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ABSTRACT  
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Electroencephalography (EEG) is one of the most popular non-invasive techniques for 

acquiring electrical signals from the brain. Data mining EEG signals finds numerous 

applications in the field of neuroscience for obtaining crucial information about the neural 

activities. EEG data is very complex in that it is non-stationary and multidimensional. 

Therefore, the task is how to convert voluminous raw EEG data into a succinct 

representation. This research provides a methodology for representing EEG data in a 

concise and comprehensible format using a minimum number of data points without the 

loss of useful information. Among many applications of studying EEG data, detecting 

epileptic seizures concerns neurologists the most. Epilepsy is a serious disorder 

characterized by the occurrence of epileptic seizures. These seizures occur as a result of 

abnormal neuronal activities of the brain. Today, more than 65 million people in the world 

suffer from epileptic seizures which can be life-threatening. It is not just the physical effects 
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of seizure that impacts patients adversely but also the social isolation that the patient and 

their families face. If EEG signals are analyzed properly, seizures can be predicted at their 

onset. This thesis proposes a seizure prediction method which uses a novel time-series 

approach to provide a useful method for the diagnosis of epileptic seizures. The key to the 

method identifies transitions from non-epileptic(pre-ictal) to epileptic(ictal) segments of 

the EEG signal using offset statistical moving averages. This research examines EEG data 

of multiple epileptic patients from CHB MIT database.  The method analyzes EEG signals 

for common transitional patterns using multiple inter-patient and intra-patient seizure files. 

The experiments provide substantial results and predict seizures early in some situations 

and with a minimal latency in a few other situations.  
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1 INTRODUCTION 

With tremendous developments in neuroimaging technology, there has been an explosion 

of neuroscience data. Electroencephalography (EEG) is one of the most widely used 

techniques to obtain electrical signals from the brain. Hans Berger, a German psychiatrist 

developed the first human EEG in the year 1924 [Teplan02]. Many researchers and 

neuroscientists study EEG data to acquire an in-depth understanding of the human brain 

network. 

EEG exemplifies one of the non-invasive methods for acquiring electrical signals from the 

brain [Morshed14]. Data Mining EEG signals can be extremely useful for interpreting 

neural activities of the brain by analyzing frequency patterns associated with different 

neurological tasks.  

One of the major challenges when data mining EEG signals is the lack of any symmetry 

and consistency of the signals. EEG patterns border on a chaotic state make representation 

and interpretation difficult.  

Ideally, it would desirable to be able to map EEG signals to specific thoughts. However, 

due to the embryonic nature of the discipline, such a goal is unrealistic at this point. Moving 

in the direction of this ideal requires the distillation of EEG signals into a succinct form 

and to identifying replicated EEG patterns. 
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It would not be surprising to find very few replicated EEG patterns because of the chaotic 

nature of the data. One way to find more patterns would be to relax the constraints of 

acceptable matches. Thus increasing the number of matches at the expense of accuracy. 
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2 BACKGROUND 

2.1 EEG Recording Setup  

These electrical impulses are generated by neural activities of the brain and can be recorded 

by placing electrodes on different regions of the scalp. However, electrode placement can 

be a challenging task as it requires multiple permutations according to different cortical 

regions of the scalp [Simkin14]. 

An EEG recording setup uses the following equipment (refer Figure 1): 

1) Electrodes (gel-less, pre-gelled, saline based electrodes, and reusable metal 

electrodes) 

2) Conductive gel 

3) Amplifiers and filters 

4) Analog to Digital Converter 

5) Recording Hardware & Software 

Scalp electrodes vary from 1 to 3 mm in diameter with leads that are attached to the 

amplifier. For long term and invasive EEG recordings, needle electrodes which penetrated 

into the skin are used. Needles can cause infection and bleeding therefore proper hygiene 

must be maintained. For electrodes, an abrasive paste is applied on the scalp to create a 

minute abrasion for obtaining EEG recordings. For recording multiple channels electrode 

caps are usually preferred [Teplan02].  
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Electrodes generate signals in microvolts. These signals are amplified for required 

digitization. The A/D converter changes analog signals into digital format. Once the signals 

are in digital format, they can be stored and displayed on a computer. 

 

 

 

 

 

 

 

Figure 1: EEG Recording Setup [Teplan02]  
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2.2 Electrode Placement System 

EEG uses the International 10-20 System as a standard for electrode placement on the 

scalp. It is called 10-20 system because the electrodes are placed at distances in increments 

of 10%-20% over the anatomical regions of the brain(as shown in Figure 2). The electrodes 

are placed at these particular sites. EEG data varies with specific regions of the brain.  On 

the basis of these regions, letters are used to represent these sites. Central Sulcus (C), 

Frontal Lobe (F), Frontopolar area (FP), Occipital Lobe (O), Parietal Lobe (P), and 

Temporal Lobe (T). Label ‘A’ is used for reference sites such as ear positions and ground 

positions. Label ‘Z’ represents the central line along the hemisphere of the brain. Odd 

numbers are used to reference electrode sites to the left of the central line (Z) and even 

numbers for electrode positions to the right of the central line (Z). 

 

Figure 2: 10 – 20 International System of electrode placement [Cahn 06] 
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EEG channels represent spatial information via various electrode sites. It becomes 

important to categorize data according to cortical regions of the brain which requires data 

mining EEG signals. 

2.3 EEG Data 

Data obtained using electroencephalography (EEG) in the form of electrical rhythms or 

frequency bands (refer to Fig. 3) falls under the following categories [Teplan02]:  

 Delta (<4 Hz) – While in the Delta state, the mind experiences deep healing. These 

waves are observed when a person is sleeping. Delta waves have the highest 

amplitude. Sleep walking and sleep talking is observed in the Delta state. 

 Theta (4 - 8 Hz) - Theta waves indicate a deep relaxation state while the mind is 

still conscious. Theta waves indicate exceptional insight. These waves also occur 

when a person enters into sleep from alpha. 

 Alpha (8 - 14 Hz) - Alpha waves are observed when thoughts are smoothly flowing 

in the mind. It is a comparatively relaxed state. Increased amount of alpha waves is 

characterized by positive health benefits. 

 Beta (14 - 30 Hz) - These frequencies exist when the subject is in highly attentive 

state. For instance, if a person is having conversation with someone, engaged in 

some decision making or problem solving activity, then the brain emits Beta waves. 

 Gamma (>30 Hz) - Gamma frequencies occur when the subject or patient reaches 

an extremely deep meditative states like those in monks and nuns. It is a difficult 
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task to detect gamma frequencies using EEG recording since most recorders are 

capable of detecting signals only up to 25 Hz.  

 

Figure 3: EEG Frequency bands [Teplan02] 

2.4 Epileptic Data 

Epilepsy is a brain disorder which occurs as a result of transient changes in the activity of 

neurons. Recurrent electrical discharges in the EEG signals represent seizure activity.   It 

is prevalent worldwide among people of different age groups and therefore remains an 

issue of utmost concern. Around 65 million people suffer from epilepsy across the globe 

[Ngugi, Anthony K, 2010]. Researchers and scientists have been experimenting with 

different strategies to address and prevent epilepsy.  
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Common causes of epilepsy include: 

 Brain Stroke 

 Head injury 

 Trauma  

 Infections in certain part of the brain. 

The nature of epilepsy varies in terms of severity, type of epilepsy and the brain region 

from where it originates. The epilepsy pattern also changes from person to person. 

Collecting EEG data can be a time consuming task which takes several days [Guttag J., 

Shoeb A, 2010]. Continuous and long-term evaluation of EEG patterns helps monitor and 

diagnose seizure patterns in patients. 

2.5 Epileptic Seizures 

Epilepsy is accompanied by seizures that are unpredictable in nature. Epileptic seizures can 

be categorized into the following types: 

 Focal seizures. Focal seizures originate from specific region of the brain. These are 

also called partial seizures. During the time of seizure, it is possible that the patient 

is aware or may have impaired awareness. 

 Generalized seizures. A generalized seizure involves electrical disturbances in the 

entire brain. It affects both hemispheres of the brain. The patient usually has 
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impaired awareness during a generalized seizure [ Tzallas, Alexandros T, 

Tsipouras, Markos G, 2012]. 
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2.6 Dimensions of EEG Data 

 EEG data is multidimensional [Jrad11] and has following dimensions: 

 Spatial - EEG signals from various areas of the brain. This is done by selecting 

specific EEG channels (electrode sites). 

 Spectral - EEG signal representation based on specific frequency bands. 

 Temporal - representation of EEG signals based on time domain. 

Initially, EEG data is obtained in time-domain [Polikar96, Suleiman07]. However, the 

information obtained from time-domain analysis is not sufficient for obtaining useful 

information. Therefore, there is a need for frequency analysis or spectral analysis of raw 

EEG signals for obtaining relevant information from the signal. Various signal 

transformation techniques are available for converting a signal in time-domain to 

frequency-domain such as a Fourier Transform. However, if Fourier transform is used, 

only spectral information about the signal is available but not the time-domain information 

at the same time. Furthermore, Fourier Transform requires EEG signals to be stationary. 

However, since the EEG signals are non-stationary, it is not an efficient method to use 

Fourier Transform for analysis of EEG signals. Moreover, a signal processing technique is 

required which can provide both spectral and time domain analysis of the signal. Wavelet 

Transform (WT) can be used for time-domain as well as spectral analysis of EEG signals 

[Kong14], [Polikar96]. 
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2.7 Data Mining Approaches 

Data mining extracts useful information in the form of patterns or models from a given 

data set [Fayyad96]. Data obtained from various databases could be structured, semi-

structured, or unstructured. For efficient utilization of data, it must be analyzed using 

various data mining techniques. Data Mining deploys numerous approaches such as 

regression, classification, clustering, and association [Bharati10].  

 Regression - Regression techniques model the relationship between already known 

variables or data inputs and the variables or data that we want to predict. Linear 

Regression (LR), Non- Linear Regression and Multivariate Linear/Non-Linear 

Regression are some of the regression techniques in data mining. 

 Classification - Classification is a common data mining technique to distinguish and 

classify data records based on a pre-determined set of rules. Neural Networks (NN), 

Support Vector Machines (SVM), Decision Trees, etc. are examples of data mining 

tools capable of classification. 

 Clustering – Clustering partitions data based on similarities and dissimilarities. This 

algorithm seeks to create clusters having strong associations among its members and 

weak association across different clusters. There are various clustering methods 

available such as partitioning methods, hierarchical methods, grid-based methods, etc. 

[Bharati10] 

 Association Rule Learner - Association rules examine multiple attributes looking for 

correlation patterns.  Different types of association rules include Quantitative 
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Association Rule, Multilevel Association Rule, Multidimensional Association rule, 

etc.[Bharati10] 

2.8 Data Mining Strategies of EEG Data 

Based on the source of EEG data, signal processing and classification is done. A typical 

EEG signal may require one or more processing techniques such as artifact removal, 

feature extraction, classification algorithms to categorize EEG data, and for post- 

processing of signals etc. 

 Artifact Removal: EEG signals are contaminated with artifacts from external as well 

as internal sources. Any external activity in the environment such as electrode 

displacement, cable movements, applying too much electrode gel on the scalp surface, 

broken wire contacts, etc. add noise to the EEG signals [Nolan10]. Internal sources 

include artifacts arising from muscle movements, eye blinks, sweating etc. 

 Feature Extraction: A feature is a distinguishing property or a recognizable 

component that is derived from a pattern. Feature extraction seeks to obtain important 

information from huge and multidimensional data sets [Jrad11, Al-Fahoum14]. There 

are a variety of feature extraction methods that provide dimensionality reduction. 

 Classification of Features: After extracting relevant features, various classification 

techniques or classifiers can be applied to categorize the extracted features into classes. 

For example, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), 

clustering algorithms for modeling data, etc. are simple classifiers for feature 
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classification. Once classification is done, EEG data can be used for required 

applications. 

2.9 Challenges in Data Mining EEG Signals 

Mining EEG signals can lead to significant scientific breakthroughs. However, there are 

some major challenges related to data mining EEG signals. 

 Electrode placement is a critical task and it requires various adjustments to extract the 

desired EEG signals. 

 Electrodes used for collecting EEG data are highly sensitive and can easily pick up 

noises from other electrical activities within the surrounding environment. Also, other 

factors such as excessive application of gel on the scalp or any loose cables make it 

difficult to obtain clean EEG signals.  

 Any movement in subject’s muscle activity, eye movements, blinks, etc. can highly 

distort the original EEG signals. Also, external changes to the environment (e.g. noises, 

odors, light) can distort the EEG recordings.  

 EEG data is complex. A recording from a single electrode probe is composed of many 

other electrical signals from thousands of neurons, each of which has different 

amplitudes and frequencies. Therefore, separating and classifying individual wave 

frequencies is a difficult task [AlZoubi08].  

 EEG data collection is spatial. Integrating EEG readings from different brain locations 

poses a challenge.  
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 EEG data is temporal. The signals are susceptible to constant change within 

microseconds. The signals also tend to jitter from trial to trial. 

 Each person’s brainwave pattern is unique. Comparing two different person’s 

brainwaves requires calibration. 

 Despite the knowledge of the source of EEG signals, the neurons do not just depict the 

signals originating from that particular source. Rather it is a mixture of signals from 

other neurons in the surrounding space. Thus poor spatial resolution requires spatial 

filtering and preprocessing of raw EEG signals [Evans 08]. 

 EEG Signals can be chaotic. 
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3 LITERATURE REVIEW 

3.1 General Overview 

In the past two decades, a considerable amount of work has been published regarding 

data mining EEG signals. EEG data mining involves pre-processing, artifact removal, 

feature extraction, and classification techniques. These approaches vary with their area of 

application.  

 Flexer[2000] reviews of Data Mining techniques in EEG that have been used in the 

past. These include Neural Networks, Hidden Markov Models, Fuzzy Logic. 

 Bialas[2014] provides spatial filtering mechanism for filtering out irrelevant 

information from the raw EEG signal. An automatic EEG spike detection method 

is proposed by Ko[1998] for classifying EEG data from multiple channels using 

ANN. Ayhan[2011], Pullaiah[2017] et al. use discrete wavelet transform (DWT) 

for analyzing non-stationary EEG signals. Most of the artifact removal methods 

depend on the type of artifacts and their area of origin, for example artifacts arising 

from eye movements will be treated differently from artifacts originating from the 

head movements. Scholgel[2007] et al. provide such methods. Assi[2014] uses 

Independent Component Analysis (ICA) for ocular artifact removal.  

However, some artifact removal methods have a broader scope. For example, 

Junghofer[2000] et al. provides a SCADS method which can detect artifacts from 

various sources. Also, Nolan[2010] et al. describes some advanced artifact removal 

techniques. 
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 For feature extraction, various techniques exist. Azlan[2014] conducts feature 

extraction using ICA and PCA. Some researchers combine these techniques. 

Adeli[2003] uses Discrete-Wavelet Transform (DWT) for feature extraction. 

 In Classification algorithms, Subasi[2010] uses Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA), ICA, and Support Vector Machines 

(SVM) for classifying EEG signals. [Orhan11] deploys cluster-based approach for 

classification. Acharya[2012] apply classifiers such as K-Nearest Neighbor (KNN), 

SVM, ANN, Decision Trees (DT) and Fuzzy Sugeno Classifier in their work.  

Table 1 provides a general research perspective of machine learners and other signal 

processing techniques applied to EEG data. These methodologies are used for feature 

extraction and feature selection, classification of EEG signals, and also for processing EEG 

signals. Table 2 gives a distribution of the research papers mentioned in Table 1 spanning 

the past two decades.  

Although some significant amount work has been published in data mining EEG signals, 

many questions remain unanswered considering the complexity brain signals. 
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Table 1. Related Work - Machine Learners and Signal Processing for EEG Signals 

 
Machine 

Learner/Methodology 
Paper 

Clustering [Exarchos05,Lee10, KG06, Georgiev07,Panuccio02, 

Moerchen03]  

Fast Fourier [Geng14,Shirazi14, Moerchen03, Rivero15, Gevins74, 

Thieu15, Poulos98, Ramaraju11] 

Filtering [Ko98, Exarchos05,Bialas14] 

GA, GP [Schroder03,Yaacoub17,Petrantonakis09, Rejer13, 

Rivero15, Firpi05, Aguiar2000] 

ICA [Vigario2000,Muller2000,Subasi10,Hosni07,Shamlo13, 

Jirayucharoensak13, Assi14,Joyce03, Kroupi14, Azlan14, 

Lee09] 

K-NN or KNN [Wang11,Islam11,Chan15,Hu12, 

Swetapadma16,Acharya12, Lotte07,Schuster10, 

Chaovalitwongse07, Alzoubi08, Firpi05] 

Neural Network [Hazarika97, Ko98, Wang05,Basssani08, Yaacoub17, 

Islam11,Guan16,Swetapadma16, Wiechert16, Lhotska09, 

Acharya12, KG06, Garett03,Sen14, Lotte07, Jahankhani07, 

Jahankhani06, Flexer2000, Purnamasari16, Nurse16] 

K- Means Clustering [Assi14] 

Prin. Comp. Analysis (PCA) [Subasi10,Elsawy13,Labib16, Lhotska09, Azlan14, 

Jahankhani07] 

Spectral Analysis, Common 

Frequency Pattern 

[Pregenzer99,Dalponte07,Lin10,Suk11,Pan13, Geng14, 

Kroupi14, Alzoubi08, Gevins74, Poulos98] 

Support Vector Machine [Schroder03, Wang05, Subasi10, Hosni07,Lin10, 

Chaovalitwongse11, Wang_ Shouyi11, Islam11, 

Chen12,Hussein13, Pan13,Su13, Chan15, Labib16, 

Bugeja16, Swetapadma16, Alzoubi08,Chatchinarat16, 

Wiechert16, Deedwaniya16, Acharya12, KG06, Garett03, 

Sen14, Xu14, Lotte07, Kroupi14, 

Markopoulos16,Horlings08, 

Chaovalitwongse11,Chandrashekar14, Rejer13, Santana12, 

Pinto15] 

Wavelet Transform [Hazarika97,Xue03,Wang05, Subasi10,Takajyo06, 

Basssani08, Lee10,Ramaraju11,Ayhan11, Chen12, 

Jirayucharoensak13, Labib16,Robinson16,Pullaiah16, 

Chatchinarat16, Salah11, Jahankhani07, Jahankhani06, 

Moerchen03, Wang11,Wang_ Shouyi11, Geng14,Ting07, 

Gao10, Salah11, Purnamasari16] 

Quadratic Discriminant 

Analysis 

[Petrantonakis09, Swetapadma16] 

Self Organizing Maps [Yamagutchi07, Lee10] 
Linear Discriminant Analysis 

(LDA) 

[Subasi10,Wang10, Wang_ Shouyi11, Bialas14, Assi14, 

Swetapadma16, Garett03,Lotte07, Santana12] 

Common Spatial Patterns [Chen12,Xu14, Markopoulos16, Su12] 
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Table 2. Distribution of Related Research over the Past Two Decades 

 

 

Methodology 

Year 

97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 

Clustering      1 1  1 1 1       1    

Fourier 

Transform 

 1     1        1   2 2   

Filtering   1       1         1    

GA, GP    1   1 1 1    1    1  1  1 

ICA    2   1    1  1 1   2 3    

KNN         1  2 1  1 2 2   1 1  

NN 1 1  1   1  1 2 2 1 1  1 1  1  4 1 

PCA           1  1 1   1 1  1  

Spectral 

Analysis 

 1 1        1 1  1 1  1 2    

SVM       2  1 1 2 1  2 4 3 4 4 2 7  

Wavelet 

Transform 

1      2  1 1 3 1  3 6 1 1 1  5  

LDA       1    1   2 1 1  2  1  

QDA             1       1  

SOM           1   1        

CSP                1  2  1  

 

 

Figure 4 below shows a strong upward trend in publications on Data Mining EEG signals. 

 

 

 

 

 

Figure 4: Publication Rate (3-Year Average) Since 1997 
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3.2 Related Research 

There is a trending interest in the development of algorithms that not only detect the onset 

of seizures but also predict the seizures before they occur. Many linear and non-linear 

methods have been proposed. Linear methods include approaches such as examining 

variance, kurtosis, skewness etc. of the EEG signals. Non-linear methods include 

correlation density, similarity/dissimilarity index etc. 

Tarassenko et al. [1998] use a neural network classifier that predicts seizure for patient 

specific data as well as across patients. The authors detect spike patterns (inter-ictal 

activity) in EEG signals using time-domain parameters. These parameters are fed as input 

to a multi-layer perceptron. For patient specific classifiers, the authors achieved sensitivity 

between 83.1% to 97.3%. However, for other patients, the results gave an increased number 

of false-positives. Hence, clinical application across multiple subjects cannot be considered 

at this moment. 

Tzallas et al. [2009] also use artificial neural networks that classifies seizure and non-

seizure activity. The authors apply time-frequency analysis to extract features from EEG 

segments. These features depict energy distribution of the signal segments. These features 

are applied as input to neural network for classifying polyspikes (seizure activity). The 

authors tested this on publicly available datasets and obtained an accuracy varying from 

89% to 100%. 
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Sakkalis et al. [2013] use three approaches to identify absence seizures using Order 

Index(non-linear), Multiscale Variance Index(linear) and approximate entropy measures. 

All these methods achieved reasonable sensitivity in terms of detecting seizure. However, 

Multiscale variance gave biased results for detecting long duration seizures. This lead to 

lower specificity rates. Better performance is expected when these measures combine with 

other classifiers. 

Shoeb et.al [2010] propose a method that predicts the onset of seizure using Support Vector 

Machine(SVM) classifier. Due to the classification boundary issues between seizure and 

non-seizure, a radial basis function (RBF) kernel is also applied. The prediction of seizure 

is patient specific. The detector using this algorithm predicted seizure onset with 96% 

sensitivity. The authors further combine EEG and ECG recordings to predict the onset of 

seizure. Seizure prediction performance increases with this approach. 

Chaovalitwongse et. al [2006] apply optimization-based techniques to inter-cranial 

EEG(iEEG) data. The classification of normal and abnormal signals is prepared using 

support vector machines and statistical cross-validation. Rasekhi et al [2013] use linear 

univariate features and predict seizure using machine learning methods. Several univariate 

features are combined from 6 channels to create a feature space. This is repeated for each 

of the 10 patients.48 combinations of methods are applied to achieve best setting. 

Hasan et al. [2017] use the k-nearest neighbors (k-NN) algorithm for classification of 

seizure and non-seizure. Statistical parameters such as approximate entropy, standard 
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deviation, mean absolute value, standard error etc. are used followed by regression analysis 

for predicting seizure. The algorithm is applied to patients of different age groups. 

McSharry et al. [2003] discuss how linear methods like variance statistics perform 

equivalently well when compared with other complex non-linear techniques like 

correlation dimension between multiple channels. They also discuss how any seizure 

prediction scheme should test out-of-sample datasets that are not known to contain any 

seizures. Using this approach, seizure prediction algorithms are compared using false-

positives/outliers in a non-seizure dataset. 

Tzallas et al. [2012] lists common methods that have been used for detecting abrupt 

changes in EEG signals. These include knowledge-based rules, artificial neural networks, 

template-based methods, clustering techniques and other data mining techniques. They also 

mention the use of mimetic techniques which requires base rules set by an expert 

neurophysiologist to identify a spike as seizure. Spike attributes such as height, frequency, 

slope etc. are compared with the values provided by the neurophysiologist. All of these 

methods use either one of single-channel data or multiple-channel data. The authors 

provide a great review on existing seizure prediction and seizure identification techniques. 

Unlike the above approaches, this research uses a simple approach to identify and predict 

a seizure. Initially, the proposed method uses a classification approach using adjacent 

moving average groups. Later on, using additional offset values (in a loop), the method 

predicts seizure onset when the patient transitions from a non-seizure to a seizure mode. 
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Using the concept of different offsets, provides an adjusted threshold for better prediction 

of the seizure onset time. 
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4 STATEMENT OF PROBLEM 

EEG data represents different neural activities of the brain which is of great value to the 

field of neuroscience. Using EEG, the neurological state of the subject or patient can be 

determined, which can further be used for clinical, therapeutic, medicinal and physiological 

applications. 

From a clinical perspective, EEG diagnoses brain disorders such as attention deficit 

hyperactivity disorder (ADHD), Alzheimer’s disease, Schizophrenia, Epilepsy, etc. It is 

also capable of monitoring the state of coma, alertness and brain death. EEG analysis also 

helps in testing the effect of drugs and for detecting the origin of seizures, brain injuries 

and lesions.  

By observing EEG patterns, trauma and stress levels of a subject can be determined which 

significantly helps in cognitive behavioral therapies and for providing the required remedy 

or treatment to the subject or patient. Besides its clinical and medicinal applications, EEG 

data also finds application in Brain Computer Interface devices, which aim to provide 

assistance to the disabled. 

For the above mentioned applications of EEG data, representing EEG signals is a crucial 

issue. However, one of the biggest problems is the non-stationary and multidimensional 

nature of the EEG data subject to frequent and non-predictable changes. These problems 

hinder the ability to represent EEG signals in a condensed form.  

Furthermore, while recording EEG signals, the presence of errors and artifacts of various 

types requires extensive pre-processing and filtering mechanisms. 
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What is needed is a method of representing EEG waves in a succinct format with minimal 

loss of useful information that supports extensive pattern recognition by relaxing pattern 

constraints.  

The succinct representation is necessary for many EEG applications. One of these include 

monitoring EEG signals for the diagnosis and prediction of epileptic seizures in patients. 

The analysis of seizure patterns requires feature extraction. A feature essentially represents 

an important segment of a pattern.  While predicting a seizure, features would be the spots 

where abrupt changes in the signal patterns occur. Typically, an epileptic seizure is 

characterized by irregular patterns with spikes and waves. Part of the problem is to identify 

such spots.  

EEG signals are prone to artifacts and noises which are also identified by abrupt spikes, in 

such cases it is difficult to differentiate whether the change occurs due to onset of seizure 

or due to some random artifact/noise signal. It can increase the number of false-positives 

(outliers counted as seizures) and hence it becomes important to distinguish an epileptic 

seizure from an outlier. This requires using some form of classification mechanism. 

The frequency of seizures varies across different patients. For patients with infrequent 

seizures, it becomes difficult to discover seizures patterns. For obvious reasons, the lack of 

sufficient historical data hinders the process of pattern discovery in such cases. The results 

in such cases can be misleading. 

Even if any patient has frequent seizures, the types of seizures (focal, generalized, etc.) can 

vary. 
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Also, since the seizure patterns may differ from patient to patient, it becomes intuitively 

difficult to generalize parameters that give expected results across different patients.  

In order to locate the brain region from where the seizure actually originates, it becomes 

important to identify the onset of a seizure. Patients usually take anti-seizure drugs. For 

cases where patients suffer from recurrent seizures, these drugs don’t suffice alone, hence 

brain surgery becomes a requirement. If the onset of seizure is known, the surgeons can 

trace and locate the origin spot inside the brain. [Khan et al. [2012]]  
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5 CONTRIBUTIONS/TECHNICAL INNOVATIONS 

The following list shows the technical innovations of this research.  

 Distill EEG signals to a very simple representation using as few as three data 

points. 

Examining EEG signals from visual inspection can be a tedious task even for 

medical experts. This becomes all the more difficult in case of long-term EEG 

signals. Therefore, a simple representation of the EEG signal is needed that does 

not require manual analysis and can be embedded in clinical equipment that 

keeps track of the patient’s EEG signal.  

The proposed method uses data points from the original EEG signal and 

represents the important data in the form of peaks and valleys. The points of 

interest combine together to form triangular patterns. 

 The ability to relax constraints for what constitutes a match in EEG signals. 

This would help in recognizing similar patterns in the EEG waves which further 

depicts somewhat similar neural activities. 

This implies finding matches using threshold parameters. For instance, 

distinguishing between epileptic seizure data and non-seizure data, threshold 

boundaries can be utilized. 

 The ability to differentiate changes in state information. This implies detecting 

changes in frequency or amplitude of the EEG signal. This is helpful for 

detecting a change from non-epileptic zone to epileptic seizure.  
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The apparent chaotic nature of EEG signals with the added presence of artifacts 

makes it difficult to characterize a state transition. Other transitions such as 

seizure to non-seizure, or within seizures can also be detected using the 

proposed method. However, this research focuses on the prediction of non-

seizure to seizure, or the onset of a seizure. 

 The ability to describe more complex patterns by extending beyond three data 

points. 

The EEG datasets used for study are long-term recordings ranging from minutes 

to hours, and thus representing the signals using few data points alone cannot 

suffice. The triangular patterns formed using data points are further coalesced 

into groups. The groups are analyzed for transition. 

 This approach may be applied to other domains that use time-series data. 

Time-series data involves observations with constant time interval between the 

readings. Time-series analysis focuses on predicting trends, forecasting events, 

identifying patterns, detecting abnormalities in the data to identify fluctuations 

and outliers. Several estimation and interpolation techniques can be used to 

analyze time-series data depending on the complexity, application and nature 

of the data. Examples include weather forecasting, stock market prediction, or 

earthquake prediction. 

 Detect the onset of a seizure. 

The proposed method predicts the onset of seizure using supervised learning 

using both intra-patient and inter-patient data files.  
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 The use of offset Moving Averages 

This research uses moving averages to describe seizure and non-seizure groups, 

or signal segments. Different moving average approaches such as Simple 

Moving Average, Weighted Moving Average and Exponential Moving 

Averages can be used to determine changes in signal segments. At this point, 

the proposed method uses simple moving average as a parameter to detect 

change. The Methods section describe moving average offsets in greater detail. 

In addition to the above points, an efficient EEG signal processing algorithm could be 

developed or existing signal processing algorithms can be enhanced for extracting and 

representing relevant information from the EEG signals without a significant loss of useful 

information. This implies retaining parts of the EEG signal that are needed and 

discarding the ones not needed. So far, there is not a single signal processing algorithm 

that offers “best” results.  
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6 STATEMENT OF WORK 

Overview 

This research seeks to predict the onset of a seizure for a patient as early as possible. 

Seizures are accompanied by change in the EEG signals from normal to abnormal activity 

that usually occurs for few seconds.  

Since the seizure activity occurs for a comparatively smaller duration of time than non-

seizure activity, it is difficult to separate seizure and non-seizure parts of the signal. The 

presence of outliers creates problems as they also occur in spike and wave patterns. 

Details 

The initial step distills EEG signals into its simplest representation while minimizing the 

loss of useful information that might as well have seizure content.  

To understand the details of this research, consider the following sine wave below. 

 

 

 

 

Figure 5: A stationary wave pattern 
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The initial step identifies all peaks and valleys as depicted below. 

 

 

 

 

Figure 6: A stationary wave pattern with Peaks and Valleys Marked 

Next, distances are calculated as illustrated with the lines below. 

 

 

 

 

Figure 7: A stationary wave pattern with Peaks/Valleys and Distances 
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Similar distances are eliminated. 

 

 

 

 

Figure 8: A stationary wave pattern with Reduced Peaks/Valleys and Distances 

The final representation would consist of reduced number of peaks and valleys by 

removing the similar distances that keep repeating throughout the waveform and hence 

reducing the representation. 
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Anticipated issues modeling EEG waves with this approach include: 

 Tracking significant amplitude and frequency changes by determining the peak and 

valley positions. 

 Reducing the number of repeating symmetrical points, this would further be useful 

in removing unwanted segments of the EEG waves. 

Challenges representing EEG Waves 

The contrived example above assumes an extensive amount of symmetry in the wave 

pattern. Actual EEG waves contain an extensive amount of chaos as seen in Figure 9 below. 

Thus, making the representation much more challenging.  

  

 

 

 

Figure 9: EEG frequency bands 

In contrast to the stationary sine wave represented in Figure 5, the EEG waves in Figure 9 

are constantly changing in terms of successive peak and successive valley distances due to 

changes in frequencies. Furthermore, even the amplitudes are continuously changing. In 
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such a case, where the waves are non-stationary and no definite pattern is observed, it is a 

challenging task to succinctly represent the EEG waves. Publically available EEG data sets 

of normal subjects can be studied for exploring various EEG patterns. Further, data mining 

approaches can be applied to categorize EEG data based on required applications. 

Considering the chaotic nature of EEG data, this proposed method uses an algorithm that 

efficiently represents non-stationary signals with minimal loss of information. Only the 

trivial data points of the signal are discarded.  A more detailed description of relevant points 

in the signal can be understood from the details described in the methods section.  
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7 EXPERIMENTS 

7.1 Description of Data  

The experiments use a publically available database collected from the Boston Children’s 

Hospital [Venable et al. 2000]. The database consists of EEG recordings from 22 pediatric 

patients. Each patient folder contains EDF files with seizure/non-seizure data. Most of the 

files consist of one hour of data, while a few others have two to four-hours of data. The 

files adopt the follow naming convention chbxx_nn, where xx represents patient case and 

nn represents the file number. For instance, chb01_03 refers to third file for first patient. 

The European Data Format (EDF) is a standard format for representation and exchange of 

medical time series data between different systems [Kemp et al. 2003]. The programming 

language R provides a package called edfReader for reading EDF files. Once imported, 

EDF files can be converted to CSV format for processing the EDF data. 

The recordings for CHB MIT database use the standard International 10-20 system. Some 

files also record Electrocardiogram(ECG) data. The respective folders for all the patients 

in CHB MIT database contain a summary file with a description of the actual seizure start 

and end times. For each patient, multiple EDF files exist with multiple seizures events. 

The initial experiments use the chb01 (patient 1) EEG recordings from CHB-MIT database. 

The EDF files are imported into R Studio for analysis. In chb01, the “01” indicates the 

patient ID. This folder consists of EEG recordings of an 11-year-old female subject. These 
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EDF files are a mixture of seizure files and normal EEG data. Likewise, other patient 

folders also contain a mixture of seizure and non-seizure files. 

7.2 Methods 

All experiments use the programming language R, version 3.4.2, and RStudio 

Version 1.1.383. R provides statistical computing and data mining functionalities with 

graphics support [1]. It also produces high quality plots for time-series analysis. R offers 

over 10,000 packages.   

The original voltage values sampled at 256Hz. The proposed R algorithm discards any 

trivial data and considers only relevant signal values of interest in terms of peaks and 

valleys.  

The basic requirement requires finding peaks and valleys. After calculating the maximum 

number data points from the EDF file, local peaks and local valleys are determined. Peaks 

and valleys are defined as follows. 

 Peak: A data point ‘d[i]’is defined as a peak if the voltage values are higher than 

its neighbors [i-n] and [i+n] respectively. Hence, d[i] is a peak if it satisfies the 

following condition: 

d[i] > d[i-n] and d[i] > d[i+n], where n may range from 1 to k. 

 Valley: A data point ‘d[i]’is defined as a valley if the voltage values are lower than 

its neighbors [i-n] and [i+n] respectively. Hence, d[i] is a valley if it satisfies the 

following condition: 
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d[i]<d[i-n] and d[i]<d[i+n], where n may range from 1 to k. 

 

Figure 10: Local Peaks and Local Valleys (Open Circle Points are Ignored) 

After the local peaks and valleys are determined, the distance between successive peaks 

and valleys is calculated. The median of all the distances is the reference value. The set of 

peak and valley points with distances greater than the reference distance are the candidates 

for prominent peaks and valleys. They represent abrupt peak to valley and valley to peak 

changes in the signal. This approach tracks changes in signal amplitudes. Despite the ability 

to locate peaks and valleys, the following problems arose: 

 There are many consecutive peaks (and valleys) that are very close to each other.  

 Signal patterns with trivial size represent information that does not add any value. 

The main problem here is to ignore such peaks and valleys. 
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Figure 11: Refined peaks and valleys (Local Peaks_1 and Local Valleys_1) 

For resolving the above-mentioned problems, the Euclidian distance between every pair of 

consecutive Local Peaks_1 (and Local Valleys_1) is calculated. The calculated distances 

are sorted and one-third of the median distance is taken as the reference distance. If the 

distance between any two successive Local Peaks_1 or Local Valleys_1 is greater than the 

new reference distance, then only those peak and valley points are considered and the rest 

are ignored. Furthermore, if the height of any of the Local Peaks_1 is higher than the 

previous and the next peak, then again a reference measure is taken to eliminate previous 

and the next peak. Only the highest peak is retained. Same process applies to Local 

valleys_1. Only this time the lowest Local valleys_1 is considered ignoring the 

comparatively higher previous and the next Local valleys_1. These peaks (Local Peaks_2) 

and valleys (Local Valleys_2) capture dominant information about the signal. Finally, the 
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identified Local Peaks_2 and Local Valleys_2 are connected through lines to obtain 

triangular patterns.  

 

Figure 12: Refined peaks and valleys (Local Peaks_2 and Local Valleys_2) 

Volatility of each triangle is the Euclidean distance between highest peak/valley and the 

lowest valley/peak of the three points forming the triangle. These are stored in a list. Once 

the volatilities are derived for all the triangles formed using extracted data from the EDF 

file, the concept of moving averages is introduced. This approach applies to all chb01 EDF 

seizure files. 

The obtained volatilities for the entire EEG recording in each of the EDF file are further 

divided into groups. In this context, a group, see Figure 13, refers to collection of 

volatilities that are indexed from the beginning till the end within a group. Since, the 
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average for each group is calculated in a sliding window, these are referred to as Moving 

Average Groups throughout the text. 

 

Figure 13: Triangle Groups without Offset 

Assuming there are M moving average groups (G1, G2, G3, G4, …. GM) generated from any 

of the EDF seizure files, the R Script calculates the average of all the volatilities in each 

group. N period indicates number of volatilities in each group. In another way, the length 

of each group is referred to as N period. In this case group G1 consists of N (V1, V2, V3, 

V4, ….VN) volatility values. 

Moving Average Offset 

Once the volatilities are obtained, the idea of an offset with respect to moving average 

groups is introduced. Without an offset, a 10 period simple moving average would use 

volatilities(triangles) inside groups in the order {V1, V2…. V10}, {V2, V2...V11}, {V3, 

V2…...V12} … and so on. However, using an offset value of 4 changes the ordering of 
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volatilities to {V1, V2…. V10}, {V5, V6......V14}, {V9, V10…...V18} … and so on. Using an 

offset generates multiple permutations of settings. This allows for an exhaustive approach 

that finds optimized settings. Figure 14 illustrates the idea of groups with an offset. 

 

Figure 14: Groups with offset value as ‘1’ 

For any two adjacent groups G1 and G2 (assuming G1 occurs before G2 on the time line), 

following permutations are possible: 

a) G1 is non-epileptic G2 is epileptic. (transition from pre-ictal to ictal stage) 

b) G1 is epileptic G2 is non-epileptic (transition from ictal to post-ictal stage) 

c) Both G1 and G2 are epileptic (inter-ictal stage) 

d) Both G1 and G2 are non-epileptic (transition within normal stage) 

The transition from non- epileptic to epileptic group (pre-ictal to ictal stage) is of interest. 

 



 

 

41 

 

Two approaches that determine the change between adjacent groups: 

 Absolute  

This includes absolute changes and classifies a group as epileptic or non-epileptic. 

 Relative  

This approach calculates relative percentage change in the average values of two 

successive moving average groups in pairs {{G1, G2}, {G2, G3}, {G3, G4} 

……{G(M-1), GM}}. Let the percentage change be denoted by C1, C2, C3, C4…C (M-

1). For any change CK, the percentage change between previous groups is observed. 

If {C1, C2, C3, C4 ……C(K-1)} all are less than CK, then seizure begins at the last 

volatility value for group G(K+1), i.e. VN for G(K+1). 
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7.3 Experiment 1 

Goal: To optimize the settings for the patient chb01_03 seizure file. 

Experiment 1 uses the seizure data extracted from the R GUI application. The first 

application (as shown in figure 15) takes input with the following options: EDF File path, 

Select Channel, Select Time Interval. 

 

Figure 15:   First Input Window 

Details of the screen layout follow. 

 EDF seizure file path: For this experiment, patient 1 seizure file chb01_03.edf is 

selected. 

 Channel Information: Out of the 23 channel electrodes, any one of the channels 

can be selected. However, for this experiment, channel FP1_F7 is selected on a 

random basis. 
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 Time Interval: Since the actual seizure onset and ending time are already known, 

an approximate interval of 100 seconds before the onset and 100 seconds after the 

seizure ends is provided in the interval field. This selection is manual. For dataset 

chb01_03, the actual seizure begins at 2996 sec and ends at 3036 seconds according 

to the description in the CHB MIT database. Out of the 1-hour data available in the 

chb01_03 EDF file, only the data within the provided interval is extracted and 

experimented with. Clicking on Submit button generates two more windows: the 

plot window with the extracted data (figure 16) and the parameter setting window 

(figure 18) that takes further inputs. 
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Figure 16: Plot for chb01_03 data (2800 to 3100 sec) 

The above plot shows the extracted data between 2800 seconds to 3100 seconds for 

chb01_03 EDF file. These plots have zooming capability for better viewing of data. 

Figure 17 below zooms in using a range of 2879 to 2880, which corresponds to 1 

second’s worth of data and gives a finer granularity view.  
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Figure 17: Detailed view of 1 second data (2879 to 2880 seconds) for 

chb01_03.edf 

The fine-grained view in figure 17 shows the data encompassed (in the form of peaks and 

valleys) into triangular patterns. It also confirms the fact that maxima (peaks) and minima 

(valleys) cover all the data with insignificant loss of data (if at all). 

Figure 18 below shows the second window that appears with the plot window. 
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 Figure 18: Offset Moving Average Window 

The GUI allows for the selection of moving average type (SMA, in this case), period range, 

offset range and step sizes. Providing an N period range (both min and max), an offset 

range (both min and max) and their respective step sizes, generates a CSV file (Table 3). 

Each row in the file consists of a period value, offset value, group start time and group end 

time. Group end times refer to the time where the last volatility for any particular group 

occurs. Group end times indicate the onset of seizure. 
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Table 3. Sample from generated data 

Setting# Nth_Period 
Step size for N 

Period 
Offset 

Step size for 

Offset 
Start_Time End_Time 

1 20 10 150 10 3016.67 3016.91 

2 30 10 150 10 3016.67 3017.05 

3 40 10 150 10 3018.26 3018.68 

 

Multiple permutations and combinations of range values in the R GUI window for patient 

chb01 file# chb01_03 generates multiple CSV files. The EDF data is converted into CSV 

format because R offers limited functionality for using and manipulating EDF content. 

Table 4 shows the settings which provided the best results. 

However, setting 1 (as shown in figure 19) generates the best results for chb01_03. Setting 

1 populates an output CSV file with 774 sub-settings. These sub-settings are derived from 

the values provided in the setting 1 GUI window and one of these sub-settings generates 

closest possible seizure start time to the actual seizure time. For this data file, the actual 

seizure starts at 2996 seconds as provided in the summary details of CHB MIT database 

for file# chb01_03. The experiment predicts seizure onset at 3001.70 seconds with a 

latency of 5.7 seconds. 
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Figure 19: GUI Setting 1 for Generating data 

Since setting 1 generates optimum results for chb01_03, it is selected as a training 

parameter for other seizure files in patient chb01 folder. The same setting is applied to 

testing data sets chb01_04, chb01_15, chb01_16, chb01_18, chb01_21 seizure files for 

chb01. These are other seizure files in   patient folder chb01. 
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Table 4. Settings with Best Result chb01_03  

Setting# Nth_Period 
Step size for N 

Period 
Offset 

Step size for 

Offset 
Start_Time End_Time 

631 20 10 850 10 2954.74 2955.57 

478 20 10 680 10 2954.77 2955.62 

632 30 10 850 10 2954.74 2956.07 

568 20 10 780 10 2978.62 2979.57 

532 20 10 740 10 3000.54 3001.70 

 

7.4 Experiment 2 

Goal: Identify common sub-settings that predict seizure onset for all chb01 files.  

This experiment uses the optimized setting from experiment 1, which generates CSV files 

for testing patient chb01’s data sets chb01_04, chb01_15, chb01_16, chb01_18 and 

chb01_21. Each generated file consists of 774 sub-settings. Within each file, the sub-setting 

that gives the closest results in terms of the seizure start time is selected. For setting 1, 

some of the testing datasets detect seizure too early, while a few others predict seizure onset 

with minimal latency.  

7.4.1 Experiment 2A (Using the 999 Penalty) 

In this experiment, a penalty of '999' is applied to sub-settings that predict seizure start time 

way too early than the actual seizure start time. The results are sorted in ascending order 

on group end times, then again sorted by setting#. The remaining sub-settings are given 

rankings from 1 onwards till the last settings number. The rankings are reproduced for all 

chb01 files. 
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The new file with combined rankings of all files is again sorted in increasing order of the 

sum of ranks (as shown in Table 5). This affects the cumulative rankings of the sub-settings 

for all seizure files within the same patient chb01_03. As a result, the sorted rankings 

degrade for sub-settings with early seizure predicting times. 

The sub-settings shown in figure d do not exhibit any particular pattern, they are scattered 

throughout the file. Since there is no consistent pattern of sub-settings, it is unclear which 

set of settings compete for predicting onset of seizure. Although, the cumulative rankings 

are available for all 774 sub-settings for all chb01 files, the rankings do not indicate a 

prevalent group based on settings.  
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Table 5: Sub-settings in Ascending order using sum of the ranks with ‘999’ penalty 

Setting# chb01_03 chb01_04 chb01_15 chb01_16 chb01_18 chb01_21 Sum of Ranks  
Average 

Rank 

671 95 51 72 270 80 125 693 115.50 

389 29 85 174 50 184 207 729 121.50 

433 7 37 357 35 170 162 768 128.00 

434 10 40 369 37 173 170 799 133.17 

121 76 252 335 124 10 46 843 140.50 

47 25 61 426 106 181 77 876 146.00 

239 93 15 176 82 144 385 895 149.17 

122 89 267 342 140 14 54 906 151.00 

240 101 17 184 94 152 396 944 157.33 

340 40 180 26 348 205 165 964 160.67 

241 108 19 192 110 160 408 997 166.17 

341 42 193 36 352 209 172 1004 167.33 

342 43 208 48 356 213 175 1043 173.83 

127 28 486 170 51 116 208 1059 176.50 

665 60 49 71 217 603 69 1069 178.17 

164 208 72 20 38 352 400 1090 181.67 

125 115 317 364 181 27 95 1099 183.17 

666 71 50 79 231 608 84 1123 187.17 

390 35 92 182 59 194 572 1134 189.00 

165 215 81 29 42 366 412 1145 190.83 

46 5 54 413 92 180 406 1150 191.67 

126 122 337 374 196 34 109 1172 195.33 

739 332 334 171 20 310 10 1177 196.17 

166 226 88 39 48 376 421 1198 199.67 

711 236 163 407 6 20 373 1205 200.83 

 

7.4.2 Experiment 2B (No penalty for early detection) 

Unlike the previous experiment 2A, this experiment does not impose any penalty on sub-

setting rankings. Instead of ‘999’, a ‘0’ value is added to the sub-setting rankings, hence 

there is no effect on the cumulative rankings for all chb01 files. 
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Within each file, the data is sorted by group end time in an increasing order. All the settings 

that detect seizure too early, i.e. before the predicted seizure start time, are ranked ‘0’, this 

time with no penalty. The remaining ones are ranked 1,2,3…till the end. The entire csv file 

is again sorted in the original order of setting numbers (1-774). This is repeated for each 

csv file. A sample for chb01_04 can be seen in Table 6. 

Table 6. Ranked sub-settings for chb01_04 

Setting# N_period 

Step size for N 

Period Offset 

Step size for 

Offset 

Start 

Time 

End 

Time Rank 

1 20 10 150 10 1494.46 1495.46 616 

2 30 10 150 10 1502.78 1503.69 672 

3 40 10 150 10 1494.46 1496.05 629 

4 50 10 150 10 1483.46 1483.84 347 

5 60 10 150 10 1483.46 1483.91 368 

6 70 10 150 10 1483.46 1483.97 389 

7 80 10 150 10 1483.46 1484.04 409 

8 90 10 150 10 1483.46 1484.11 425 

9 100 10 150 10 1483.46 1484.20 441 

10 20 10 160 10 1458.96 1460.59 0 

11 30 10 160 10 1458.96 1461.14 0 

12 40 10 160 10 1483.44 1483.73 324 

13 50 10 160 10 1483.44 1483.81 342 

14 60 10 160 10 1483.44 1483.89 363 

15 70 10 160 10 1483.44 1483.96 384 

16 80 10 160 10 1483.44 1484.02 404 

17 90 10 160 10 1483.44 1484.10 421 

18 100 10 160 10 1483.44 1484.19 438 

19 20 10 170 10 1468.98 1469.67 1 

20 30 10 170 10 1468.98 1470.48 2 

 

A new observation sheet consists of the following column headers: sub-setting#, names of 

testing files in separate column headers followed by a column for sum of ranks. The file 
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has 774 rows which represent sub-settings. The sum of ranks for each testing file is 

determined. The sheet data is again sorted in the increasing order of sum of ranks for sub-

settings (1-774). 

An interesting pattern can be observed from this experiment. A cluster pattern of settings 

ranging from sub-setting# (670-700) is visible, each of which is under top 15 among all 

774 ranked sub-settings. However, for the remaining ranked setting numbers no such 

cluster appears. A fragment of the results can be seen in Table 7.  
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Table 7. Sub-settings in ascending order of sum of the ranks for all chb01 files no 

penalty 

Setting# 

chb01_0

3 

chb01_0

4 

chb01_1

5 

chb01_1

6 

chb01_1

8 

chb01_2

1 Sum of Ranks 

685 137 0 94 0 81 190 502 

694 3 0 113 0 245 232 593 

695 167 0 0 0 258 237 662 

676 111 0 398 0 5 159 673 

696 171 0 0 0 268 240 679 

697 173 0 0 0 273 242 688 

671 95 51 72 270 80 125 693 

689 155 0 118 0 217 218 708 

389 29 85 174 50 184 207 729 

690 160 0 122 0 229 223 734 

691 163 0 125 0 244 227 759 

433 7 37 357 35 170 162 768 

698 174 73 0 0 276 247 770 

692 166 0 127 0 257 231 781 

699 175 82 0 0 281 255 793 

712 214 125 0 435 6 14 794 

434 10 40 369 37 173 170 799 

693 170 0 130 0 267 236 803 

121 76 252 335 124 10 46 843 

47 25 61 426 106 181 77 876 

605 301 3 0 507 69 6 886 

239 93 15 176 82 144 385 895 

631 0 541 0 23 334 0 898 

122 89 267 342 140 14 54 906 

307 407 38 198 0 95 193 931 

 

Tables 9 to 13 show results for setting# 685, 694,695, 676 and 696 respectively. The 

experiment calculates the seizure start time for each setting for all chb01 files. Latency can 

be defined as follows: 

Latency = (Predicted Seizure Start Time - Actual Seizure Start Time) (Eq. 1) 
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Latency values can be positive or negative. Detecting a seizure after it occurs indicates a 

positive latency. Negative latency refers to seizures predicted before they actually 

occurred. The average latencies vary across all five settings. For patient chb01_03, the 

settings with average latencies is shown in the below table 8. 

Table 8. Average latency for all chb01 files using all 5 settings 

 

 

Table 9. Results with setting# 685 when applied to all chb01 files 

Setting# 685 

File# 

Predicted 

Seizure Start 

Time(sec) 

Actual Seizure 

Start Time(sec) 
Latency(sec) 

chb01_03 3012.93 2996 16.93 

chb01_04 1417.59 1467 -49.41 

chb01_15 1740.76 1732 8.76 

chb01_16 1008.17 1015 -6.83 

chb01_18 1745.06 1720 25.06 

chb01_21 381.06 327 54.06 

 

 

 

 

Setting

# 

Average Start 

Time(Predicted) 

Average Start 

Time(Actual) 

Average Latency (sec) for all chb01 

seizures 

685 1550.93 1542.83 8.1 

694 1552.27 1542.83 9.44 

695 1552.93 1542.83 10.1 

676 1546.65 1542.83 3.82 

696 1553.22 1542.83 10.39 
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Table 10. Results with setting# 694 when applied to all chb01 files 

Setting# 694 

File# 

Predicted 

Seizure Start 

Time(sec) 

Actual Seizure 

Start Time(sec) 
Latency(sec) 

chb01_03 3003.56 2996 7.56 

chb01_04 1417.58 1467 -49.42 

chb01_15 1742.57 1732 10.57 

chb01_16 1008.66 1015 -6.34 

chb01_18 1758.27 1720 38.27 

chb01_21 383.01 327 56.01 

 

Table 11. Results with setting# 695 when applied to all chb01 files 

Setting# 695 

File# 

Predicted 

Seizure Start 

Time(sec) 

Actual Seizure 

Start Time(sec) 
Latency(sec) 

chb01_03 3013.64 2996 17.64 

chb01_04 1459.85 1467 -7.15 

chb01_15 1693.64 1732 -38.36 

chb01_16 1008.75 1015 -6.25 

chb01_18 1758.51 1720 38.51 

chb01_21 383.2 327 56.2 

 

Table 12. Results with setting# 676 when applied to all chb01 files 

Setting# 676 

File# 

Predicted 

Seizure Start 

Time(sec) 

Actual Seizure 

Start Time(sec) 
Latency(sec) 

chb01_03 3012.41 2996 16.41 

chb01_04 1377.23 1467 -89.77 

chb01_15 1774.71 1732 42.71 

chb01_16 1007.75 1015 -7.25 

chb01_18 1728.64 1720 8.64 

chb01_21 379.16 327 52.16 
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Table 13. Results with setting# 696 when applied to all chb01 files 

Setting# 696 

File# 

Predicted 

Seizure Start 

Time(sec) 

Actual Seizure 

Start Time(sec) 
Latency(sec) 

chb01_03 3013.74 2996 17.74 

chb01_04 1460.64 1467 -6.36 

chb01_15 1694.14 1732 -37.86 

chb01_16 1008.84 1015 -6.16 

chb01_18 1758.64 1720 38.64 

chb01_21 383.31 327 56.31 

 

7.5 Experiment 3 

Goal: To test optimized settings for chb01 on chb02, chb03 and chb04 patient files. 

The previous experiments predict seizures for the same patient(chb01). This experiment 

seeks to examine generalizability of the algorithm and predicts the onset of seizure for 

other patients in CHB MIT dataset. Training data uses chb01 settings which applies the 

settings to the chb02, chb03 and chb04 seizure files. 

The optimized sub-settings (ranked top 5) derived from experiment 2B are tested for all 

seizure files in patient chb02, chb03 and chb04 folders. Folders chb02, chb03 and chb04 

consist of 3, 7 and 3 EDF seizure files respectively. File chb04_28, which is one of the 

seizure files for patient chb04, consists of two seizures within the same file. Tables 14(a-

e), 15(a-e), 16(a-e) show the experimental results. 
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Table 14 a: Results with chb01 cluster setting# 685 applied to patient chb02 files 

 

 
Setting# 685 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb02_16 194.59 130 64.59 

chb02_16_plus 2847.25 2972 -124.75 

chb02_19 3487.83 3369 118.83 

 

Table 14 b: Results with chb01 cluster setting# 694 applied to patient chb02 files 

Setting# 694 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb02_16 221.05 130 91.05 

chb02_16_plus 2847.39 2972 -124.61 

chb02_19 3316.47 3369 -52.53 

 

Table 14 c: Results with chb01 cluster setting# 695 applied to patient chb02 files 

Setting# 695 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb02_16 221.11 130 91.11 

chb02_16_plus 2910.2 2972 -61.8 

chb02_19 3260.07 3369 -108.93 

 

Table 14 d: Results with chb01 cluster setting# 676 applied to patient chb02 files 

Setting# 676 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb02_16 234.14 130 104.14 

chb02_16_plus 3069.25 2972 97.25 

chb02_19 3485.53 3369 116.53 
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Table 14 e: Results with chb01 cluster setting# 696 applied to patient chb02 files 

Setting# 696 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb02_16 221.16 130 91.16 

chb02_16_plus 2910.3 2972 -61.7 

chb02_19 3260.14 3369 -108.86 

 

For patient chb02, optimized settings predict seizure with an average delay of 8.76 seconds. 

For patient files chb03 and chb04, the experiments detect seizure with an average of 13.9 

and 24.82 seconds respectively.  

 

Table 15 a: Results with chb01 cluster setting# 685 applied to patient chb03 files 
 

Setting# 685 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb03_01 375.27 362 13.27 

chb03_02 747.89 731 16.89 

chb03_03 445.91 432 13.91 

chb03_04 2112.83 2162 -49.17 

chb03_34 1953.24 1982 -28.76 

chb03_35 2516.76 2592 -75.24 

chb03_36 1631.02 1725 -93.98 

 

 

Table 15 b: Results with chb01 cluster settings# 694 applied to patient chb03 files 

 
 

Setting# 694 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb03_01 375.85 362 13.85 

chb03_02 822.02 731 91.02 

chb03_03 446.72 432 14.72 

chb03_04 2231.27 2162 69.27 

chb03_34 2019.71 1982 37.71 

chb03_35 2480.3 2592 -111.7 

chb03_36 1737.79 1725 12.79 
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Table 15 c: Results with chb01 cluster setting# 695 applied to patient chb03 files 

Setting# 695 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb03_01 375.92 362 13.92 

chb03_02 822.13 731 91.13 

chb03_03 446.8 432 14.8 

chb03_04 2231.38 2162 69.38 

chb03_34 1997.41 1982 15.41 

chb03_35 2480.36 2592 -111.64 

chb03_36 1737.9 1725 12.9 

 

Table 15 d: Results with chb01 cluster setting# 676 applied to patient chb03 files 

Setting# 676 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb03_01 374.7 362 12.7 

chb03_02 755.33 731 24.33 

chb03_03 463.83 432 31.83 

chb03_04 2244.32 2162 82.32 

chb03_34 1953.16 1982 -28.84 

chb03_35 2685.18 2592 93.18 

chb03_36 1745.76 1725 20.76 

 

Table 15 e: Results with chb01 cluster setting# 696 applied to patient chb03 files 

Setting# 696 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb03_01 375.98 362 13.98 

chb03_02 822.18 731 91.18 

chb03_03 446.91 432 14.91 

chb03_04 2231.49 2162 69.49 

chb03_34 1997.49 1982 15.49 

chb03_35 2480.41 2592 -111.59 

chb03_36 1851.45 1725 126.45 
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 Table 16 a: Results with chb01 cluster setting# 685 applied to patient chb04 files 
 

Setting# 685 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb04_05 7859.52 7804 55.52 

chb04_08 6477.48 6446 31.48 

chb04_28_a 1710.41 1679 31.41 

chb04_28_a 3860.13 3782 78.13 

 

 

Table 16 b: Results with chb01 cluster setting# 694 applied to patient chb04 files 

 

Setting# 694 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb04_05 7707.61 7804 -96.39 

chb04_08 6517.65 6446 71.65 

chb04_28_a 1742.07 1679 63.07 

chb04_28_a 3861.53 3782 79.53 

 

 

 

Table 16 c: Results with chb01 cluster setting# 695 applied to patient chb04 files 

 

Setting# 695 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb04_05 7707.71 7804 -96.29 

chb04_08 6517.8 6446 71.8 

chb04_28_a 1742.13 1679 63.13 

chb04_28_a 3861.66 3782 79.66 

 

Table 16 d: Results with chb01 cluster setting# 676 applied to patient chb04 files 

 

Setting# 676 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb04_05 7874.75 7804 70.75 

chb04_08 6565.07 6446 119.07 

chb04_28_a 1747.92 1679 68.92 

chb04_28_a 3850.37 3782 68.37 
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Table 16 e: Results with chb01 cluster setting# 696 applied to patient chb04 files 

 

Setting# 696 

File# 

Predicted Seizure Start 

Time(sec) 

Actual Seizure Start 

Time(sec) 

Latency 

(sec) 

chb04_05 7707.78 7804 -96.22 

chb04_08 6508.16 6446 62.16 

chb04_28_a 1742.22 1679 63.22 

chb04_28_a 3861.78 3782 79.78 

 

Table 17. Best Settings for all chb01, chb02, chb03 and chb04 files 

Patient 

Seizure File# 
Setting# Nth_Period 

Step size for N 

Period 
Offset 

Step size for 

Offset 

Group 

Start_Time(sec) 

Group 

End_Time(sec) 

chb01_04 676 20 10 900 10 1376.35 1377.23 

chb01_15 695 30 10 920 10 1691.75 1693.64 

chb01_16 676 20 10 900 10 1007.60 1007.75 

chb01_18 676 20 10 900 10 1728.51 1728.64 

chb01_21 676 20 10 900 10 378.55 379.16 

chb02_16 685 20 10 910 10 194.23 194.59 

chb02_16plus 685 20 10 910 10 2847.13 2847.26 

chb02_19 695 30 10 920 10 3259.86 3260.07 

chb03_01 676 20 10 900 10 374.56 374.70 

chb03_02 685 20 10 910 10 747.75 747.89 

chb03_03 685 20 10 910 10 445.73 445.91 

chb03_04 685 20 10 910 10 2111.85 2112.84 

chb03_34 676 20 10 900 10 1953.00 1953.16 

chb03_35 694 20 10 920 10 2480.17 2480.30 

chb03_36 685 20 10 910 10 1630.92 1631.02 

chb04_05 694 20 10 920 10 7707.47 7707.61 

chb04_08 685 20 10 910 10 6476.83 6477.49 

chb04_28a 685 20 10 910 10 1710.24 1710.41 

chb04_28b 676 20 10 900 10 3850.14 3850.38 

 

Patient demographic may contribute to the experimental results, where similar age patients 

show similar results due to the commonalities of their brain morphologies. There is a high 

chance that patients of similar age groups exhibit similar seizure patterns. Patient chb01 is 

a 11-year-old female, chb02 is a 11-year-old male, chb03 is 14-year-old female and chb04 
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is a 22-year-old male. The average latency for all test settings using chb01 increases with 

the age for other patients [Table 17]. 

Table 18. Average Prediction Delay for all patient files with all 5 settings 

Patient# Age Gender 
Average Latency for all files & 

settings(sec) 

chb01 11 Female 8.36 

chb02 11  Male 8.76 

chb03 14  Female 13.9 

chb04 22 Male 24.82 

 

The above observation shows comparable average delays for patient chb01_01 and 

chb01_02 (with same age). However, the experiment requires more samples in order to 

statistically validate conclusions regarding patient demographics and the average 

prediction delays. 
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8 DISCUSSION 

The CHB MIT data set contains about 1 hours’ worth of readings. Considering the slow 

execution of plots in R, each data set is truncated to approximately 90 seconds before and 

after the seizure occurs. This allows for sufficient data points to perform the experiments. 

These points include pre-ictal, ictal and post-ictal data. 

The experiments assess the results based on degree of deviation from the actual seizure 

time. All the experiments seek to minimize latency between the onset of a seizure and when 

it is predicted (after the onset).  If a neurologist wants to detect the origin of seizure, then 

exactness of predicted onset timing is vital.  

The preprocessing step distills key information from the original EDF data files by 

selecting critical points referred to earlier as peaks and valleys. The approach performs 

substantially well for all the files in the CHB MIT dataset. 

EEG recordings use signals from 23 channels. To reduce the complexity, all the 

experiments focused on EEG signals of channel FP1_F7. Additional analysis of other 

channels may improve the results. Certainly fodder for future research.  

Experiment 1 examines the best settings for chb01_03 that serves as a training parameter 

for other files. The negative latency values indicate false positives. It includes all results 

which predict the onset of seizure before it actually occurs. The optimized settings used for 

this experiment generated positive average latency for all chb01 files. The experiment also 

provided foundation settings for other experiments. The pre-processing step was part of the 
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first experiment. The best results for all 6 data sets were within 20 percent of the best 

rankings.  

Considering the lack of correlation between results, the high ranking of the best settings 

for all 6 data sets showed a high level of consistency. Figures 20 and 21 show the 

correlation between chb01 files with and without penalty respectively.  

Table 19. Correlation Matrix (For ‘999’ penalty) 

 chb01_03  chb01_04 chb01_15 chb01_16 chb01_18 chb01_21 

chb01_03  1 0.16 -0.2 -0.35 0.14 0.13 

chb01_04 0.16 1 0.14 0.11 -0.38 -0.43 

chb01_15 -0.2 0.14 1 -0.38 -0.6 -0.18 

chb01_16 -0.35 0.11 -0.38 1 0.08 -0.41 

chb01_18 0.14 -0.38 -0.6 0.08 1 0.03 

chb01_21 0.13 -0.43 -0.18 -0.41 0.03 1 

 

Table 20: Correlation Matrix (No penalty) 

 chb01_03 chb01_04 chb01_15 chb01_16 chb01_18 chb01_21 

chb01_03 1 -0.34 -0.43 0.22 -0.13 0.08 

chb01_04 -0.34 1 0.02 0.1 -0.06 -0.61 

chb01_15 -0.43 0.02 1 -0.14 -0.48 -0.17 

chb01_16 0.22 0.1 -0.14 1 -0.62 -0.64 

chb01_18 -0.13 -0.06 -0.48 -0.62 1 0.5 

chb01_21 0.08 -0.61 -0.17 -0.64 0.5 1 
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Experiment 2 uses optimized settings derived from experiment 1 and studies the impact of 

optimized settings on other seizure files for the same patient. It predicts the seizure onset 

for other intra-patient seizure files. The experiment tests chb01_04, chb01_15, chb01_16, 

chb01_18 and chb01_21 data with training settings from chb01_03. Penalizing the 

rankings did not show any cluster pattern among settings. However, rankings without 

penalty show a consistent pattern of settings. 

Experiment 3 tests the optimized settings from experiment 1 on inter-patient data to 

determine robustness of these settings. EEG patterns usually differ from patient to patient. 

While this assumption did not require testing inter-patient data, it may potentially provide 

an analysis for patients belonging to same age group having similar seizure patterns. 

However, we did not test this for any other dataset apart from CHB MIT datasets. Thus, 

due to small number of samples the effectiveness of experiment 3 cannot be generalized 

for datasets outside CHB MIT dataset. 

It is interesting to observe how intra-patient settings had lower latency values when 

compared with inter-patient data. For same patient files 8.36 sec was the average delay but 

for other patients it ranged between 8 to 25 seconds approximately. 

The previous related research mostly deals with predicting seizure before it occurs. This 

research focused on predicting the onset of seizure even if it was detected after the actual 

onset but not before.  
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The data set includes the time of the actual seizure. One approach would be to claim that 

predicting a seizure before it occurs is a good thing. The opposite approach is assumed for 

this research. A data set might not contain any seizures, so predicting the occurrence needs 

to be viewed as a False Positive. 
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9 CONCLUSION 

The experimental results predict seizure with minimal deviation from the actual seizure. 

For experiment 1, after executing multiple runs of settings, resulted in an optimized setting. 

The results clearly indicate that the approach is very responsive to the onset of a seizure. 

This setting gives the best result for patient chb01_03 and predicts seizure onset at 3001.70 

seconds with a latency of 5.7 seconds. The same settings when applied to other chb01 files 

provided both positive and negative latency. This may be a matter of chance but for all the 

files the average latency was positive.  

The rankings with no penalty showed a cluster of settings that percolated to the top. 

However, the individual rankings for all chb01 files did not show any significant 

correlation between them, both for no penalty and for penalized rankings. The common 

settings when applied to other intra-patient seizure files in experiment 2, resulted in 

variable latencies and performed well in most cases.  

For experiment 3, patient chb01 and chb02 had similar average latency. This may be 

attributed to the fact that patients were of same age. The average latency for all patients 

showed a linear relation with the age of the patient. However, due to the limited number of 

samples, the results cannot be generalized until tested on multiple other patients with 

varying demographics. The latency for all four patient files (chb01, chb02, chb03, chb04) 

ranged from a few seconds to approximately 2 minutes and not more than that. The 

proposed approach provided viable results for all datasets used in the experiments.  
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10 FUTURE DIRECTIONS 

 

Current experiments may be enhanced as follows: More patients can be compared with 

each other on the basis of their seizure data. Patients belonging to diverse age groups can 

be studied. Instead of building a model from single patient files, all patient files can be used 

to build models. This can make the model robust and the model itself can be applied to 

patients of different age groups.  

The current method uses simple moving average. Other types of moving averages, such as 

Weighted Moving Average(WMA), Exponential Moving Average (EMA) may be 

explored to predict the onset of seizure. These methods can be combined with machine 

learners to further increase the prediction efficiency. Neural networks can also be used in 

combination with the existing proposed method.  

For the experiments, multiple channels may be explored instead of single channel. Another 

possible approach would be the use of surrogate channel that combines all important 

aspects of multiple channel signals into a single channel.  

This research can be applied to different time-series domains. It may be used to predict 

stocks in the financial world. Other possible use includes predicting trends in other time-

series analysis such as weather forecasting and earthquake prediction. The approach may 

produce different results according to the complexity of data and their applications. 
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