems can be applied for time

triggered systems as well such as having two different schedule tables one based upon the

system designer and gather according to the certification authority parameters. The

system starts with the system designer schedule table end proceeds to run along with it.

When there is a fault, or a task goes beyond the execution time during runtime a switch

20

happens, and the table is switched with the certification parameters and proceeds to run

till the end with the same parameters.

While building two matching schedule tables we need to consider feasible and

consistent switching during runtime and transferring the computational requirements for

the ongoing jobs. Since these have two different execution times one for each criticality

level the standard algorithm cannot be applied directly. The algorithm proposed succeeds

in transferring which criticality principles the time triggered domain, time triggered

framework designed for Mixed criticality systems, generating the schedule tables needed

by this framework also. The algorithm constructs schedule tables for runtime execution is

far more efficient resource utilization and improved flexibility.

A Namazi et al [27] proposes new reliability centered task mapping approach in a

multi-core platform at design time for applications with DAG-based task graphs. The

main goal is to devise a task mapping algorithm that meets a target reliability threshold at

the cost of a controlled performance degradation. The proposed approach uses a majority-

voting replication technique to achieve error-masking capability.

Zhang et al [28] introduce a novel swarm intelligence optimization algorithm

called the firework algorithm (FWA) and applies it to hardware/software partitioning. In

Yao et al [29] a mixed-criticality sporadic task model with multiple virtual deadlines is

built and a certification-cognizant dynamic scheduling approach referred to as the earliest

virtual-deadline first with mixed-criticality (EVDF-MC) is considered, which exploits

different relative deadlines of tasks in different criticality modes. Wang et al [30] propose

a multi-criticality graph-based end-to-end (MCE2E) task model. This task model is

abstracted from the fault diagnosing and fixing the process of the industrial control

systems. The task in this model consists of a collection of nodes representing mixed

21

criticality modes. Each node is defined by a parallel directed acyclic graph, the subtasks

of which are pre-allocated to multiprocessors.

R. Trub et al [31] develop a mixed-criticality runtime environment on the Kalray

MPPA-256 Andey many-core platform. The runtime environment implements a

scheduling policy based on adaptive temporal partitioning. They develop models,

methods and implementation principles to implement the necessary scheduling

primitives, to achieve high platform utilization and to perform a compositional worst-case

execution time analysis. A. Thekkilakattil et al [32] present a method for scheduling

mixed criticality real-time tasks on a distributed platform in a fault tolerant manner while

taking into account the recommendations given by the reliability studies like Zonal

Hazard Analysis (ZHA) and Fault Hazard Analysis (FHA). L. Sigrist et al [33] discusses

how to combine this policy with an optimization method for the partitioning of tasks to

cores as well as the static mapping of memory blocks, i.e., task data and communication

buffers, to the banks of shared memory architecture.

L. Sha et al [34] discusses how mode changes can be accommodated within a

given framework of priority driven real-time scheduling. R. Schneider et al [35] present a

multi-layered schedule synthesis scheme for MCCPS that aims to jointly schedule

deadline-critical and QoC-critical tasks at different scheduling layers. Y. Zhou et al [36]

propose a design framework comprising a hyper-period optimization algorithm, which

reduces the size of the schedule table and preserves schedulability, and a re-scheduling

algorithm to reduce the number of preemptions.

L. Zeng et al [37] presents design methodologies to guarantee both safety and

schedulability for real-time mixed-criticality systems on identical multicores. Assuming

hardware/software transient errors, model safety requirements on different criticality

levels explicitly according to safety standards; based on this, they further propose fault-

22

tolerant mixed-criticality scheduling techniques with task replication and re-execution to

enhance system safety. R. M. Pathan et al [38] comes up with an effective scheduling

policy and its analysis that can guarantee certification of the system at each criticality

level while maximizing the utilization of the processors. D. Müller et al [39] review EDF-

VD's schedulability criteria and determine its schedulability region to better understand

and design mixed-criticality systems. S. Maurer et al [40] present a generic component

and communication model for CPS that not only allows the co-existence of computing

paradigms of different criticality but also supports the data exchange between them.

J. Lin et al [41] study a problem of scheduling real-time, mixed-criticality tasks

with fault tolerance. An off-line algorithm is proposed to enhance the performance of the

system when it runs into a high criticality mode from a low-criticality mode. A novel on-

line slack-reclaiming algorithm is also proposed to recover from as many faults as

possible before the jobs’ deadline.

Z. Li et al [42] proposes a two-phase execution model is proposed for mixed-

criticality (MC) tasks. Different from traditional MC tasks with a computation phase

only, the two-phase execution model requires a memory-access phase first to fetch the

instructions and data, and then computation. Theoretical foundations are first established

for a schedulability test under given memory-access and computation priority

assignment. Based on the established theoretical conclusions, a two-stage priority

assignment algorithm, which can find the best priority assignment for both memory-

access and computation phases under fixed-priority scheduling, is further developed. V.

Legout et al [43] approach exploit the ability of tasks with low-criticality levels to cope

with deadline misses. On multiprocessor systems, our scheduling algorithm handles tasks

with high-criticality levels such that no deadline is missed. For tasks with low-criticality

23

levels, it finds an appropriate trade-off between the number of missed deadlines and their

energy consumption.

J. Lee et al [44] propose a new scheduling algorithm and develop its runtime

schedulability analysis capable of capturing the dynamic system state. Our proposed

algorithm adaptively determines which task to drop based on the runtime analysis. To

determine the quality of task dropping solution, we propose the speedup factor for task

dropping while the conventional use of the speedup factor only evaluates MC scheduling

algorithms in terms of the worst-case schedulability.

K. Lakshmanan et al [45] present a ductility-maximization packing algorithm to

complement our previous work on mixed-criticality uniprocessor scheduling. Our

packing algorithm, known as Compress-on-Overload Packing (COP) is a criticality-aware

greedy bin-packing algorithm that maximizes the tolerance of high-criticality tasks to

overloads.

P. Huang et al [46] model explicitly the safety requirements for tasks of different

criticalities according to safety standards, assuming hardware transient faults. We further

provide analysis techniques to bound the effects of task killing and service degradation

on system safety and schedulability. N. Guan et al [47] present an algorithm called PLRS

to schedule certifiable mixed-criticality sporadic task systems. PLRS uses fixed-job-

priority scheduling and assigns job priorities by exploring and balancing the asymmetric

effects of the workload on different criticality levels. D. Socci et al [48] present a state-

of-the-art STTM algorithm that works optimally on a single core and shows good

preliminary results for multi-cores. D. Socci et al [49] propose an algorithm that is proved

to dominate OCBP, a state-of-the-art algorithm for this problem that is optimal over fixed

job priority algorithms. J. Ren et al [50] present a partitioned scheduling scheme for

mixed-criticality tasks on multiprocessor platforms that address both issues. Our

24

scheduling scheme consists of (i) a task-to-processor packing algorithm that takes into

account the demands of tasks with respect to their criticality levels, and (ii) a mixed-

criticality uniprocessor scheduling strategy that is based on task grouping.

25

CHAPTER III:

SYSTEM MODELLING

3.1 Target Architectural Model

A Processor comprises an electronic circuit that performs operations on data and

provides a required output. Processors have developed through history and evolved into

multiple variations. Predominantly among those are two types of processing units namely

hardware processors and software processors. Hardware processors are built to perform a

preset operation on the data and are not easily modified whereas a software processor is a

user programmable device that can be molded according to the requirements.

Some common type of hardware processors is Application Specific Integrated

Circuits or ASIC’s. ASICs are modeled according to a pre-defined requirement and

designed using a hardware description language (HDL) accordingly. Once defined and

implemented it is not a simple process to alter the functionality of an ASIC. These are

produced on a huge quantity for a particular use. Microprocessors are a type of ASIC’s.

The most common form of Software Processors are Central Processing Units or

CPUs. These form the basic block of every modern-day computer. CPU’s are

programmed to follow a set of instructions given by the user. These instructions can be

modified according to the requirements and the CPU can be easily reprogrammed to

execute a different operation with each set of instructions.

ASIC’s are best utilized in environments that require a task to be repeated over

and over in a little span of time. ASIC’s fulfill that criterion by being able to perform

operations very quickly compared to a software processor and more efficiently. A

downside of using ASICs is the huge power requirement, expensive design cost and lack

the freedom to rectify the chip after design.

26

CPU’s are flexible, reprogrammable and utilize less space. Which makes them the

perfect choice for environments where the requirements change frequently. They perform

the required operation reliably and can modify operation with just a change of

instructions. CPU’s are more user friendly and easy to design but takes time to process

the instructions and risk missing the deadlines for systems.

Current day demands have outgrown the utilization of a single processor and are

requiring a multi core architecture to implement their functions. This arises 22 types of

architectures namely homogeneous and heterogeneous architectures. Homogeneous

architectures are basically formed with the same type of processors, either hardware

processors our software processors. Having an architecture solely dependent on hardware

processor arises the problem of expensive design costs and large space requirements. On

the other hand, using only software processors would risk the system to go beyond the

time constraint and frequent failure to meet deadlines.

These drawbacks introduced the need for heterogeneous architectures where a

combination of CPUs and ASICs to be used in conjunction with each other in order to

reach the expectations of the modern-day requirements. A heterogeneous architecture

would negate most of the individual negatives by assigning repetitive tasks to faster

GPU's end the complicated tasks to the CPUs thereby creating an environment that is

immune to the individual fallbacks off the processing components. A few examples of

heterogeneous architectures in real life would be microwave ovens telephone applications

etc.

In the current thesis, we use a system which utilizes 2 CPUs and 2 ASIC’s to

process the given tasks according to the algorithms discussed later in the document. This

provides the flexibility to switch between hardware and software components according

to the requirement of that instant. The CPUs have a longer latency period compared to the

27

ASIC's but offer lesser power consumption and reduction in design space requirements.

The ASICs help process repeating tasks at a faster rate thereby decreasing the overall

time overheads.

Depicted below is the model of architecture utilized for the experiments in this

thesis.

Figure 3.1 Target Architectural Model

3.2 Task Graph

A task graph is a graphical representation of a system utilizing nodes or vertices

and lines traveling between these vertices. each vertex represents a task in the system and

the closer to the source it is the faster it arrives. This graph depicts the flow of data from

the source to the sink through the network of vertices and each connecting edge

representing the dependency with its predecessor or successor within the network.

Synchronizing and Communications Unit

ASIC 1

Memory

ASIC 2

CPU 1 CPU 2

28

Figure 3.2 Task Graph

In Fig 3.2 The interconnections between tasks in a task graph represent the data

dependency between them. This data dependency implies that without the predecessor of

a certain task being executed it can't be available for scheduling in the system. Each task

cannot occur without it's preceding task being executed. If there are multiple predecessors

for a certain task it won't be available for Scheduling until and unless all its predecessors

have been scheduled and executed. A task can have multiple predecessors and multiple

successors. The same theory applies to the successors of a task as well.

The task graph used in this thesis does not have loops or decision blocks. They

represent the data flow between the tasks from the source and till the sink. we state the

fact that if a task is deemed critical all its predecessors would be considered critical tasks

29

as well. This fact is based on the logic that if a predecessor is not considered critical then

the system risks failure in the task by not executing its predecessor in time.

3.3 Mixed Criticality Systems

We define a system as a set of tasks interconnected with each other and working

together towards producing an output. There can be many types of systems simple,

complex, hybrid, etc. Each system has a different set of tasks and each task different from

each other. Tasks of a system are arranged according to a priority that facilitates a

smoother scheduling process. These priorities vary with the requirements, such as the

earliest arriving tasks. Tasks with a longer path to completion. A more important priority

assignment in contemporary usage is Criticality.

The criticality of a task defines the impact of its execution on the outcome or the

status of the system itself. Criticality also helps determine the importance of the task in

the system. A Critical task example would be, brakes in a Vehicle, without these the

safety of the car will be compromised and poses a risk to the users operating the car.

Critical tasks are further classified into Safety-Critical tasks and Mission Critical tasks.

Safety-Critical tasks are the set of tasks that ensure the safe operation of the

system and its surroundings in all modes of operation. Mission-critical tasks ensure the

proper execution of the basic system function with no failures. To illustrate the difference

between these tasks, consider a surveillance drone. The tasks that work to keep the

drone’s navigation and control are categorized under Safety-Critical so that in times of an

emergency the drone can make a controlled exit and not cause damage to itself or its

surroundings. The surveillance and data transmission of the system is mission-critical,

ensuring that the data is collected and transmitted, fulfilling the purpose of the drone. In

case of an emergency, all these tasks must work to operate the drone.

30

Every system has some critical tasks and non-critical tasks that contribute to the

success of the system. Execution of critical tasks ensures the system works and produces

and output while non-critical task execution improves the quality of the result obtained.

This combined system of critical tasks and non-critical tasks is called a mixed critical

system. A common mixed critical system is commercial aircraft. In an Aircraft, the

system that works to navigate and keep the craft airborne is considered critical than the

inflight entertainment. In times of an emergency, the priority would be to keep the

Critical tasks running and the non-critical tasks would be dropped as they can’t affect or

help improve the operation of the system.

 Mixed critical systems have further divisions based on the criticality

levels, Dual Critical and multi critical, etc. These systems drop LC tasks in case of an

emergency. This although doesn’t affect the working of the system but reduces the

quality of the output produced. Algorithms that consider the non-critical tasks to an

extent in scheduling are designed to deal with this drawback.

3.3.1 High Critical and Low Critical Tasks

We consider a Dual Critical system where the tasks are divided into two types of

Criticality, High critical (HC) tasks, and Low Critical (LC) tasks. HC tasks are given

priority during scheduling over LC tasks. HC tasks are essential to the survival of the

system whereas the LC tasks improve the effectiveness of the system. When scheduling

the tasks, the algorithm has to schedule all the tasks within the time constraint and may

ignore LC tasks for a HC task.

We state the fact that a High Critical task cannot have a LC task as a predecessor

thereby declaring all the predecessors of a HC task to be assigned HC priority. This is

31

due to the problem that if a HC task depends on a LC task for data which may be ignored

in some cases subsequently affecting the HC task risking the whole system.

In Fig 3.3 A depiction of the task graph is presented where each node represents a

task and each line represents the data flow and dependencies between each task. HC tasks

are filled in color.

Figure 3.3 Criticality of tasks distinguished

3.3.2 Criticality Modes of the System

The system discussed in this thesis operates in 2 different modes namely High

criticality mode and low criticality mode. Low criticality mode considers all the tasks to

be of equal priority and work towards scheduling all the tasks in time without dropping or

32

interrupting any task. low criticality mode can also be considered as the normal operating

mode for the system. The system transitions into high criticality mode under certain

conditions predefined by the design. Having a HC task error while executing in low

criticality mode, and approaching emergency, manual override are a few ways of

triggering high criticality mode.

When the system is in high criticality mode it ignores all the LC tasks for the time

being and schedules the HC tasks according to the priority assignment. After all the HC

tasks have been scheduled the LC tasks are scheduled in the slack generated between and

after the scheduling of HC tasks. If in the case of any LC task going beyond the desired

deadline it can be dropped and the system can proceed into the next cycle of execution.

The design tries to accommodate as many LC tasks as possible into the schedule in order

to improve the overall efficiency of the system simultaneously ensuring the safety of the

system.

The task graph can be reimagined into the following way to provide a clearer

understanding of the about statements all the HC tasks are arranged to the left and all the

LC tasks are arranged to the right of the graph. The dependencies between these 2

categories only extend from HC tasks to LC tasks and not the other way around.

3.4 Constraints

A perfect system without failure is impossible to achieve. So, the system is

assigned some constraints that would deem the system viable in a real time environment.

These constraints define the system limitations and set a target to achieve utilizing

limited resources.

33

Reliability constraint is the target reliability the system must achieve in order to

be put into practical usage. Reliability is essential to systems running in populated

environments to ensure the safety of the system

Latency constraints are set to achieve the maximum reliability possible while

executing the system within a time bound. Latency is prioritized when the system is

under threat and must transfer data collected so far.

The system can have many constraints to consider at a time. In this case, we try to

achieve the highest possible reliability by utilizing all the processors optimally. While a

second scenario the system is executed in an as fast as possible method.

3.5 Reliability Modelling

Reliability is defined by how successful the task can run on a specific processor.

The Reliability of each task is different on each of the processors in the architecture. the

total reliability of a system with multiple units is always the product of each individual

task Reliability in the system. As in a case of two numbers, both lesser than 1 their

product is always lesser than each multiplicand. This phenomenon also shows up in

system reliability as any task reliability is always less than 1, with 1 being perfect

execution the overall Reliability is always lower than any individual task Reliability.

𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∏(𝑅𝑖)

𝑛

𝑖=1

To improve the reliability of the system the individual Reliability of the tasks

must be improved. This is achieved by adding a redundant component to each task. This

can be accomplished in two types of configurations, series, and parallel.

34

A series configuration affects the overall reliability in a negative way. The

reliability of a component multiplies with the reliability of every other component in the

series and reduces the overall reliability less than the individual reliability of each

component. With series redundancy, lower reliability is a compounding problem. The

formula for the series reliability is below.

𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∏ 𝑅𝑖

𝑛

𝑖=1

When we configure redundancy in parallel, the components are connected such

that the input divides into all the components and the outputs of the components combine

into one, thereby increasing overall reliability. The formula for parallel reliability is

below.

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 1– ∏(1 − 𝑅𝑖)

𝑛

𝑖=1

3.6 Technology Library

The performance details of the tasks on each of the processors are tabulated into a

tech library. This would contain the data required for the algorithm to make decisions. In

this case, the tech library consists of the Reliability of each task on each of the processors

and the time taken to complete the execution. This will later be utilized by the algorithm

to decide which processor is the best to achieve the best Reliability or faster latency.

35

Table 3.1

Technology Library

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

ASIC 1

Reliability 0.995 0.996 0.998 0.992 0.991 0.994 0.979 0.970 0.986 0.992 0.998 0.969 0.989 0.979 0.978 0.998 0.974 0.976 0.990 0.997 0.997 0.995

Delay 8 10 12 6 7 9 10 15 5 13 16 12 12 15 6 12 9 6 12 15 14 10

ASIC 2

Reliability 0.997 0.998 0.994 0.995 0.985 0.979 0.993 0.996 0.988 0.955 0.991 0.987 0.993 0.971 0.990 0.991 0.971 0.998 0.993 0.995 0.986 0.993

Delay 10 12 9 8 10 11 12 12 7 17 12 7 10 10 12 8 9 8 8 12 8 11

CPU 1

Reliability 0.994 0.994 0.986 0.987 0.989 0.969 0.995 0.993 0.972 0.989 0.985 0.990 0.987 0.973 0.985 0.987 0.973 0.989 0.980 0.996 0.993 0.984

Delay 50 40 35 45 35 50 25 25 35 30 50 30 35 20 55 55 30 25 65 40 25 30

CPU 2

Reliability 0.993 0.980 0.980 0.977 0.975 0.976 0.999 0.995 0.980 0.985 0.990 0.978 0.996 0.991 0.987 0.983 0.970 0.985 0.990 0.995 0.987 0.995

Delay 55 45 30 65 55 35 35 50 65 35 30 45 25 40 50 60 35 30 50 35 45 50

36

CHAPTER IV:

MOTIVATIONAL EXAMPLE

To illustrate our approach, we work with the given task graph and associated

technological library in Table 3.1 above. The sample task graph in Fig 3.1 contains 22

task nodes to be executed in from source to sink. The technological library in provides

the reliability and execution time for each tasks on each of the processors. The algorithm

is designed to tackle shortage of resources. So, the task graphs we use as an example are

configured such that there are more tasks than processors available throughout the

runtime to illustrate the algorithms effectiveness in such scenarios.

The algorithm runs in multiple iterations, in each iteration selecting the task with

the highest priority and assigning to the appropriate processor available. The priority

conditions can be configured ahead based on the user requirement. In this case the

different parameters of each task such as longest path to sink, etc are looked in to

determine the priority. In case of a task has no idle processor to be executed upon the

algorithm waits till the time one of the current tasks completes its execution. As tasks

become available to be scheduled, task priority is recalculated at the start of each iteration

and the current top priority task is chosen to be scheduled over a previously higher

priority task which wasn’t scheduled due to lack of idle processor.

Two Algorithms operating in two different criticality modes of the system are

designed for each of the two desired results. First of which is the reliability priority

approach which prioritizes task reliability during task assignment. By prioritizing each

tasks reliability, the overall system reliability is bound to improve. In LC mode of the

system the task priority order of the algorithm uses task criticality as a last tie breaker in

case of all other parameter matching up for the tasks in contention. This is designed so

37

that the algorithm schedules each task irrespective of its criticality. In HC mode the

algorithm works the iterations only on the HC tasks in the first cycle following a slightly

modified priority assignments. After scheduling all the HC tasks onto the processors, the

LC tasks are then put through the iterations to complete the system scheduling.

The same approach is also utilized in a latency priority algorithm with the

intention of executing the tasks at a higher rate while watching the overall system

reliability. A noticeable improvement in latency is achieved with a corresponding

decrease in reliability.

After taking in the inputs from the tech library. We instruct the algorithm to list

out all the tasks available for scheduling into a set T. the algorithm will choose the task

with the greatest number of successors to schedule. This decision is made because the

distance from each task to the sink cannot be determined until all the tasks are scheduled.

So, the decision to choose the task with the number of successors such that the next tasks

in line would be available earlier and the longer path getting struck in slower processors

is avoided. Once the first tasks are scheduled the algorithm updates its set of available

tasks as new tasks arrive and compare them with their priority. The priority of tasks in

case of an equal number of successors is determined by the following conditions in that

order respectively. The task with higher criticality is preferred first. The task with a

greater number of HC task successors is preferred first. The task nearest to the source is

preferred first. If there is still a tie the task that can run with the best latency in the

available processor is chosen. This order is devised keeping in mind the survival of the

system by preferring criticality and attaining better execution latency.

When the system switches into High Criticality mode the LC tasks are not

considered for the scheduling in the first cycle. All the HC tasks are scheduled first

following the order with the task having the greatest number of successors scheduled

38

first. After all the HC tasks are scheduled the algorithm now processes the LC tasks and

completes the system.

The results obtained after putting the sample task graph through the algorithms

discussed are depicted in table 4.1 below.

Table 4.1

Results of Motivational Example

The results show that the algorithms succeed in creating an improvement in

reliability while operating in HC mode of the system and also for the overall system at a

cost of increased latency. This is a fixable tradeoff as LC tasks can be dropped, this

latency overrun can be rectified. When comparing the HC task execution in both the

algorithms, low criticality mode has lower reliability than high criticality mode. This

proves the success of high criticality mode's ability to increase the reliability of HC tasks

Observing the latency priority approach there is a significant improvement in

latency without sacrificing much the reliability of the system. This tradeoff is utilized in

scenarios where all the data collected by the system has to be transmitted as soon as

possible due an approaching emergency or imminent destruction of the system.

The next sections discuss the algorithms in detail and the results obtained from

each algorithm by referencing the generated schedules given in figure 6.1.

Properties

Reliability Priority Scheduling Latency Priority Scheduling

LC mode HC mode LC mode HC mode

Overall
Only HC

tasks
Overall

Only HC

tasks
Overall

Only HC

tasks
Overall

Only HC

tasks

Reliability 0.786 0.854 0.831 0.897 0.743 0.837 0.776 0.887

Latency 110 107 162 73 107 79 97 71

39

CHAPTER V:

LATENCY CONSTRAINED RELIABILITY IMPROVEMENT

Improving the reliability of the system is the primary focus of the algorithms in

this approach. Algorithm 1 operates in the LC mode of the system and prioritizes

reliability in scheduling the tasks to the available processors. Whereas algorithm 2

operates in HC mode processing HC tasks ahead of LC tasks thereby providing access to

better reliable processors. Improvement of HC task reliability is prioritized over LC task

Execution.

5.1 Low Criticality System Mode

Tech Library provides the algorithm with the reliability (Rji) and latency (Lji)

values where ‘j’ refers to processor index and ‘i’ denotes the task number from the task

graph. The algorithm now forms the set ‘Icurrent’ which has all the tasks that are available

to be scheduled and a set ‘Jcurrent’ with the idle processors. These sets are updated at the

start of each iteration. A subset of ‘I’ is created with the tasks with the longest path to

sink from ‘Icurrent’. The set I is checked if it has multiple elements and put through further

priority filters until it has only one task. a few of the priority filters consider better

latency on the processors available, shortest from source, better reliability. the task that

passes through all the filters is scheduled onto its ideal processor. This process is repeated

until all the tasks in the task graph are scheduled that is Icurrent is empty and has no further

tasks.

Algorithm 1 takes the input data. In steps 1 to 4, it compiles the data and arranges

tasks in the order of their predecessors. From steps 5 to 18 the algorithm selects the task

that has the highest priority and assigns it to the best reliable processor, the rest of the

algorithm loops back to select the next task to be scheduled.

40

Algorithm 1: Scheduling with Low Criticality System Mode

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) refers to

processors and i ∈ I (1, n) denotes the tasks in task graph,

OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc

1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I}

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}

3. Form the set of ‘Iʹ where

4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}

5. if |I| = 1

6. then Tcurrent = Ti

7. else Iʹ = I

8. I = {i | i is High Critical task, i ∈ Iʹ}

9. if |I| = 1

10. then Tcurrent = Ti

11. else Iʹ = I

12. I = {i | i is nearest to the source, i ∈ Iʹ}

13. if |I| = 1

14. then Tcurrent = Ti

15. else Iʹ = I

16. I = {i | i has greatest Rj(i), i ∈ Iʹ & j ∈ Jcurrent}

17. if |I| = 1

18. then Tcurrent = Ti

19. Assign Tcurrent to j ∋ Rj(i) is the highest, j ∈ Jcurrent

20. if | Jcurrent | = 0

21. then wait for time T

22. Update Icurrent & Jcurrent

23. if | Icurrent | = 0

24. then wait for time T

25. Update Icurrent & Jcurrent

26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled

5.2 High Criticality System Mode

In Algorithm 2, the first four steps separate the tasks as HC and LC. As the steps

1 to 4 brings out all the HC tasks into set Hcurrent. Then, steps 5 to 15 sorts the HC tasks

based on priority and assigns the task on top to its ideal processor steps 16 to 22 loops

back until all the HC tasks are scheduled. The steps form 23 till the end schedules the rest

of the LC tasks in the same manner of priority order as the previous cycle.

41

Algorithm 2: Scheduling with High Criticality System Mode

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4)

refers to processors and I ∈ I (1, n) denotes the tasks in task graph,

OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc, Rhc

1. Update Hcurrent = {h | h are High Critical tasks that are available to be scheduled, h ∈

I}

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}

3. Form a set of ‘H’ where

4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}

5. if |H| = 1

6. then Tcurrent = Th

7. else Hʹ = H

8. H = {h | h is nearest to the source, h ∈ Hʹ}

9. if |H| = 1

10. then Tcurrent = Th

11. else Hʹ = H

12. H = {h | h has greatest Rj(h), h ∈ Hʹ & j ∈ Jcurrent}

13. if |H| = 1

14. then Tcurrent = Th

15. Assign Tcurrent to j ∋ Rj(h) is the highest, j ∈ Jcurrent

16. if | Jcurrent | = 0

17. then wait for time T

18. Update Hcurrent & Jcurrent

19. if | Hcurrent | = 0

20. then wait for time T

21. Update Hcurrent & Jcurrent

22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled

23. Form a set of tasks Lcurrent where

24. Lcurrent = {l | l are the remaining tasks that are available to be scheduled with greatest

number of successors, l ∈ I}

25. if |L| = 1

26. then Tcurrent = Tl

27. else Lʹ = L

28. L = {l | l is nearest to the source, l ∈ Lʹ}

29. if |L| = 1

30. then Tcurrent = Tl

31. else Lʹ = L

32. L = {l | l has greatest Rj(l), l ∈ Lʹ & j ∈ Jcurrent}

33. if |L| = 1

34. then Tcurrent = Tl

35. Assign Tcurrent to j ∋ Rj(l) is the highest, j ∈ Jcurrent

36. if | Jcurrent | = 0

42

37. then wait for time T

38. Update Lcurrent & Jcurrent

39. if | Lcurrent | = 0

40. then wait for time T

41. Update Lcurrent & Jcurrent

42. Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled

After executing above algorithms until all the tasks in the motivational example

are scheduled the resulting schedule is presented in Fig 5.1.a, 5.1.b. The schedule of low

criticality mode algorithm has the tasks scattered around the timeline irrespective of

criticality which obstructs the availability of better processors to the HC tasks. This

although does not pose any serious issues in normal operation modes it does affect the

system effectiveness in critical environments. This is corrected by making the system run

in two different operating modes. A low criticality mode to accommodate all the tasks

equally and a HC mode where the sole aim of the system is to improve the reliability of

HC tasks.

Looking at the scheduled tasks the HC mode of the system will follow the same

order of priority with a small change in operation. The algorithm sorts out the HC tasks

from the pool of tasks and assign the HC task with the greatest number of successors to

be scheduled first following the same order from the low criticality mode to determine

tiebreakers. After all the HC tasks are scheduled the algorithm moves on to schedule the

LC tasks. In Figure 5.1 b the HC tasks are being executed on processors with better

reliability such as T11 and T19 which are scheduled on more suitable processors which

wasn’t possible due to LC tasks being executed in the low criticality mode.

The high criticality mode schedule also goes beyond the execution time of the low

criticality mode. This is dealt by dropping the LC tasks that cause the system to work

beyond deadlines as the impact of LC tasks doesn’t affect the correctness of the result.

43

Figure 5.1 Task Schedule for Reliability Priority Apporach

44

CHAPTER VI:

RELIABILITY AWARE EXECUTION LATENCY REDUCTION

Reduction in latency of the system is the primary focus of the algorithms in this

approach. Algorithm 3 operates in the LC mode of the system and prioritizes latency in

scheduling the tasks to the available processors. Whereas algorithm 4 operates in HC

mode processing HC tasks ahead of LC tasks thereby providing access to faster

processors. Reduction of HC task latency is prioritized over LC task Execution

6.1 Low Criticality System Mode

Following a similar procedure from the previous approach the LC mode of the

system all the tasks are grouped into a set. The tasks with the greatest number of

successors to the sink are singled out. If there are multiple tasks fitting the criteria, they

are further filtered out with other characteristics such as criticality, distance from source

and latency on the available processors. This process is repeated until we remain with a

single task and assign it to the best available processor for the task depending on the

approach used.

Algorithm 3 takes the input data. In steps 1 to 4, it compiles the data and arranges

tasks in the order of their predecessors. From steps 5 to 18 the algorithm selects the task

that has the highest priority and assigns it to the fastest processor, the rest of the

algorithm loops back to select the next task to be scheduled

45

Algorithm 3: Scheduling with Low Criticality System M ode

INPUT: Task graph with ‘n’ tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4) refers to

processors and i ∈ I (1, n) denotes the tasks in task graph,

OUTPUT: Schedule of LC reliability priority mode, Lo, Ro, Lhc, Rhc

1. Update Icurrent = {i | i are tasks that are available to be scheduled, i ∈ I}

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}

3. Form the set of ‘Iʹ where

4. I = {i | i are the tasks with the greatest number of successors, i ∈ Icurrent}

5. if |I| = 1

6. then Tcurrent = Ti

7. else Iʹ = I

8. I = {i | i is High Critical task, i ∈ Iʹ}

9. if |I| = 1

10. then Tcurrent = Ti

11. else Iʹ = I

12. I = {i | i is nearest to the source, i ∈ Iʹ}

13. if |I| = 1

14. then Tcurrent = Ti

15. else Iʹ = I

16. I = {i | i has lowest Lj(i), i ∈ Iʹ & j ∈ Jcurrent}

17. if |I| = 1

18. then Tcurrent = Ti

19. Assign Tcurrent to j ∋ Lj(i) is the lowest, j ∈ Jcurrent

20. if | Jcurrent | = 0

21. then wait for time T

22. Update Icurrent & Jcurrent

23. if | Icurrent | = 0

24. then wait for time T

25. Update Icurrent & Jcurrent

26. Repeat step 4 until | I | = 0 i.e. all the tasks are scheduled

6.2 High Criticality System Mode

In Algorithm 4, the first four steps separate the tasks as HC and LC. Then, steps 5

to 15 select the highest critical task and assigns it to the fastest processor. Steps 16 to 22

loops back until all the HC tasks are scheduled. The steps form 23 till the end schedules

the rest of the tasks accordingly.

46

Algorithm 4: Scheduling with High Criticality System Mode

INPUT: Task graph with ‘n’ number of tasks, Tech Library with (Rji, Lji) where j ∈ J (1,4)

refers to processors and I ∈ I (1, n) denotes the tasks in task graph,

OUTPUT: Schedule of Low Criticality reliability priority mode, Lo, Ro, Lhc, Rhc

1. Update Hcurrent = {h | h are High Critical tasks that are available to be scheduled, h ∈

I}

2. Update Jcurrent = {j | j are processors that are idle, j ∈ J}

3. Form a set of ‘H’ where

4. H = {h | h are the tasks with the greatest number of successors, h ∈ Hcurrent}

5. if |H| = 1

6. then Tcurrent = Th

7. else Hʹ = H

8. H = {h | h is nearest to the source, h ∈ Hʹ}

9. if |H| = 1

10. then Tcurrent = Th

11. else Hʹ = H

12. H = {h | h has lowest Lj(h), h ∈ Hʹ & j ∈ Jcurrent}

13. if |H| = 1

14. then Tcurrent = Th

15. Assign Tcurrent to j ∋ Lj(h) is the lowest, j ∈ Jcurrent

16. if | Jcurrent | = 0

17. then wait for time T

18. Update Hcurrent & Jcurrent

19. if | Hcurrent | = 0

20. then wait for time T

21. Update Hcurrent & Jcurrent

22. Repeat step 3 until | H | = 0 i.e. all the High Critical tasks are scheduled

23. Form a set of tasks Lcurrent where

24. Lcurrent = {l | l are the remaining tasks that are available to be scheduled with greatest

number of successors, l ∈ I}

25. if |L| = 1

26. then Tcurrent = Tl

27. else Lʹ = L

28. L = {l | l is nearest to the source, l ∈ Lʹ}

29. if |L| = 1

30. then Tcurrent = Tl

31. else Lʹ = L

32. L = {l | l has lowest Lj(l), l ∈ Lʹ & j ∈ Jcurrent}

33. if |L| = 1

34. then Tcurrent = Tl

35. Assign Tcurrent to j ∋ Lj(l) is the lowest, j ∈ Jcurrent

36. if | Jcurrent | = 0

47

37. then wait for time T

38. Update Lcurrent & Jcurrent

39. if | Lcurrent | = 0

40. then wait for time T

41. Update Lcurrent & Jcurrent

42. Repeat step 23 until | L | = 0 i.e. all the tasks are scheduled

We repeat the above steps until all the tasks are scheduled. When tried with the

motivational example the resulting schedule is presented in Fig 6.1.a, 6.1.b.

The low criticality mode schedule executes all the tasks without considering the

task criticality. This results in longer wait times for HC tasks such as T9 and longer

execution times such as T9. Although this is still better latency than the reliability priority

approach in Figure 5.1.a, the overall system latency still needs improvement.

In the high criticality mode of the system the drawbacks are taken care of. HC

tasks are scheduled far ahead with better latency values and leave enough slack for all the

LC tasks to be executed at a faster pace too. Tasks T9 and T19 are scheduled into faster

processors and all the LC tasks also have access to the faster ASIC’s once HC tasks are

executed. This improves the HC task latency and as an added bonus also helps the overall

latency of the system as well. The algorithm also watches the reliability values for the

system in the priority conditions so as to not just achieve a faster execution time but also

succeed with as less affect to reliability as possible.

48

Figure 6.1 Task Schedule for Latency Priority Approach

49

CHAPTER VII:

 EXPERIMENTAL EVALUATION

Assuming the target architecture described in Chapter III, the proposed algorithms

are tested using task graphs randomly generated using the TGFF tool. Each graph has a

unique technology library containing the . The task graphs named as TG1 (Fig7.1. (a)),

TG2 (Fig7.1. (b)), TG3(Fig7.1. (c)), TG4 (Fig7.1. (d)), and TG5 (Fig7.1. (e)) are depicted

in the following pages.

A detailed experimental evaluation using these five graphs is presented in Table

6.1. The reliability values and the execution latencies for each graph in low criticality and

high criticality modes are presented along with the percentage of reliability improvement.

As seen in the table, the proposed reliability priority algorithm is successful in increasing

the reliability of the HC tasks by prioritizing them over other tasks. This resulted in lesser

holdup times for HC tasks and making more reliable processors to be available when they

are scheduled. We compare the HC task reliabilities in both system modes for each task

graph to obtain reliability improvement. The algorithm aims at increasing the HC tasks’

reliability to ensure the system's success in critical times and emergencies. Scheduling

LC tasks after HC tasks gives HC tasks better access to reliable processors, thereby

inducing an improvement in HC task reliability. The improvement is consistent in tasks

with a higher number of task graphs than in graphs with fewer tasks.

50

 (a) Task Graph 1 (TG1) – 22 tasks (b) Task Graph 2 (TG2) – 16 tasks

(c) Task Graph 3 (TG3) – 26 tasks (d) Task Graph 4 (TG4) – 31 tasks

51

(e) Task Graph 5 (TG5) – 43 tasks

Figure 7.1 Experimental Task Graphs

TG1 is our sample task graph. TG2, which has 16 tasks, has high criticality

reliability improvement of just 0.19 %. This is due to the lesser number of tasks available

to schedule at any given point in the execution. Owing to this most of the tasks have the

more reliable processors readily available in both operating modes. Although the

algorithm returns high reliability it does not improve the reliability of HC tasks much. It

is also observed that in the cases where the system reliability is increased, it comes at the

cost of increased latency. HC tasks being assigned to highly reliable but slower processor

cause this. However, prioritizing HC tasks in high criticality system mode ensures that all

tasks are scheduled ahead of LC tasks and no stalling occurs due to a LC task occupying

a better processor. This overall latency overhead can be avoided as the LC tasks can be

52

dropped to run within the time bound. This does not affect the primary goal of the

algorithm which is improving the reliability of HC tasks in the system. The algorithms

also keep track of HC task latency as achieving reliability at a huge cost to latency is not

a viable option.

The overall system reliability gradually decreases as the number of tasks increases

as we discussed in reliability modeling. As explained in previous sections this occurs due

to the reliabilities of each task multiplying with each other thereby scaling up the error

percentage along with it.

53

Table 6.1

Reliability Priority Approach

Task

graph

Number

of tasks

Low Criticality mode High Criticality mode
% Reliability

Improvement.

Reliability Latency Reliability Latency
Overall

system

High

Critical

tasks Overall
HC

task
Overall

HC

task
Overall

HC

task
Overall

HC

task

TG1 22 0.7863 0.8548 110 107 0.8317 0.8978 162 73 6.41 4.71

TG2 16 0.7839 0.9263 155 155 0.7879 0.9281 157 157 0.51 0.19

TG3 25 0.5680 0.7301 164 162 0.6440 0.8067 255 125 13.38 10.49

TG4 31 0.6459 0.7789 243 173 0.6933 0.8933 233 171 7.34 14.69

TG5 43 0.6097 0.7549 205 205 0.6518 0.7773 245 160 6.91 2.97

54

The latency priority approach from the adjacent table shows a much better

improvement rate of latency by mapping tasks to the fastest available processor, the

system succeeds in attaining better execution latency values. This method improves

latency values but watches the drop in reliability in the process. The focus is on

improving the latency of HC tasks ahead of the overall system. As HC tasks are assigned

to faster processors, LC tasks run on slower processors. LC tasks which decrease the

latency will be dropped so that the system can proceed into the next cycle. These cases

can be observed in TG3 and TG5 in the table above. In these examples, the system

succeeded in decreasing execution times for HC tasks but went over the specified time.

This is rectified by dropping low criticality tasks and bringing the system under the

required time deadline. The results indicate that the algorithm can be utilized for systems

to transfer the data collected at a faster rate when time is of utmost priority than accuracy.

55

Table 6.2

Latency Priority Approach

Task

graph

Number

of tasks

Low Criticality mode High Criticality mode
% Latency

improvement

Reliability Latency Reliability Latency
Overall

system

High

Critical

tasks Overall
HC

task
Overall

HC

task
Overall

HC

task
Overall

HC

task

TG1 22 0.7431 0.8378 107 79 0.7769 0.8870 97 71 9.35 10.13

TG2 16 0.6963 0.8503 103 72 0.7114 0.8546 103 60 0 16.67

TG3 25 0.5314 0.7183 110 110 0.4742 0.6644 160 68 -45.45 38.18

TG4 31 0.5366 0.7122 205 200 0.5536 0.7355 178 116 13.17 42

TG5 43 0.5742 0.7045 157 135 0.5595 0.7216 200 118 -27.38 12

56

CHAPTER VIII:

CONCLUSION

In this thesis, we worked on improving the reliability and execution latency of

high critical tasks in mixed criticality systems in the context of HW/SW codesign. The

system can operate in two modes: low criticality operation mode and high criticality

operation mode. We introduced two new algorithms improving each optimization metric.

The proposed algorithms operating in high criticality mode outperform their low

criticality mode algorithms through providing HC tasks with better choice of processors.

In the reliability priority approach, the execution latency provided by the first algorithm

is used as an upper bound for the second algorithm which aims at improving the

reliability of high critical tasks in the system without incurring any latency overhead. The

experimental evaluation conducted using automatically generated task graphs shows an

average 6.61% reliability improvement for HC tasks. The latency priority approach

utilizes the execution time of the system as the deadline when operating in high criticality

operation mode. The proposed algorithm schedules HC tasks before looking into LC

tasks and achieves a significant latency improvement (23.8% on the average) for HC

tasks without exceeding the low criticality mode latency. The algorithms work better for

task graphs with higher number of task graphs. Whenever a high criticality mode

schedule goes beyond the latency or reliability constraints, the system rectifies by

dropping LC tasks which do not affect the final output. The planned future work includes

focusing on more control over choosing the tasks to deem critical and investigating the

scenarios where the criticality of tasks change in the course of execution when the system

is in high criticality mode.

57

REFERENCES

1. S. Baruah, “The Federated Scheduling of Systems of Mixed-Criticality Sporadic

DAG Tasks,” 2016 IEEE Real-Time Systems Symposium (RTSS), pp. 227–236,

2016.

2. D. Tamas-Selicean and P. Pop, “Task Mapping and Partition Allocation for

Mixed-Criticality Real-Time Systems,” 2011 IEEE 17th Pacific Rim International

Symposium on Dependable Computing, pp. 282–283, 2011.

3. R. Medina, E. Borde, and L. Pautet, “Scheduling Multi-periodic Mixed-Criticality

DAGs on Multi-core Architectures,” 2018 IEEE Real-Time Systems Symposium

(RTSS), pp. 254–264, 2018.

4. M. Bagheri and G. Jervan, “Fault-Tolerant Scheduling of Mixed-Critical

Applications on Multi-processor Platforms,” 2014 12th IEEE International

Conference on Embedded and Ubiquitous Computing, pp. 25–32, 2014.

5. S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with Varying

Degrees of Execution Time Assurance,” 28th IEEE International Real-Time

Systems Symposium (RTSS 2007), pp. 239–243, 2007.

6. A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality Systems,”

ACM Computing Surveys, vol. 50, no. 6, pp. 1–37, Nov. 2017.

7. E. Azari and H. Koc, “Improving performance through path-based

hardware/software partitioning,” 2015 Fifth International Conference on Digital

Information Processing and Communications (ICDIPC), pp. 54–59, 2015.

8. S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W.-L. Hung,

“Reliability-Centric Hardware/Software Co-Design,” Sixth International

Symposium on Quality of Electronic Design (ISQED05), pp. 375–380, 2005.

58

9. B. Nimer and H. Koc, “Improving reliability through task recomputation in

heterogeneous multi-core embedded systems,” 2013 The International Conference

on Technological Advances in Electrical, Electronics and Computer Engineering

(TAEECE), pp. 72–77, 2013.

10. P. K. Saraswat, P. Pop, and J. Madsen, “Task Mapping and Bandwidth

Reservation for Mixed Hard/Soft Fault-Tolerant Embedded Systems,” 2010 16th

IEEE Real-Time and Embedded Technology and Applications Symposium, pp.

89–98, 2010.

11. V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-tolerant embedded

systems with checkpointing and replication,” Third IEEE International Workshop

on Electronic Design, Test and Applications (DELTA06), pp. 5, pp. 447, 2006.

12. S. K. Baruah et al., ‘‘Scheduling real-time mixed-criticality jobs,’’ IEEE Trans.

Comput., vol. 61, no. 8, pp. 1140–1152, Aug. 2012

13. C. Bolchini and A. Miele, “Reliability-Driven System-Level Synthesis for Mixed-

Critical Embedded Systems,” IEEE Transactions on Computers, vol. 62, no. 12,

pp. 2489–2502, Dec. 2013.

14. V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of Fault-Tolerant

Embedded Systems with Soft and Hard Timing Constraints,” 2008 Design,

Automation and Test in Europe, pp. 915–920, 2008.

15. M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos,

“Mixed-Criticality Real-Time Scheduling for Multicore Systems,” 2010 10th

IEEE International Conference on Computer and Information Technology, pp.

1864–1871, 2010.

59

16. H. Li and S. Baruah, “Outstanding Paper Award: Global Mixed-Criticality

Scheduling on Multiprocessors,” 2012 24th Euromicro Conference on Real-Time

Systems, pp. 166–175, 2012.

17. D. D. Niz, K. Lakshmanan, and R. Rajkumar, “On the Scheduling of Mixed-

Criticality Real-Time Task Sets,” 2009 30th IEEE Real-Time Systems

Symposium, pp. 291–300, 2009.

18. P. Penil, H. Posadas, J. Medina, and E. Villar, “UML-based single-source

approach for evaluation and optimization of mixed-critical embedded systems,”

2015 Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–6,

2015.

19. A. Namazi, S. Safari, and S. Mohammadi, “CMV: Clustered Majority Voting

Reliability-Aware Task Scheduling for Multicore Real-Time Systems,” IEEE

Transactions on Reliability, vol. 68, no. 1, pp. 187–200, 2019.

20. R. I. Davis and A. Burns, “Priority Assignment for Global Fixed Priority Pre-

Emptive Scheduling in Multiprocessor Real-Time Systems,” 2009 30th IEEE

Real-Time Systems Symposium, pp. 398–409, 2009.

21. J. Theis and G. Fohler. Mixed criticality scheduling in time-triggered legacy

systems. Proc. WMC, RTSS, 2013.

22. R.M. Pathan. Improving the Schedulability and Quality of Service for Federated

Scheduling of Parallel Mixed-Criticality Tasks on Multiprocessors. In Sebastian

Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS

2018), volume 106 of Leibniz International Proc. in Informatics (LIPIcs), pages

12:1–12:22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

23. M. Hassan, “Heterogeneous MPSoCs for Mixed-Criticality Systems: Challenges

and Opportunities,” IEEE Design & Test, vol. 35, no. 4, pp. 47–55, 2018.

60

24. Kalavade and E. Lee, “A global criticality/local phase driven algorithm for the

constrained hardware/software partitioning problem,” Third International

Workshop on Hardware/Software Codesign, Grenoble, France, pp. 42–48, 1994.

25. Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill Higher Education, 1994

26. Theis, Jens and Gerhard Fohler. “Schedule Table Generation for Time-Triggered

Mixed Criticality Systems.” (2013).

27. Alireza Namazi, Meisam Abdollahi, Saeed Safari, and Siamak Mohammadi.

2017. A Majority-Based Reliability-Aware Task Mapping in High-Performance

Homogenous NoC Architectures. ACM Trans. Embed. Comput. Syst. 17, 1,

Article 28 (December 2017).

28. T. Zhang, Q. Yue, X. Zhao, G. Liu, "An improved firework algorithm for

hardware/software partitioning", Appl. Intell., vol. 48, no. 12, pp. 100-116, 2018.

29. C. Yao, L. Qiao, L. Zheng, and X. Huagang. Efficient schedulability analysis for

mixed criticality systems under deadline-based scheduling. Chinese Journal of

Aeronautics, 2014. 16

30. J. Wang and H. Wang. Work-in-progress: Scheduling of graph-based end-to-end

tasks for distributed multi-criticality systems. In Proc. IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 129–132,

2017. 40

31. R. Trub, G. Giannopoulou, A. Tretter, and L. Thiele. Implementation of

partitioned ¨ mixed-criticality scheduling on a multi-core platform. ACM Trans.

Embed. Comput. Syst., 16(5s):122:1–122:21, 2017. 25

61

32. A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Mixed criticality scheduling in

fault-tolerant distributed real-time systems. In Embedded Systems (ICES), 2014

International Conference on, pages 92–97. IEEE, 2014.

33. L. Sigrist, G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping

mixed criticality applications on multi-core architectures. In Proc. DATE, pages

1–6, 2014.

34. L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols

for priority driven preemptive scheduling. Journal of Real-Time Systems,

1(3):244–264, 1989.

35. R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. Multi-

layered scheduling of mixed-criticality cyber-physical systems. Journal of

Systems Architecture, 59(10, Part D):1215 – 1230, 2013.

36. Y. Zhou, S. Samii, P. Eles, and Z. Peng. Partitioned and overhead-aware

scheduling of mixed criticality real-time systems. In Proc. of 24th Asia and South

Pacific Design Automation Conference, ASPDAC, pages 39–44. ACM, 2019.

37. L. Zeng, P. Huang and L. Thiele, "Towards the design of fault-tolerant mixed-

criticality systems on multicores," 2016 International Conference on Compilers,

Architectures, and Synthesis of Embedded Systems (CASES), Pittsburgh, PA,

2016, pp. 1-10.

38. R. M. Pathan, "Schedulability Analysis of Mixed-Criticality Systems on

Multiprocessors," 2012 24th Euromicro Conference on Real-Time Systems, Pisa,

2012, pp. 309-320.

39. D. Müller and A. Masrur, "The schedulability region of two-level mixed-

criticality systems based on EDF-VD," 2014 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Dresden, 2014, pp. 1-6.

62

40. S. Maurer and R. Kirner. Cross-criticality interfaces for cyber-physical systems.

In Proc. 1st IEEE Int’l Conference on Event-based Control, Communication, and

Signal Processing, 2015.

41. J. Lin, A.M.K. Cheng, D. Steel, and M.Y.-C. Wu. Scheduling mixed-criticality

real-time tasks with fault tolerance. In L. Cucu-Grosjean and R. Davis, editors,

Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, pages 39–44,

2014.

42. Z. Li and S. He. Fixed-priority scheduling for two-phase mixed-criticality

systems. ACM Trans. Embed. Comput. Syst., 17(2):35:1–35:20, 2018.

43. V. Legout, M. Jan, and L. Pautet. Mixed-criticality multiprocessor real-time

systems: Energy consumption vs deadline misses. In L. George and G. Lipari,

editors, Proc. ReTiMiCS, RTCSA, pages 1–6, 2013.

44. J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task

dropping in mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst.,

16:163:1–163:21, 2017.

45. K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno. Resource allocation in

distributed mixed-criticality cyber-physical systems. In ICDCS, pages 169–178,

2010.

46. P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-

criticality systems. In Proc. Design Automation Conference (DAC), pages 1–6.

IEEE, 2014.

47. N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient scheduling of

certifiable mixed-criticality sporadic task systems. In IEEE RTSS, pages 13–23,

2011.

63

48. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical

scheduler on single- and multi-processor platforms. In Proc. HPCC/CSS/ICESS,

pages 684–687, 2015.

49. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest

deadline first. In Proc. Euromicro Conference on Real-Time Systems (ECRTS),

2013.

50. J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using

task grouping. In Proc. 27th ECRTS, pages 25–36. IEEE, 2015.

