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ABSTRACT 

THE LAMB SHIFT AT FINITE TEMPERATURE AND DENSITY  
 
 
 

Thomas G. Etienne 
University of Houston-Clear Lake, 2018 

 
 
 

Thesis Chair: Samina S. Masood, Ph.D. 
 
 

The Lamb shift is a well-known phenomenon that breaks the degeneracy in the 2S1/2 and 

2P1/2 energy levels.  The currently accepted experimental value is measured to be 

approximately equal to 1057.862 MHz, or 4.3795×10-6 eV, and theoretically calculated 

values are very close to this.  Theoretical derivation requires a perturbative approach of 

quantum field theory.  Renormalization constants of Quantum Electrodynamics (QED) 

such as vacuum polarization, self-energy, and radiative corrections to the wave function 

of the electron contribute to the currently accepted theoretical value of the Lamb shift.  

We review the structure of the hydrogen atom and the Lamb shift of its 2S1/2 and 2P1/2 

energy levels in isolation, and then calculate the temperature and density contributions to 

the Lamb shift for extremely hot and dense media using the real time approach of QED, 

which give all the radiative corrections in the form of Masood’s function in many body 

QED.  This result has very important applications in astrophysics and cosmology. 
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1 

CHAPTER I:  INTRODUCTION 

 

Structure of the hydrogen atom is determined from solving Schrödinger’s 

equation in quantum mechanics.  However, the detailed study of structure includes a very 

small change in the energy levels of different orbitals.  This cannot be explained without 

the use of relativistic contributions, which can be calculated using the perturbative 

techniques of quantum field theory.  The Lamb shift is a small amount of energy that 

breaks degeneracy in the 2S1/2 and 2P1/2 energy levels; theoretically it is determined by 

radiative corrections.  The currently accepted experimental value is measured to be 

approximately equal to 1057.862 MHz, or 4.38 × 10-6 eV, and theoretical calculations 

have come very close to this [2].   

Calculation of the Lamb shift gives the precise measurement of the orbital energy 

of the hydrogen atom, which is needed to describe the correct structure of the atom.  

Calculation of the thermal contribution to the Lamb shift will help to determine the 

detailed structure of the hydrogen atom.  The complexity of orbital structure of hydrogen, 

or any other atom, is revealed by the application of perturbative quantum mechanics.  

These techniques are used to calculate small changes in energy that are needed to break 

degeneracy and correctly understand the distribution of electron energy within the energy 

orbitals.  At high energies, quantum mechanical approach is to be replaced by quantum 

field theory, and analytical techniques of perturbative quantum electrodynamics (QED) is 

applied to study the orbital distributions in a more accurate manner.  Quantum statistical 

physics becomes increasingly more relevant when studying electrodynamic interactions 

in hot and dense media like stellar cores and the early universe.  For this purpose, the 

real-time perturbation theory is used.  In order to calculate finite temperature and density 
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[1.1.1] 

(FTD) effects of QED on the Lamb shift, it is first necessary to understand how the Lamb 

shift is calculated in quantum mechanics, and then at higher energies in QED vacuum.  In 

this chapter, the transition from classical mechanics to quantum mechanics is reviewed, 

and Schrödinger’s solution to hydrogen structure is discussed.  Discussion will then 

follow as to why quantum field theory is necessary to incorporate relativistic effects, 

allowing for real time analysis of perturbative effects. 

 

Equations of Motion 

The Euler-Lagrange equation of motion is considered to be the most general 

equation of motion and can be solved to describe the dynamics of the hydrogen atom.  

D’Alembert’s principle, or calculus of variation, are common approaches to determining 

hydrogen structure [16].  The most basic definition from Newton’s laws for the classical 

trajectory of a particle in a conservative potential is given by 

 

𝑚𝑥 = −
𝑑𝑉
𝑑𝑥

 

It might not be as obvious in classical mechanics as to why the above equation needs to 

be reformulated, but it should be relatively obvious from a quantum mechanical 

standpoint: seeing as how this equation gives the impression that we would be able to 

find an equation for the position of a particle in a well-defined potential.  Obviously this 

is not realistic in the realm of quantum mechanics, so we will now take steps to find 

equations of motion purely in terms of energies, which are measureable quantities. 

In dealing primarily with the single electron hydrogen atom, we will be treating 

our electron-proton system as a central force orbital problem, where the total energy will 

remain a constant, so that 𝐸 = 𝑇 + 𝑉, where T is the kinetic energy and V is the potential 
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[1.1.2] 

[1.1.3] 

[1.1.4] 

[1.1.5] 

energy.  We may write the average kinetic energy and average potential energy 

respectively as  

𝑇 = *
+

*
,

+
- 𝑚 𝑥 𝑡 ,𝑑𝑡     and     𝑉 = *

+
𝑉+- 𝑥 𝑡 𝑑𝑡 

This problem needs to be generalized to many different independent variables, thus it is 

necessary to use the techniques of the calculus of variations, otherwise known as 

Hamilton’s principle [1, 16].  It can be shown that the average kinetic and average 

potential energies vary from their classical trajectories like 

 
𝛿𝑉 𝑥
𝛿𝑥 𝑡

=
𝑉0 𝑥
𝜏

					and					
𝛿𝑇 𝑥
𝛿𝑥 𝑡

=
−𝑚𝑥
𝜏

 

With a substitution of equation (1.1.1) into the equation on the left in (1.1.3), the average 

kinetic and average potential energies are related through the equation 

 
𝛿

𝛿𝑥 𝑡
𝑇 𝑥 − 𝑉 𝑥 = 0 

Equation (1.1.4) implies that the difference between the average kinetic energy 

and the average potential energy is stationary around the classical trajectory of a system.  

This provides motivation to define a Lagrangian L as 𝐿 = 𝑇 − 𝑉.  The action S will be 

defined as the integral of the Lagrangian over time, so that 𝑆 = 𝐿𝑑𝑡+
-  , and the units for 

action are conveniently shared with that of Planck’s constant h.  Hamilton’s principle 

states that the trajectory a particle will take can be determined from the condition of least 

action such that the rate of change of action vanishes: 

 
𝛿𝑆
𝛿𝑥 𝑡

= 0 

A substitution of the definition of the action as the integral involving the Lagrangian, and 

following an application of the Leibniz integral rule, the Euler-Lagrange equation in 

generalized coordinates is 
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[1.1.6] 

[1.1.7] 

[1.1.8] 

[1.1.9] 

[1.1.10] 

[1.1.11] 

𝜕𝐿
𝜕𝑞;

−
𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞;

= 0 

For a Lagrangian 𝐿(𝑞;, 𝑞;, 𝑡) , we can write 

 

𝑑𝐿 =
𝜕𝐿
𝜕𝑞;

𝑑𝑞; +
𝜕𝐿
𝜕𝑞;

𝑑𝑞; +
𝜕𝐿
𝜕𝑡
𝑑𝑡 

With substitutions for the canonical momentum 𝑝; = 𝜕𝐿 𝜕𝑞; and the time derivative for 

the canonical momentum 𝑝; = 𝜕𝐿 𝜕𝑞; , a Legendre transformation is used to arrive at the 

Hamiltonian H  written in terms of the Lagrangian as 

 

𝐻 = 𝑝;𝑞; − 𝐿 

The Hamiltonian is simply equal to the total energy so long as the potential is derived 

from a conservative force, and the equations defining the generalized coordinates don’t 

depend on time.  In looking at variations in the Hamiltonian, we will eventually 

determine the first-order equations of motion known as Hamilton’s equations 

 

𝑞; =
𝜕𝐻
𝜕𝑝;

						and						 − 𝑝; =
𝜕𝐻
𝜕𝑞;

 

It is shown classically [1, 16] how naturally Lagrangians and Hamiltonians for 

continuous systems may be transformed into Lorentz covariant actions by defining the 

Lagrange ℒ and Hamiltonian ℋdensities.   

 

𝐿 = 𝑑C𝑥ℒ and 𝐻 = 𝑑C𝑥ℋ 

The Lagrange and Hamiltonian densities will prove to be more useful for relativistic 

treatment.  The relationship between the Hamiltonian density and the Lagrangian density 

can now be written as 

ℋ = ∏𝜙 − ℒ 
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[1.1.12] 

[1.1.13] 

[1.1.14] 

where ∏ 𝑥 = Fℒ
FG

 is the conjugate momentum, and 𝜙 is the field component which will 

be defined in more detail later on.  Equation (1.1.6) will also transform nicely to  

 
𝜕ℒ
𝜕𝜙

− 𝜕H
𝜕ℒ

𝜕 𝜕H𝜙
= 0 

The rate of change of any general function F can be written as 

 
𝑑𝐹
𝑑𝑡

=
𝜕𝐹
𝜕𝑡

+
𝜕𝐹
𝜕𝑞;

𝑞; +
𝜕𝐹
𝜕𝑝;

=
𝜕𝐹
𝜕𝑡

+ 𝐹, 𝐻  

The final term in equation (1.1.13) is the Poisson bracket with the Hamiltonian.  If the 

function F does not depend explicitly on time, then the Poisson bracket will be equal to 

zero, and the function F is a constant of the motion.  By looking at the rate of change of 

the expectation value of an operator 𝐹 , we can relate any Poisson bracket to the 

commutator in quantum mechanics [1] by 

 

𝐹, 𝐻 →
1
𝑖ℏ

𝐹, 𝐻  

Up to this point, we have really only reviewed some of the main formalisms of classical 

mechanics, while hinting at some transitions that need to be made to incorporate 

relativistic quantum mechanics.  The purpose of this section was to show that it is 

possible to describe complex systems in terms of Lagrangian and Hamiltonians through 

the aforementioned equations.  In the next section, a transition will be made to the realm 

of quantum mechanics; keeping in mind, that we may also transition to relativistic 

formulation by transforming our Lagrangian and Hamiltonians to Lagrangian densities 

and Hamiltonian densities, respectively.   

 

 

 



 
 

6 

[1.2.1] 

[1.2.2] 

[1.2.3] 

[1.2.4] 

Schrödinger’s Hydrogen Atom 

The study of the hydrogen atom is one of the more popular topics in quantum 

mechanics, particularly because it is a two-body problem.  In quantum mechanics, the 

energy 𝐸 = 𝑖ℏ F
FN

 and momentum 𝑝 = −𝑖ℏ∇ are operators that act on the wave function 

𝜓(𝑥, 𝑡).  For systems in which the total energy is given by the Hamiltonian [4], 

 

𝐸𝜓 𝑥, 𝑡 = 𝐻𝜓 𝑥, 𝑡  

For the free-particle, it can be easily seen that the wave function has plane-wave 

solutions of the form 𝜓 𝑥, 𝑡 = 𝑁𝑒S; TNSU∙W .  From the plane-wave solution, it is also 

clear that the eigenvalues are ℏ𝑘 for the momentum operator, and ℏ𝜔 for the energy 

operator.   

For the single electron hydrogen atom, a potential is included, so that the 

Hamiltonian is given by 

𝐻 = −
ℏ,

2𝜇
∇, + 𝑉 𝑟  

where µ is the reduced mass 𝜇 = ]^]_

]^`]_
 , and V(r) is the potential energy, which is 

assumed to depend only on the radial separation of the proton and electron.  Rewriting 

the kinetic energy term of the Hamiltonian in spherical polar coordinates, and making a  

substitution with the angular momentum operator 

 

𝐿, = −ℏ,
1

sin 𝜃
𝜕
𝜕𝜃

sin 𝜃
𝜕
𝜕𝜃

+
1

sin, 𝜃
𝜕,

𝜕𝜃,
 

equation (1.2.2) is written as 

 

−
ℏ,

2𝜇
1
𝑟,

𝜕
𝜕𝑟

𝑟,
𝜕
𝜕𝑟

−
𝐿,

ℏ,𝑟,
+ 𝑉 𝑟 𝜓 𝑟 = 𝐸𝜓 𝑟  
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[1.2.5] 

[1.2.6] 

[1.2.7] 

[1.2.8] 

The potential energy term will be written as 𝑉 𝑟 = − def

ghij k
 which may be 

general for any single-electron atom with a nucleus of charge Ze, and r is the distance 

between the electron and the nucleus.  Since the primary focus here is on the hydrogen 

atom, Z will be taken to be equal to 1.  The wave function in equation (1.2.4) is then 

written in terms of a radial function and the spherical harmonics [4].  It is already known 

that the spherical harmonics are eigenfunctions of the angular momentum operator, and 

are given as 

𝐿,𝑌m] 𝜃, 𝜙 = 𝑙 𝑙 + 1 ℏ,𝑌m] 𝜃, 𝜙  

With these substitutions, equation (1.2.4) is now written in terms of just the radial wave 

function 𝑅pm 𝑟  as 

 

−
ℏ,

2𝜇
𝑑,

𝑑𝑟,
+
2
𝑟
𝑑
𝑑𝑟

+
𝑙 𝑙 + 1 ℏ,

2𝜇𝑟,
−

𝑍𝑒,

4𝜋𝜀- 𝑟
𝑅pm 𝑟 = 𝐸𝑅pm 𝑟  

The final two terms in the brackets may also look familiar from studies involving 

orbital mechanics, where the angular momentum term may be thought of as a centrifugal 

barrier.  In this way, these final two terms can be combined into an effective potential 

such that 

𝑉euu 𝑟 =
𝑙 𝑙 + 1 ℏ,

2𝜇𝑟,
−

𝑍𝑒,

4𝜋𝜀- 𝑟
 

Solutions for equation (1.2.6) then begin with a substitution for some radial function 

uEl(r) = rREl(r) [4].   The Schrödinger equation then reduces to 

  
𝑑,𝑢pm 𝑟
𝑑𝑟,

+
2𝜇
ℏ,

𝐸 − 𝑉euu 𝑟 𝑢pm 𝑟 = 0 

We will be focusing our attention on situations for E < 0, where bound states may 

exist within the effective potential.  It is also convenient to develop dimensionless 

quantities 𝜌 = − xHp
ℏf

*/,
𝑟   and 𝜆 = 𝑍𝛼 −H|f

,p

*/,
  , where 𝛼 = 𝑒, 4𝜋𝜀-ℏ𝑐 ≈ *

*C�
  is 
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[1.2.9] 

[1.2.10] 

[1.2.11] 

[1.2.12] 

the fine structure constant [4].  With substitutions of these dimensionless quantities into 

equation (1.2.8), the equation to be solved is written as 

 
𝑑,

𝑑𝜌,
−
𝑙 𝑙 + 1
𝜌,

+
𝜆
𝜌
−
1
4
𝑢pm 𝜌 = 0 

It is noted that when ρ approaches infinity, the middle two terms in the brackets of 

equation (1.2.9) become negligible, so that for large ρ, solutions to the above equation are 

exponential functions.  Since the initial assumption was that E < 0, primary focus is on 

the bound states so that exponential functions that vanish at infinity will be kept.  The 

radial equation should then have solutions like 𝑢pm 𝜌 = 𝑒S� ,𝑓pm 𝜌  [4].  Substitution of 

this expression into equation (1.2.9) then gives 

 
𝑑,

𝑑𝜌,
−
𝑑
𝑑𝜌

−
𝑙 𝑙 + 1
𝜌,

+
𝜆
𝜌
𝑓pm 𝜌 = 0 

An expansion of solution for 𝑓 𝜌  around the origin is made so that 𝑓 𝜌  can be 

written like 𝑓 𝜌 = 𝜌m`* 𝑐U𝜌U�
U�-  where c0 is not zero, and the assumption is made so 

that the function 𝑓 𝜌  behaves like ρl+1 around the origin.  Upon substituting this 

expansion into equation (1.2.10), a summation over the all values of k gives 

 

𝑘 𝑘 + 1 + 2𝑙 + 2 𝑘 + 1 𝑐U`* + 𝜆 − 𝑙 − 1 − 𝑘 𝑐U 𝜌U = 0
�

U�-

 

Since the term in brackets of equation (1.2.11) must vanish separately from ρk, then the 

coefficients 𝑐U`* and 𝑐U are related by  

 

𝑐U`* =
𝑘 + 𝑙 + 1 − 𝜆

𝑘 + 1 𝑘 + 2𝑙 + 2
𝑐U 

To ensure that only radial functions with acceptable behavior are kept, it will be 

assumed that the series expansion terminates eventually at some value of k = nr, where nr 
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[1.2.13] 

is the positive integer that is defined as the radial quantum number.  Since this is the 

largest value of k allowed, it can be seen that cn+1 = 0.  Then from equation (1.2.12) it is 

determined that 𝜆 = 𝑛k + 𝑙 + 1.  The principle quantum number n is defined as               

n = nr + l + 1 (n = 1, 2, 3,…).  The eigenvalues for equation (1.2.9) are therefore λ = n.  

From the initial definition of λ, it is seen that the bound-state energy eigenvalues are 

discrete in nature, and Schrödinger’s solution for the hydrogen atom energy levels yields 

 

𝐸� = −
1
2
𝜇𝑐,

𝛼,

𝑛,
=
−13.6	eV

𝑛,
								𝑛 = 1,2,3, … 

It is noted that the energy eigenvalues seen here depend only on the principle 

quantum number n, so that we have degeneracy with respect to the orbital and magnetic 

quantum numbers l and m.  For each value of n, the orbital angular momentum quantum 

number is n-1fold degenerate, and for each value of l, the magnetic quantum number m is 

(2l + 1) fold degenerate.  The total degeneracy can then be shown to be 2n2 when taking 

spin into account.  The energy levels are shown in Figure 1.1 on the following page. 

It will be shown in later sections that relativistic effects perturb these energy 

levels and break the degeneracy between the states.  However, before doing this, a 

discussion will be given as to why quantum mechanics is no longer a viable approach if 

these effects are expected to be considered.  
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Figure 1.1 – Schrödinger’s Energy Levels 
 
The energy levels of Hydrogen as determined by solving the Schrödinger equation with 
non-relativistic schemes. 
https://commons.wikimedia.org/wiki/File:Hydrogen_energy_levels.png 
  

 

Relativistic Quantum Mechanics 

The Schrödinger picture in quantum mechanics is a representation that deals with 

time-independent operators and time-dependent state vectors.  Stationary states of 

particles are associated with time independent wave functions.  In the Heisenberg picture, 

the time evolution of a stationary state of particles is determined through time dependent 

operators.  Conceptual significance of the Schrödinger representation is based on the fact 

that it allows for the annihilation of a state vector, which can then be once again created 

at a different instant in time.  However, transition to such a representation brings up an 

unacceptable result: the probability amplitude for a single particle to exist beyond its 

forward light-cone is nonzero [1].  It is therefore not possible to reconcile special 
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[1.3.1] 

[1.3.2] 

[1.3.3] 

relativity with single-particle quantum mechanics.  In order to incorporate the relativistic 

effects properly, a transition is made from a single-particle notion to a quantized field 

notion. 

The Klein-Gordon wave equation was the first attempt in constructing a 

relativistic formulation of quantum mechanics.  The Einstein energy-momentum 

relationship 𝐸, = 𝑚, + 𝑝, in the natural units (c = 1) can be written in terms of the 

previously defined operators.  This leads to the Klein-Gordon equation [9] 

 
𝜕,𝜓
𝜕𝑡,

= ∇,𝜓 − 𝑚,𝜓 

It is worth noting here that this equation gives a plane wave solution for the field, and 

more importantly, the speed at which the plane waves propagate for a massless particle 

would be the speed of light.  It is common to express the Klein-Gordon equation in the 

Lorentz invariant form as 

 

𝜕H𝜕H + 𝑚, 𝜓 = 0															𝜕H𝜕H =
𝜕,

𝜕𝑡,
−
𝜕,

𝜕𝑥,
−
𝜕,

𝜕𝑦,
−
𝜕,

𝜕𝑧,
 

As was mentioned above, the Klein-Gordon equation perfectly works for bosons and can 

be useful for the description of photons as massless particles.  However, for massive 

particles, the solutions for the field from equations (1.3.1) and (1.3.2) give negative 

energy solutions described by unphysical negative probability densities [9]. 

 The physical implications of the Klein-Gordon equation led Dirac to search for an 

alternative form of the first order wave equation to incorporate the half integral spin of 

particles.  Dirac begins by expressing the wave equation as 

 

𝐸𝜓 = 𝜶 ⋅ 𝑝 + 𝛽𝑚 𝜓 
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[1.3.4] 

[1.3.5] 

where the coefficient 𝜶 has components corresponding to the momentum vector.  Upon 

squaring both sides of (1.3.3), it can be shown that in order to satisfy the Einstein energy-

momentum relationship, and therefore the Klein-Gordon equation, the coefficients in 

(1.3.3) must satisfy [9]  

𝛼W, = 𝛼�, = 𝛼�, = 𝛽, = 𝐼 

𝛼�𝛽 + 𝛽𝛼� = 0 

𝛼�𝛼U + 𝛼U𝛼� = 0			(𝑗 ≠ 𝑘) 

In order for the relationships in (1.3.4) to be satisfied, the coefficients in (1.3.3) must be 

matrices.  Furthermore, it is shown that these coefficients must be traceless, leading to the 

condition that the matrices describing these coefficients must be at least 4 × 4 

antisymmetric matrices containing opposite spins and particle-antiparticle asymmetries.  

The coefficients are therefore defined in terms of the Pauli spin matrices 𝜎; as [3] 

 
𝛽 𝐼 0

0 −𝐼 					and					𝛼; =
0 𝜎;
𝜎; 0  

where the Pauli spin matrices 𝜎; are represented as 

 
𝜎W =

0 1
1 0 ,						𝜎� =

0 −𝑖
𝑖 0 ,						𝜎� =

1 0
0 −1  

The 4 × 4 dimension of the operators now requires a four-component wave function, 

called the Dirac spinor [9].  It will be noted here that a relativistic treatment forces the 

wave function to have four components.  Had equation (1.3.3) been evaluated with the 

assumption of a massless field, then 2 × 2 matrices would be acceptable solutions for the 

α coefficients as equation (1.3.5) gives the block representation of 𝜎; matrices, and the 

state fields could be properly described by a two component object.  A covariant form of 

the Dirac equation can be written in a compact form as 
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[1.3.6] 𝑖𝛾H𝜕H − 𝑚 𝜓 = 0 

where the gamma matrices 𝛾H in (1.3.6) are defined by 

𝛾- ≡ 𝛽  ,  𝛾* ≡ 𝛽𝛼W  ,  𝛾, ≡ 𝛽𝛼�  ,  𝛾C ≡ 𝛽𝛼� 

The four-component wave functions developed by Dirac provide a natural description of 

the intrinsic angular momentum of spin ½ particles and antiparticles, and solutions for 

equation (1.3.6) for the free particle at rest yield positive and negative energy solutions, 

just as the Klein-Gordon equation did [9].  A detailed interpretation of the negative 

energy states is not in the scope of this thesis.  However, it is worth noting that the four 

components are represented by spin-up and spin-down states for both particles and 

antiparticles.  The four dimensional operators correspond to 4-momentum or 4-

dimensional coordinate space, and the 4-component spinors correspond to 4-dimensional 

relativistic coordinates. 

 By taking relativistic effects into consideration, the wave functions of fermions 

are completely rewritten in the form of the Dirac spinors.  In the following section, it will 

be determined that these relativistic effects will alter the energy levels that were 

determined by the Schrödinger equation.   

 

Dirac Solution for Hydrogen Atom 

The dynamics of electrons in a hydrogen atom is governed by the more formal 

approach of the Dirac equation.  Solutions for the energy levels of electrons in a 

hydrogen atom are found by using equation (1.3.6) in a somewhat simplistic fashion, 

primarily with the intent that it will also verify the validity of the Klein-Gordon equation 

when dealing with energy states of the atom itself.  Motivation for developing Dirac’s 

equation was to give physical meaning to the probability densities described by the wave 

functions.  This is what makes Dirac’s equation more meaningful.  However, in terms of 
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[1.4.1] 

[1.4.2] 

[1.4.3] 

[1.4.4] 

relativistic corrections to energies, both approaches will be valid to a certain extent.  For 

the complete correction, only Dirac’s approach can be used, as it incorporates spin 

corrections as well. 

The Dirac equation with the incorporation of the hydrogen Coulomb potential is 

written as 

𝐸 +
𝑒,

𝑟
− 𝜶 ⋅ 𝒑 − 𝛽𝑚 𝜓 = 0 

 

By multiplying both sides by 𝐸 + ef

k
+ 𝜶 ⋅ 𝒑 + 𝛽𝑚  and applying the commutation 

relations of the coefficients α and β , equation (1.4.1) can be written as [17] 

 

𝐸 +
𝑒,

𝑟

,

− 𝒑, − 𝑚, + 𝑖𝜶 ⋅ 𝒓
𝑒𝟐

𝑟𝟐
𝜓 = 0 

At this point spherical symmetry of the hydrogen atom is assumed, and it is useful to use 

a similar strategy as was done using the Schrödinger equation.  For this purpose, the 

momentum operator is written in spherical coordinates, and the eigenvalues of the 

angular momentum operator are substituted in for the parts that are not dependent on 

position.  Equation (1.4.2) can then be simplified to 

 

𝐸 +
𝑒,

𝑟

,

−
1
𝑟
𝑑,

𝑑𝑟,
𝑟 −

𝑙 𝑙 + 1
𝑟,

− 𝑚, + 𝑖𝜶 ⋅ 𝒓
𝑒𝟐

𝑟𝟐
𝜓 = 0 

Following a block diagonalization of the coefficient α [17], it then follows that 

 

𝐸, − 𝑚, + 2𝐸
𝑒,

𝑟
−

1
𝑟
𝑑,

𝑑𝑟,
𝑟 −

𝑙 𝑙 + 1 + 𝛼, ± 𝑖𝛼𝝈 ⋅ 𝒓
𝑟,

𝜓 = 0 

 

The numerator in the last term in the brackets includes the total spin of the electron j, 

which is a combination of the orbital and spin angular momentum.  The third term in this 
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[1.4.5] 

[1.4.6] 

[1.4.7] 

[1.4.8] 

numerator commutes with J, so it is useful to write the numerator in matrix 

representation as [17]  

 

𝑙 𝑙 + 1 + 𝛼, ± 𝑖𝛼𝝈 ⋅ 𝒓 =
𝑗 + *

,
𝑗 + C

,
+ 𝛼, ∓𝑖𝛼

∓𝑖𝛼 𝑗 − *
,

𝑗 + *
,
+ 𝛼,

 

 

The eigenvalues of (1.4.5) are written as 𝜆 𝜆 + 1  where the positive shift 𝜆` and 

negative shift 𝜆S are determined to be 

 

𝜆` = 𝑗 +
1
2

,

− 𝛼,
*
,
						and						𝜆S = 𝑗 +

1
2

,

− 𝛼,
*
,
− 1 

In terms of just these eigenvalues and the radial terms, equation (1.4.4) becomes 

 

𝐸, − 𝑚, + 2𝐸
𝑒,

𝑟
−

1
𝑟
𝑑,

𝑑𝑟,
𝑟 −

𝜆 𝜆 + 1
𝑟,

𝜓 = 0 

In comparing this equation to previous results, the energy levels of the Dirac equation are 

then given by 

𝐸�� = 𝑚 1 +
𝛼

𝑛 − 𝑗 + 1 2 + 𝑗 + 1 2 , − 𝛼,

, S* ,

 

It is easily shown that for n = 1, which can only correspond to j = ½, the principal energy 

level matches that given by equation (1.2.12).  However, for higher energies, equation 

(1.4.8) shows that there is clearly breaking in the state degenerate in j that the 

Schrödinger solution would otherwise give.  As a relevant example, the n = 2 level would 

allow for j = 1/2 and j = 3/2.  Upon calculating the energy levels for these individual 

states, it is seen that there exists an energy difference of approximately 4.53 × 10-5 eV 

between the 2S1/2, or 2P1/2, and 2P3/2 states.  This is a small, yet measureable, shift in the 

energy, and is known as the fine structure of hydrogen. 
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 It is evident that under relativistic conditions, the spin effects of the fields must be 

taken into account in order to properly describe the structure of the hydrogen atom.  The 

solution of the Dirac equation and the experimental measurement of the fine structure 

near 4.53 × 10-5 eV verify this notion.  However, the Dirac equation still shows 

degeneracy for energies with similar j, but different l.  Measurements made by Willis 

Lamb proved otherwise when he determined a shift between energies in the 2S1/2 and 

2P1/2 states.  The splitting of the n=2 lines to show fine structure and QED corrections is 

shown in Figure 1.2.  Of course, this is known as the Lamb shift, and an in depth study of 

quantum field theory, specifically QED, is necessary before being able to properly 

determine the perturbative effects responsible for this shift.  The next two chapters will 

focus primarily on these perturbative corrections.  Following this, the structure is 

improved upon by taking temperature effects into consideration. 

 

 

 
Figure 1.2 – Schrödinger, Dirac, and QED Energy Levels 
 
(Left)  The difference between results from Bohr (Shrödinger), Dirac and QED 
corrections for the n=2 state. 
http://dydaktyka.fizyka.umk.pl/Wystawy_archiwum/z_omegi/lamba-en.html 
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CHAPTER II:  QUANTUM FIELD THEORY 

 

In the previous chapter, it was shown how the relativistic Klein-Gordon equation 

immediately provided a natural description for massless particles, something that was 

lacking in non-relativistic quantum mechanics.  Dirac’s relativistic formulation then 

provided a natural description for the spin of the electron, and experimental observation 

of the fine structure splitting helped to validate the necessity for a relativistic formulation 

of quantum mechanics.  In this chapter a transition is made to field theory, and with this 

transition the propagator is used in preference to the wave function.  The propagator, 

unlike the wave function, contains even more information since it describes how a 

particle travels from one location in space-time to another.  This allows for the inclusion 

of the possible interactions that the particle may have during its journey from one 

location to another, and it will eventually be seen how these interactions lead to 

noticeable perturbative effects that otherwise cannot be accounted for by non-relativistic 

quantum mechanics.  Though quantum field theory is a rather broad topic with many 

applications, the purpose of this chapter is to build a foundation that will ultimately allow 

for the theoretical calculation of the Lamb shift. 

 

Perturbation Theory and the S-Matrix 

The uncertainty principle in quantum mechanics allows for the violation of energy 

conservation so long as this violation happens in a sufficiently short period of time.  In 

taking advantage of the uncertainty principle, it will prove to be useful and convenient to 

work in the interaction picture, rather than the Schrödinger picture.  Note that the wave 

function in the interaction picture 𝜓 (𝑡) is related to the wave function in the Schrödinger 

picture 𝜓¡ by |𝜓 𝑡   = 𝑒S
£
ℏ¤jN|𝜓(𝑡) ¡ .  A transition to the field concept will be put off 
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[2.1.1] 

[2.1.2] 

for now.  The Schrodinger equation can be written in the interaction picture in terms of 

just the potential as [1] 

𝑖ℏ
𝑑|𝜓(𝑡)  

𝑑𝑡
= 𝑉  𝑡 |𝜓(𝑡)   

Being able to write the Schrödinger equation in terms of an interaction picture 

will allow for the focus to be placed on the perturbing potential and the effects it may 

have on the overall energy state.  While solutions to the unperturbed state are already 

known, since the energy of an unperturbed particle in a state |𝑛  must still obey the 

relation  

𝐻-|𝑛 = 𝐸�|𝑛  

These values for the hydrogen atom were determined in chapter 1.  The condition 

in (2.1.2) implies that the energy must be conserved beyond the limits of the uncertainty 

principle.  The energy of the state of the particle before the perturbing interaction and the 

energy of the state of the particle following the interaction must be equal, and these 

should be equal to the energy of the unperturbed particle in (2.1.2). 

Equation (2.1.1) can be written in terms of a time evolution operator by writing 

the interacting potential as 𝑉  = 𝑒
£
ℏ¥j¦𝑉¡𝑒S

£
ℏ¥j¦ , then the interacting wave function is 

written in terms of its initial state as 

 

|𝜓(𝑡)   = 𝑈  𝑡, 0 |𝜓(0)   

where 𝑈  𝑡, 0  is referred to as the time translation operator.  Of course, at this point it is 

necessary to begin to refer to the wave function as the field in order to reconcile the 

issues discussed in chapter 1 regarding the existence of the particle beyond its forward 

light cone.  By substitution of equation (2.1.2) into equation (2.1.1) for the interacting 

field, the approximate solution for the time translation operator to nth order is [1]  
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[2.1.3] 

[2.1.4] 

[2.1.5] 

𝑈  𝑡, 𝑡; = 𝛿u; −
𝑖
ℏ

𝑉  𝑡0 𝑑𝑡0
N¨

N£
+

−𝑖
ℏ

,
𝑉  𝑡* 𝑑𝑡*
N

N£
𝑉  𝑡, 𝑑𝑡,

N©

N£
+ ⋯ 

  

+
−𝑖
ℏ

�
𝑉  𝑡* 𝑑𝑡*
N

N£
𝑉  𝑡, 𝑑𝑡,

N©

N£
𝑉  𝑡C 𝑑𝑡C

Nf

N£
… 𝑉  𝑡� 𝑑𝑡�

N«¬©

N£
+ ⋯ 

 

In making sense of the usefulness of the above equation, the transition probability 

from one state to the next is given by 

 

𝑃;u 𝑡 = 𝜓u 𝑈 (𝑡, 𝑡; 𝜓;
,
 

where the right-hand-side of equation (2.1.4) can be expanded in the form of (2.1.3).  

However, equation (2.1.4) is rarely expanded to include all of the terms seen in equation 

(2.1.3), and it is instead truncated to the second term in (2.1.3).  The first term would of 

course yield zero in the requirement that the states will not be equal, and the higher order 

terms tend to vanish, as is the requirement if perturbation theory is to be valid.   

Looking at the third term in equation (2.1.3), it is seen by the limits in the second 

integrand that t2 is restricted to be less than t1.  It would have been equally valid to write 

the interacting potential operator at t1 to be within the second integrand, so long as it 

remains left of the interacting potential operator at t2.  Then a theta function 𝜃 𝑡* − 𝑡,  is 

introduced [1] to keep the order of time straight (this function is zero if t2 > t1) so that the 

upper limit of the second integrand is written simply as t.  The second integrand in (2.1.3) 

now becomes  

 

𝑉  𝑡* 𝑑𝑡*
N

N£
𝑉  𝑡, 𝑑𝑡,

N©

N£
= 𝑑𝑡*

N

N£
𝑑𝑡,𝜃(𝑡* − 𝑡,)𝑉  𝑡* 𝑉  𝑡,
N

N£
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[2.1.6] 

[2.1.7] 

[2.1.8] 

[2.1.9] 

Since the upper limits on the right-hand-side of equation (2.1.5) are no longer in 

terms of the differential elements, it is assumed t1 and t2 can be exchanged without loss of 

generality.  This means that equation (2.1.5) could also be written like [1] 

 

𝑉  𝑡* 𝑑𝑡*
N

N£
𝑉  𝑡, 𝑑𝑡,

N©

N£
= 𝑑𝑡,

N

N£
𝑑𝑡*𝜃(𝑡, − 𝑡*)𝑉  𝑡, 𝑉  𝑡*
N

N£
 

Ultimately, this integral can be written as 

 
1
2!

𝑑𝑡*
N

N£
𝑑𝑡, 𝜃 𝑡* − 𝑡, 𝑉  𝑡* 𝑉  𝑡, + 𝜃(𝑡, − 𝑡*)𝑉  𝑡, 𝑉  𝑡*
N

N£
 

Upon introducing the Wick time-ordering symbol T [1], which simply ensures 

that the operators are applied in the correct order, and recognizing that the coefficient 

with the factorial will increase by one with each additional term, the time translation 

operator is written in the much more compact and memorable form as 

 

𝑈  𝑡, 𝑡- = 𝑇𝑒S
;
ℏ ¯N°±²(N°)

¦
¦£  

At this point it would be nice to develop an interacting Lagrangian and substitute 

it in to the above formula to ultimately determine the amplitudes generated by the 

interacting terms.  Unfortunately, the purpose of separating the interacting part from the 

non-interacting free part is due to the unsolvable nature of the interacting part, as will be 

seen in later sections.  Focus is now put on the interaction itself, which involves a 

scattering process during the translation of the field.  The amplitude for a field beginning 

in a certain state and ending up in a final state will be defined by 

 

𝑎u; = 𝑓 𝑆 𝑖  
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[2.1.10] 

where 𝑆 is known as the S-matrix.  The S-matrix is very similar to our time-evolution 

operator, but places emphasis on the interaction as a scattering process.  As a reminder, 

the interacting part of the Hamiltonian is zero prior to and following the interaction.  It is 

also assumed in scattering analysis that the particle is free long before and long after the 

scattering event.  Thus, the conceptual basis behind treating the interaction as a scattering 

process is well-founded.  Therefore, the S-matrix is the limit 𝑆 = 𝑈 (𝑡, → ∞, 𝑡* → ∞), so 

that the S-matrix takes similar form as equation (2.1.8) as 

 

𝑆 = 𝑇𝑒S; ¯µWℋ²(W)
¶
¬¶  

where a slight alteration has been made to the integrand and interacting operator to make 

this more relativistically friendly.  ℋ  is the interacting Hamiltonian density, defined in 

chapter 1, and ℏ is taken to be equal to 1.  Because the integral in equation (2.1.10) 

cannot be readily solved, it is often necessary to expand it back into a power series.  The 

wonderful part about the S-matrix is that the operator within the matrix is the interacting 

operator, so the only terms in our Lagrangian or Hamiltonian that will be affected by the 

S-matrix are the parts separated from the free part.   

In this section, a foundation has been set for determining perturbative effects from 

interactions that may exist while a field is translated through space.  In the upcoming 

section, methods will be developed for how to handle these perturbations, and though 

many types of interactions may take place, emphasis will be placed on those interactions 

that are possible in QED processes. 

 

The Propagator 

Prior to understanding how the field will be perturbed, it is natural to first attempt 

to understand how the unperturbed field transitions from one point in space to another.  
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[2.2.1] 

[2.2.2] 

[2.2.3] 

This amplitude is defined as the propagator.  We will primarily be focusing on the 

amplitudes that a particle may begin at a given point y and end up at a point x , which can 

mathematically be written as 𝑥(𝑡W) 𝑦(𝑡�)  .  The relationship between the field and the 

amplitude at a position x is simply 𝜙 𝑥, 𝑡W = 𝑥 𝜙(𝑡)  .  Upon use of identity matrices, 

this is expanded in terms of the amplitude at another point in space and time as 

 
𝑥 𝜙 𝑡 = 𝑥 𝑒S;¤²N 𝜙 = 𝑑𝑦 𝑥 𝑒S;¤N 𝑦 𝑦 𝜙  

= 𝑑𝑦 𝑥 𝜑� 𝑒S;¤N 𝜑� 𝑦 𝑦 𝜙  

The central sum in the integrand is a Green’s function, and the final bracket is the 

amplitude for the particle at a position y at time ty.  To maintain physically reasonable 

results, the theta function may be inserted to ensure that time is forward, so more 

specifically the middle sum will be the time-retarded Green’s function [1].  Equation 

(2.2.1) is now written as 

 
𝜙(𝑥, 𝑡W) = 𝑑𝑦𝐺`(𝑥, 𝑡W, 𝑦, 𝑡�)𝜙(𝑦, 𝑡�) 

where 
𝐺` 𝑥, 𝑡W, 𝑦, 𝑡� = 𝜃(𝑡W − 𝑡�) 𝜑�(𝑥)𝜑�∗(𝑦)𝑒S;p«(NºSN»)

�

 

It is seen purely from how it is derived that this Green’s function will contain 

more information than the wave function itself.  It not only connects the initial and final 

states, but it also contains information on what happens between the initial and final 

states in the exponential function.  From here on, this Green’s function will be referred to 

as the propagator.  The S-matrix in equation (2.1.10) will only operate on the field as it 

transitions from one state to the next.  Therefore, the perturbations from the S-matrix will 

only operate on the propagator, since the states themselves correspond to the unperturbed 
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[2.2.4] 

[2.2.5] 

[2.2.6] 

[2.2.7] 

[2.2.8] 

Hamiltonian density.  Thus, a transition is made from the wave function/field mindset to 

that of the propagator.   

The Green’s function in equation (2.2.3) can be written in the frequency/energy 

domain as 

𝐺` 𝑥, 𝑦, 𝐸 = lim
¾→-¿

𝑖𝜙�(𝑥)𝜙�∗(𝑦)
𝐸 − 𝐸� + 𝑖𝜖�

 

where the pole is added to ensure causality [1]. 

The full propagator in equation (2.2.4) can be expanded in terms of a geometric 

series, and then reduced to the more memorable Dyson’s equation as 

 

𝐺 = 𝐺- + 𝐺-𝑉𝐺- + 𝐺-𝑉𝐺-𝑉𝐺- + ⋯ =
1

𝐺-S* − 𝑉
 

where G0 is the free propagator and V is the interacting potential.  Similar steps could 

have been taken to derive the form of the propagator in momentum space, which would 

have resulted in 

𝐺-` 𝑝, 𝑡W, 𝑡� = 𝜃(𝑡W − 𝑡�)𝑒S;p_(NºSN») 

Upon taking a Fourier transform, the propagator as a function of energy and momentum 

is 
𝐺-` 𝑝, 𝐸 =

𝑖
𝐸 − 𝐸Á + 𝑖𝜖

 

The goal now is to develop the Feynman propagator, which will serve as a 

template for the fermion and photon propagators of QED.  The Lagrangian density for a 

massless scalar field is given by [1] 

 
ℒ =

1
2
𝜕H

,
 

Upon insertion of equation (2.2.8) into the Euler-Lagrange equation (1.1.12), it is 

seen that solutions for the field components of this Lagrangian satisfy the wave equation 
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[2.2.9] 

[2.2.10] 

[2.2.11] 

[2.2.12] 

which propagate through space-time at the speed of light.  A mass term can be included 

in (2.2.8) in the form of a potential energy as 

 
ℒ =

1
2
𝜕H

,
−
1
2
𝑚,𝜙, 

Substituting equation (2.2.9) into equation (1.1.12) will give the Klein-Gordon 

equation, which was also derived in chapter 1 by introducing relativistic qualities to the 

Schrödinger equation.  If an interacting source current J term is introduced to the 

Lagrangian density in equation (2.2.9), then the equations of motion have a similar 

structure to the Klein-Gordon equation in (1.3.2) as 

 

𝜕H𝜕H + 𝑚, 𝜙(𝑥) = 𝐽(𝑥) 

In fact, an introduction of any interaction term to (2.2.9) will yield equations of 

motion that have very similar structure to equation (2.2.10), and in similar fashion, the 

interaction term can be separated out.  Equation (2.2.10) is a non-homogenous 

differential equation.  It is now relevant to define a Green’s function ∆Ä for equation 

(2.2.10) which satisfies 

 

𝜕H𝜕H + 𝑚, ΔÄ 𝑥 − 𝑦 = −𝛿(g)(𝑥 − 𝑦) 

where the four-dimensional delta function on the right-hand-side of equation (2.2.11) can 

be expressed as 

𝛿 g 𝑥 − 𝑦 =
𝑑g𝑝
2𝜋 g 𝑒

S;Á∙(WS�) 

This specific Green’s function is defined to be the Feynman propagator.  The solution for 

the Feynman propagator in (2.2.11) is then be shown to be equal to [1] 

 

∆Ä 𝑥 − 𝑦 = lim
¾→-

𝑑g𝑝
2𝜋 g

𝑒S;Á∙(WS�)

𝑝, − 𝑚, + 𝑖𝜖
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[2.2.13] 

[2.2.14] 

In separating the four-momentum variable in the denominator of (2.2.12), and 

using the expression for the relativistic energy in chapter 1, the propagator in equation 

(2.2.12) is written as 

 

∆Ä 𝑥 − 𝑦 =
𝑑C𝑝
2𝜋 C 𝑒

S;Á∙(WS�) 𝑑𝑝-

2𝜋
𝑒S;Áj∙(WjS�j)

𝑝- + 𝐸 − 𝑖𝜖 𝑝- − 𝐸 + 𝑖𝜖
 

The quantities in the denominator of expression (2.2.13) are meant to describe 

shifts from the real axis.  The quantity on the left indicates a positive energy pole below 

the real-time axis, and the quantity on the right indicates a negative energy pole above the 

real-time axis.  The locations of these poles will be of importance in the next chapter 

when performing a Wick rotation [1, 15].  The physical interpretation of the quantity on 

the left in (2.2.13) can be interpreted as positive energy moving forward in time (retarded 

Green’s function) and the quantity on the right can be interpreted as negative energy 

moving backwards in time (advanced Green’s function).  Following Dirac’s 

interpretation, the former positive energy state is considered to be a particle traveling 

from y to x where x0 > y0 and the latter negative energy state to be an antiparticle 

traveling from x to y where y0 > x0.   

The Fourier component of equation (2.2.13) gives the Feynman propagator in 

momentum space to be [1]  
∆Ä 𝑝 =

𝑖
𝑝, − 𝑚, + 𝑖𝜖

 

A key part of the physics behind all of this is that particles interact with one 

another by exchanging virtual particles.  A virtual particle by definition is defined to be a 

particle that exists off mass-shell [1], which is only allowable by the uncertainty principle 

for ∆𝑡 ≲ ℏ 𝐸.  Virtual particles will then, of course, have a finite range for existence, 

which ends up being approximately equal to 1/m (or ℏ/𝑚𝑐 in SI units) [1].  Since the 

focus of this paper is on QED, the virtual particles that control these interactions are 
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[2.3.1] 

[2.3.2] 

virtual photons, and the particles that the virtual photons interact with are, in the scope of 

this thesis, the electrons.  

 

Quantum Electrodynamics 

In quantum electrodynamics, focus is put solely on the interaction between the 

electromagnetic field and charged particles.  The interactions between the virtual photons 

and the electron in QED are responsible for the Lamb shift, so the analysis of field theory 

will now be placed on this.  The purpose of this section is to develop the propagators for 

the photon and electron, as well as a set of rules for how these propagators change 

through interacting scattering processes.  This process begins with an in depth analysis of 

how a field transitions from one state to the next. 

In general, the total amplitude for a particle to travel from one state to another is a 

sum over all possible trajectories, and can be described mathematically by the functional 

integral given by [1]  
𝐺 = 𝒟 𝑞 𝑡 𝑒; ¯N	È É N  

where 𝒟 𝑞 𝑡  is defined as  

 

𝒟 𝑞 𝑡 ≡ lim
Ê→�

−𝑖𝑚
2𝜋∆𝑡

*
,
𝑑𝑞�

Ê

��*

 

In classical mechanics, the stationary state dominates through variational 

principles, and is therefore given as the only possible path as predicted by Lagrange [16].  

However, perturbative effects in quantum field theory cause the particle to shift slightly 

from this stationary state, resulting in quantum corrections.  In order to determine the 

Green’s functions for QED, it is necessary to determine a normalized generating 
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[2.3.3] 

[2.3.4] 

[2.3.5] 

[2.3.6] 

functional 𝒵 𝐽  which corresponds to the specific QED Lagrangian, where J is a source 

current. 

In transitioning from particle trajectories 𝑞 𝑡  to field configurations 𝜙 𝑥 , the 

action in (2.3.1) is now written in the form of the Lagrangian density from chapter 1.  It is 

shown [1] that the normalized generating functional for the free scalar field is given by 

 

𝒵 𝐽 =
𝒟𝜙𝑒

£
f Ìµº	Í ¬ Îf¬Ïf Í¿£ Ìµº	ÐÍ

𝒟𝜙𝑒
£
f Ìµº	Í ¬ Îf¬Ïf Í

 

Though a term will need to be added later on for a full treatment of QED, the 

Lagrangian density for a massive field in electromagnetism is determined to be [1]  

 
ℒ = −

1
4
𝐹HÑ𝐹HÑ +

1
2
𝑚,𝐴H𝐴H 

Where 𝐹HÑ is the electromagnetic field tensor 𝐹HÑ = 𝜕H𝐴Ñ − 𝜕Ñ𝐴H, or  

 

𝐹HÑ =
0 𝐸*

−𝐸* 0
𝐸, 𝐸C
−𝐵C 𝐵,

−𝐸, 𝐵*
−𝐸C −𝐵,

0 −𝐵*
𝐵* 0

 

 

The massive electromagnetic field is used to determine the photon propagator.  By 

substituting the Lagrangian density in equation (2.3.4) into the generating functional for 

the free scalar field in equation (2.3.3), it is determined that [1]  

 

𝒵 𝐽 =
𝒟𝐴𝑒

£
f Ìµº	ÔÕ Îf¬Ïf ÖÕ×¬ÎÕÎ× Ô×¿£ Ìµº	ÐÕÔÕ

𝒟𝐴𝑒
£
f Ìµº	ÔÕ Îf¬Ïf ÖÕ×¬ÎÕÎ× Ô×

 

The second term in the curly brackets is included to preserve gauge invariance.  The 

homogenous form of the term in curly brackets would show that the generating functional 

is only related to the source current.  Upon obtaining a Green’s function solution to the 
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[2.3.7] 

[2.3.8] 

corresponding non-homogenous equation, and performing a Fourier transform, the 

propagator for the massive electromagnetic field in momentum space is [1]  

 

𝐺-ÑØ 𝑝 =
−𝑖 𝑔ÑØ − 𝑝Ñ𝑝Ø/𝑚,

𝑝, − 𝑚,  

Before using equation (2.3.7) to determine the propagator for photons, it will be 

necessary to discuss gauge invariance in QED.  In U(1) symmetry, the conservation of 

fermion number must be conserved.  Ultimately this leads to the conservation of current 

in QED.  This notion of Gauge invariance, known as the Ward identity, will be an 

essential requirement for Feynman diagrams, which will be discussed in greater detail 

later on.  For now, all that is needed to understand is that when the momentum vector 𝑘H 

is coupled to a fermion line, it cannot affect the current.  Therefore, the dot product of 𝑘H 

with the S-matrix element corresponding to this interaction must be equal to zero. 

Now, in the consideration of a virtual photon, which can be considered as a 

photon mediating the interaction between fermions, the second term in the numerator of 

equation (2.3.7) can be dropped by the Ward identity.  Of course, this is a necessary step 

as we will now take the limit as 𝑚 → 0 of the propagator in (2.3.7), since the photon 

mass is assumed to be zero.  Without use of the Ward identity, this would not give 

acceptable results for the photon propagator.  Instead, the photon propagator is 

determined to be 

𝐷-HÑ =
−𝑖𝑔HÑ
𝑘, + 𝑖𝜖

 

The technique used to determine the photon propagator did not involve 

commutation relations with the operator, which is fine for photons since these are 

represented by Bose fields.  However, a different approach must be made for fermions, 

since these fields in the canonical approach anticommute.  The fermion will therefore be 

represented by Grassmann numbers, which anticommute.   For the Grassmann-valued 
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[2.3.9] 

[2.3.10] 

[2.3.11] 

[2.3.12] 

[2.3.13] 

vectors 𝜂, the generating functional in terms of the fields 𝜓 and 𝜓, which will also appear 

as Grassmann numbers, is written as 

 
𝑍 𝜂, 𝜂 = 𝒟𝜓𝒟𝜓 𝑒; ¯µW Ü W ;ÝÕFÕS] Ü W `Þ W Ü W `Ü W Þ W  

By completing the square for the term in the brackets of (2.3.9) [1], the 

normalized generating functional for the fermion can be written as 

 

𝑍 𝜂, 𝜂 = 𝑒; ¯µW¯µ�Þ W ;ÝÕFÕS]
¬©
Þ �  

Using the terms sandwiched between the Grassmann numbers in the integrand, the 

fermion propagator 𝑆 𝑥 − 𝑦  is the solution to  

 

𝑖𝛾H𝜕H − 𝑚 𝑖𝑆 𝑥 = 𝑖𝛿(g) 𝑥  

The position space fermion propagator is then  

 

𝐺- 𝑥, 𝑦 = 𝑖𝑆 𝑥 − 𝑦 =
𝑑g𝑝
2𝜋 g

𝑖𝑒S;Á⋅ WS�

𝛾H𝑝H − 𝑚 + 𝑖𝜖
 

The momentum space fermion propagator is  

𝐺- 𝑝 =
𝑖

𝛾H𝑝H − 𝑚
=
𝑖 𝛾H𝑝H + 𝑚
𝑝, − 𝑚, + 𝑖𝜖

 

 

𝐺- 𝑝 =
𝑖

𝑝, − 𝑚, + 𝑖𝜖
𝑚 𝑝- − 𝒑 ⋅ 𝝈

𝑝- + 𝒑 ⋅ 𝝈 𝑚
 

The second line in equation (2.3.13) is written to emphasize the fact that the propagator is 

four-dimensional, just as the Dirac spinors from chapter 1 were.  Now that the free 

photon and fermion propagators have been determined, scattering processes in QED may 

now be discussed. 
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[2.3.14] 

[2.3.15] 

The scattering processes in QED between initial and final states are the causes of 

perturbations.  Feynman diagrams are used to help simplify these scattering processes.  

The general QED interaction that this thesis focuses on is the coupling between the 

electromagnetic field and the electron, so determining the Feynman rules for the photon-

fermion interaction is now a necessity.  The Feynman Rules for fermions are shown in 

Figure 2.2 [1].  

Before discussing the Feynman rules for QED, it is helpful to see how these rules 

are used to determine the amplitudes from the perturbations.  A Dyson expansion of the 

S-matrix in equation (2.1.10) gives 

 

𝑆 = 𝑇 1 − 𝑖 𝑑g𝑧𝐻  𝑧 +
−𝑖 ,

2!
𝑑g𝑦𝑑g𝑤 𝐻  𝑦 𝐻  𝑤 + ⋯  

Of course, the first term in this expansion corresponds to the unperturbed state.  For 

scattering amplitudes, it is more useful to write the S-matrix instead as 𝑆 = 1 + 𝑖𝑇, where 

𝑇 is the transition matrix (not to be confused with the time-ordering operator T).  Since 

all future Feynman diagrams, as well as those in Figure 2.2, carry the energy and 

momentum conserving delta function, it is useful to define an invariant amplitude ℳ by 

 

𝑝*u𝑝,u 𝑖𝑇 𝑝,;𝑝*; = 2𝜋 g𝛿(g) 𝑝*u + 𝑝,u − 𝑝*; − 𝑝,; 𝑖ℳ 

It will therefore only be necessary to calculate 𝑖ℳ to determine the perturbative 

scattering effects. 
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        = ;

ÝÕÁÕS]`;¾
 

     

          

        = 𝑢á 𝑝   

       

     

         = 𝑣á 𝑝  

 

 

         = 𝑢á 𝑝  

 

 

        = 𝑣á 𝑝  

 

 
Figure 2.2 – Feynman Diagrams for Fermions:  Each Feynman rule will contribute to 
the scattering amplitude, which will be discussed in in more detail later on in this section. 

 

At this point, the framework has been set for how the amplitudes will be 

calculated.  Now the Feynman rules for the photon-fermion interaction will be discussed.  

This will provide sufficient background to determine the invariant amplitudes for QED 

processes that are responsible for the Lamb shift.  The additional Feynman rules for QED 

are shown in Figure 2.3.  It is important to note that in the scope of this thesis, the 

electron will always be considered to be bound, in which case the photons will always be 
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virtual, and the polarization tensor contributions 𝜖HØ and 𝜖ÑØ∗  from the external photon 

lines will always be simplified to a metric tensor [1]. 

 

 

        = −𝑖𝑒𝛾H 

 

 

        = − ;ãÕ×
Uf`;¾

 

         

 

 

        = 𝜖HØ 𝑝  

 

        

 

 

        = 𝜖ÑØ∗ 𝑝  

 

        
Figure 2.3 – Additional Feynman Rules for QED 
 
These diagrams, along with those in Figure 2.4, give a complete list of rules to determine 
the corresponding invariant amplitude for an interaction in QED.   
 
 

The simplest interaction in QED that will be involved in this paper is that between 

the electron and the proton in the hydrogen atom.  Fortunately, the bound state energies 

for this system have already been solved.  In a Feynman diagram representation, this 
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[2.3.16] 

interaction would look similar to the second picture in Figure 2.3.  In perturbation theory, 

at sufficiently high energies, Heisenberg’s uncertainty principle may allow for processes 

such as the virtual photon splitting into electron-pairs.  Theoretically, there may be no 

definite limit to how many times this can occur.  It may also be possible under highly 

relativistic conditions for an electron to continuously emit and reabsorb photons that are 

not responsible for the coupling between the electron and proton in the hydrogen atom.  

By acknowledging these possibilities, it is found that the properties of the particles, such 

as mass and charge, are changed.  In other words, an electron in a bound state does not 

have the same properties as a free electron. 

 It is obvious that if the intrinsic properties of the propagators are changed in an 

interaction, then the propagators themselves are changed.  To determine the new 

propagators, one could simply determine the invariant amplitude from a scattering 

process by use of the Feynman rules, and calculate the new propagator.  Unfortunately, 

this task is not so simple as it inevitably leads to divergent amplitudes, which implies that 

the electron and photon propagators are associated with an infinite amount of energy.  It 

turns out that through a method called renormalization, these integrals are able to be 

solved.  The next section is dedicated to discussing the process of renormalization, and 

conceptual reasons for why it is needed. 

Before discussing renormalization, the Lagrangian describing fermions and their 

interactions should be developed in a more complete form.  Since QED involves the 

interaction between fermions and the electromagnetic field, it seems reasonable to 

include this with the gauge field in the Lagrangian in (2.3.4).  To include the interaction, 

a gauge field is introduced to the Dirac Lagrangian by the transformation 

 

𝐷H = 𝜕H + 𝑖𝑞𝐴H 𝑥  
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[2.3.17] 

[2.4.1] 

The complete Dirac Lagrangian, which can be used to describe fermions and their 

interactions with the electromagnetic field, is then given by [1]  

 
ℒ = −

1
4
𝐹HÑ𝐹HÑ + 𝜓 𝑖𝛾H𝜕H − 𝑚 𝜓 − 𝑞𝜓𝛾H𝐴H𝜓 

The second term in equation (2.3.17) is the Lagrangian that would give back the Dirac 

equation when substituted into the Euler-Lagrange equation.  By including the first term, 

the third term must also be added to have local gauge invariance.   

 

Renormalization 

As was discussed previously, the interacting term in (2.3.17) will ultimately lead 

to divergent amplitudes in the electron charge.  Reasons for infinite masses and charge 

are a consequence of transitioning to a field theory which allows particles to interact with 

the vacuum.  The non-interacting particles are associated with what are defined as bare 

mass 𝑚ä, bare charge 𝑞ä, and bare fields 𝜓ä.  These bare quantities are related to the 

physically measured quantities.  For example, the physical mass 𝑚å is related to the bare 

mass 𝑚ä by 

𝑚å = 𝑚ä + 𝛿𝑚 

where 𝛿𝑚 represents the shift in mass due to the interactions.  The bare quantities in 

quantum field theory must yield infinite results, because a completely unbound particle 

would correspond to an infinite amount of energy.  Of course, this may not seem 

reasonable, but this is due to the fact that in field theory the particles will interact with the 

vacuum.  Attempting to discuss the physical nature of a completely non-interacting field 

is unreasonable.  For example, the charge of an electron will always have some screening 

effect associated with it due to virtual photons creating electron-positron pairs around the 
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[2.4.2] 

[2.4.3] 

[2.4.4] 

electron.  Quantum field theory innately contains divergences, and the solution to 

handling these divergences is renormalization. 

Since the values of the properties of particles change through interactions, the 

properties must be renormalized.  Of course, the renormalized quantities depend on the 

type of interaction.  In the next chapter, the renormalized quantities are determined for 

QED, which can be accomplished by the addition of counterterms to equation (2.3.17).  

The counterterms themselves are also meant to represent infinite values, so that when 

added to the original Lagrangian density, only the physical terms survive.  The actual 

process of carrying out the calculations in QED renormalization are done in the next 

chapter.  In this section, prerequisite relationships between renormalization constants, 

bare quantities, and physical quantities are discussed.  

The bare Dirac Lagrangian can be written as [15]  

 

ℒ = −𝜓ä 𝛾H𝜕H + 𝑚ä 𝜓ä − 𝑉ä 𝜓ä  

The renormalized field is defined through the renormalization constant Z2 as 

 

𝜓 ≡ 𝑍,
S*/,𝜓ä 

and the renormalized mass is defined by equation (2.4.1).  The Lagrangian density is then 

rewritten in terms of these renormalized quantities as 

 

ℒ* = − 𝑍, − 1 𝜓 𝛾H𝜕H + 𝑚 𝜓 + 𝑍,𝛿𝑚𝜓𝜓 − 𝑉ä 𝑍,𝜓𝜓  

The specific values of these renormalization constants depend on the interaction process 

that the propagator goes through.  The self-energy Σ 𝑝  of the fermion is defined as the 

interacting potential through a Dyson expansion of the propagator.  The full propagator is 

simplified as a geometric series and can be written as 
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[2.4.5] 

[2.4.6] 

[2.4.7] 

[2.4.8] 

[2.4.9] 

 
𝐺- 𝑝 =

𝑖

𝑖𝛾H𝑝H
,
− 𝑚, − Σ 𝑝 + 𝑖𝜖

 

Since the position of the pole in the propagator defines the physical mass 𝑚å
, = 𝛾H𝑝H

,
 

for the non-interacting propagator, it is found that through the interaction the pole will be 

shifted by the inclusion of the self-energy term.  Therefore, the physical mass will be 

shifted by 

𝑚å
, = 𝑚, + Σ 𝑚, = 𝑖𝛾H𝑝H

,
 

It is implied by equation (2.4.6) that the physical mass and bare mass are identical 

when self-energy is zero.  It may be useful to define the bare mass through the condition 

that the self-energy contribution is zero, such that 

 

Σ 𝑖𝑚 = 0 

and 
𝜕Σ 𝛾H𝑝H
𝜕 𝛾H𝑝H ÝÕÁÕ�;]

= 0 

The addition to the Lagrangian in (2.4.4) can be attributed to the self-energy contribution.  

In the next chapter, it will be shown how loop contributions are also included in this 

additional Lagrangian density.  If there are no loop contributions, then the 

renormalization constants should be zero, to again give the physical mass and bare mass 

to be identical.  The loop correction Σ∗ 𝑖𝑚  is then attributed to the shift in mass by 

 

𝑍,𝛿𝑚 = −Σ∗ 𝑖𝑚  

and the renormalization constant 𝑍, from the first term in (2.4.4) has the relation [15]  

 

𝑍, = 1 − 𝑖
𝜕Σ∗ 𝛾H𝑝H
𝜕 𝛾H𝑝H ÝÕÁÕ�;]
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[2.4.10] 

[2.4.11] 

The self-energy of the photon Π 𝑞  can be determined in a similar fashion, and this is 

done in detail in the next chapter.  The renormalization constant Z3 associated with the 

renormalized electromagnetic field is defined by 

 

𝐴H = 𝑍C
S*/,𝐴ä

H  

Since this renormalization constant is meant to characterize the effect on the charge, the 

renormalized charge is defined by 

𝑞 = 𝑍C𝑞ä 

The self-energy contributions to the fermion and photon propagator will ultimately have 

divergent amplitudes, which implies that the renormalized quantities will also give 

infinities.  It is therefore necessary to subtract these terms from the Lagrangian, rather 

than simply using the new, renormalized values instead.  In this sense, terms are not 

technically being added, but instead a shift is being made from the infinite quantities to 

the physical quantities.  The free propagator realistically is not free, so what is assumed 

to be the bare mass is actually already taking some interactions into account.  It is for this 

reason when analyzing a propagator in its bound state, one must be careful to not take 

these interactions into account again.  This is what leads to the divergent amplitudes.  

Instead, these terms are subtracted from the interacting Lagrangian density through the 

process of renormalization. 

Another correction that still needs to be made occurs at the photon-electron 

interaction vertex.  Since relativistic field theory allows for the photon to split into 

electron-positron pairs, the vertex too needs to be corrected.  This interaction is seen in 

the first picture of Figure 2.3.  To allow for loop corrections, the vertex function will now 

be written as −𝑖𝑒ΓH 𝑝, 𝑝′ , where the new vertex function is defined in terms of the form 

factors F1 and F2 as 
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[2.4.12] ΓH 𝑝, 𝑝′ = 𝛾H𝐹* 𝑞, +
𝑖𝜎HÑ𝑞Ñ
2𝑚

𝐹, 𝑞,  

where 𝜎HÑ = £
f Ý

Õ,Ý×  and 𝑞H = 𝑝′H − 𝑝H is the photon momentum.  Hence, if the photon 

does not transfer momentum at the vertex, then q = 0, and in this case the Dirac form 

factor 𝐹* 0 = 1 and the Pauli form factor 𝐹, 0 = 0, which implies that the vertex 

function is equal to the first order contribution shown in Figure 2.3.  It will be shown in 

the next chapter that there are higher order contributions to 𝐹, 0  which ultimately affect 

the electron magnetic moment and coupling constant. 
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[3.1] 

[3.2] 

CHAPTER III:  RENORMALIZATION OF QED 

 

Renormalization is a technique used to remove possible singularities in a theory 

that can appear through radiative corrections.  Electron mass, wave function, and charge 

are renormalized, and the renormalization constants are calculated under different 

conditions.  Renormalization of QED is followed by some radiative corrections leading to 

calculable perturbative effects. 

In the previous chapter, we developed the Dirac equation, and the Dirac 

Lagrangian density that may describe the interaction between an electron and an 

electromagnetic field and is written in terms of the bare quantities as 

 

ℒ = −
1
4
𝐹ä
HÑ𝐹ä	HÑ − 𝜓ä 𝛾H 𝜕H + 𝑖𝑒ä𝐴ä

H + 𝑚ä 𝜓ä 

The subscript B is added as a reminder that at the moment these quantities 

represent the fields, which have yet to be renormalized, of the interacting photon and 

electron, and the charge and mass of the electron.  The relations of the renormalized 

fields, charge, and mass to their bare counterparts can be found in chapter 2.  By the 

inclusion of counterterms, the Lagrangian is written as 

 
ℒ = −

1
4
𝐹HÑ𝐹	HÑ − 𝜓 𝛾H𝜕H + 𝑚 𝜓 − 𝑖𝑒𝐴H𝜓𝛾H𝜓 −

*
g
𝑍C − 1 𝐹HÑ𝐹	HÑ 

− 𝑍, − 1 𝜓 𝛾H𝜕H + 𝑚 𝜓 + 𝑍,𝛿𝑚𝜓𝜓 − 	𝑖𝑒 𝑍, − 1 𝐴H𝜓𝛾H𝜓 

The renormalization constants, fields, charge, and mass found in this Lagrangian 

will be determined in the upcoming sections. 
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[3.1.1] 

Vacuum Polarization 

One of the smaller, yet measureable, contributions to the Lamb shift comes from 

the renormalization of the photon propagator.  Working with high-energy virtual photons 

results in the possibility that these photons can exists for sufficiently short periods as 

electron-positron pairs.  If we look at the continuous Coulombic interaction between the 

electron and proton in the hydrogen atom, we can imagine that these high-energy, virtual 

photons exchanged between the electron and proton may form enough electron-positron 

pairs to contribute to electromagnetic properties.  In essence, the vacuum should no 

longer be considered as “empty space” in relativistic field theory.  The Feynman diagram 

describing this process is shown in Figure 3.1. 

 

 

 
Figure 3.1 – Vacuum Polarization 
 
1-Loop Feynman diagram describing vacuum polarization in QED. Wavy lines represent 
photons, and the solid lines represent incoming and outgoing electrons (positrons). [15] 
 
 

The bare photon is now a dressed photon amidst the electron-positron pairs.  To 

determine the propagator of the dressed photon, we begin with the Dyson expansion 

around the free photon propagator 𝐷-HÑ 𝑞   so that the total photon propagator can be 

written as 

𝐷HÑ 𝑞 = 𝐷-HÑ 𝑞 + 𝐷-HØ 𝑞 𝑖ΠØÞ(𝑞) 𝐷-ÞÑ 𝑞 + ⋯ 

q → 

p 

p - q 
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[3.1.2] 

[3.1.3] 

[3.1.4] 

where Π(𝑞) is the 1PI photon self-energy.  Upon insertion of the free photon propagator 

from the previous chapter, equation (3.1.1) becomes 

 

𝐷HÑ 𝑞 =
−𝑖𝑔HÑ

𝑞,
+

−𝑖𝑔HØ
𝑞,

𝑖ΠØÞ(𝑞)
−𝑖𝑔ÞÑ
𝑞,

+ ⋯ 

 

=
−𝑖𝑔HÑ
𝑞,

+
−𝑖
𝑞,

𝑖ΠHÑ 𝑞
−𝑖
𝑞,

+
−𝑖
𝑞,

𝑖ΠH
Þ 𝑞

−𝑖
𝑞,

𝑖ΠÞÑ 𝑞
−𝑖
𝑞,

+ ⋯ 

 
The photon propagator is then given as 𝐷HÑ 𝑞 = S;ãÕ×

Éf
+ *

Éf
ΠHÞ(𝑞)𝐷Ñ

Þ(𝑞) and the 

photon self-energy as ΠHÑ 𝑞 = 𝑞,𝑔HÑ − 𝑞H𝑞Ñ Π(𝑞), which is acceptable since the 

Ward identity fixes the photon mass to zero.  Ultimately, the renormalized photon 

propagator is written as 

𝐷HÑ 𝑞 =
−𝑖𝑔HÑ

𝑞, 1 − Π(𝑞)
 

Since the photon self-energy term contains loops, it is necessary to involve 

counterterms while calculating Π(𝑞).  It is determined that the calculation over a single 

electron-positron loop is sufficient and higher order calculations drop off rapidly [15].  

The photon self-energy for a single loop is then defined to be 𝑖𝜋HÑ 𝑞 = 𝑖 𝑔HÑ𝑞, −

𝑞H𝑞Ñ 𝜋(𝑞) .  The second-order QED counterterm for this is 𝑖 𝑔HÑ𝑞, − 𝑞H𝑞Ñ 𝐶(,) [1].  

Since it is expected that the photon self-energy will vanish for q2 = 0, it is implied that                 

𝜋 𝑞 = 0 = −𝐶(,).  The total photon propagator may then be written in terms of the      

1-loop contribution as 

𝐷HÑ 𝑞 =
−𝑖𝑔HÑ

𝑞, 1 − 𝜋 𝑞 − 𝜋(0)
 

The total photon propagator is meant to encompass the bare photon propagator 

and the interacting part which physically can be interpreted as the bare photon pulling 

electron-position pairs from the vacuum.  For a one-loop correction, this bare photon will 
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[3.1.6] 

[3.1.7] 

[3.1.5] 

couple to a fermion line at each end of its trajectory, as seen in Figure 3.1.  The previous 

statement is also true for multiple loop corrections, but in this schematic, higher order 

corrections are assumed to be negligible.  To simplify the calculation, the Feynman 

vertex rules −𝑖𝑄𝑒-𝛾H  are combined with the photon propagator.  The photon propagator 

from (3.1.4) is then 

 

𝐷HÑ 𝑞 =
−𝑖𝑔HÑ𝑒-,

𝑞, 1 − 𝜋 𝑞 − 𝜋(0)
≈
−𝑖𝑔HÑ𝑒-,

𝑞,
1 + 𝜋 𝑞 − 𝜋 0  

where the approximation comes from a binomial expansion of the brackets in the 

denominator.  In entertaining the idea that the photon may rip electron-positron pairs 

from the vacuum, it can be assumed that there is a type of screening involved in the 

vacuum, and this has perturbative effects on the Coulomb potential.  This screening is 

referred to as vacuum polarization, and what follows is a detailed calculation to 

determine its contribution to the Lamb shift.   

By incorporating the Feynman rules from chapter 2, the one-loop amplitude of the 

photon propagator is given as 

 

𝑖𝜋 𝑞 = −1 −𝑖𝑒- , 𝑑g𝑝
2𝜋 g 𝑇𝑟 𝛾H

𝑖
𝑝 − 𝑚

𝛾Ñ
𝑖

𝑝 + 𝑞 − 𝑚
 

To begin the evaluation of (3.1.6), it is useful to write the equation in the form 

 

𝑖𝜋 𝑞 = −1 −𝑖𝑒- , 𝑑g𝑝
2𝜋 g

𝑇𝑟 −𝑖𝛾H𝑝H + 𝑚 𝛾H −𝑖 𝛾H𝑝H − 𝛾H𝑞H + 𝑚 𝛾Ñ

𝑝, + 𝑚, − 𝑖𝜖 𝑝 − 𝑞 , + 𝑚, − 𝑖𝜖
 

 

Insight to the inclusion of the poles in the denominator was given in chapter 2.  In 

an attempt to further simplify the integral in equation (3.1.7), the Feynman integral [15] 

is recognized as 
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[3.1.8] 

[3.1.9] 

[3.1.10] 

𝑑𝑥
1 − 𝑥 𝐴 + 𝑥𝐵 ,

*

-
=

1
𝐵 − 𝐴

1
𝐴
−
1
𝐵

=
1
𝐴𝐵

 

Comparing equations (3.1.7) and (3.1.8), if 𝐴 = 𝑝, + 𝑚, an 𝐵 = 𝑝 − 𝑞 , + 𝑚, , then 

equation (3.1.7) can be written in the slightly more solvable form as 

 

𝑖𝜋 𝑞 = −1 −𝑖𝑒- , 𝑑g𝑝
2𝜋 g 𝑑𝑥

𝑇𝑟 −𝑖𝛾H𝑝H + 𝑚 𝛾H −𝑖 𝛾H𝑝H − 𝛾H𝑞H + 𝑚 𝛾Ñ

𝑝, + 𝑚, 1 − 𝑥 + 𝑝 − 𝑞 , + 𝑚, − 𝑖𝜖 𝑥 ,

*

-
 

 

= −1 −𝑖𝑒- , 𝑑g𝑝
2𝜋 g 𝑑𝑥

𝑇𝑟 −𝑖𝛾H𝑝H + 𝑚 𝛾H −𝑖 𝛾H𝑝H − 𝛾H𝑞H + 𝑚 𝛾Ñ

𝑝 − 𝑞𝑥 , + 𝑚, − 𝑖𝜖 + 𝑞,𝑥 1 − 𝑥 ,

*

-
 

The above equation may be simplified even further by making a change of 

variables through the transformation 𝑝 → 𝑝 + 𝑞𝑥, 

 

= 𝑒-,
𝑑g𝑝
2𝜋 g 𝑑𝑥

*

-

𝑇𝑟 −𝑖 𝛾H𝑝H + 𝛾H𝑞H𝑥 + 𝑚 𝛾H −𝑖 𝛾H𝑝H − 𝛾H𝑞H 1 − 𝑥) + 𝑚 𝛾Ñ

𝑝, + 𝑚, − 𝑖𝜖 + 𝑞,𝑥 1 − 𝑥 ,  

Gamma matrix identities, otherwise known as the Dirac identities, are used to 

simplify the numerator so that the metric tensor can be written in the form of inner 

products.  A brief analysis of the denominator in the integrand would also entertain the 

idea of performing a Wick rotation [15].  Careful observation of equation (3.1.10) shows 

that if 𝑚, + 𝑞,𝑥(1 − 𝑥) is greater than zero over the interval from 0 to 1, then the poles 

of the propagator would be located at 𝑝- = ± 𝑝, + 𝑚, + 𝑞,𝑥 1 − 𝑥 − 𝑖𝜖, where the 

momentum under the root would depend only on the position coordinates.  The Wick 

rotation must be performed counterclockwise so as to not cross the poles, so that the time 

component of the momentum is written as 𝑝- = 𝑖𝑝g, and the integration is performed 

over the entire imaginary axis, using the real limits for 𝑝g.  Following the applications of 

the matrix identities and the Wick rotation [1, 15], equation (3.1.10) is written as 

 



 
 

44 

[3.1.11] 

[3.1.12] 

[3.1.13] 

𝑖𝜋 𝑞 =
4𝑒,

2𝜋 g 𝑑𝑥
*

-
𝑑g𝑝p 𝑝, + 𝑚, + 𝑞,𝑥 1 − 𝑥 S, 

 × − 𝑝 + 𝑞𝑥 H 𝑝 − 𝑞 1 − 𝑥
Ñ
+ 𝑝 + 𝑞𝑥 ⋅ 𝑝 − 𝑞 1 − 𝑥 𝑔HÑ −

																																															 𝑝 + 𝑞𝑥 Ñ 𝑝 − 𝑞 1 − 𝑥
H
+ 𝑚,𝑔HÑ  

A rather convenient consequence of the Wick rotation is that the indices on the 

momentum vectors now run from 1 to 4, rather than 0 to 3, which allows for the integral 

to be evaluated using dimensional regularization, a technique developed by ‘t Hooft and 

Veltman [20].  Further techniques are used for simplification [15], ultimately allowing 

the integral to be written as a function of just 𝑝,, so that equation (3.13) becomes 

 

	𝑖𝜋 𝑞 =
4𝑒,Ω¯
2𝜋 g Γ 𝑑 2 Γ 2 − 𝑑 2 𝑞H𝑞Ñ − 𝑞,𝑔HÑ  

× 𝑑𝑥	𝑥 1 − 𝑥 𝑚, + 𝑞,𝑥 1 − 𝑥
Ì
f¬f

*

-
 

where Ω¯ represents a sphere of d dimensions.  Equation (3.1.12) still gives infinities for 

𝑑 → 4, which makes this a convenient place to include the counterterm found in the 

fourth term on the right side of equation (3.2).  The renormalization constant Z3 can be 

determined using the original definition of the photon self-energy and the Ward identity.  

Ultimately, the photon self-energy can be written as [15]  

 

Π 𝑞 =
𝑒,

2𝜋,
𝑑𝑥	𝑥 1 − 𝑥 ln 1 +

𝑞,𝑥 1 − 𝑥
𝑚,

*

-
 

 It is worth mentioning at this point that the renormalization constant Z3 is 

independent of the other two renormalization constants from equation (3.2) [15].  

Therefore, the shift in energy due to vacuum polarization effects can be calculated prior 

to determining the self-energy of the electron and vertex corrections.  There is a 

modification of the Coulomb potential with the renormalized propagator in (3.1.13).  In 

evaluating the S-matrix corresponding to Figure 3.1, and comparing this with the Born 
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[3.1.14] 

[3.1.15] 

[3.1.16] 

approximation for scattering, it is found that the potential in real space is related to the 

renormalized propagator by [15] 

 

𝑉 𝑟 =
𝑒,

2𝜋 C 𝑑C𝑞 𝑒;É⋅k
1 + Π 𝑞

𝑞,
 

It is seen that in the non-relativistic limit where the self-energy of the photon 

approaches zero, equation (3.1.14) reduces to the typical Coulomb potential.  It can be 

shown that the renormalization of the photon propagator is, in essence, a renormalization 

of the Coulomb interaction, or the charge of the electron.  Upon renormalizing the 

electric charge, it is found that the effective charge increases with decreasing length scale 

[1].  States with orbital quantum numbers l = 0 have non zero probability amplitudes near 

the origin of the orbit.  Therefore, it is the S states that will be affected the most by 

vacuum polarization effects, and perturbative effects for l > 0 can be assumed to be 

negligible in comparison [15].  

Via the interaction picture, the shift in energy due to vacuum polarization is 

written as 
Δ𝐸 = 𝑑C𝑟 	∆𝑉 𝑟 𝜓 𝑟 , 

 

∆𝑉 𝑟 =
𝑒,

2𝜋 C 𝑑C𝑞 𝑒;É⋅k
Π 𝑞
𝑞,

 

where ∆𝑉 𝑟  only involves the contribution from the relativistic correction.  The shift in 

energy for the S states is found to be [15]  

 

∆𝐸� =
−4𝛼î𝑚
15𝜋𝑛C

 

The vacuum polarization contribution to the Lamb shift is then –1.12×10-7 eV, or             

-27.1 MHz.  This effect alone does not come close to the experimental value, and it is 
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[3.1.17] 

[3.1.18] 

[3.1.19] 

[3.1.20] 

also contributing to an effective potential implying that an electron in the S state is more 

tightly bound to the atom.  Vacuum polarization is definitely an important effect for 

charge renormalization, and it contributes to more accurate theoretical predictions of the 

Lamb shift.  It will be seen in the following sections, however, that the self-energy of the 

electron and vertex corrections have much larger contributions. 

 As an extension of conceptual importance, a β-function may be introduced to 

observe how the coupling strength varies with distance.  For an arbitrary choice of energy 

scale ξ, the β-function is then defined as [1] 

 

𝛽 = 𝜉
𝑑𝑒
𝑑𝜉

 

The quantity in brackets in (3.1.5) is then assumed to be associated with the charge, 

solidifying the basis that it is the coupling constant which is corrected in the process of 

renormalizing the photon propagator.  Therefore, the corrected charge is written as 

 

𝑒 = 𝑒- 1 + Π 𝜉  

The logarithm term in equation (3.1.13) can be rewritten, and then the renormalized 

propagator is substituted into (3.1.18) to yield 

 

𝑒 = 𝑒- 1 +
−𝑒,

2𝜋,
𝑑𝑥	𝑥 1 − 𝑥 ln 1 +

𝜉,𝑥 1 − 𝑥
𝑚,

*

-
 

The logarithm term was rewritten so that in the high energy limit (ξ >> m), it becomes 

evident that upon differentiating with respect to the energy parameter 

 
𝑑Π 𝜉
𝑑𝜉

=
𝑒-,

𝜋,𝜉
𝑑𝑥	𝑥 1 − 𝑥
*

-
 

Therefore, the β-function is determined to be 
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[3.1.21] 

[3.2.1] 

 

𝛽 =
𝑒-C

12𝜋,
 

The importance of the β-function is that it explicitly shows how the coupling strength will 

increase with increasing energy.  Of course, this implies that with decreasing distance, the 

coupling strength increases.  This is conceptually important to understanding why 

vacuum polarization gives a negative shift in the energy; it causes the electron to be more 

tightly bound.  As it will be shown in the upcoming chapter, there may be external 

sources of energy which contribute to an increasing coupling strength.  This is an 

important parameter which allows for bound states of hydrogen under extreme 

environmental conditions.  

 

Electron Self-Energy 

As the electron propagates through the vacuum it is constantly being bombarded 

by the virtual photons responsible for the coupling to the nucleus.  This constant 

absorption and emission of photons will undoubtedly have an effect on the energy of the 

electron, and this will result in an effective mass different from the mass of an unbound 

electron.  This is referred to as the physical mass, and calculation of this mass correction 

begins with the renormalization of the fermion propagator used to describe the electron.  

The fermion propagator was defined in chapter 2, and can be written in the form [15] 

 

𝑆 𝑝 = 𝑖𝛾H𝑝H + 𝑚e − Σ∗ 𝑝 − 𝑖𝜖
S*

 

where Σ∗ 𝑝  is the 1-loop correction to the fermion propagator shown in Figure 3.2.  It 

will be assumed for simplicity that higher order terms are negligible, so that the 1-loop  

 



 
 

48 

[3.2.2] 

[3.2.3] 

[3.2.4] 

 
Figure 3.2 – 1-Loop Correction to Fermion Propagator 
 
The 1-loop correction to the fermion propagator.  The solid line here represents the 
electron, and the wavy line represents a photon being emitted and reabsorbed. [15] 

 

correction gives the complete electron self-energy.  Using the Feynman rules established 

in chapter 2, the 1-loop correction is written as 

 

Σ∗ 𝑝 =
𝑖𝑒,

2𝜋 g 𝑑g𝑘 	
1

𝑘, − 𝑖𝜖
𝛾� −𝑖𝛾H𝑝H + 𝑖𝛾H𝑘H + 𝑚e 𝛾�

𝑝 − 𝑘 , + 𝑚e
, − 𝑖𝜖

 

Though dimensional regularization techniques can be used to solve this integral, it 

is found that a technique developed by Pauli and Villars [15] is more straightforward 

here.  In this method, the photon propagator is separated into a low energy term and a 

high-energy as 
1

𝑘, − 𝑖𝜖
=

1
𝑘, + 𝜇, − 𝑖𝜖

+
1

𝑘, − 𝑖𝜖
−

1
𝑘, + 𝜇, − 𝑖𝜖

 

The parameter µ in (3.2.3) is meant to represent a hypothetical photon mass.  

Conceptually this parameter can be taken to infinity, in which case it would not affect the 

photon propagator.  However, upon calculating the Lamb shift, it will be seen to be more 

convenient to make the claim that me >> µ when evaluating low energy contributions.  

The electron self-energy is then determined from the low energy contribution as 

 

Σ∗ 𝑝 =
𝑖𝑒,

2𝜋 g 𝑑g𝑘 	
1

𝑘, − 𝑖𝜖
−

1
𝑘, + 𝜇, − 𝑖𝜖

𝛾� −𝑖𝛾H𝑝H + 𝑖𝛾H𝑘H + 𝑚e 𝛾�
𝑝 − 𝑘 , + 𝑚e

, − 𝑖𝜖
 

The denominators are combined in a form so that the Feynman integral in (3.1.8) may be 

implemented, and the gamma matrix identities are used, so that equation (3.2.4) is written 

in the more solvable form as [15] 

k 

p-k 
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[3.2.5] 

[3.2.6] 

[3.2.7] 

[3.2.8] 

Σ∗ 𝑝 =
𝑖𝑒,

2𝜋 g 𝑑g𝑘	 2𝑖 𝛾H𝑝H − 𝛾H𝑘H + 𝑚e  

× 𝑑𝑥	
1

𝑘 − 𝑝𝑥 , + 𝑝, 1 − 𝑥 + 𝑚e
,𝑥 − 𝑖𝜖 ,

*

-
 

×
1

𝑘 − 𝑝𝑥 , + 𝑝,𝑥 1 − 𝑥 + 𝑚e
,𝑥 + 𝜇, 1 − 𝑥 − 𝑖𝜖 , 

 

The variable of integration is then shifted as 𝑘 → 𝑘 + 𝑝𝑥 to get rid of the cross terms in 

the denominator, and a Wick rotation is performed so that (3.2.5) becomes [15]  

 

Σ∗ 𝑝 =
−2𝜋,𝑒,

2𝜋 g 𝑑𝑥	 2𝑖 1 − 𝑥 𝛾H𝑝H + 4𝑚e

*

-
𝑑𝜅	𝜅C	

�

-
 

×
1

𝜅, + 𝑝,𝑥 1 − 𝑥 + 𝑚e
,𝑥 , −

1

𝜅, + 𝑝,𝑥 1 − 𝑥 + 𝑚e
,𝑥 + 𝜇, 1 − 𝑥

,  

Thus,  

Σ∗ 𝑝 =
−𝜋,𝑒,

2𝜋 g 𝑑𝑥	 2𝑖 1 − 𝑥 𝛾H𝑝H + 4𝑚e

*

-
 

×	ln
𝑝,𝑥 1 − 𝑥 + 𝑚e

,𝑥 + 𝜇, 1 − 𝑥
𝑝,𝑥 1 − 𝑥 + 𝑚e

,𝑥
 

In comparison with (3.1), and recognizing that the propagator in (3.2.1) should have a 

pole when 𝑖𝛾H𝑝H = −𝑚e, the self-energy Σ∗ 𝑝 , mass correction 𝛿𝑚e, and 

renormalization constant 𝑍, become [15]  

 

Σ∗ 𝑝 =
−𝜋,𝑒,

2𝜋 g 𝑑𝑥	 2𝑖 1 − 𝑥 𝛾H𝑝H + 4𝑚e 	ln
𝜇, 1 − 𝑥

𝑝,𝑥 1 − 𝑥 + 𝑚e
,𝑥

*

-
 

 

𝛿𝑚e =
2𝑚e𝜋,𝑒,

2𝜋 g 𝑑𝑥	 1 + 𝑥 	ln
𝜇, 1 − 𝑥
𝑚e
,𝑥,

*

-
 

 

𝑍, − 1 =
2𝜋,𝑒,

2𝜋 g 𝑑𝑥	 1 − 𝑥 	ln
𝜇, 1 − 𝑥
𝑚e
,𝑥,

−
2 1 − 𝑥,

𝑥

*

-
 

Therefore, the complete self-energy of the electron is determined to be absent of any ultra 

violet divergences as 
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[3.2.9] 

[3.2.10] 

[3.3.1] 

[3.3.2] 

Σ 𝑝 = Σ∗ 𝑝 − 𝑍, − 1 𝑖𝛾H𝑝H + 𝑚e + 𝑍,𝛿𝑚e 

 

=
−2𝜋,𝑒,

2𝜋 g 𝑑𝑥 𝑖 1 − 𝑥 𝛾H𝑝H + 2𝑚e ln
𝑚e
, 1 − 𝑥

𝑝,𝑥 1 − 𝑥 + 𝑚e
,𝑥

*

-
 

 

−𝑚e 1 + 𝑥 ln
1 − 𝑥
𝑥,

− 𝑖𝛾H𝑝H + 𝑚e 1 − 𝑥 ln
1 − 𝑥
𝑥,

−
2 1 − 𝑥,

𝑥
 

The mass correction in equation (3.2.8) can also be rewritten in the case where the photon 

mass is taken to be much less than the electron mass as [15]  

 

𝛿𝑚e ≈
𝛼𝜇
2

1 −
3𝜇

2𝜋𝑚e
 

 

Vertex Corrections and Anomalous Magnetic Moment 

The next Feynman diagram to consider is shown in Figure 3.3.  It is seen that the 

interaction between the electron and the virtual photon can be modified at the vertex.  

Again, this correction will be calculated to just first order, and higher orders will be 

assumed to be negligible.  With this correction, the vertex factor will be transformed as 

 

−𝑖𝑒𝛾H → −𝑖𝑒𝛾H − 𝑖𝑒ΓH 𝑝0, 𝑝  

where ΓH 𝑝0, 𝑝  is the vertex function that can be written using Feynman rules as 

 

ΓH 𝑝0, 𝑝 = 𝑑g𝑘	 𝑒𝛾� 2𝜋 g −𝑖
2𝜋 g

−𝑖 𝛾H𝑝H − 𝛾H𝑘H + 𝑚
𝑝0 − 𝑘 , + 𝑚, − 𝑖𝜖

𝛾H 

 

×
−𝑖
2𝜋 g

−𝑖 𝛾H𝑝H − 𝛾H𝑘H + 𝑚
𝑝 − 𝑘 , + 𝑚, − 𝑖𝜖

𝑒𝛾� 2𝜋 g −𝑖
2𝜋 g

1
𝑘, − 𝑖𝜖
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[3.3.3] 

[3.3.4] 

 
Figure 3.3 – Vertex Correction 
 
An external virtual photon line interacts with the electron to result in a necessary 
correction to the vertex. The incoming solid line carries momentum p, while the external 
virtual photon line enters from above carrying momentum q = p′ - p.  The electron exits 
the interaction with total momentum p′. 
 

The evaluation does involve dimensional regularization techniques, but 

rearranging the denominators will allow equation (3.3.2) to be written in a form similar to 

another Feynman integral given by 

 
1

𝐴𝐵𝐶
= 2 𝑑𝑥

*

-
𝑑𝑦	 𝐴𝑦 + 𝐵 𝑥 − 𝑦 + 𝐶 1 − 𝑥 SC
W

-
 

Upon rewriting the denominator and shifting the variable of integration by                      

𝑘 → 𝑘 + 𝑝0𝑦 + 𝑝 𝑥 − 𝑦 , the vertex function is determined to be [15] 

 

ΓH 𝑝0, 𝑝 =
2𝑖𝑒,

2𝜋 g 𝑑𝑥
*

-
𝑑𝑦
W

-

𝑑g𝑘
𝑘, + 𝑚,𝑥, + 𝑞,𝑦 𝑥 − 𝑦 − 𝑖𝜖 C 

×𝛾� −𝑖 𝛾H𝑝′H 1 − 𝑦 − 𝛾H𝑘H − 𝛾H𝑝0H 𝑥 − 𝑦 + 𝑚 𝛾H 

× −𝑖 𝛾H𝑝H 1 − 𝑥 + 𝑦 − 𝛾H𝑘H − 𝛾H𝑝0H𝑦 + 𝑚 𝛾� 

Then a Wick rotation is performed in the counterclockwise direction, and the 

volume element 𝑑g𝑘 is replaced with 2𝑖𝜋,𝜅C𝑑𝜅 where 𝜅 is the Euclidean length of the 

four-vector k [15], giving the matrix elements between Dirac spinors to be 

 

p′ 
p′+k 

p 

k 

p+k 

p′-p 
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[3.3.5] 

[3.3.6] 

[3.3.7] 

[3.3.8] 

[3.3.9] 

[3.3.10] 

𝑢0ΓH 𝑝0, 𝑝 𝑢 =
−4𝜋,𝑒,

2𝜋 , 𝑑𝑥
*

-
𝑑𝑦
W

-
𝜅C𝑑𝜅

�

-

×𝑢′ 𝛾H −𝜅, + 2𝑚, 𝑥, − 4𝑥 + 2 + 2𝑞, 𝑥𝑦 − 𝑦, + 1 − 𝑥

− 2𝑖𝑚 𝑝′H + 𝑝H 𝑥 − 𝑥, 𝑢 

× 𝜅, + 𝑚,𝑥, + 𝑞,𝑦 𝑥 − 𝑦 SC 

 

Because this vertex correction stems from an external photon line, it will have 

contributions from the renormalized photon propagator from equation (3.1.13) by 

 

ΓH,òóô 𝑝0, 𝑝 =
1

𝑝0 − 𝑝 , − 𝑖𝜖
Π 𝑝0 − 𝑝  

and the renormalization constant in (3.2) by 

 

ΓH,ℒ 𝑝0, 𝑝 = 𝑍, − 1 𝛾H 

 It was also shown in chapter 2 that the vertex function in general can be written as 

a sum of the two form factor terms so that the matrix elements will also satisfy 

  

𝑢′ΓH 𝑝0, 𝑝 𝑢 = 𝑢′ 𝛾H𝐹 𝑞, +
𝑖 𝑝 + 𝑝′ H

2𝑚
𝐺 𝑞, 𝑢 

From equations (3.3.5) through (3.3.6), the form factors are determined to be [15] 

 

𝐹 𝑞, = 𝑍, + 𝜋 𝑞, +
−4𝜋,𝑒,

2𝜋 , 𝑑𝑥
*

-
𝑑𝑦
W

-
𝜅C𝑑𝜅

�

-
 

 

×
𝜅, − 2𝑚, 𝑥, − 4𝑥 + 2 − 2𝑞, 𝑥𝑦 − 𝑦, + 1 − 𝑥

𝜅, + 𝑚,𝑥, + 𝑞, 𝑥𝑦 − 𝑦, C  

and 

 

𝐺 𝑞, =
−4𝜋,𝑒,

2𝜋 g 𝑑𝑥
*

-
𝑑𝑦
W

-

4𝑚,𝑥 1 − 𝑥 𝜅C𝑑𝜅
𝑚,𝑥, + 𝑞, 𝑥𝑦 − 𝑦,

�

-
 



 
 

53 

[3.3.11] 

[3.3.12] 

[3.3.13] 

For q2 = 0, it must be true that F(0) + G(0) = 1.  Another way of describing the process in 

Figure 3.3 is that a virtual photon decays into an electron-positron pair.  Of course, by not 

including the 1-loop correction, this will result in F(0) = 1 and G(0) = 0.  However, by 

including the possibility of the decay and following the perturbative QED procedures for 

the 1 loop correction to the vertex function, a vanishing q2 does not results in G(0) = 0, 

and instead, upon evaluating (3.3.10), it is determined that 

 

𝐺 0 =
−𝑒,

8𝜋,
=
−𝛼
2𝜋

 

The magnetic moment operator is defined to be [1]  

 

𝜇 = 2𝐹 0
𝑒,

2𝑚
𝑆 

where the quantity in brackets is known as the 𝑔-factor.  Without perturbative QED 

corrections, F(0) is simply 1, and 𝑔 = 2.  However, it is seen that corrections to the 

vertex predict the electron spin 𝑔-factor to be 

 
𝑔 = 2 1 − 𝐺 0 = 2 1 +

𝛼
2𝜋

= 2.00232 

a result that has been experimentally verified, thereby once again proving the validity of 

QED treatment under relativistic conditions. 

Substitution of the renormalization constant Z2 from equation (3.2.8) into equation 

(3.3.9), and introducing the fictitious photon mass µ to the already existing terms in the 

integrand for 𝐹 𝑞, , gives [15] 
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[3.3.14] 

[3.3.15] 

[3.3.16] 

[3.3.17] 

𝐹 𝑞, = 1 +
𝑒,

8𝜋,
+ 𝜋 𝑞,

+
2𝜋,𝑒,

2𝜋 g 𝑑𝑥
*

-
𝑑𝑦
W

-

×
−𝑚, 𝑥, − 4𝑥 + 2 − 𝑞, 𝑥𝑦 − 𝑦, + 1 − 𝑥

𝑚,𝑥, + 𝑞, 𝑥𝑦 − 𝑦, + 𝜇, 1 − 𝑥
+
𝑚, 𝑥, − 4𝑥 + 2
𝑚,𝑥, + 𝜇, 1 − 𝑥

− ln
𝑚,𝑥, + 𝑞,𝑦 𝑥 − 𝑦 + 𝜇, 1 − 𝑥

𝑚,𝑥, + 𝜇, 1 − 𝑥
 

 

It will prove to be useful in the upcoming calculation of the Lamb shift to 

evaluate the expression in (3.3.9) in the infrared region for small q2.  Then the first 

derivative of (3.3.9) at q2 = 0 is [15] 

 

𝐹′ 0 =
𝑒,

60𝜋,𝑚, +
2𝜋,𝑒,

2𝜋 g 𝑑𝑥
*

-
𝑑𝑦
W

-
 

 

×
−2𝑦 𝑥 − 𝑦 + 1 − 𝑥
𝑚,𝑥, + 𝜇, 1 − 𝑥

+
𝑚, 𝑥, − 4𝑥 + 2 𝑦 𝑥 − 𝑦

𝑚,𝑥, + 𝜇, 1 − 𝑥 ,  

where the first term is the vacuum polarization contribution, as it has a finite derivative at 

q2 = 0.  In evaluating the integral, it is determined that (3.3.9) yields 

 

𝐹0 0 =
𝑒,

24𝜋,𝑚, ln
𝜇,

𝑚, +
2
5
+
1
4

 

and 

𝐺′ 0 =
𝑒,

48𝜋,𝑚, 

The Dirac form factor, defined in chapter 2, is then determined by the summation 

of equations (3.3.10) and (3.3.11) in the Taylor series expansion to be 

 

𝐹* 𝑞, ≈ 1 +
𝑒,

24𝜋,
𝑞,

𝑚, ln
𝜇,

𝑚, +
2
5
+
3
4
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[3.3.18] 

[3.4.1] 

and the Pauli form factor to be 

 

𝐹, 𝑞, ≈
𝑒,

16𝑚e𝜋,
 

 These approximations for the form factors will prove to be very useful in the 

calculation of the Lamb shift, and it is important to note that the vacuum polarization 

contribution is taken into account in Dirac form factor.  At this point, the tools necessary 

to calculate the Lamb shift have been developed.  It has already been shown that energy 

shifts will be taking place, purely due to minor adjustments in the mass, charge, and 

magnetic moment of the electron.  In the next section, it will be shown that the QED form 

factors can be separated into non-relativistic and relativistic corrections by evaluating the 

Dirac form factor contribution and Pauli form factor contribution respectively.   

 

The Lamb Shift 

The Dirac equation was solved in chapter 1 to show a breaking in the degeneracy 

between energy states corresponding to different total angular momenta.  The sections of 

this chapter have shown higher orders in perturbation theory will have measureable 

contributions to these states.  These radiative corrections lead to divergences in overall 

energy contributions to the electron, but special techniques involved in the 

renormalization of the propagators, such as dimensional regularization, help to cancel the 

ultraviolet divergences, i.e. the parameter µ is too large.  However, this fictitious photon 

mass also gives infrared divergences if it is taken to be vanishing.  The requirement for 

the photon mass in the Coulomb field is [15] 

 

𝑍𝛼 ,𝑚e ≪ 𝜇 ≪ 𝑍𝛼𝑚e 
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[3.4.2] 

[3.4.3] 

[3.4.4] 

[3.4.5] 

In the high energy limit, the ultra-violet divergences are removed through the 

dimensional regularization techniques.  Therefore, the form factors from the previous 

chapter can be used directly to determine the shift in energy in the high energy limit.  

Using the interaction picture, the shift in energy due to the correction in the Dirac form 

factor is given in position space by [15] 

 

𝛿𝐸� Ä© =
−𝑒,

24𝜋,𝑚e
, ln

𝜇,

𝑚e
, +

2
5
+
3
4

𝑑C𝑥𝑓�
÷ 𝒙 𝑒∇,𝐴- 𝒙 𝑓� 𝒙  

 

Using 𝑒∇,𝐴- 𝒙 = −𝑍𝑒,𝛿C 𝒙  and 𝑓��]m 0 ù
= 2 𝑍𝛼𝑚e/𝑛 C/,𝛿m,-𝛿ù,]/ 4𝜋, 

equation (3.4.2) is reduced to  

 

𝛿𝐸��m Ä© =
−2𝑍g𝛼î𝑚e

3𝜋𝑛C
ln

𝜇,

𝑚e
, +

2
5
+
3
4
𝛿m,- 

In the presence of a pure electrostatic potential, the Pauli form factor contribution 

to the energy is determined in position space as [15]  

 

𝛿𝐸� Äf =
−𝑖𝑒,

32𝜋,𝑚e
𝑑C𝑥 𝑢� 𝒙 𝛾, 𝛾- 𝑢� 𝒙 ⋅ 𝛁 𝑒𝐴- 𝒙  

where the term in brackets is defined through the Pauli spin matrices by 𝜎HÑ = ;
,
𝛾H, 𝛾Ñ  

[1].  Equation (3.4.2) and (3.4.4) are then combined to give the shift in energy in the high 

energy limit as 

 

𝛿𝐸� ûüýû =
𝑒,

24𝜋,𝑚e
, ln

𝜇,

𝑚e
, +

2
5

𝑑C𝑥𝑓�
÷ 𝒙 𝑒∇,𝐴- 𝒙 𝑓� 𝒙  

+
𝑖𝑒,

16𝜋,𝑚e
𝑑C𝑥 𝑓�

÷ 𝒙 𝝈 ⋅ 𝛁 𝑒𝐴- 𝒙 ×𝛁𝑓� 𝒙  

Now the low-energy contribution to the Lamb shift must be determined.  In this 

process, the infrared divergence needs to be handled, as these divergences were not 
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[3.4.6] 

[3.4.7] 

[3.4.8] 

[3.4.9] 

cancelled out in the process of renormalization.  The self-energy of the electron from 

section 2 in configuration space is given as [15]  

 

Σ∗ 𝑝 =
𝑖𝑒,

2𝜋 g 𝑑g𝑘 𝛾�𝑆þ 𝑥, 𝑦; 𝐸 − 𝑘- 𝛾�×
1

𝑘, − 𝑖𝜖
−

1
𝑘, + 𝜇, − 𝑖𝜖

𝑒;𝒌⋅ 𝒙S𝒚

− 𝑍, 𝜇 − 1 𝛾 ⋅ 𝛁 + 𝑖𝛾-𝐸 + 𝑖𝑒𝛾Ñ𝐴Ñ + 𝑚e 𝛿C 𝒙 − 𝒚 + 𝛿𝑚e 𝜇 𝛿C 𝒙 − 𝒚  

 

where 𝛿𝑚e 𝜇  and 𝑍, 𝜇  are defined by equation (3.2.8).  Therefore, the low-energy 

contribution can be determined once again in the interaction picture as 

 

𝛿𝐸� #$% =
−𝑖𝑒,

2𝜋 g 𝑑g𝑘 𝑑C𝑥 𝑑C𝑦 𝑢� 𝒙 𝛾�𝑆þ 𝑥, 𝑦; 𝐸 − 𝑘- 𝛾�𝑢� 𝒚

×
1

𝑘, − 𝑖𝜖
−

1
𝑘, + 𝜇, − 𝑖𝜖

𝑒;𝒌⋅ 𝒙S𝒚 + 𝛿𝑚e 𝜇 𝑑C𝑥 𝑢� 𝒙 𝑢� 𝒙  

 

The electron propagator in equation (3.4.7) is written in the energy domain as the sum of 

the electron state and the positron state by 

 

𝑆þ 𝒙,𝒚; 𝐸 =
𝑢] 𝒙 𝑢] 𝒚
𝐸] − 𝐸 − 𝑖𝜖

]

−
𝑢] 𝒙 𝑢] 𝒚
𝐸] + 𝐸 − 𝑖𝜖

]

 

By substituting equations (3.4.8) and (3.2.10) into (3.4.7) and evaluating the integral in 

(3.4.7) gives the low energy contribution as [15]  

 

𝛿𝐸� #$% =
𝑒,

2 2𝜋 C 𝐸] − 𝐸� 𝒗]� ,

]

𝑑C𝑘
2

3𝑘, 𝐸] − 𝐸� + 𝒌 − 𝑖𝜖

−
1 − 𝒌, 3 𝒌, + 𝜇,

𝒌, + 𝜇, 𝐸] − 𝐸� + 𝒌, + 𝜇, − 𝑖𝜖
 

where 𝒗]� is the non-relativistic velocity operator.  The integral in (3.4.9) is evaluated 

by invoking 𝑍𝛼 ,𝑚e ≪ 𝜇, where 𝑍𝛼 ,𝑚e~ 𝐸] − 𝐸� .  This result gives an imaginary 
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[3.4.11] 

[3.4.12] 

[3.4.13] 

[3.4.10] 

part to the solution, which related to the non-zero probability that the atom will decay 

from state n to state m.  Since only the real part of the solution is of interest in the 

calculation of the Lamb shift, the imaginary term is dropped, to give the low energy shift 

as 

𝛿𝐸� #$% =
𝑒,

6𝜋,
𝐸] − 𝐸� 𝒗]� , ln

𝜇
2 𝐸� − 𝐸]

+
5
6

]

 

The total energy shift is then the sum of equations (3.4.5) and (3.4.10), and is 

determined to be [15]  

 

𝛿𝐸� =
𝑒,

6𝜋,
𝐸] − 𝐸� 𝒗]� , ln

𝜇
2 𝐸� − 𝐸]

+
5
6
−
1
5

]

 

−
𝑒,

16𝜋,𝑚e
, 𝝈 ⋅ 𝛁 𝑒𝐴- 𝒙 ×𝒑 �� 

Now, specifically for the hydrogen Coulomb field, the amplitude for the transition 

between energy states n and m is 

 

𝐸] − 𝐸� 𝒗]� ,

]

=
𝑒,

2𝑚e
, 𝑓�

÷ 0 𝑓� 0  

which will only give contributions to electrons in the S states, 𝑙 = 0.  The matrix element 

for the magnetic term in (3.4.11) is 

 

𝝈 ⋅ 𝛁 𝑒𝐴- 𝒙 ×𝒑
��
= −𝑒

1
𝑟C
𝝈 ⋅ 𝐋

��
 

which will only have non-vanishing contributions to the states other than S, or 𝑙 ≠ 0.  

Since (3.4.11) will only contribute shifts based on quantum numbers in l, the analysis of 

the energy shift is separated for 𝑙 = 0 and 𝑙 ≠ 0.  It is straightforward to show that for the 

states with 𝑙 = 0, 
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[3.4.14] 

[3.4.15] 

[3.4.16] 

[3.4.17] 

𝛿𝐸 �,m�- =
4𝑚e𝛼î

3𝜋𝑛C
ln

𝑚e

2Δ𝐸�,m�-
+
19
30

 

 
where 𝐸] − 𝐸� 𝒗]� ,ln 𝐸� − 𝐸] ≡ ef

,]^
f ln∆𝐸� 𝑓�

÷ 0 𝑓� 0] .  For the states with 

𝑙 ≠ 0, the shift in energy is determined to be [15]  

 

𝛿𝐸 ��,m*- =
−4𝑚e𝛼î

3𝜋𝑛C
ln

2∆𝐸��m
𝑚e𝛼,

+
𝑚e𝛼î

2𝜋𝑛C
𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − C

g
𝑙 𝑙 + 1 2𝑙 + 1

 

 
where 𝐸] − 𝐸� 𝒗]� ,ln 𝐸� − 𝐸] ≡ ,]^+µ

�,
ln ,∆p«

]^+f] .  The mean excitation 

energies require numerical calculation, and for the 2S and 2P states, the mean excitation 

energies have been determined to be [15] 

 

∆𝐸,¡ = 16.63934203	
𝑚e𝛼,

2
 

and          

∆𝐸,å = 0.9704293186	
𝑚e𝛼,

2
 

Finally, the Lamb shift is determined to be 

 

∆𝐸 2𝑆*/, − 2𝑃*/, = 𝛿𝐸 ,¡ − 𝛿𝐸 ,å 

 

∆𝐸 2𝑆*/, − 2𝑃*/, =
𝑚e𝛼î

6𝜋
ln

∆𝐸,å
𝛼,∆𝐸,¡

+
91
120

 

This gives the difference in energies to be approximately equal to 4.36×10S.	eV , or 

1052 MHz, which is very close to the experimental result of 1057.8 MHz.  Calculations 

involving higher-order radiative corrections, nuclear size, and recoil effects have given 

many numerically identical results to this amount of significant digits. 
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 To this order in perturbation theory, the renormalized mass and first term in 

equation (3.4.7) cancelled.  In this derivation, the cancellation of the renormalized mass 

term was necessary, as it was a function of the fictitious photon mass which was 

responsible for the unphysical divergences.  It can also be argued that the mass correction 

must cancel, for if it did not, then an unreasonable energy shift would be calculated for an 

unbound electron.  Calculations for the individual shifts in energy for each state would 

give 

𝛿𝐸,¡ = 4.30×10S.	eV 

and 

𝛿𝐸,å©/f = −5.34×10Sx	eV 

In the end, a large contribution to a positive shift in energy for the S-state wave 

function is responsible for the majority of the Lamb shift.  Mathematically this is due to 

the fact that the delta function in (3.4.12) does not vanish for these states.  Conceptually 

this can be attributed to the S-state wave functions overlapping with the nucleus, thereby 

giving greater relativistic contributions to the kinetic energy, which result in a slightly 

less bound electron.  On the other hand, magnetic interactions for the P-state wave 

functions give electrons that are slightly more bound.   

In the following chapter, it will be shown that thermal corrections to the mass and 

coupling constant can be written in forms that do not depend on these divergent terms, 

and contributions can therefore be added to equation (3.4.17) without working through 

the demanding process of cancelling divergences.   
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CHAPTER IV:  LAMB SHIFT AT FINITE TEMPERATURE 

 

The strong agreement between the experimental measurement and the theoretical 

calculation of the Lamb shift has arguably made quantum electrodynamics one of the 

most successful theories in modern physics.  The perturbative interaction responsible for 

the Lamb shift is very small indeed, and as technology becomes more advanced and 

physicists continue to improve upon experimental techniques, greater concern needs to be 

taken from a theoretical standpoint in regards to what it means to be negligible.  Formerly 

negligible external effects will not remain negligible so long as advancements in 

technology continue.   

It has been shown that some problems of quantum mechanics cannot be resolved 

with the first quantization, and it is therefore necessary to look for the second 

quantization: the quantization of fields.  Therefore, quantum field theory is unavoidable 

for the detailed understanding of QED systems, and the renormalization of QED has to be 

tested under given conditions.  In reference to stellar cores and the early universe, QED 

renormalization is studied to assure the renormalizability of QED in the environmental 

conditions of such extreme astronomical systems. 

In this chapter, existing calculations of temperature dependence on the Lamb shift 

which leads to unphysical contributions at temperatures of cosmological interest are 

reviewed.  Results using the corresponding physically measureable effective parameters 

of QED are improved upon by calculating the finite temperature and density corrections 

of QED on the Lamb shift for the first time. 
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[4.1.1] 

[4.1.2] 

Blackbody Radiation Corrections to the Lamb Shift 

The temperature dependency on the Lamb shift is a problem that has been 

previously approached.  In this section, the attempts involving blackbody radiation and 

fluctuations in orbital position will be discussed in detail.  A discussion follows as to why 

further improvements are required to properly describe the temperature dependency on 

the bound-state of the electron. 

In an effort to determine the non-relativistic effects of blackbody radiation on the 

Lamb shift, the electron is allowed to interact with real photons from the surrounding 

medium, not just the virtual photons of the vacuum.  This tiny effect of the Lamb shift is 

measureable in precision test experiments and theoretical and experimental results are in 

good agreement.   

Knight [7] begins his calculation of thermal effects on the Lamb shift starting 

with the assumption that the interacting Hamiltonian can simply be written as the parts 

from a Hamiltonian describing charged particles in an electric field separated from the 

typical kinetic and potential energy terms, so that 

 

𝐻  = −
𝑒𝑨 ⋅ 𝒑
𝑚

+
𝑒,𝑨𝟐

2𝑚
 

where 𝐴 is the radiation field.  In the previous chapter this interaction was expressed in 

terms of the electric dipole term.  Though we have used similar interaction terms, the 

terms in (4.1.1) are meant to represent the interactions between the real photons and the 

electron.   

The shift in energy due to the term on the right side of equation (4.1.1) can then 

be written as 

𝛿𝐸* =
𝑒,

2𝑚
𝑚 𝐴, 𝑚 =

𝛼
𝜋𝑚

𝑘	𝑑𝑘 
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[4.1.3] 

[4.1.2a] 

[4.1.3a] 

[4.1.4] 

and the shift in energy to the first term on the right side of equation (4.1.1) can be written 

to accommodate the process of emission and absorption as 

 

𝛿𝐸, =
𝑒,

𝑚,
𝑚 𝑝 ⋅ 𝐴 𝑛, 𝑘 𝑛, 𝑘 𝑝 ⋅ 𝐴 𝑚

𝐸] − 𝐸� − 𝑘 

 

 

																																	=
−2
3𝜋

𝛼
𝑚, 𝑚 𝑝 𝑚 , 𝑑𝑘	 1 −

1
1 + 𝑘/ 𝐸� − 𝐸]

 

where the second term of the integrand in equation (4.1.3) is meant to represent the 

radiative level shift.  These shifts would be similar to what we would have obtained 

before, but now we include the effect of real photons of mode k.  A transition to a 

statistical analysis is made by the inclusion of the photon occupation numbers, and 

equations (4.1.2) and (4.1.3) are now written as 

 

𝛿𝐸* =
2𝛼
𝜋𝑚

𝑘𝑛U	𝑑𝑘 

and 

𝛿𝐸, =
−4𝛼
3𝜋

𝑣]] ,

�

𝑑𝑘	𝑘𝑛U
∆𝐸

∆𝐸 , − 𝑘,
�

-
 

 

In the assumption that we will be dealing with a Bose-Einstein distribution of 

photons for black body radiation effects, 𝑛U (the mean number of photons in mode k, 

𝑛U =
�£e¬0122
d

) is defined through the canonical partition function,                               

𝑍 = 𝒵 = 1 − 𝑒S3¾ S*k
U�*  , and 𝛽 is the typical thermodynamic quantity.  The Bose-

Einstein distribution then gives 𝑛U = 𝑒3¾4 − 1 S*
.  In combining equations (4.1.2a) and 

(4.1.3a), the total shift in energy in terms of the temperature T is written as 

 

𝛿𝐸 =
−4𝛼
3𝜋

∆𝐸 𝑟]� ,

�

𝑇,
𝑥C	𝑑𝑥

𝑒W − 1 ∆𝐸/𝑇 , − 𝑥,
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[4.1.5] 

[4.1.6] 

[4.1.7] 

In the low temperature limit, Knight shows that the shift in energy due to 

blackbody radiation is identically zero, while the shift in energy in the high temperature 

limit is  

𝛿𝐸 =
−4𝛼
3𝜋

∆𝐸
�

𝑟]á ,𝑇,
𝑥𝑑𝑥
𝑒W − 1

=
1
3
𝛼𝜋𝑇,

𝑚
 

The shifts in energy could not be considered negligible in astronomical 

environments of extremely high temperature.  However, since the shifts in energy have 

no dependence on energy level, each level will be shifted equally due to blackbody 

radiation effects.  Therefore, according to equation (4.1.5), blackbody radiation will not 

produce observable corrections to the Lamb shift.  Even though separation between the 

2S1/2 and 2P1/2 levels may not increase, the result of (4.1.5) will still be valuable in 

determining the possibility of bound states for the electron.  

As Knight points out, however, it has been determined that the external radiative 

field will still mix into the 2S1/2 and 2P1/2 states.  Knight explores this idea and 

determines that in the high temperature limit such that the Lamb shift is much less than 

the temperature, ∆𝐸 ≪ 𝑇, there is a nonzero contribution to the Lamb shift itself.  The 

shift in energy of the mixed states is given as 

 

𝛿𝐸5ü6 =
4𝛼
3𝜋

∆𝐸 2S*/, − 2P*/, 𝑟]� ,𝑇,
𝜋,

6
 

where ∆𝐸 2S*/, − 2P*/,  is the Lamb shift.  The shift in energy in the high temperature 

limit is then given as the ratio  9p
p
= gh:f

+]f  . 

Using the value for the Lamb shift obtained in the previous chapter, the correction 

to the Lamb shift due to blackbody radiation effects is 

 

∆𝐸∗ 2S*/, − 2P*/, = 4.379	×	10S.	eV 1 +
4𝜋𝑇,

𝛼𝑚,  
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where the uncorrected shift ∆𝐸 2S*/, − 2P*/,  is accepted as 4.379×10S.	eV .  In the 

event that the temperature is much smaller than the electron mass, the contribution from 

blackbody radiation is negligible.   

The mixing along with the shift given by (4.1.5) will not allow for bound states at 

these energies.  Therefore, it is expected that hydrogen will be ionized and the Lamb shift 

will not be defined afterwards.  Temperature corrections to the Lamb shift will have more 

contribution than the ionization energy and should no longer be considered as radiative 

corrections.  However, under certain conditions the bound states may still exist, so the 

hypothetical correction due to blackbody radiation is plotted in Figure 4.1 below. 

 

 
 
Figure 4.1 – Lamb Shift with Blackbody Radiation Corrections 
 
The Lamb shift is plotted as a function of the ratio of T/m according to Knight’s 
blackbody radiation corrections for the high temperature mixing between the 2S1/2 and 
2P1/2 states. 
 

If mixing takes place elsewhere, we may also have overlapping energy levels well 

before the ionization energy is reached.  Knight also calculated the shift in the fine 

structure between the 2S1/2 and the 2P3/2 and showed the contribution here to be greater 

than it would be for the Lamb shift, so overlapping between the levels is not expected.  It 
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[4.1.8] 

is important to note here that the correction due to the mixing of the states is a 

perturbative effect independent of the Lamb shift, and the degeneracy between the 2S1/2 

and 2P1/2 is broken at high temperatures before the consideration of relativistic effects 

responsible for the Lamb shift.  Knight correctly argues these corrections to be negligible 

for common experimental practice.  It is shown in Figure 4.1 that the difference between 

the 2S1/2 and 2P1/2 levels will continue to increase with increasing temperature without an 

apparent bound, though it is expected that the results from (4.1.5) will cause ionization 

before measureable shifts are possible. 

 

Quantum Fluctuations and the Lamb Shift 

Another possible perturbation is considered to be the fluctuation in the orbital 

position of the electron [11].  It may be considered that the fluctuations in the 

electromagnetic field will also create fluctuations in the kinetic and potential energies of 

the electron as it interacts with the field.  These effects on the overall shifts in energy 

levels are determined in terms of the temperature [10, 11].  This will be a perturbative 

effect as well,  because we consider the trajectory of the electron to be shifted due to the 

transformation 𝑟 → 𝑟 + 𝛿𝑟, where it should be assumed that 𝛿𝑟 = 0.  The instantaneous 

potential energy by this shift is given as 𝑈 𝑟 + 𝛿𝑟 = 1 + δ𝑟 ⋅ 𝛁 + ©
f <k⋅𝛁

f + ⋯ 𝑈 𝑟 .   

The average value of the potential energy 𝑈(𝑟 + 𝛿𝑟) => = 1 + ©
? 9k f

@A +⋯ 𝑈(𝑟)   

can be written in terms of an exponential function as 

 

𝑈(𝑟 + 𝛿𝑟) => = exp
1
6
𝛿𝑟, 𝛁, 𝑈(𝑟) 

In taking the potential energy as the typical Coulombic form 𝑈 𝑟 = −𝑒, 𝑟, then the 

shift in potential energy due to this perturbation is 
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[4.1.9] 

[4.1.10] 

[4.1.11] 

𝛿𝑈* 𝑟 ≈
2𝜋
3
𝑒, 𝛿𝑟, 𝛿(𝑟) 

At this point we will now follow Kolomeisky’s approach [10].  This approach is 

very similar to Welton’s approach [11], but it also accounts for the shift in the potential 

energy if the electron exists within a distance that is less than the proton radius r0.  It is 

useful that temperature effects are also included in this analysis.  The potential energy for 

the electron within nucleus, assuming uniform charge density, is 

 

𝑈, 𝑟 =
−𝑒,

2𝑟-
3 −

𝑟,

𝑟-,
 

where r0 is the radius of the proton and can be related to the Bohr radius aB by               

𝑟- = 1.66×10Sî 𝑎ä.  Quantum mechanically, the electron is not allowed to exist inside 

of the nucleus, and it should be pointed out that the potential given by equation (4.1.10) is 

weaker than the Coulomb potential for the electron outside of the nucleus.  Therefore, if 

the electron does exist at distances less than ro, an increase in the kinetic energy is 

expected, such that it will not remain within the nucleus for any appreciable amount of 

time.  Because of the lack of r dependency, the first term in equation (4.1.10) will not 

contribute to any shift due to the Brownian motion of the electron, but the second term 

will contribute a shift given by 

 

𝛿𝑈, 𝑟 =
𝛼 𝛿𝑟,

2𝑟-C
 

In the focus of the Lamb shift, the only states that will be effected by equations 

(4.1.9) and (4.1.11) are the S states, since the integration of the delta function with the P 

states will yield zero.  Conceptually this should make sense, as the wave-function for the 

P states do not overlap with the proton.  The physical implications of (4.1.11) put a lower 

bound on the motion.  In the event that the scattering within the given orbital radius is 
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[4.1.12] 

[4.1.13] 

[4.1.14] 

[4.1.15] 

weak, perturbation theory seems to work very well.  The strength of the barrier that 

determines whether the scattering is weak or not is written in the form of the 

dimensionless parameter λ as [10]  

 

𝜆 = 60241
𝛿𝑟,

𝑎ä,

*/,

 

This parameter will be related to scattering length caused by the proton-electron 

interaction.  Kolomeisky then uses the Rydberg formula to determine the shift in energy 

due to what is defined to be the dimensionless quantum defect µ.  

 

∆𝐸� 𝜇 =
1

2 𝑛 − 𝜇å
−

1
2 𝑛 − 𝜇¡

 

 

𝜇 = −2 1.66×10Sî 1 −
tanh𝜆
𝜆

 

It is now only necessary to calculate 𝛿𝑟,  to determine the resulting 

contributions to the Lamb shift.  Kolomeisky does this by assuming a non-relativistic 

harmonically bound electron, and then improves upon Welton’s equation of motion for 

the electron by including a radiation damping term.  By incorporating the fluctuation-

dissipation theorem, and the mean-square fluctuation can be written in integral form as  

 

𝛿𝑟, =
3ℏ
𝜋

𝑑𝜔	𝒜00 𝜔 coth
ℏ𝜔
2𝑇

�

-

 

where 𝜔 is the oscillation frequency meant to represent the motion about the Bohr orbit, 

and T is the temperature, and 𝒜00 𝜔  is the generalized susceptibility [13].  By using the 

same cutoff frequency as Welton [11], the mean-square displacement of the electron as a 

ratio to the Bohr orbit is determined to be [10]  
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[4.1.16] 

[4.1.17] 

𝛿𝑟,

𝑎ä,
=
2𝛼C

𝜋
ln
𝑛C

𝛼,
 

Upon calculating this ratio for the n=2 state, it is determined that the mean-square 

displacement is approximately 0.0017 times the size of the Bohr radius, thus implying 

perturbation theory to be valid.  Equation (4.1.16) is substituted into equation (4.1.12) to 

determine the dimensionless barrier strength.  For the 2S1/2 state the barrier strength is 

calculated to be approximately 0.4216.  The quantum defect for this state is then 

determined to be approximately µS = 1.86 × 10-6 , and the 2P1/2 state is assumed to be 

unaffected by the barrier for reasons discussed earlier, thereby giving a defect µP = 0.  

The corresponding shift in energy due to the fluctuation in the position of the electron in 

the 2S1/2 state is then determined to be approximately -2.30×10-7 eV, or -55.6 MHz.  This 

predicted shift due to fluctuations is near 5% of the overall value of the Lamb shift, and 

like vacuum polarization, is in the opposite direction. 

With the approximation that coth 𝑥 ≈ 1 𝑥 for x < 1 and coth 𝑥 ≈ 1 for 𝑥 ≥ 1, 

the evaluation equation (4.1.15) would instead give the shift in terms of the temperature 

as 

𝛿𝑟, ≈ 3𝑇,𝑛. +
2𝛼C

𝜋
ln

1
𝑇𝛼,

 

The second term on the right-hand-side is meant to represent contributions from quantum 

fluctuations, while the first term is the classical contribution.  The temperature in (4.1.17) 

is measured in a.u., so T = 1 a.u. corresponds to 3.158×105 K.  The contribution to the 

Lamb shift due to quantum fluctuations can be seen in Figure 4.2, noting that these 

contributions will results in negative energy shifts, similar to vacuum polarization.  

Thermal corrections due to quantum fluctuations in electron orbit become negligible as 

temperatures approach 0.511 MeV.  This can be attributed to the increase in orbital radius 

as the overall energy state increases, thereby reducing a noticeable change in potential.  
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At these temperatures, the perturbation used becomes negligible, and higher order terms 

from equation (4.1.8) would need to be considered.   

 

 
Figure 4.2 – Lamb Shift due to Quantum Fluctuations 
 
A possible contribution to the Lamb shift due to quantum fluctuations.  
 
 

It must be noted that equation (4.1.17) cannot be valid for any value of n, as the 

state would eventually become unstable with increasing shifts in the displacement.  We 

must require that 𝛿𝑟,  remain sufficiently small, so that the electron does not fluctuate 

to the point where it is no longer bound.  One constraint that must be applied is 𝑇𝑛, ≪ 1 

to accommodate the previous condition.  Another constraint that must be applied is    

𝑛 ≪ 𝛼SC𝑇S* to ensure that the state does not decay before it can be measured.  The range 

for principal quantum numbers is therefore  𝑇S*/C ≪ 𝑛 ≪ 𝑇S*/, [10].  One interesting 

application of this would be to show that at room temperature, this effect is valid for 

quantum numbers n between 10 and 31.  States for n < 10 would still be considered 

stable, but the integration technique to develop equation (4.1.17) would no longer be 

valid, as it assumed sufficiently high temperatures.  A contribution from the fluctuations 
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to the Lamb shift at room temperature would then be unobservable.  With greater 

attention to the Lamb shift, the upper temperature limit for the n=2 level would be  

78,950 K, or 6.81 eV, which is well below our consideration for high temperatures.  It 

may also be worth noting that if these temperatures were taken into consideration, the 

shifts in energy would be dominated by the classical term in equation (4.1.17).  

Regardless of the validity of (4.1.17) at these temperatures, the contributions to the Lamb 

shift would be well beyond the ionization energy due to the classical contribution. 

By working in ranges of non-relativistic quantum, Knight determines that each 

state will be equally shifted in the high temperature limit, and contributions to the Lamb 

shift will be null.  In the following chapter, the temperature dependency on the electron 

mass and coupling constant will suggest otherwise.  However, a result that will still prove 

to be useful in the section that follows is the temperature dependent shift due to the 

mixing of the states, which occurs prior consideration of the Lamb shift.  Careful 

consideration will also be given to Kolomeisky’s approach involving the mean-square 

fluctuation of the electron.  Though caution must be taken in considering the validity of 

the classical approaches taken, the contributions to the Lamb shift on similar scales to 

vacuum polarization are too interesting to ignore, and will be briefly discussed in the 

following section.  However, it has been determined that at sufficiently high 

temperatures, fluctuations in the orbital motion of the electron do become negligible, and 

will therefore not be taken into account for final conclusions. 

 

Renormalization of QED at Finite Temperature and Density 

Renormalization of QED in hot and dense medium is studied using the real-time 

formalism where an order-by-order cancellation of singularities can be explicitly shown, 

and the Kinoshita-Lee-Nauenberg (KLN) theorem can be proved explicitly as order-by-
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order calculations of all diagrams.  Explicit calculations of the renormalization constant 

of QED in different conditions of temperature and chemical potential are presented in 

literature in detail [14, 29].  The renormalization constants of QED including electron 

mass, electron charge and electron wave function are evaluated as a function of 

temperature and chemical potential.  These can be used as physically measureable and 

effective parameters of the theory. 

It was shown in chapter 3 that the relativistic electron interacts with the 

electromagnetic field in such a way so as to shift the energy of the atom.  It should then 

be useful to explore the possibilities that other factors, such as temperature, may also 

contribute to shifts in this energy.  In a many particle relativistic system at extremely high 

temperature and chemical potential, renormalization scheme helps to evaluate QED 

parameters at T << me and T >> me ~10*-	K .  The chemical potential µ is also 

expressed in terms of electron mass (chemical energy of 0.511 MeV).  QED parameters 

have been calculated for the relevant ranges of T and µ. 

Calculations of renormalized constants in the many body relativistic system 

include only electrodynamic interactions.  The QED fluid changes the physical values of 

parameters including the coupling constant α.  This leads to the change in the 

electromagnetic properties of the system including electric permittivity, magnetic 

permeability and magnetic moment of charged particles.  Due to these changes in the 

QED medium at extremely high temperature and density, radiative corrections stemming 

from external interactions may contribute to measureable energy shifts in the hydrogen 

atom.  The bound states of hydrogen are possible to exist at higher temperatures only if 

chemical potential is also extremely high and is larger than the temperature.  Such 

systems are available in neutron starts and supernovae, so calculation of the Lamb shift is 

relevant to study in highly dense stellar cores.  
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[4.2.1] 

[4.2.2] 

[4.2.3] 

Calculation of temperature dependence on the Lamb shift is therefore an 

interesting topic.  However, experimental measurement of the Lamb shift has always 

been challenging due to it being such a small factor.  Regardless of the difficulties in 

measurements, these calculations may be very helpful to understand the interior structure 

of compact objects and we can interpret the observational results in a much more accurate 

way.  Thermal corrections and density dependence is expected to help in precision, but a 

persistent perturbative effect may give sizeable corrections which cannot be ignored. 

The renormalization of the particles propagating through the vacuum have already 

been calculated, and will furthermore be considered as solutions prior to the interaction in 

the hot, dense media.  In the systems of interest, the particles cannot be considered freely 

propagating, bare particles.  When statistical background energies are around the 

threshold energies sufficient for electron-positron pair production, a continuous exchange 

of electrons and photons between particles generate thermal effects that must be taken 

into account.  Statistical effects are introduced through Dirac-Fermi and Bose-Einstein 

distributions.  The photon and fermion propagators from chapter 3 are statistically 

corrected through these distributions respectively by [18]  

 

𝐷3 𝑞 =
𝑖

𝑞, − 𝑚, + 𝑖𝜖
+

2𝜋
𝑒3pK − 1

𝛿 𝑞, − 𝑚,  

 

𝑆Ä 𝑝 =
𝑖

𝛾H𝑝H
,
− 𝑚, + 𝑖𝜖

+
2𝜋 𝛾H𝑝H + 𝑚
𝑒3p_ − 1

𝛿 𝑝, − 𝑚,  

As was discussed previously, the vacuum corrections to the first terms in equations 

(4.2.1) and (4.2.2) have already been calculated, so thermal contribution to the 

renormalized mass can be separated as 

𝑚L = 𝑚 + 𝛿𝑚 𝑇 = 0 + 𝛿𝑚 𝑇  



 
 

74 

[4.2.4] 

[4.2.5] 

[4.2.6] 

Through the processes discussed above, Masood determines [14] that in the low 

temperature limit for T << m and the high temperature limit T >>m, the thermal 

contributions in (4.2.3) can be written in the forms 

 
𝛿𝑚 𝑇
𝑚

≈
𝛼𝜋𝑇,

3𝑚, 			𝑇 ≪ 𝑚											and										
𝛿𝑚 𝑇
𝑚

≈
𝛼𝜋𝑇,

2𝑚, 			𝑇 ≫ 𝑚 

As it might be expected, the rate of change of the mass as a function of temperature is 

larger for temperatures greater than the electron mass.  At these temperatures, 

contributions from external radiative effects tend to dominate the fermion background 

contributions.   

The charge renormalization does not alter the coupling constant for T << m, and 

for T >> m it is given by [14]  

 

𝛼 𝑇 = 𝛼 𝑇 = 0 1 +
𝛼,𝑇,

6𝑚, 						𝑇 ≫ 𝑚 

This increasing coupling constant will correspond to an increasing effective charge, 

thereby allowing for bound states beyond the typical expected background energies. 

In the event that the environments of interest are also extremely dense, then the 

growth of the mass is expected to be inhibited as the high densities will result in smaller 

mean paths.  A large enough chemical potential will also overcome thermal effects 

altogether.  This is seen in the corrected Fermion distribution function with the inclusion 

of the chemical potential as 

𝑛Ä 𝑝 + 𝜇 =
1

𝑒S3 p_`H + 1
 

Therefore, in the event that the chemical potential is sufficiently high, it may follow that 

𝜇 ≫ 𝑇 > 𝑚, implying that the thermal mass correction has been suppressed by the 
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[4.2.7] 

[4.2.8] 

[4.2.9] 

[4.2.10] 

overbearing chemical potential.  The self-mass correction under this condition has been 

calculated by Masood [19] in terms of the chemical potential, and is given as 

 
𝛿𝑚
𝑚

𝑇, 𝜇 ≃
3𝛼
𝜋
ln
𝜇
𝑚
+
𝛼
𝜋

1 −
𝜇,

𝑚, 3
𝑚,

𝜇,
+
2𝑝,

𝜇,
− 1  

so that for extremely large values of chemical potential,  

 
𝛿𝑚
𝑚

𝑇, 𝜇 ≃ −
𝛼𝜇,

𝜋𝑚, 

The distribution function for the photon in environments of extremely high 

density is the same as that in equation (4.2.1).  Therefore, calculation of the finite density 

corrections to the coupling constant are not as straightforward and require analysis of a 

dynamical photon mass that stems from corrections to the electric permittivity and 

magnetic permeability of the region of interest.  An effective charge results from 

correcting these electromagnetic properties, and the corrected coupling constant is 

calculated by Masood [29] in terms of the chemical potential as 

 

𝛼L = 𝛼- 1 −
2𝛼
𝑚,

𝜇, − 2𝑚,

8
1 −

𝑚,

𝜇,
 

Equation (4.2.9) is only valid for regions where density effects dominate thermal effects.  

A reasonable assumption is made that the chemical potential will also be much larger 

than the mass of the electron, since (4.2.8) suggests that a high chemical potential 

suppresses QED corrections to the mass.  In this limit, the coupling constant can be 

written in the approximate form as 

 

𝛼L ≈ 𝛼- 1 −
2𝛼
8
𝜇2

𝑚2  
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[4.3.1] 

Equations (4.2.4) and (4.2.5) verify that for extremely high temperatures, 

contributions to mass renormalization and charge renormalization are parameters that 

cannot be deemed negligible.  Circumstances where density effects dominate thermal 

effects have also been calculated.  The negative quadratic relationship will play an 

important role when considering possible bound states, or density of states, within a 

certain region under these extreme conditions.  These corrections will provide greater 

insight to the electrodynamic properties and, more specifically, the Lamb shift for 

environments of extreme temperatures and densities. 

 

Lamb Shift at Finite Temperature 

It was determined in section 1 of this chapter that previous results do not allow for 

the Lamb shift to exist in extreme astronomical environments.  These approaches in 

determining thermal corrections to the Lamb shift involved typical quantum mechanics 

approaches, and turned out to yield incorrect results for extremely high temperatures.  It 

was shown in section 2 that a relativistic field theory approach is necessary to properly 

describe the system. 

Thermal corrections to the Lamb shift, calculated in section 3, can be made by 

substituting expressions for the renormalized mass (4.2.4) and coupling constant (4.2.5).  

Though emphasis will be put on the high temperature limit, the low temperature limit will 

be briefly discussed to verify the importance of the relativistic field theory approach.  In 

the low temperature limit (T << m), the Lamb shift is written as 

 

∆𝐸,P©fS,å©f = 𝑚e 1 +
𝛼𝜋𝑇,

3𝑚,
𝛼î

6𝜋
ln

∆𝐸,å
𝛼,∆𝐸,¡

+
91
120

 

A plot of the Lamb shift as a function of the temperature to mass ratio T / m can 

be viewed in Figure 4.3.  It is important to note here that Knight [7] showed that, due to 
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[4.3.2] 

blackbody radiation effects, there would be no observable change in the difference in 

energy between states as temperature increases since individual thermal corrections 

would shift levels equally in the opposite directions, thereby cancelling thermal effects.  

However, it is shown here that in the low temperature limit, corrections to the electron 

mass show that there will be a very small increase in the separation between the energy 

levels, thereby disagreeing with the results by Knight.  Of course, these shifts are 

extremely small, and only differ from the original Lamb shift value at temperatures near 

m by approximately 1%. 

In the high temperature limit (T >> m), the mass and coupling constant are 

renormalized, so the Lamb shift is written as 

 

∆𝐸,P©fS,å©f =
𝑚e𝛼î

6𝜋
1 +

𝛼𝜋𝑇,

2𝑚, 1 +
𝛼,𝑇,

6𝑚,

î

 

 

× ln
∆𝐸,å

𝛼, 1 + 𝛼
,𝑇,
6𝑚,

,
∆𝐸,¡

+
91
120

 

where the coupling constant α and the mass me are taken to be the renormalized values 

corresponding to T = 0.  The Lamb shift is plotted as a function of the temperature to 

mass ratio in Figure 4.4.  In the high temperature limit, thermal corrections to the mass 

contribute sizeable increases to the Lamb shift.  Thermal corrections to the coupling 

constant will further contribute to the shift, where these corrections were not present in 

the low temperature limit.  Near the decoupling temperature, thermal corrections account 

for over 50% of the total Lamb shift, vacuum corrections included.  It is clear that 

thermal contributions at these energies cannot be ignored, as they account for the 

majority of the shift in energy. 
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Figure 4.3 – Lamb Shift at Finite Temperature with QED Corrections (T<<m) 
 
A plot of the Lamb shift as a function of the temperature to mass ratio from 0 MeV  up to 
approximately 0.511 MeV.  In Kelvin, these temperatures would range from 0 K to 
approximately 6,000 K.   

 

 
 
Figure 4.4 – Lamb Shift at Finite Temperature with QED Corrections (T>>m) 
 
A plot of the Lamb shift as a function of the temperature to mass ratio from 
approximately 0.511 MeV to the predicted decoupling temperature [5] of approximately 
5.11 MeV.   
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In the high temperature limit, thermal corrections to the mass contribute sizeable 

increases to the Lamb shift.  Thermal corrections to the coupling constant will further 

contribute to the shift, where these corrections were not present in the low temperature 

limit.  For example, from 0.511 MeV to 1.02 MeV, a 4% increase in the Lamb shift is 

observed.  Overall, this is a 5% increase to the Lamb shift calculated with only vacuum 

radiative corrections taken into account.  Near the decoupling temperature, thermal 

corrections account for over 50% of the total Lamb shift, vacuum corrections included.  It 

is clear that thermal contributions at these energies cannot be ignored, as they account for 

the majority of the shift in energy. 

It is now important to discuss the results of Knight [7] that were determined in the 

high temperature range.  Though the QED results disagree with the assessment that the 

shift in energy will be identical for all energy states, the mixing between the 2S1/2 and 

2P1/2 states occurred before Lamb shift calculations were taken into consideration, 

thereby claiming that the degeneracy between the states is broken before taking QED 

radiative corrections into account.  This shift was given by equation (4.1.7) and plotted in 

Figure 4.1.   

Further corrections to the results given by Knight [7] can be made in recognizing 

that the constant value of the Lamb shift in (4.1.7) is not constant following the thermal 

corrections made in this chapter.  This leading term will be increasing with increasing 

temperature as shown in Figure 4.4.  The mass and coupling constant are also 

renormalized to accommodate thermal corrections, so that equation (4.1.7) is more 

accurately written as equation (4.3.3).  In this form, it can be seen that the coupling 

constant will eventually play a dominant role at extremely high temperatures.  It is 

therefore expected that the continuously increasing function shown in Figure 4.1 is not 

correct, and the Lamb shift will approach a maximum value. 
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[4.3.3] 

∆𝐸,P©fS,å©f =
𝑚e 1 + 𝛼𝜋𝑇

,

2𝑚, 𝛼î 1 + 𝛼
,𝑇,
6𝑚,

î

6𝜋
ln

∆𝐸,å

𝛼, 1 + 𝛼
,𝑇,
6𝑚,

,
∆𝐸,¡

+
91
120

× 1 +
4𝜋𝑇,

𝛼 1 + 𝛼
,𝑇,
6𝑚, 𝑚, 1 + 𝛼𝜋𝑇

,

2𝑚,

,  

 

The first parenthetical quantity is the thermally corrected Lamb shift, and the second is 

Knight’s correction from the mixing of the states with thermally corrected mass and 

coupling constant.  A plot of equation (4.3.3) is shown in Figure 4.4 as a function of the 

temperature to mass ratio. 

This correction still gives rather large contributions to the Lamb shift, especially 

in comparison to (4.3.2).  However, if the shift in energy between the states takes place 

prior to QED corrections, it must be included for the overall thermal correction.  As seen 

in Figure 4.5, the thermal corrections to the charge and mass still play an important role 

in the overall shift.  Up to the decoupling temperature, the Lamb shift calculated here is 

nearly half the value predicted by Knight.  This is due to the increased mass of the 

electron at high temperatures, as well as the increased coupling constant, insinuating that 

at high temperatures, the increase in chemical potential is able to overcome the extreme 

external effects of the surrounding environment, allowing for the bound state to maintain 

its existence. 
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Figure 4.5 – Blackbody Mixing Corrections with QED Thermal Corrections 
 
Masood’s QED thermal corrections are included in Knight’s blackbody radiation 
corrections for the mixing of the 2S1/2 and 2P1/2 states.  The Lamb shift with these 
corrections is plotted up to the decoupling temperature. 
 

 

 
 
Figure 4.6 – Comparison of Blackbody Corrections and QED Blackbody Corrections 
 
A comparison between Knight’s blackbody radiation corrections (Blue-dashed) and 
Knight’s corrections with the inclusion of the thermally corrected mass and coupling 
constant (Green). 
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As a further extension to note the importance of the renormalized coupling 

constant at high temperatures, it is recognized that the plot in Figure 4.5 shows a 

decreasing rate of change in the shift in energy, whereas Figure 4.1 showed a 

continuously increasing value for the Lamb shift.  The two are plotted against one 

another in Figure 4.6. 

Though analysis of the Lamb shift in environments greater than the decoupling 

temperature require the incorporation of electroweak theory, it may still be interesting to 

note that thermal corrections to QED still theoretically show asymptotic behavior to the 

shift in energy between the 2S1/2 and 2P1/2 states. 

 

Lamb Shift at Finite Chemical Potential 

External thermal contributions in extreme environments have been shown to not 

allow for bound states.  The interior of a Neutron star has extremely high temperature, 

where these effects by themselves would never allow for bound states.  However, stellar 

cores tend to have extremely high density.  The interior of a Neutron star is thought to be 

so dense that the chemical potential far exceeds temperature effects.  In this limit, the 

Lamb shift has negligible thermal dependency and is corrected only through the chemical 

potential contributions (4.2.8) and (4.2.10).   
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Figure 4.7 shows that an increasing chemical potential will eventually lead to 

degeneracy between the 2S1/2 and 2P1/2 states that was once broken by vacuum QED 

corrections.  When the chemical potential is at energies around 𝜇~10.7	MeV in 

comparison to the electron mass, electrons will exist in degenerate energy states which 
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may give insight to more interesting physical phenomena that is left for discussion in the 

upcoming section.   

 

 

 
 
Figure 4.7 – Lamb Shift in High Chemical Potential 
 
A Plot of the Lamb shift in environments where chemical potential contributions are 
much larger than thermal contributions. 
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It is evident from the results in this chapter that in order to properly describe finite 

temperature and density effects on the Lamb shift, and therefore hydrogen structure, 

quantum mechanics alone is not sufficient; FTD corrections to QED must be included.  

At low temperatures, Knight showed using techniques in quantum mechanics that 

blackbody radiation corrections would not shift energy levels.   However, Knight [7] uses 

only a Bose-Einstein distribution to account for statistical effects in the non-relativistic 

limit.  By using Masood’s thermally corrected propagators, it was shown that there will 
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be contributions to the Lamb shift in the low temperature limit.  In the high temperature 

limit, Knight shows that thermal corrections will shift all states equally, and will 

therefore not provide any further separation between the 2S1/2 and 2P1/2 energy levels.  

This too was shown to be false by using the thermally corrected propagators.  It is 

interesting to note Knight’s value in equation (4.1.5) in that it is identical to Masood’s 

mass correction for the low temperature limit.  It may be possible that Knight’s high 

temperature contribution to the overall energy was originally misinterpreted, and this 

should have been a contribution to the mass.  Knight’s calculations are still useful as they 

verify that the electron will not be able to exist in a bound state in these environments, 

and his inclusion of the mixing is necessary for more accurate calculations of the overall 

shift.  Regardless of the unlikeliness of bound states in these environments, calculation of 

the Lamb shift with QED thermal corrections is argued to maintain its relevance as it 

provides insight to the states in which the free electrons may exist relative to one another. 

In the high temperature limit, temperatures are in the range of 109  ∼ 1010 K.  

Known astronomical environments where electrons may exist in this temperature range 

correspond to the interior of Neutron stars.  Even though quantum mechanics does not 

allow for the electron to exist within the nucleus, and Neutron stars are meant to represent 

large nuclear systems, relativistic electrons are expected to exist in these environments 

due to the size of the Neutron star.  Therefore, Lamb shift corrections are also relevant in 

this extreme environment.  In the interior of the Neutron star, density effects cannot be 

ignored, and it is possible for chemical potential contributions to exceed thermal 

contributions to the self-energy of the electron, allowing for possible bound states.  In 

extremely dense environments it is assumed that the mass and coupling constant only 

need to be renormalized in terms of the chemical potential.  An interesting result from 

this is that a continued increase in chemical potential will even overcome vacuum 
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contributions to the Lamb shift, ultimately creating degeneracy in the energy states.  This 

could provide very important insight to the structure and formation of Neutron stars and 

other highly dense environments, such as White Dwarf stars.   

At extreme temperatures, relativistic effects cannot be ignored as the threshold 

energy for electron-positron pair production is exceeded, and these electron-positron 

pairs will interact statistically with the electron propagator.  Therefore, an analysis 

involving Fermi-Dirac distributions for the electron is necessary.  Masood [19, 29] uses a 

Fermi-Dirac distribution in the renormalization of the fermion propagator to determine 

renormalized mass and coupling constants.  This renormalization scheme is pertinent in 

order to properly describe the importance that the chemical potential has on the structure 

and stability of the hydrogen atom in extreme environments, and has been used to 

improve upon conclusions reached by Knight. 

It may also be considered that thermal QED corrections would have an effect on 

the thermal fluctuations determined by Kolomeisky [10].  However, the range for 

meaningful contributions proved to be too limited, and otherwise negligible in the high 

temperature region.  Therefore, these results were not further improved upon by including 

thermal corrections to the mass and coupling constant.  In extremely dense environments 

where bound states may exist, it is assumed that thermal fluctuations will be suppressed 

by the chemical potential contributions.   

Thermal corrections to QED, though reasonably neglected in most calculations, 

cannot be ignored in extreme environments.  Therefore, it is reasonable to believe that 

there may be other previously neglected factors which also have large contributions in 

these environments, one of which is extremely high density.  Further analysis regarding 

bound states in a Neutron star should also include magnetic contributions, as magnetic 

field strengths in this environment are ~1012 T.  This can be done by introducing a 
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[4.4.1] 

magnetic energy term to the Hamiltonian in equations (4.2.1) and (4.2.2).  The external 

magnetic field will cause different spin states to have different energies.  In order to 

discuss the effects of spin splitting, an addition to the overall energy is given by the 

Landau energy levels [1] as 

 

𝐸 = 2𝑛 + 1 ℏ𝜔| ±
1
2
𝑔𝜇ä𝐵 

This contribution may be valid for the quantum limit condition 𝑘𝑇 < ℏ𝜔|, where 𝜔| is 

the cyclotron frequency for an orbital electron.  This limit is achieved in the consideration 

of strong chemical potential contribution.  It should also be noted that since the 𝑔-factor 

depends on the coupling constant, and the cyclotron frequency and Bohr magneton 

depend on electron mass, a thermally dependent magnetic energy is expected.  Landau 

levels become increasingly more important when discussing density of states, and further 

analysis may provide the possibility for a quantum hall fluid to exist within extremely 

dense environments exposed to an extreme magnetic field strength.   

QED thermal and density corrections have been shown to be an important 

dialogue regarding effects on electromagnetic properties, the Lamb shift, and structure of 

bound states in extreme environments.  This has been verified in the low and high 

temperature limits, as well as high density limits, relative to the electron mass.  Though 

thermal contributions have been shown to not typically allow for bound electrons, insight 

has been given to how the electron states may exist relative to one another.  In extremely 

dense media, a high chemical potential may allow for bound electrons so long as the 

condition 𝜇 ≫ 𝑇 > 𝑚 is valid.  It has also been pointed out that the relevant astronomical 

environments for these effects tend to have strong magnetic fields associated with them.  

It is expected that further corrections to the Lamb shift can be made by including 

magnetic field contributions.  These are expected to improve upon the results of this 
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thesis, but are not expected to be necessary where thermal contributions are dominant.  

Only higher order QED thermal corrections may yield more accurate results in these 

regions. 
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