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ABSTRACT 

LOCATING DISASTER RELIEF FACILITY CENTERS IN HOUSTON CITY  

 

 

 

Dinesh Kandikonda  

University of Houston-Clear Lake, 2018 

 

 

 

Thesis Project Chair: Dr. Ki Young Jeong 

 

 

We study the problem of locating disaster relief facility centers (DRFCs) in the city of 

Houston which is prone to flood risk hurricanes. We propose a multi-objective optimization 

programming (MOOP) model for selecting the location of DRFCs. Our multi-objective 

model attempts to minimize the total logistics cost and at the same time it aims to choose 

a potential site with lowest flood risk impact. Strategic design phase (SDP) includes the 

location of the DRFCs while operational level phase (OLP) deals with the robustness. 

Robustness is analyzed in terms of perturbed MOOP objective through diverse damage 

scenarios to DRFCs. The impact of factors such as open number of DRFCs, maximum 

coverage of a DRFC and α on the MOOP objective at different capacity levels are studied. 

For the MOOP model, two different objective models, total logistics cost (TLC) and flood 

risk impact (FRI) model are combined using the compromising programming model to 

obtain a compromise solution. These models are implemented on the real data of Houston. 

The result obtained from this framework depends on the decision- maker as it is his choice 

to decide upon the level of flood risk impact he is willing to take. To my best knowledge, 
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this is a first time approach to locate DRFCs in the city of Houston. This research will 

provide significant insights to practitioners in designing and implementing mathematical 

models related to flood affected areas. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Research Background and Motivation 

 

Hurricane Harvey, a category 4 storm, struck Houston, Texas in August 2017. This 

storm has affected a large number of people and also caused significant economic damages 

(Dottle et al.). Hurricane Harvey has also caused many severe physical damages to the city 

of Houston and the economic losses are in the billions. A lot of people are low income and 

did not have the means to leave the city (Hurricane Harvey: Four key effects of Houston 

floods).Three disaster recovery centers were to be opened in Houston by Federal 

Emergency Management Agency (FEMA) after the disaster and that suggests a lack of 

preparedness. This leads to a situation where people get stranded in the city without proper 

facilities to survive. The current research will help improve both pre-disaster and post-

disaster operations by locating disaster relief facility centers (DRFC) in the city of Houston 

that are resistant to flood impact.   

 

1.2 Problem Identification and its Significance 

 

Floods are one of the most common (Tehrany et al., 2013; Ajin et al., 2013) and 

destructive phenomenon (Patel & Srivastava, 2013). Compared to other disasters, floods 

are easier to predict and prevent (Chang et al., 2007). When locating DRFCs, there is a 

probability that the DRFC location is under the risk of flood. This risk cannot be ignored 

as it will lead to closure of the DRFC and not only affect the cost but also increase the time 

to deliver supplies. The flood prevention is generally a mitigation to reduce the risk with 
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the help of tools (Haddow et al., 2011). Pre and post disaster planning helps to improve the 

disaster responsiveness. Along with the logistics cost, the flood risk impact on the DRFC 

should be considered to prevent the risk of flooding of the disaster relief facility center. 

Not only the flood risk, but the logistics cost also plays a major role in deciding the DRFCs. 

Hence, a multi-objective optimization model is formulated that balances the cost and flood 

risk impact.   

 

1.3 Aim and Objectives 

 

The aim of the study is to develop a multi-objective optimization model to aid 

decision making regarding location of DRFCs in the city of Houston. The decision 

regarding the location of the DRFCs is regarded as the strategic level design as it involves 

cost, effect of environment, and population. The objective is to analyze the impact of 

parameters such as open number of DRFCs, maximum coverage of a DRFC and alpha (α) 

on the multi-objective optimization programming (MOOP) model using taguchi analysis. 

The study also attempts to analyze the robustness of the objective in operational level phase 

(OLP). 

 

The following steps are undertaken to accomplish the aim: 

 The real time data related to Houston is collected. 

 The development of three optimization models to integrate cost and flood 

risk impact. 

 The application of the models to the collected data of Houston to analyze 

the impact of factors and robustness on the objective.  
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 Helping the decision maker in choosing α by creating a compromising 

situation between the total logistics model and flood risk impact model. 

 

1.4 Scope of the thesis 

 

The scope of this research is limited to the location of the DRFCs based on the 

models formulated. The models developed will focus on preparedness in the strategic 

design phase (SDP) phase and response in the operational level planning (OLP) phase.  

 

1.5 Contributions 

 

The contributions of this study include (1) a multi-objective optimization 

programming model with consideration of ‘total logistics cost’, ‘flood risk impact’ and 

‘robustness’. To our best knowledge, most of the previous studies discussed models with 

focus on the total cost minimization without the main consideration of floods. It is claimed 

that our research helps decision makers to consider the flood risk on the DRFC along with 

the logistics cost. The robustness of the MOOP objective is analyzed in OLP. The models 

are implemented using the real data of Houston to locate the disaster relief facility centers.  
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CHAPTER 2 

LITERATURE REVIEW 

 

We focus on the literature relevant to research in this section. This study introduces 

the concept of flood risk impact while deciding upon DRFCs. There have been extensive 

research on the facility location allocation models for decades. In this chapter, a review of 

research on the location allocation models is provided.  

 

Mostly, studies related to disaster management literature are generally tools 

specific to regions that suffer from disasters. In a similar way, Görmez et al. (2011) 

conducted a study in locating DRFCs in Istanbul. They propose a two-tier approach. They 

analyze trade-offs between objectives of minimizing the average weighted distances 

between locations and closest facilities, and opening a small number of facilities. Similarly, 

Dekle et al. (2005) conducted a study in locating DRFCs in Florida. A two stage approach, 

where the first stage involves determining the optimal DRFCs by solving the covering 

problem while disregarding the evaluation criteria. In the above mentioned studies, the 

potential locations were already taken into account without considering the flood risk 

related to DRFC. In our study, we consider the flood risk related to potential sites in 

locating the DRFCs. The main effects of mean plot analysis is provided, taking into account 

different scenarios.  

 

Several researchers have modelled disaster management problems to locate DRFCs 

based on different criteria. For instance, Kongsomakasakul et al. (2005) proposed a 

location allocation model. With an objective of determining the location of DRFCs with 

capacity constraints, they formulated a bi-level programming model. Their study 
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concentrates on the evacuees to choose among the potential DRFCs during floods but no 

risk flood risk impact on the DRFC was used in locating the potential facility centers. 

 

Kilci et al. (2015) proposed a mixed integer linear programming analysis 

framework for locating temporary DRFCs. In locating the DRFCs, the model maximizes 

the minimum weight of the open DRFC. They have used the real data of Kartal, Istanbul, 

Turkey for their analysis and came to a conclusion that as the average utilization of a DRFC 

increases, the number of open DRFC decreases.  

 

Taking into account the purpose of this research, most of the literature review will 

focus on the models related to locating optimal DRFCs. Akgün et al. (2015) used a fault 

tree analysis introducing the ‘vertex p-center model’ and ‘p-center risk model’. With the 

objective to locate the potential DRFCs, the former analysis minimizes the maximum 

distance while the latter analysis minimizes the maximum risk of a demand point. Our 

approach is similar to this this model, but a multi-objective optimization model is used to 

locate the DRFCs, considering both distances and risk of the demand points. 

 

Bozorgi-Amiri et al. (2011) proposed a multi-objective model that attempts to 

minimize the incorporating uncertainty in the demand, supply and cost of procurement and 

transportation. The model uses the compromising programming method to simultaneously 

minimize the sum of the expected value and variance of the total cost of relief chain and 

maximize the affected areas satisfaction levels. Our research is developed on the 

compromise programming where simultaneously total logistics cost and flood risk impact 

is minimized. 
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Jeong et al. (2014) analyzed the robustness in terms of perturbed total cost through 

diverse damage scenarios to major DRFCs in operation level phase. The robustness level 

is measured using the expected total perturbed cost and efficiency model. This procedure 

has been used in our research to learn about the robustness of the MOOP objective. 

Research on robustness is built upon the work done by Jeong et al. (2014). In our research, 

the risk probability has been considered similar to the flood risk of the potential site. 

 

To our best knowledge, this is the only research which discussed and used the flood 

risk impact of the DRFC in the multi-objective programming model. This model has been 

applied to Houston data where no such work has been done yet. The compromising model 

helps the decision maker to decide upon the DRFCs by considering both the total logistics 

cost and flood risk impact of the corresponding DRFCs. 
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CHAPTER 3 

MATHEMATICAL MODELS AND APPLICATIONS 

 

In this chapter, we present all the mathematical models developed to study different 

approaches to the problem. Firstly, the common assumptions applicable to all models are 

described. Prior to this, the mathematical models are represented followed by the analysis 

framework. 

 

3.1 General Assumptions 

 

The following assumptions are made for all the models: 

 One site can be assigned to only one DRFC 

 A facility has only two states when a disaster occurs i.e. open (not 

damaged) or closed (damaged) 

 DRFCs are identical in terms of demanded supply. 

 The potential facilities will survive the disaster, as it is possible to 

establish facility centers in the low risk lying areas. 

 The DRFCs can supply the demand to the sites without any disruptions. 

 

 

 

 

 

 



 

 

8 

 

3.2 Mathematical Models 

 

In this section, we introduce three models. The first two models are used in the 

third model to form a multi-objective optimization model.  

 

3.2.1 Total Logistics Cost and Flood Risk Impact Model (TLCmin and FRImin 

Model) 

 

The total logistics cost model has a traditional objective that has been used in most 

of the facility location allocation models. According to Horner & Downs (2010), cost may 

be specified in any number of ways ranging from weighted or unweighted distance to 

simpler. Hence, minimization of demand weighted distance is considered as cost in this 

model. In both the models, we consider a set of potential sites J and a set of demand points 

M.  

Parameters 

djm : Distance between demand point m and facility j 

Dm  : Demand of point m 

FMax : Maximum number of facilities that can be built 

FMaxCover : Maximum number of neighbors a facility can cover 

Cj
max : Capacity of facility j 

Decision Variables: 

 Fj : binary variable deciding whether a facility is located at site j 

 xjm  : binary variable deciding whether site m is covered by facility j 
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 𝑇𝐿𝐶𝑚𝑖𝑛 = 𝑀𝑖𝑛 ∑ ∑ 𝐷𝑚𝑑𝑗𝑚𝑥𝑗𝑚

𝑚∈𝑀𝑗∈𝐽

 (3.1) 

 

Subject to 

   ∑ 𝐹𝑗 ≤  𝐹𝑀𝑎𝑥
𝑗        (3.2) 

   ∑ 𝑥𝑗𝑚 =  1𝑗  Ɐm      (3.3) 

   𝑥𝑗𝑚 ≤ 𝐹𝑗 Ɐm,j      (3.4) 

   ∑ 𝑥𝑗𝑚 ≤  𝐹𝑀𝑎𝑥𝐶𝑜𝑣𝑒𝑟
𝑚  Ɐj     (3.5) 

   ∑ 𝐷𝑚𝑥𝑗𝑚 ≤  𝐶𝑗
𝑚𝑎𝑥

𝑚  Ɐj    (3.6) 

 

In this model, the objective is to minimize the total logistics cost. Constraint (3.2) 

ensures that the number of DRFCs established is equal to the maximum number of facilities 

assigned. Constraint (3.3) ensures that each location is assigned to a facility center. 

Constraint (3.4) ensures that unless a facility is opened it cannot function. Constraint (3.5) 

ensures that a facility can cover an assigned number of locations. Constraint (3.6) ensures 

that demand of the locations is below the capacity of the facility center. 

 

Flood risk plays a major role as it involves the risk of getting the potential facility 

location flooded. The conceptual model introduces the Flood risk impact (FRI) scale that 

provides the level of risk and this data is collected from National flood service (NFS), a 

division of Affinity Insurance Services, Inc. The model introduces constraints where the 

potential facility locations are chosen with the lowest flood risk impact. The TLC model 

has been modified to achieve this objective. 

 

Parameters 

FRRm : Flood risk rate of m 
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Dm  : Demand of point m 

FMax : Maximum number of facilities that can be built 

FMaxCover : Maximum number of neighbors a facility can cover 

Cj
max : Capacity of facility j 

 

Decision Variables: 

Fj : binary variable deciding whether a facility is located at site j 

xjm  : binary variable deciding whether site m is covered by facility j 

 

 𝐹𝑅𝐼𝑚𝑖𝑛 = 𝑀𝑖𝑛 ∑ ∑ 𝐷𝑚𝐹𝑅𝑅𝑗𝑥𝑗𝑚

𝑚∈𝑀𝑗∈𝐽

 (3.7) 

 

Subject to 

   ∑ 𝐹𝑗 ≤  𝐹𝑀𝑎𝑥
𝑗       (3.8) 

   ∑ 𝑥𝑗𝑚 =  1𝑗  Ɐm     (3.9) 

   𝑥𝑗𝑚 ≤ 𝐹𝑗 Ɐm,j     (3.10) 

   ∑ 𝑥𝑗𝑚 ≤  𝐹𝑀𝑎𝑥𝐶𝑜𝑣𝑒𝑟
𝑚  Ɐj    (3.11) 

   ∑ 𝐷𝑚𝑥𝑗𝑚 ≤  𝐶𝑗
𝑚𝑎𝑥

𝑚  Ɐj   (3.12) 

 

In this model, the objective is to find the facility centers among the locations that 

have the lowest flood risk impact. Constraint (3.8) ensures that the number of facilities 

established is equal to the maximum number of facilities assigned. Constraint (3.9) ensures 

that each location is assigned to a facility center. Constraint (3.10) ensures that unless a 

facility is opened it cannot function. Constraint (3.11) ensures that a facility can cover 

assigned number of locations. Constraint (3.12) ensures that demand of the locations is 

below the capacity of the facility center. 
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3.2.2 Multi-Objective Optimization Model (MOOP Model) 

 

In the above two models, we notice that when the total logistics cost is minimized, 

the flood risk impact on the facility center is compromised. In contrast, when locations 

with lowest flood risk impact as DRFCs is the objective, the total logistics cost is 

compromised. Hence, a multi-objective optimization model is formulated where the multi-

objective optimization is achieved by setting the alpha value. 

 

Parameters 

FRRm: Flood risk rate of city 

Dm: Demand of point m 

FMax : Maximum number of facilities that can be built 

FMaxCover: Maximum number of neighbors a facility can cover 

Cj
max: Capacity of facility j 

TLCmin: Objective of TLCmin model 

FRImin: Objective of FRImin model 

α: assigned weight value 

 

Decision Variables: 

 Fj : binary variable deciding whether a facility is located at site j 

 xjm  : binary variable deciding whether site m is covered by facility j 

 

𝑀𝑂𝑂𝑃 = 𝑀𝑖𝑛(𝛼
( ∑ ∑ 𝐷𝑚𝑑𝑚𝑗𝑥𝑗𝑚𝑚∈𝑀𝑗∈𝐽 )−𝑇𝐿𝐶𝑚𝑖𝑛)

𝑇𝐿𝐶𝑚𝑖𝑛
+ (1 − 𝛼)

(∑ ∑ 𝐷𝑚𝐹𝑅𝑅𝑗𝑥𝑗𝑚)−𝐹𝑅𝐼𝑚𝑖𝑛𝑚∈𝑀𝑗∈𝐽

𝐹𝑅𝐼𝑚𝑖𝑛
)  

           (3.13) 
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Subject to 

   ∑ 𝐹𝑗 ≤  𝐹𝑀𝑎𝑥
𝑗       (3.14) 

   ∑ 𝑥𝑗𝑚 =  1𝑗  Ɐm     (3.15) 

   𝑥𝑗𝑚 ≤ 𝐹𝑗 Ɐm, j     (3.16) 

   ∑ 𝑥𝑗𝑚 ≤  𝐹𝑀𝑎𝑥𝐶𝑜𝑣𝑒𝑟
𝑚  Ɐj    (3.17) 

   ∑ 𝐷𝑚𝑥𝑗𝑚 ≤  𝐶𝑗
𝑚𝑎𝑥

𝑚  Ɐj   (3.18) 

 

In this model, the objective is to find the facility centers among the locations that 

have the lowest flood risk impact and also minimizes the total logistics cost based on the 

weight assigned. Constraint (3.14) ensures that the number of facilities established is equal 

to maximum of number of facilities assigned. Constraint (3.15) ensures that each location 

is assigned to a facility center. Constraint (3.16) ensures that unless a facility is opened it 

cannot function. Constraint (3.17) ensures that a facility can cover assigned number of 

locations. Constraint (3.18) ensures that demand of the locations is below the capacity of 

the facility center. 

 

The solved MOOP model not only results in the MOOP objective but we can also 

obtain total logistics cost (TLC) and flood risk impact (FRI). Using the weight values of α, 

both the TLC and FRI are stressed through compromise programming to result in the 

MOOP objective. 

 

 

 

 

 



 

 

13 

3.3 Analysis Framework 

 

The three mathematical models discussed in the previous section are the tools for 

the SDP and OLP analysis. We conduct the following steps in the SDP phase before 

moving into OLP phase.  

 

Step 1: Solve the TLCmin model and obtain TLCmin. 

Step 2: Solve the FRImin model and obtain FRImin. 

Step 3: Solve the MOOP model for various balancing weights of α from 0.1 to 0.9. 

 

The results of steps 1 and 2 are used in step 3. Step 3 requires solving the MOOP 

model at different α values to analyze the impact of trade-off between cost and flood risk 

impact. We use various values of α with a 0.1 increment to generate various optimal 

locations of DRFCs. In some cases, two or more different balancing weights may generate 

exactly the same optimal locations of DRFCs.  

 

For all the generated objectives in step 3, we can compare and analyze the impact 

of factors on the MOOP objective. Also, it is important to understand the relationship 

between the balancing weights α and risk tolerance. Risk tolerance is defined as the amount 

of risk that a decision-maker is willing to manage and take (Jeong et al., 2014). In this 

study, when DRFCs are located with more emphasis on total logistics cost (α close to 1), 

the associated flood risk of the DRFC may be higher as FRI model objective becomes zero 

(α close to 0). In contrary, to avoid risk of the DRFC from floods, the decision maker may 

have to compromise with the cost. A balance in between the cost and flood risk impact can 

be attained by setting α to 0.5. The compromise between total logistics cost and flood risk 
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impact depends on the balancing weight α. It is choice of the decision maker to decide upon 

the level of α as it leads to a compromising scenario.  

 

In OLP phase, robustness is considered for the optimal DRFCs generated from Step 

3 of SDP. As robustness is affected by the location of the DRFCs, all the identical solutions 

with respect to the SDP should be grouped regardless of α. It will result in a node group 

which is a set of identical DRFCs. 

 

If a disaster occurs, it is necessary for the decision maker to know the fastest 

possible way to distribute the emergency relief items with minimum MOOP objective. This 

objective can be obtained by solving the MOOP model where decision variables about the 

DRFCs are already given. In this case, all the DRFCs function well without any disruptions. 

Suppose that some of the DRFCs are shut down after a disaster, it will likely increase the 

MOOP objective compared to the normal case where all the DRFCs function well. 

However, if the normally obtained optimal DRFC locations are robust (scenario when all 

the DRFCs function well), the perturbed MOOP objective may not be significant. The level 

of robustness can be calculated using the below steps: 

 

Step 1: Classify all DRFCs from the SDP phase into node groups based upon the 

 identical DRFCs. These are represented as node group ‘m’. 

Step 2: Solve the MOOP model with the given DRFCs. This result will serve as a normal 

 case. 

Step 3: For each solution obtained from step 2, define all shut down scenarios of interest,  

a corresponding weighted flood risk rate, r(s), for any shut down scenario s, and 

apply MOOP model for all scenarios. 
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Step 4: Calculate the discrepancy between disruptive scenarios and normal cases in terms  

MOOP objective and obtain the expected perturbed objective. 

 

 𝐸𝑃𝑂𝑚 =  ∑ 𝑟(𝑠)(𝑀𝑂𝑂𝑃(𝑠) − 𝑀𝑂𝑂𝑃(�̅�))

𝑠

 (3.19) 

where r(s) and MOOP(s) represent weighted flood risk rate and MOOP objective 

respectively for a scenario s while MOOP(�̅�) is the objective for normal case with 

no disruption. 

 

The robustness level (Jeong et al., 2014) is calculated as below: 

 

 𝑅𝑘 =  
max(𝐸𝑃𝑂) − 𝐸𝑃𝑂𝑘

max(𝐸𝑃𝑂) − min (𝐸𝑃𝑂)
 (3.20) 

 

If we consider the shutdown of DRFC i as a disruptive scenario, then flood risk 

impact associated with the DRFC is considered as r(s). As the DRFC locations are identical 

for each group in ‘m’, EPOk is same as EPOm. Therefore robustness can be known for each 

group in SDP phase using equation 3.20. max(EPO) and min(EPO) are maximum and 

minimum EPO among the groups. EPOk is the expected perturbed objective. The results of 

Rk range from 0 to 1, where 0 and 1 represent worst and best cases, respectively. 
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CHAPTER 4 

DATA COLLECTION 

 

Data collection performed in this research is based on the publicly data available 

online.  

 

4.1 Demographical data 

 

The population is the demand in our research. For accuracy of the demand 

corresponding to the sites, firstly the zip code data related to the Houston city is collected 

through online resources (Zip-Codes.com.). Later, the population under the zip codes 

(City-Data.com - Stats about all US cities) is required as demand in the model. All the zip 

codes are clustered based upon proximity and populations into 31 potential sites that can 

act as DRFCs. Then one site from each group is selected based upon centroid approach. It 

is assumed that all the population within the zip codes exists at the potential site. The 

distance between the sites is considered as the distance between the site groups. Table 4.1 

shows all the sites and its population which is used as demand.  

 

The distance between the sites is considered to be the distance between the zip code 

groups. The flood risk impact for each site collected and is displayed in table 4.2. This is 

not considered for a group of zip codes as the DRFC may built at a location which would 

be zip code specific. The flood risk impact corresponding to each location is collected from 

National flood service (NFS), a division of Affinity insurance service, Inc. The flood risk 

has been taken on scale of 5, where the risk of flood gets higher in a range from 1 to 5. The 

potential sites for DRFC are shown in figure 4.1. 
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Figure 4.1 Potential sites in Houston Map 
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No. Potential sites Zip code group Population 

1 Waller 77058, 77062, 77598, 77586, 77571 31218 

2 Katy 77494, 77493, 77450 188336 

3 Sugarland 77478, 77498, 77479, 77099, 77083, 77031, 77407 341168 

4 Stafford 77477, 77071, 77085, 77074, 77036, 77072 252673 

5 Missouri City 77489, 77053, 77459 132957 

6 Addicks - Barker 77084, 77079, 77043, 77077, 77094, 77449, 77082 385112 

7 Cypress 77433, 77429 144028 

8 Tomball 77375, 77377, 77362 83629 

9 Kohrville 77070, 77379, 77069 142683 

10 Jersey Village 77041, 77040, 77064, 77086 159666 

11 Bellaire 
77401, 77081, 77046, 77025, 77096, 77005, 77027, 

77098, 77030, 77054, 77035, 77045, 77051 302881 

12 Spring 77373, 77386, 77365, 77073 173097 

13 Bammel 77090, 77068, 77014, 77388, 77066, 77067 189098 

14 Aldine 
77060, 77037, 77032, 77039, 77038, 77076, 77088, 

77093 228086 

15 Houston 

77002, 77010, 77003, 77006, 77009, 77004, 77007, 
77019, 77020, 77026, 77011, 77008, 77023, 77021, 

77022 356237 

16 Pasadena 77505, 77504, 77059, 77034, 77503 131681 

17 South Houston 
77587, 77017, 77502, 77061, 77075, 77087, 77506, 

77012, 77547, 77033 288324 

18 Pearland 77581, 77584, 77089, 77048, 77047 225081 

19 Webster 77484, 77446, 77447 126670 

20 Baytown 77523, 77521, 77520 115807 

21 Highlands 77530, 77015, 77562, 77536 73458 

22 Sheldon 77049, 77044, 77532 97294 

23 Humble 77338, 77396, 77339, 77346 186533 

24 Huffman 77336, 77345, 77357 63515 

25 League city 77573, 77565, 77539, 77546 183999 

26 Satsuma 77065, 77095 110125 

27 Hillshire Village 77055, 77080, 77092, 77056, 77018, 77091 197433 

28 Bunker Hill Village 77024, 77063, 77042, 77057 308186 

29 Courben Ln 77078, 77016, 77028, 77050, 77013, 77029 101221 

30 Alvin 77511, 77517 53545 

31 Shenandoha 77380, 77381, 77382, 77389 134000 

Table 4.1 Population and grouping associated with Potential Sites 
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No. Potential sites Flood risk rate 

1 Waller 2.5 

2 Katy 5 

3 Sugarland 5 

4 Stafford 2.5 

5 Missouri City 2.5 

6 Addicks - Barker 2.5 

7 Cypress 1 

8 Tomball 2.5 

9 Kohrville 2.8 

10 Jersey Village 2.5 

11 Bellaire 5 

12 Spring 2.3 

13 Bammel 2.3 

14 Aldine 2.5 

15 Houston 1.9 

16 Pasadena 2.5 

17 South Houston 5 

18 Pearland 4.3 

19 Webster 2.5 

20 Baytown 2.5 

21 Highlands 2.5 

22 Sheldon 5 

23 Humble 2.5 

24 Huffman 5 

25 League city 2.5 

26 Satsuma 3.3 

27 Hillshire Village 2.3 

28 Bunker Hill Village 2.3 

29 Courben Ln 2.5 

30 Alvin 5 

31 Shenandoha 2.4 

Table 4.2 Flood risk impact data of Potential Sites 
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CHAPTER 5  

ANALYSIS OF RESULTS 

 

In this chapter, we present the computational results and analyze the proposed 

models behavior using main effects analysis. Later on we will analyze the robustness for 

three different cases of open number of DRFCs. We solve the models using IBM ILOG 

CPLEX Optimizer running on PC I7 processor with 8 GB of RAM under the Windows 10 

environment. The factorial design is chosen based on the type of analysis. The main effects 

of mean analysis using Minitab is performed to understand the model behavior and impact 

of factors. 

 

5.1 Analysis of Main effects 

 

Main effects is known as the effect of the control factors on the response values 

when the factor’s value changes from one level to the other (Roy 2001). The response in 

main effects helps us to understand the impact of factors on the performance measures.  

 

5.1.1 Main effects plot for means analysis of infinite DRFC capacity (Dmax): 

 

We generated a 3*3*9 factorial design using Minitab 18 with the factors and levels 

mentioned in the table 5.1. The open number of DRFCs (Fj) and maximum coverage by a 

DRFC (FmC) are of three levels and α is of 9 levels as shown in the table. This results in 

81 alternatives. The capacity is considered to infinite for all the alternatives in table 5.2. 
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Factors Levels 

Fj 5,6,7 

FmC 7,8,9 

α 0.1-0.9 

Table 5.1: Factors and Levels for infinity capacity analysis 

 

Main effects plot for means using Minitab 18 is performed for Table 5.2. Figure 5.1 

shows the main effects of the factors Fj, FmC and α on the obtained response values of 

TLC, FRI and MOOP objective. We observe from figure 5.1 that in TLC, total logistics 

cost decrease with increase in Fj. More number of DRFCs reduces cost in case of TLC. 

The infinite capacity is considered as Dmax, such that a single DRFC can cover the demand 

of all the potential sites along with its own demand. In TLC, as FmC increases, the total 

logistics cost increases. With the increase in the maximum coverage by a DRFC, the 

distance between the DRFC and the potential sites also increase, which in turn will affect 

the cost. The trend in alpha with respect to TLC is as expected. TLC objective should 

decrease as preference change from flood risk impact to total logistics cost. 

 

From figure 5.2, in case of FRI, there is a slight increase in the flood risk impact 

when Fj increases. We relate this to the infinite capacity that we consider. As all the DRFCs 

have the maximum capacity, the DRFCs are chosen based on flood risk rate of the potential 

sites. As expected, flood risk rate decides the Fj when the capacity is Dmax. Also in FRI, 

with the decrease in the flood risk impact, a gradual decrease in FmC is observed. As only 

demand and flood risk rate are considered in case of flood risk impact, decision on coverage 

depends on demand satisfaction of the potential sites. The MOOP objective response values 

depends on both the TLC and FRI. It implies that MOOP model is minimizing both TLC 

and FRI to obtain the minimized MOOP objective. 
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Alt Fj FmC alpha TLCmin TRImin TLC TRI MOOP Objective 

1 5 7 0.1 46145188.7 9203423 79690000 9781100 0.13 

2 5 7 0.2 46145188.7 9203423 57891000 10513000 0.17 

3 5 7 0.3 46145188.7 9203423 55258000 10722000 0.18 

4 5 7 0.4 46145188.7 9203423 53895000 10885000 0.18 

5 5 7 0.5 46145188.7 9203423 53895000 10885000 0.18 

6 5 7 0.6 46145188.7 9203423 53259000 11025000 0.17 

7 5 7 0.7 46145188.7 9203423 48354000 12750000 0.15 

8 5 7 0.8 46145188.7 9203423 48188000 12879000 0.12 

9 5 7 0.9 46145188.7 9203423 46145000 15589000 0.07 

10 5 8 0.1 46145188.7 8865040 81675000 9426600 0.13 

11 5 8 0.2 46145188.7 8865040 61245000 10043000 0.17 

12 5 8 0.3 46145188.7 8865040 56419000 10346000 0.18 

13 5 8 0.4 46145188.7 8865040 53695000 10602000 0.18 

14 5 8 0.5 46145188.7 8865040 52296000 10794000 0.18 

15 5 8 0.6 46145188.7 8865040 52296000 10794000 0.17 

16 5 8 0.7 46145188.7 8865040 48202000 12569000 0.16 

17 5 8 0.8 46145188.7 8865040 46145000 12706000 0.12 

18 5 8 0.9 46145188.7 8865040 46145000 15589000 0.08 

19 5 9 0.1 46145188.7 8547783 80746000 9187900 0.14 

20 5 9 0.2 46145188.7 8547783 62771000 9780300 0.19 

21 5 9 0.3 46145188.7 8547783 56200000 10171000 0.20 

22 5 9 0.4 46145188.7 8547783 53788000 10399000 0.20 

23 5 9 0.5 46145188.7 8547783 52835000 10562000 0.19 

24 5 9 0.6 46145188.7 8547783 52835000 10562000 0.18 

25 5 9 0.7 46145188.7 8547783 47806000 12524000 0.16 

26 5 9 0.8 46145188.7 8547783 47806000 12524000 0.12 

27 5 9 0.9 46145188.7 8547783 47806000 12524000 0.08 

28 6 7 0.1 41336835.3 9203423 68839000 9950800 0.14 

29 6 7 0.2 41336835.3 9203423 51947000 10490000 0.16 

30 6 7 0.3 41336835.3 9203423 48273000 10780000 0.17 

31 6 7 0.4 41336835.3 9203423 47781000 10848000 0.17 

32 6 7 0.5 41336835.3 9203423 47417000 10922000 0.17 

33 6 7 0.6 41336835.3 9203423 45631000 11438000 0.16 

34 6 7 0.7 41336835.3 9203423 42742000 12821000 0.14 

35 6 7 0.8 41336835.3 9203423 42742000 12821000 0.11 

36 6 7 0.9 41336835.3 9203423 41337000 14389000 0.06 

37 6 8 0.1 41336835.3 8865040 67715000 9704600 0.15 

38 6 8 0.2 41336835.3 8865040 55499000 10073000 0.18 
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Alt Fj FmC alpha TLCmin TRImin TLC TRI MOOP Objective 

39 6 8 0.3 41336835.3 8865040 51484000 10303000 0.19 

40 6 8 0.4 41336835.3 8865040 47648000 10679000 0.18 

41 6 8 0.5 41336835.3 8865040 47648000 10679000 0.18 

42 6 8 0.6 41336835.3 8865040 45823000 11221000 0.17 

43 6 8 0.7 41336835.3 8865040 45823000 11221000 0.16 

44 6 8 0.8 41336835.3 8865040 42742000 12821000 0.12 

45 6 8 0.9 41336835.3 8865040 41337000 14389000 0.06 

46 6 9 0.1 41336835.3 8547783 75085000 9286300 0.16 

47 6 9 0.2 41336835.3 8547783 50454000 10201000 0.20 

48 6 9 0.3 41336835.3 8547783 50454000 10201000 0.20 

49 6 9 0.4 41336835.3 8547783 48265000 10498000 0.20 

50 6 9 0.5 41336835.3 8547783 48265000 10498000 0.20 

51 6 9 0.6 41336835.3 8547783 46138000 11085000 0.19 

52 6 9 0.7 41336835.3 8547783 45823000 11221000 0.17 

53 6 9 0.8 41336835.3 8547783 42742000 12821000 0.13 

54 6 9 0.9 41336835.3 8547783 41337000 14389000 0.07 

55 7 7 0.1 36848126.7 9203423 57819000 10184000 0.15 

56 7 7 0.2 36848126.7 9203423 46340000 10553000 0.17 

57 7 7 0.3 36848126.7 9203423 44108000 10741000 0.18 

58 7 7 0.4 36848126.7 9203423 43616000 10809000 0.18 

59 7 7 0.5 36848126.7 9203423 41649000 11201000 0.17 

60 7 7 0.6 36848126.7 9203423 41032000 11382000 0.16 

61 7 7 0.7 36848126.7 9203423 39130000 12105000 0.14 

62 7 7 0.8 36848126.7 9203423 38848000 12350000 0.11 

63 7 7 0.9 36848126.7 9203423 36848000 14054000 0.06 

64 7 8 0.1 36848126.7 8865040 65105000 9741900 0.17 

65 7 8 0.2 36848126.7 8865040 47167000 10365000 0.19 

66 7 8 0.3 36848126.7 8865040 43917000 10609000 0.20 

67 7 8 0.4 36848126.7 8865040 43917000 10609000 0.20 

68 7 8 0.5 36848126.7 8865040 43917000 10609000 0.19 

69 7 8 0.6 36848126.7 8865040 41032000 11382000 0.18 

70 7 8 0.7 36848126.7 8865040 39130000 12105000 0.15 

71 7 8 0.8 36848126.7 8865040 38848000 12350000 0.12 

72 7 8 0.9 36848126.7 8865040 36848000 14504000 0.06 

73 7 9 0.1 36848126.7 8547783 70657000 9366800 0.18 

74 7 9 0.2 36848126.7 8547783 47844000 10239000 0.22 

75 7 9 0.3 36848126.7 8547783 45764000 10403000 0.23 
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Alt Fj FmC alpha TLCmin TRImin TLC TRI MOOP Objective 

76 7 9 0.4 36848126.7 8547783 43917000 10609000 0.22 

77 7 9 0.5 36848126.7 8547783 43917000 10609000 0.22 

78 7 9 0.6 36848126.7 8547783 41032000 11382000 0.20 

79 7 9 0.7 36848126.7 8547783 39130000 12105000 0.17 

80 7 9 0.8 36848126.7 8547783 38848000 12350000 0.13 

81 7 9 0.9 36848126.7 8547783 36848000 14504000 0.07 

 Table 5.2: L81 Factorial design with MOOP objective

 

Figure 5.1: Factors and Levels (Plot of main effects of response- MOOP, TLC and FRI) 
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5.1.2 Capacitated DRFC main effect analysis: 

 

We created a 2*2*9 factorial design using Minitab 18 with the factors and levels 

mentioned in the table 5.3. The open number of DRFCs (Fj) and maximum coverage by a 

DRFC (FmC) is of two levels and α is of 9 levels as shown in the table. This results in 36 

alternatives. 

 

Main effects plot for means using Minitab 18 is performed on table 5.4 which 

resulted in figure 5.2. The value of the capacity is chosen in such a way that it is near to 

Dmax/6. This analysis will help us to understand the impact of factors on the response values 

when the MOOP model is capacitated.  

 

In TLC of figure 5.2, Fj is increasing with the decrease in the objective. The more 

number of DRFCs, the lower the total logistics cost. With more number of Fj or open 

DRFCs, the closest potential sites demand can be fulfilled. FmC i.e. the maximum coverage 

of DRFC is not much sensitive to the objective in TLC. It however depends on the capacity. 

As the DRFC capacity is limited, the coverage of DRFC depends upon the satisfaction of 

the demand rather than distance from DRFC. The trend in alpha is as expected. The 

increase in alpha will decrease the total logistics cost as the preference towards TRI 

increases.  

 

In FRI of figure 5.2, the flood risk impact is decreasing with increase in Fj. As the 

DRFCs are capacitated, the locations of the DRFCs are chosen based on both the demand 

and flood risk impact. The phenomenal difference could be observed from infinite capacity 

analysis. FmC is less sensitive to FRI. The FmC input parameters are very much higher 
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such that it having very low effect on objective. Again, the trend in alpha is as expected. 

The flood risk impact is increasing with increase in alpha. 

 

The MOOP objective in figure 5.2 depends on both the corresponding TRI and FRI. 

It is because the MOOP model will be stressed to optimize both the TRI and FRI 

simultaneously. 

 

Factors Levels 

Fj 6,7 

FmC 7,8,9 

α 0.1-0.9 

Table 5.3: Factors and Levels for capacitated analysis 
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Alt Fj FmC alpha TLCmin TRImin TLC TRI MOOP Objective 

1 6 8 0.1 51494034.6 11104790 64289000 11293000.00 0.04 

2 6 8 0.2 51494034.6 11104790 58891000 11474000.00 0.055 

3 6 8 0.3 51494034.6 11104790 58891000 11474000.00 0.066 

4 6 8 0.4 51494034.6 11104790 58891000 11474000.00 0.077 

5 6 8 0.5 51494034.6 11104790 57998000 11657000.00 0.088 

6 6 8 0.6 51494034.6 11104790 53064000 12851000.00 0.081 

7 6 8 0.7 51494034.6 11104790 53064000 12851000.00 0.069 

8 6 8 0.8 51494034.6 11104790 53064000 12851000.00 0.056 

9 6 8 0.9 51494034.6 11104790 51593000 15151000.00 0.038 

10 6 9 0.1 51494034.6 11104208.5 64289000 11293000.00 0.04 

11 6 9 0.2 51494034.6 11104208.5 58891000 11474000.00 0.055 

12 6 9 0.3 51494034.6 11104208.5 58891000 11474000.00 0.066 

13 6 9 0.4 51494034.6 11104208.5 58891000 11474000.00 0.077 

14 6 9 0.5 51494034.6 11104208.5 56603000 11661000.00 0.075 

15 6 9 0.6 51494034.6 11104208.5 53064000 12851000.00 0.081 

16 6 9 0.7 51494034.6 11104208.5 53064000 12851000.00 0.069 

17 6 9 0.8 51494034.6 11104208.5 53064000 12851000.00 0.056 

18 6 9 0.9 51494034.6 11104208.5 51593000 15151000.00 0.038 

19 7 8 0.1 38452254.8 11104814.6 47044000 11347000.00 0.042 

20 7 8 0.2 38452254.8 11104814.6 41055000 11636000.00 0.052 

21 7 8 0.3 38452254.8 11104814.6 41055000 11636000.00 0.054 

22 7 8 0.4 38452254.8 11104814.6 41055000 11636000.00 0.056 

23 7 8 0.5 38452254.8 11104814.6 41055000 11636000.00 0.058 

24 7 8 0.6 38452254.8 11104814.6 40225000 11975000.00 0.059 

25 7 8 0.7 38452254.8 11104814.6 39941000 12132000.00 0.055 

26 7 8 0.8 38452254.8 11104814.6 39941000 12132000.00 0.049 

27 7 8 0.9 38452254.8 11104814.6 3869000 14172000.00 0.033 

28 7 9 0.1 38452254.8 11103988.9 47044000 11347000.00 0.042 

29 7 9 0.2 38452254.8 11103988.9 41055000 11636000.00 0.052 

30 7 9 0.3 38452254.8 11103988.9 41055000 11636000.00 0.054 

31 7 9 0.4 38452254.8 11103988.9 41055000 11636000.00 0.056 

32 7 9 0.5 38452254.8 11103988.9 41055000 11636000.00 0.058 

33 7 9 0.6 38452254.8 11103988.9 40225000 11975000.00 0.059 

34 7 9 0.7 38452254.8 11103988.9 39941000 12132000.00 0.055 

35 7 9 0.8 38452254.8 11103988.9 39941000 12132000.00 0.049 

36 7 9 0.9 38452254.8 11103988.9 3869000 14172000.00 0.033 

Table 5.4: L36 Design with MOOP objective 
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Figure 5.2: Plot of main effects of response- MOOP, TLC and FRI 

 

From the above analysis we understand that open number of DRFCs (Fj), maximum 

coverage by DRFC (FmC) and capacity of a DRFC impact the response measure in a 

drastic way. It can be stated that with the increase in the capacity of DRFC there is a 

decrease in the open number of DRFCs and vice versa.  
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5.2 Robustness based on α in OLP phase 

 

We consider three cases where open number of DRFCs range from 5 to 7. The 

following parameters are predetermined for the three cases. The maximum coverage of a 

DRFC is set to 8 in all the three cases. In order to manage simultaneous DRFC shutdown 

scenarios, we consider the DRFCs to have infinite capacity i.e. Dmax. The parameters 

considered are shown in the table 5.5. Furthermore, we assume that only one facility shuts 

down at a time. This reduces the number of possible scenarios for demonstration purpose. 

The MOOP model is solved using CPLEX optimizer.  

 

First, both TLCmin and FRImin models are solved to obtain the TLCmin and 

FRImin for all the three cases. These results are used to run MOOP model. The MOOP 

model results with no disruption scenarios are displayed in table 5.6, 5.7 and 5.8. When 

there is no disruption such as closing of a DRFC, the lowest MOOP objective is observed 

in all the cases when α = 0.9. Figures 5.3, 5.4, 5.6, 5.7, 5.9 and 5.10 represent the networks 

of supply at extreme α values for each case. In all the three cases, when α equals 0.1, it 

implies that the location of the DRFCs are the safest with low flood risk impact as shown 

in the figures 5.4, 5.7 and 5.10. When there is least consideration of flood risk impact, the 

MOOP objective is lowest at α = 0.9 in all the three cases and the associated network supply 

is displayed in figures 5.3, 5.6 and 5.9. If the decision makers priority is to consider the 

least MOOP objective with least consideration towards flood risk impact, then cases with 

α = 0.9 will be his choice. Also, map figures 5.5, 5.8 and 5.11 display the network of supply 

points when α = 0.5. It implies equal preference is given to both TLC and FRI. We analyze 

that with the change in the preference to TLC and FRI the location of the DRFCs are 

affected and on the whole it impacts the cost. When α = 0.5, the cost will be relatively 
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higher compared to α being 0.1 or 0.9. This is because the MOOP model is subjected to 

stress in minimizing the TLC and FRI equally. The difference in the results could be 

observed for all the cases with different α.  

 

For the OLP phase, firstly total 9 networks of each case in SDP (tables 5.6, 5.7 and 

5.8) are classified into node groups based upon the identical DRFCs. They are represented 

in tables 5.9, 5.10 and 5.11 and we can notice that each case has 5 node groups (A-E). For 

example, α’s ranging from 0.2 to 0.4 in table 5.6 generates the same DRFCs set represented 

by {Stafford, Cypress, Spring, Houston, Webster}, and they grouped as a node group B. 

For each node group, all shutdown scenarios are considered in the ‘Shutdown scenarios’ 

rows. Then the corresponding MOOP model with predetermined Fj is solved to obtain the 

shutdown scenario objective. For example, in table 5.9, when Cypress is shutdown, the 

shutdown objective obtained is 0.410.  The No damage scenarios in the tables represent the 

objective when none of the DRFCs are closed. The objectives in the ‘No damage scenario’ 

row of the table 5.9, 5.10 and 5.11 are computed by average of objectives within the node 

groups. Then, shutdown scenarios are experimented as described in the shutdown scenarios 

rows. Expected perturbed objective (EPO) for each scenario is estimated using equation 

3.19. Equation 3.20 gives the robustness level. Now, we observe that node group A is the 

most robust in all the cases. Node group E in tables 5.9, 5.10 and 5.11, though yield the 

least objective when not under risk, they are the most vulnerable to damage with zero 

robustness. This is because TLC is more determined when compared to FRI. A closure of 

the DRFC when more preference is given to TLC will result in higher perturbed objective. 

The DRFCs link to the potential sites depends on both the distance and demand in case of 

TLC whereas in case of FRI, it depends flood risk rate and demand. The logistics network 

is highly sensitive to the demand weighted distance. 
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According to the tables 5.9, 5.10 and 5.11, the high ratio of EPO to ‘No damage 

objective’ indicates that DRFC shutdown will have a very high impact on the robustness. 

When α = 0.1, the DRFCs are decided with least consideration of TLC and vice versa when 

α = 0.9. It is also observed that robustness level is greater than 0.65 when α ≤ 0.5.   

 

 

Case Open DRFCs FmC α Capacity  

1 5 8 0.1-0.9 Dmax 

2 6 8 0.1-0.9 Dmax 

3 7 8 0.1-0.9 Dmax 

Table 5.5 Cases with Factors 
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MOOP objective 0.134 0.172 0.184 0.183 0.175 0.167 0.157 0.118 0.076 

Rank 3 6 9 8 7 5 4 2 1 

Waller 0 0 0 0 0 0 0 0 0 

Katy 0 0 0 0 0 0 0 0 0 

Sugarland 0 0 0 0 0 0 0 0 0 

Stafford 0 1 1 1 1 1 1 1 1 

Missouri City 0 0 0 0 0 0 0 0 0 

Addicks - Barker 0 0 0 0 0 0 1 1 1 

Cypress 1 1 1 1 1 1 0 0 0 

Tomball 0 0 0 0 0 0 0 0 0 

Kohrville 0 0 0 0 0 0 0 0 0 

Jersey Village 0 0 0 0 0 0 0 0 0 

Bellaire 0 0 0 0 0 0 0 0 0 

Spring 1 1 1 1 0 0 1 1 1 

Bammel 0 0 0 0 0 0 0 0 0 

Aldine 0 0 0 0 0 0 0 0 0 

Houston 1 1 1 1 1 1 1 1 1 

Pasadena 0 0 0 0 0 0 0 0 0 

South Houston 0 0 0 0 0 0 0 0 1 

Pearland 0 0 0 0 0 0 0 0 0 

Webster 0 1 1 1 1 1 1 1 0 

Baytown 0 0 0 0 0 0 0 0 0 

Highlands 1 0 0 0 0 0 0 0 0 

Sheldon 0 0 0 0 0 0 0 0 0 

Humble 0 0 0 0 1 1 0 0 0 

Huffman 0 0 0 0 0 0 0 0 0 

League city 1 0 0 0 0 0 0 0 0 

Satsuma 0 0 0 0 0 0 0 0 0 

Hillshire Village 0 0 0 0 0 0 0 0 0 

Bunker Hill Village 0 0 0 0 0 0 0 0 0 

Courben Ln 0 0 0 0 0 0 0 0 0 

Alvin 0 0 0 0 0 0 0 0 0 

Shenandoha 0 0 0 0 0 0 0 0 0 

Table 5.6: Case 1 SDP MOOP result 
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Figure 5.3: Case 1 α =0.9 (rank 1 with high flood risk impact) 

 
Figure 5.4: Case 1 α =0.1 (lowest flood risk impact) 
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Figure 5.5: Case 1 α =0.5  
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MOOP objective 0.149 0.178 0.187 0.184 0.179 0.171 0.156 0.116 0.062 

Rank 3 6 9 8 7 5 4 2 1 

Waller 0 0 0 0 0 0 0 0 0 

Katy 0 0 0 0 0 0 0 0 0 

Sugarland 0 0 0 0 0 0 0 0 0 

Stafford 1 1 1 1 1 1 1 1 1 

Missouri City 0 0 0 0 0 0 0 0 0 

Addicks - Barker 0 0 0 0 0 0 0 1 1 

Cypress 1 1 1 1 1 1 1 0 0 

Tomball 0 0 0 0 0 0 0 0 0 

Kohrville 0 0 0 0 0 0 0 0 0 

Jersey Village 0 0 0 0 0 0 0 0 0 

Bellaire 0 0 0 0 0 0 0 0 0 

Spring 1 1 1 1 1 1 1 1 1 

Bammel 0 0 0 0 0 0 0 0 0 

Aldine 0 0 0 0 0 0 0 0 0 

Houston 1 1 1 1 1 1 1 1 1 

Pasadena 0 0 0 1 1 0 0 1 0 

South Houston 0 0 0 0 0 0 0 0 1 

Pearland 0 0 0 0 0 0 0 0 0 

Webster 0 0 0 0 0 1 1 1 1 

Baytown 0 0 0 0 0 0 0 0 0 

Highlands 1 1 1 0 0 0 0 0 0 

Sheldon 0 0 0 0 0 0 0 0 0 

Humble 0 0 0 0 0 0 0 0 0 

Huffman 0 0 0 0 0 0 0 0 0 

League city 1 1 1 1 1 0 0 0 0 

Satsuma 0 0 0 0 0 0 0 0 0 

Hillshire Village 0 0 0 0 0 0 0 0 0 

Bunker Hill Village 0 0 0 0 0 1 1 0 0 

Courben Ln 0 0 0 0 0 0 0 0 0 

Alvin 0 0 0 0 0 0 0 0 0 

Shenandoha 0 0 0 0 0 0 0 0 0 

Table 5.7: Case 2 SDP MOOP result 
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Figure 5.6: Case 2 α =0.9 (rank 1 with high flood risk impact) 

 
Figure 5.7: Case 2 α =0.1 (lowest flood risk impact) 
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Figure 5.8: Case 2 α =0.5  
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

MOOP objective 0.166 0.191 0.195 0.195 0.194 0.182 0.153 0.122 0.064 

Rank 4 6 8 8 7 5 3 2 1 

Waller 0 0 0 0 0 0 0 0 0 

Katy 0 0 0 0 0 0 0 0 0 

Sugarland 0 0 0 0 0 0 0 0 0 

Stafford 1 1 1 1 1 1 1 1 1 

Missouri City 0 0 0 0 0 0 0 0 0 

Addicks - Barker 0 0 0 0 0 0 0 0 1 

Cypress 1 1 1 1 1 1 1 1 0 

Tomball 0 0 0 0 0 0 0 0 0 

Kohrville 0 0 0 0 0 0 0 0 0 

Jersey Village 0 0 0 0 0 0 0 0 0 

Bellaire 0 0 0 0 0 0 0 0 0 

Spring 1 1 1 1 1 1 0 0 1 

Bammel 0 0 0 0 0 0 1 1 0 

Aldine 0 0 0 0 0 0 0 0 0 

Houston 1 1 1 1 1 1 0 0 1 

Pasadena 0 0 0 0 0 1 1 1 0 

South Houston 0 0 0 0 0 0 0 0 1 

Pearland 0 0 0 0 0 0 0 0 0 

Webster 0 0 0 0 0 0 1 1 0 

Baytown 0 0 0 0 0 0 0 0 0 

Highlands 1 1 1 1 1 0 0 0 1 

Sheldon 0 0 0 0 0 0 0 0 0 

Humble 1 0 0 0 0 0 1 1 0 

Huffman 0 0 0 0 0 0 0 0 0 

League city 1 1 1 1 1 1 0 0 1 

Satsuma 0 0 0 0 0 0 0 0 0 

Hillshire Village 0 0 0 0 0 0 0 0 0 

Bunker Hill Village 0 1 1 1 1 1 1 1 0 

Courben Ln 0 0 0 0 0 0 0 0 0 

Alvin 0 0 0 0 0 0 0 0 0 

Shenandoha 0 0 0 0 0 0 0 0 0 

Table 5.8: Case 3 SDP MOOP result 
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Figure 5.9: Case 3 α =0.9 (rank 1 with high flood risk impact) 

 
Figure 5.10: Case 3 α =0.1 (lowest flood risk impact) 
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Figure 5.11: Case 3 α =0.5  

 

Node group   A B C D E 

α   0.1 0.2-0.4 0.5-0.6 0.7-0.8 0.9 

  Stafford   0.269 0.344 0.347 0.309 

  Addicks - Barker       0.433 0.398 

  Cypress 0.410 0.415 0.484     

  Spring 0.198 0.272   0.407 0.353 

  Houston 0.258 0.343 0.389 0.415 0.322 

  Pasadena           

  South Houston         0.338 

  Webster   0.268 0.313 0.352   

  Highlands 0.150         

  Humble     0.331     

  League city 0.151         

  No damage objective 0.134 0.179 0.171 0.137 0.076 

  PO 0.073 0.127 0.184 0.252 0.268 

  Ratio 0.542 0.708 1.073 1.832 3.532 

  Robustness 1.000 0.721 0.431 0.084 0.000 

Table 5.9 Case 1 OLP MOOP result 
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Node group   A B C D E 

α   0.1-0.3 0.4-0.5 0.6-0.7 0.8 0.9 

4 Stafford 0.223 0.317 0.306 0.340 0.323 

6 Addicks - Barker -     0.406 0.409 

7 Cypress 0.394 0.401 0.272     

12 Spring 0.226 0.282 0.302 0.353 0.346 

15 Houston 0.305 0.354 0.357 0.320 0.294 

16 Pasadena -     0.215   

17 South Houston -       0.187 

19 Webster -   0.350 0.244 0.181 

21 Highlands 0.197 0.246       

25 League city 0.210 0.252       

28 Bunker Hill Village -   0.258     

  No damage objective 0.171 0.182 0.164 0.116 0.062 

  EPO 0.070 0.114 0.146 0.196 0.212 

  Ratio 0.409 0.630 0.896 1.691 3.416 

  Robustness 1.000 0.688 0.461 0.110 0.000 

Table 5.10 Case 2 OLP MOOP result 

 

Node group   A B C D E 

α   0.1 0.2-0.5 0.6 0.7-0.8 0.9 

  Stafford 0.175 0.268 0.320 0.306 0.349 

  Cypress 0.393 0.331 0.295 0.320   

  Addicks - Barker         0.421 

  Spring 0.189 0.259 0.295   0.345 

  Bammel       0.307   

  Houston 0.266 0.336 0.357   0.306 

  Pasadena     0.257 0.261   

  South Houston         0.205 

  Webster       0.273   

  Highlands 0.178 0.238     0.174 

  Humble 0.169     0.319   

  League city 0.181 0.271 0.287   0.186 

  Bunker Hill Village   0.234 0.263 0.313   

  No damage objective 0.166 0.194 0.182 0.138 0.064 

  EPO 0.037 0.076 0.107 0.161 0.180 

  Ratio 0.225 0.391 0.586 1.174 2.819 

  Robustness 1.000 0.731 0.515 0.133 0.000 

 Table 5.11 Case 3 OLP MOOP result  
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CHAPTER 6 

CONCLUSION 

 

In this research, we consider a real-time problem of locating disaster relief facility 

centers in the city of Houston. We have formulated a multi-objective programming model 

to simultaneously optimize the logistics cost and flood risk impact in locating the DRFC. 

Our model consists of two stages, the first stage determines the location of the DRFCs with 

a optimizing both the total logistics cost and flood risk impact in SDP, and the second stage 

determines the robustness level of the MOOP objective in OLP. To analyze the 

effectiveness of the model, the real data of Houston has been implemented on it. Main 

effects mean plot analysis has been performed on the MOOP model with different capacity 

constraints to understand its effects on the objective.  

 

We conclude that capacity is one of the key factors in deciding the open number of 

DRFCs. When infinite capacity of a DRFC was considered, we could find a gradual 

decrease in the MOOP objective with decrease in the open number of facilities and 

maximum coverage of a DRFC. But, when a capacitated DRFC was considered, we could 

find a gradual decrease in the MOOP objective with the increase in the open number of 

DRFCs and maximum coverage of a DRFC. This impact majorly depends on the associated 

total logistics cost and flood risk impact. It could be concluded that capacity is one of the 

key elements in minimizing the objective. 

 

In order to understand the robustness of the objective, firstly DRFCs were located 

in SDP. In OLP, based on the identicality of DRFCs, several node groups were formed for 
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each case. For each case, the node group is evaluated in terms of robustness level that is 

defined using perturbed MOOP objective. Based on what-if-scenario, stress tests were 

conducted by shutting down major facilities for each case. We conclude that there is 

maximum robustness when α ranges from 0.1 to 0.4 for all the three cases. Though in the 

SDP, MOOP objective is of rank 1 when α equals 0.9, it has maximum flood risk impact. 

The results can be utilized differently based on the flood risk impact tolerances. Decision 

makers may have different flood risk tolerances based on budget constraints, hence our 

approach will provide diverse alternatives whose objective functions are mainly to 

minimize flood risk along with logistics cost. 

 

Our approach has several limitations. We consider only shutdown scenarios of 

single DRFCs though our mathematical model includes direct arc shutdown. Not all the 

shutdown scenarios of DRFCs have been considered in our approach as it will lead to 

increase in the size and complexity. Therefore, researchers should note to reduce the 

possible shutdown scenarios in model to high-impacting ones as adopted in our approach. 

One other limitation we did not consider a scenario where DRFC can act as a shelter point 

for the evacuees, instead DRFCs are considered as a supply points. 

 

For future research, it would be interesting to develop an approach where we 

consider vehicle routing problems to the potential sites. Vehicle routing is an important 

criteria as the required demand quantities have to be distributed to the potential sites from 

DRFCs. Several limitations may arise while deciding on the routes as the paths to the 

potential sites may be blocked due to floods. With this future research a complete model 

can be developed using the existing research. 
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APPENDIX A: LIST OF ACRONYMS 

 

DRFC disaster relief facility center 

EPO expected perturbed objective 

FRI flood risk impact 

MOOP multi-objective optimization programming 

OLP operation level phase 

TLC total logistics cost 

SDP strategic design phase 

 


