

Copyright

by

Hari Krishna Parimi

2018

MUTATION TESTING USING TIME-SHIFT OPERATOR

by

Hari Krishna Parimi, B. Tech

THESIS

Presented to the Faculty of

The University of Houston Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2018

MUTATION TESTING USING TIME-SHIFT OPERATOR

by

Hari Krishna Parimi

APPROVED BY

 __
 Ishaq Unwala, Ph.D., Chair

 __
 Thomas Harman, Ph.D., Committee Member

 __
 Hakduran Koc, Ph.D., Committee Member

APPROVED/RECEIVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

Said Bettayeb, Ph.D., Associate Dean

__
Ju H. Kim, Ph.D., Dean

Dedication

To

The Field of Computer Engineering and My family

v

Acknowledgements

I would like to express my sincere thanks, appreciation, and gratitude to all of

those who have directly or indirectly contributed to my research work and those who

have supported me throughout the entire process. I will always be grateful for that.

I would like to thank my supervisor Dr. Ishaq Unwala for his excellent guidance

and engagement through my thesis period. He has been supportive since the day I began

working on my research. His insightful discussions and suggestions on the research

helped me finish this thesis successfully. Moreover, I would like to thank my thesis

committee, Dr. Thomas Harman, and Dr. Hakduran Koc, for their encouragement and

their helpful advice.

My immense love goes to my grandparents, Tataya (Grand Father) Ranga Rao

Koduri, Amma (Mummy) Rama Lakshmi Parimi, Nana (Daddy) Venkata Ratnam Parimi,

(Mavaya) Ganesh Koduri. I cannot thank them enough for their unconditional love,

support and care through all these years. I would not have made it this far without them.

Loads of love and thanks to my brother Naveen Krishna Parimi, who blossomed and

cherished with me every great moment and supported me by keeping me harmonious and

helping me putting pieces together.

Finally, I would like to thank my friends, roommates and my bayyas (brothers),

Jayaram Immaneni, Rajesh Vangapalli, Saran, Shyam Karuparthy, Sudhakar Shivaram,

Santosh Pruthvi for encouraging me all the time to get my thesis progressed and for a

wonderful love they pour on me, making my life joyful.

vi

ABSTRACT

MUTATION TESTING USING TIME-SHIFT OPERATOR

Hari Krishna Parimi

University of Houston-Clear Lake, 2018

Thesis Chair: Dr. Ishaq Unwala

Functional verification plays a critical role in ensuring that a digital integrated circuit (IC)

meets the design specification. Dynamic verification uses a large number of test vectors.

To analyze and improve the quality of these test vectors, the technique of mutation

testing is used. In mutation testing the design is mutated with a known fault. To verify the

quality of the test vectors the mutated design is retested with test vectors. Current

mutation operators include arithmetic, logical, or relational operators. These operators

mutate functional portion of the design. However, a significant number of design faults

are related to signal timing. To mutate the design for signal timing, this research

introduces a new operator, time-shift operator. Time-shift operator allows mutation of the

signal timing, which allows an improvement in the quality of test vectors. In this

research, it is shown that time-shift operator can be used in combination and sequential

designs. This research also shows that the time-shift operator can be utilized in both

behavioral and gate-level designs. The results of 9 different designs are presented

covering all the cases of combination, sequential, behavioral and get-level designs.

vii

TABLE OF CONTENTS

List of Tables .. ix

List of Figures ..x

Chapter Page

CHAPTER 1: INTRODUCTION ... 1

1.1 Mutation .. 2

1.1.1 Killed Mutant ... 3
1.1.2 Equivalent Mutant.. 3

1.2 Mutation Process... 3

1.2.1 Test Generator.. 4
1.2.2 Test-Bench Checker ... 4

1.2.3 Results .. 5
1.3 Strength of Mutation ... 5

1.3.1 Weak Mutation... 5

1.3.2 Firm Mutation .. 5
1.3.3 Strong Mutation ... 5

1.4 Design ... 5
1.4.1 Moore Design... 6
1.4.2 Mealy Design ... 6

1.4.3 Golden Design.. 7
1.4.4 Mutated Design .. 7

1.5 D-FF .. 8
1.6 Time-shift Operator... 9

1.6.1 Operator Added.. 9

1.6.2 Operator Detached ... 11

CHAPTER 2: REVIEW OF LITERATURE .. 13

CHAPTER 3: METHODOLOGY .. 15

3.1 Design ... 16
3.1.1 Vending Machine ... 17

3.1.2 Simple State Transition .. 25
3.1.3 Elevator .. 27

CHAPTER 4: RESULTS .. 30

4.1 Gate Level ... 30

viii

4.1.1 Gate Level FSM ... 30
4.1.1.1 Vending Machine .. 30

4.1.1.2 Simple State Transition FSM GL 35
4.1.2 Gate Level Combinational ... 36

4.1.2.1 Large Combinational Gate Level 36
4.1.2.2 Simple Combinational Gate Level 39

4.2 Behavioral Level ... 40

4.2.1 Behavioral Level FSM ... 40
4.2.1.1 Simple State Transition Behavioral Level FSM 40

4.2.1.2 Elevator Behavioral Level FSM 41
4.2.2 Behavioral Level Combinational ... 43

4.2.2.1 Simple Combinational Behavioral Level 43

4.2.2.2 Combinational Behavioral Level_1 44
4.2.2.3 Combinational Behavioral Level_2 45

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 50

Conclusion .. 50
Future Work .. 51

REFERENCES ... 51

APPENDIX A: VENDING MACHINE TRANSITIONS.. 55

ix

LIST OF TABLES

Table Page

Table 1 D-FF Truth Table ... 9

Table 3.1 State Assignment .. 21

Table 3.2 Item Assignment ... 22

Table 3.3 Next State Table.. 23

Table 3.4 Output Table ... 24

Table 3.5 Simple state transition next state and output table .. 27

Table 3.6 Elevator next state and output table .. 29

Table 4.1 Vending Machine Gate Level FSM Mutation Results 32

Table 4.2 Simple State Transition Gate Level FSM Mutation Results............................. 36

Table 4.3 Large Combinational Gate Level Mutation Results ... 37

Table 4.4 Simple Combinational Gate Level Mutational Results 40

Table 4.5. Simple State Transition Behavioral Level FSM Mutation Results 41

Table 4.6 Elevator Behavioral Level FSM Mutation Results ... 43

Table 4.7 Simple Combinational Behavioral Level Mutation Results 44

Table 4.8 Combinational Behavioral Level_1 Mutation Results 45

Table 4.9 Combinational Behavioral Level_2 Mutation Results 47

Table A.1 Change Assignment ... 55

Table A.2 Input Encoding ... 56

Table A.3 Output Encoding .. 57

Table A.4 State Transition Table .. 58

Table A.5 Change Table ... 58

Table A.6 Dispense Table ... 59

x

LIST OF FIGURES

Figure Page

Figure 1.1 Mutation Process ... 4

Figure 1.2 Moore Design[7] ... 6

Figure 1.3 Mealy Design[8] .. 7

Figure 1.4 Golden Design ... 7

Figure 1.5 Mutated Design ... 8

Figure 1.6 D-FF .. 8

Figure 1.7 Example Design_1... 10

Figure 1.8 Waveform Design_1.. 10

Figure 1.9 Example Design_1_D-FF .. 10

Figure 1.10 Waveform Design_1_D-FF ... 10

Figure 1.11 Example Design_2... 11

Figure 1.12 Waveform Design_2.. 11

Figure 1.13 Example Design_2_D-FF_Detached ... 12

Figure 1.14 Waveform Design_2_D-FF_Detached .. 12

Figure 3.1 Methodology for Mutation Detection.. 15

Figure 3.2 Design Classification ... 16

Figure 3.3 Vending Machine State Transition .. 17

Figure 3.4 Simple State Transition ... 25

Figure 3.5 Elevator State Transition ... 27

1

CHAPTER 1: INTRODUCTION

Functional verification is a critically important task in design of a digital

integrated circuit (IC). The market demand for ICs with higher performance, lower power

and smaller size is leading to increasing complexity as designer maximize the

performance from every clock cycle while managing power consumption on larger

transistor budgets.

In order to find design faults, i.e. deviation from specification, manufacturers

employ a team of verification engineers. The most common verification technique used

in industry is dynamic verification. Dynamic verification is based on using test vectors to

simulate the IC design and observe the design for incorrect operation. Verification team

generally generates a large set of test vectors based on the specification proved by the

design architect. The design is simulated using an individual test vector. The design

output, after an appropriate delay, is observed. If the design output matches the expected

result the design is considered to have passed that particular test vector. If the design

output does not match expected result, the design may have a fault or the test vector may

be inappropriate. The cause of fault is resolved and test vector is reapplied, till the design

passes the test vector. Similarly, all the test vectors are individually applied and outputs

compared to the expected results. If the design passes all test vectors pass, the design is

considered Golden design model, i.e. meeting the specification.

Dynamic simulation has very high dependency on the quality of test vectors. If

the quality of the test vectors is poor then hidden faults in the design may not be exposed.

In order to verify and improve the quality of the test vectors a technique known as

mutation testing [4] is used.

Mutation testing involves modifying the Golden design model by introducing a

known fault. The modified design is then called Mutated design model. The test vectors,

2

which the Golden design had previously passed, are then reapplied to the Mutated design

to verify the quality of the test vectors.

Rest of this chapter discusses, the concept of mutation, the types of mutations

based output results as well as the strength of mutation. Some general types of design

concepts are also discussed.

Chapter 2 reviews the previous work related to mutation testing done by

researchers.

Chapter 3 discusses the methodology of applying the mutation.

Chapter 4 provides the results from mutation of designs.

Finally, in Chapter 5 draws some conclusions from the research and discusses

future work.

Reference section and appendix completed this document.

There is also a separate supplemental file containing the complete Verilog code

used in the research.

1.1 Mutation

The process of mutation takes a Golden design and, after copying it as a separate

file, inserts a known fault into the copy of the Golden design. This mutated copy is called

Mutated design. Each Golden design can be mutated a number of times with each

mutation being at different location in the design or a different type. These mutations can

be tested individually or as a subset. It is common practice is to test each mutation

individually to easily identify the strength or weakness in test vectors.

Mutations can be classified into equivalent mutate, and killed mutate [20]. If the

Mutated model passes the same set of test vectors as Golden model without any failing

3

test vectors, then the mutation is said to be an equivalent mutant [20]. However if the

Mutated design fails to pass on one or more of the test vectors, then the mutation is said

to be a killed mutant [20].

1.1.1 Killed Mutant

If the output of the Golden design and the Mutated design are different for atleast

one test in the set of test vectors then the mutantion is said to be a killed mutant [20].

1.1.2 Equivalent Mutant

If the outputs of the Golden design and the Mutated design are same for all the

tests in the set of test vectors then the mutantion is said to be an equivalent mutant [20].

1.2 Mutation Process

The mutation process is graphically presented in Figure 1.1

4

Figure 1.1
Mutation Process

The above process explains how the Golden design and the Mutated design are

compared.

1.2.1 Test Generator

Tests generator module generates the set of test vectors to verify the design. The

same tests are applied to both the Golden and the Mutated designs.

1.2.2 Test-Bench Checker

Test-bench checker module checks the output of the design with the expected

result for the tests generated by the test generator. The test-bench checker can check both

the Golden design and the Mutated design.

5

1.2.3 Results

Result Comparator compares the outputs from both the Golden design and

Mutated design. If there is a mismatch then the applied test has successfully detected the

mutation, otherwise the mutation was not detect.

1.3 Strength of Mutation

This section explains how strong the mutation is and defines the strength of the

mutation.

1.3.1 Weak Mutation

Weak mutation is also known as Fault activation. In weak mutation, the test

activates the fault at the fault location but does not propagate the faulty value, and thus

cannot be detected at the output, then the mutation is said to be a weak mutation [20].

1.3.2 Firm Mutation

Firm mutation is also known as Fault propagation. In firm mutation, the test

activates the fault at the fault location and propagates the fault towards the output,

however fault progogation stops before reaching the output, and thus mutation cannot be

detected, then the mutation is said to be a firm mutation [20].

1.3.3 Strong Mutation

Strong mutation is also known as Fault detection. In strong mutation, the tests

activates the fault at the fault location and the fault is propagated all the way to the

output, thus the mutation is detected, then the mutation is said to be a strong mutation

[20].

1.4 Design

In order to test and demonstrate the effectiveness of the proposed problem

statement (mutating by a time-shift operator) a number of designs were tested. For

6

sequential design, finite state machine (FSM) were tested. The states of the FSM are

generally registers that are flip-flops. The FSM designs are classified as Moore or Mealy

depending on their output relation with inputs and their current states.

1.4.1 Moore Design

If the outputs depend only on the current state, then the design is said to be Moore

Design [22]. Figure 1.2 shows the block-diagram for this type of design.
Figure 1.2
Moore Design[7]

1.4.2 Mealy Design

If the outputs depend on the current state and input, then the design is said to be

Mealy Design [22]. Figure 1.3 shows the block-diagram for this type of design.

7

Figure 1.3
Mealy Design[8]

1.4.3 Golden Design

A design is called Golden design or Device Under Test (DUT) where the design is

assumed to be faultless. Figure 1.4 is an example we have taken as a Golden design with

two AND gates, one OR gate, one XOR gate, one NAND gate and later mutated it further

as shown in Figure 1.5 to make it a Mutated design.

Figure 1.4

Golden Design

1.4.4 Mutated Design

A design is said to be mutated if there is any fault added to the original design.

The fault consist of adding, removing or even changing a portion of the Golden design

8

with a known fault. Presently, mutation of designs is done by changing the airthmetic

operators [17] in the design.

Figure 1.4 is mutated with a not gate that can be seen in Figure 1.5 to make it a

mutated one.
Figure 1.5
Mutated Design

1.5 D-FF

D-FF is a D-flipflop. Figure 1.6 shows the inputs and outputs for the D-FF. Table

1 is the truth table for the D-FF. In our approach, we used D-FF as the time shift operator

or as our main mutation concept.

Figure 1.6
D-FF

9

Table 1
D-FF Truth Table

Clk D Q ~Q

0 X No change No change

1 0 0 1

1 1 1 0

Clk is Clock, d is the data which is input. Q and ~Q are the outputs. x is a don’t

care value. From the Table 1, we can understand that if clock is low (that is 0) the output

has no change in its value. If the clock is high (that is 1) the output is same as its input.

1.6 Time-shift Operator

The operator which shifts the time is termed as time-shift operator.. By adding or

removing the time-shift operator we can speed-up or slow-down the signal. The next sub-

sections 1.6.1 and 1.6.2 will show how the timing is changed by use of time-shift

operator with an example. The device we use as a time-shift operator is D-FF, which was

discussed in section 1.5.

1.6.1 Operator Added

If we add a time-shift operator to the design the signal time gets delayed. In the

design below, a D-FF is used which delays the signal timing by one clock cycle. Figure

1.7 is taken as an example and a D-FF is added before the output O1 as shown in Figure

1.9. The waveforms of the Design_1 which is Figure 1.8 when compared to the

waveform when the operator is added to the Design_1 can be seen in Figure 1.10 which

indicates the delay of the signal by a clock cycle.

10

Figure 1.7
Example Design_1

Figure 1.8
Waveform Design_1

Figure 1.9
Example Design_1_D-FF

Figure 1.10
Waveform Design_1_D-FF

11

1.6.2 Operator Detached

To speed-up signal timing, a D-FF needs to be removed. Note that the D-FF can

only be removed if it is already present in the Golden Design. In the following example a

D-FF is removed, which speeds up the signal timing by one clock cycle. Figure 1.11 is

taken as an example and a D-FF is detached before the output O1 as shown in Figure

1.13. The waveforms of the Design_2 which is Figure 1.12 when compared to the

waveform when the operator is detached to the Design_2 can be seen in Figure 1.14

which indicates the advancement of the signal by a clock cycle.

Figure 1.11

Example Design_2

Figure 1.12
Waveform Design_2

12

Figure 1.13
Example Design_2_D-FF_Detached

Figure 1.14

Waveform Design_2_D-FF_Detached

13

CHAPTER 2: REVIEW OF LITERATURE

Lisherness, et al. [1] in their paper mainly discuss the method used for VHDL

RTL functional verification. In the paper, the authors propose an approach to reduce the

simulation time based on FPGA emulation. A Meta-Mutant Test bench is used to emulate

mutants. The type of mutation testing is explained with some illustrations. The authors

tried to prove that this type of hardware and software-based emulation is 20 times quicker

than the regular software-based simulations. The paper and their results prove that their

approach is more than 10 times faster. In the future ideas section, the authors are focusing

on stimuli generation in extension to their work to improve the functional verification

quality while the present work focuses on the optimization of time. This paper made us

think of optimizing the time by mutation.

Xie, et al.'s [2] paper is based on Markov-chain and mutants. This paper provides

good ideas for generating tests and describes how to calculate the mutants and help us

explore more about mutants.

Bombieri, et al.'s [3] paper explains the importance of software testing for

mutation. The paper explains how to inject the mutants and how the verification can be

done in a systematic way.

Huang, et al.'s [4] paper explains the principles of generating a test-bench. This

paper discusses research on test-bench qualification with the help of mutation. This paper

gave us the idea for a quality test-bench.

From Serrestou, et al.'s [5] paper, we got to know how the fault in the mutation

can be activated, propagated and then detected in the whole process.

Lin, et al.'s [6] paper tells us about firm mutation, living mutants (a mutant that is

activated initially and propagated to the final output) and how they are being decreased

with a probabilistic approach using Error Propagation Analysis (EPA) tools.

14

Nguyen, et al.’s [17] paper tells us how the mutants and the test data can be

generated in an effective way in the software and implemented into the hardware to make

the test cost effective.

Bombieri, et al.'s [18] paper explains mutation analysis for the Transaction Level

Modeling(TLM) design. The mutation analysis is done for software testing, to find the

quality test-bench. This paper explains how the mutations can be done and the definition

of mutant, mutation and how to do mutation analysis.

Hsiao, et al.'s [19] paper explains the automated test generation and mainly we

learned how to apply our mutation so that it can have a better chance of activation and

propagation.

Jia and Harman's [20] paper teaches us how the mutation evolves, and the types of

research that has been done over the decades. It also explains how the mutation can be

done in various ways and the problems after a mutation is done and how to do mutation

analysis in an effective manner. This paper made us to think how our mutation can be

done and how we can do mutation analysis differently.

15

CHAPTER 3: METHODOLOGY

To conduct experiment of designs, Verilog language was chosen. These Verilog

designs needed to be simulated with test vectors. To simulate the Verilog design, the

student edition ModelSim simulator, by Mentor Graphics, was used. All the simulation

results, including all waveform pictures are from the ModelSim simulator.

The general methodology is depicted in the Figure 3.1, the same inputs are

provided to both the Golden and Mutated designs shown in the Figure 3.1 as two

different DUTs (Device Under Test). To check if both the designs have the same or

different outputs, the corresponding output signals are passed through the ex-or gates. All

the outputs of the EXOR gates are passed through an OR gate. If the corresponding

outputs differ, the EXOR result is a 1. The result of the OR gate will be 1 if any one of

the EXOR output is 1. This allows detection of mismatch due to the mutation.

Here, the design is mutated by adding a D-FF or detaching the D-FF. The D-FF is

inserted or removed from the Golden design in random manner, no particular

methodology or algorithm was used.

Figure 3.1
Methodology for Mutation Detection

16

3.1 Design

The designs used in this research can be categorized into four classes as shown in

Figure 3.2. The Gate-level and Behavioral level designs which are divided into Finite

state machines and combinational parts. Here, all the designs are made in System Verilog

using model-sim student edition software. Even the test-benches made to verify the

designs are made in System Verilog, using the same model-sim student edition software.

Figure 3.2
Design Classification

The Mutation can be done by adding or removing a flip-flop in all the designs, but

the flip-flop can be removed only from the FSMs as there are no flip-flops in the

combinational designs.

First, we will discuss a prototype vending machine design which is a Mealy

design.

Elevator and simple-state transitions designs are like Moore design, which are

explained in the later sections.

17

3.1.1 Vending Machine

The first design is a Vending Machine, which accepts only quarters and returns

only quarters. It has total 8 inputs, one input is entering quarters one at a time into the

machine, and 7 input buttons where one of the buttons is for the return of change at any

time of the process, and 6 for the selection of 6 different items A1, A2, A3, A4, A5 and

A6 with a cost of 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 respectively. It will give us an

output as a change in quarters, “insufficient amount” is displayed, and dispenses items

A1, A2, A3, A4, A5, and A6.

The Figure 3.3 in the form of a state diagram shows how the whole process takes

place. The notations on the transition arrows from one state to another are corresponding

to Inputs|Outputs.

Figure 3.3 shows the state transition for the vending machine design used in this

thesis.
Figure 3.3
Vending Machine State Transition

18

This state transition gives a clear picture of how the state transitions take place

with the inputs and the outputs obtained. The Q in the Figure 3.3 represents the inserted

quarter. On the transition line (a connecion between the states), the input selected, and the

corresponding output obtained is separated by “|”. This design is used for evaluation of

the methodology in both behavioral and Gate Level designs.

There are seven states with the following:

Inputs: $0.25 (The machine can accept quarters up to an amount of $1.50; this

contains about 6 different states transiting from one state to another for every $0.25), and

buttons or selections: - A1 (item which costs $0.25), A2 (item which costs $.50), A3

(item which costs $.75), A4 (item which costs $1.00), A5 (item which costs $1.25), A6

(item which costs $1.50), Return Change (R)

Outputs: Change (C - amount will be dispensed only in quarters which is a 3-bit),

A1, A2, A3, A4, A5, A6 (six different items) represented as D (item dispensed which is a

3-bit).

Also, reset (rst) and clock (clk) are used.

At any stage of the process if rst button is pressed the change or amount that was

deposited up to that point of time will be dispensed and system will go to the state S0.

The transition from S0:

Initially, we are at S0 (state zero – initial state).

If A1, A2, A3, A4, A5, A6 are selected we will get the output “insufficient

amount” and system stays in state S0.

If rst or R is chosen, system will stay in this state S0.

If $0.25 is added by the user, system transits to state S1($0.25).

 The transition from S1:

Now, we are at S1.

19

If A1 is selected A1 is dispensed and system will go to S0.

If A2, A3, A4, A5, or A6 are selected we will get a change of $0.25 and the

output “insufficient amount” is displayed, and system will go back to state S0.

If rst or R is chosen, system will give a change of $0.25 and will go to state S0.

If $0.25 is added by the user, system transits to state S2 ($0.50).

The transition from S2:

Now, we are at S2.

If A1 is selected A1 is dispensed with change of $0.25 and it will go to S0.

If A2 is selected A2 is dispensed and it will go to S0.

If A3, A4, A5, or A6 are selected we will get change of $0.50 and the output

“insufficient amount” is displayed, and it will go back to state S0.

If rst or R is chosen, it will give change of $0.50 and will go to state S0.

If $0.25 is added by the user, it transits to state S3 ($0.75).

The transition from S3:

Now, we are at S3.

If A1 is selected A1 is dispensed with change of $0.50 and it will go to S0.

If A2 is selected A2 is dispensed with change of $0.25 and it will go to S0.

If A3 is selected A3 is dispensed and it will go to S0.

If A4, A5, or A6 are selected we will get change of $0.75 and the output

“insufficient amount” is displayed, and it will go back to state S0.

If rst or R is chosen, it will give a change of $0.75 and will go to state S0.

If $0.25 is added by the user, it transits to state S4 ($1.00).

The transition from S4:

Now, we are at S4.

If A1 is selected A1 is dispensed with change of $0.75 and it will go to S0.

20

If A2 is selected A2 is dispensed with change of $0.50 and it will go to S0.

If A3 is selected A3 is dispensed with change of $0.25 and it will go to S0.

If A4 is selected A4 is dispensed and it will go to S0.

If A5, or A6 are selected we will get change of $1.00 and the output “insufficient

amount” is displayed, and it will go back to state S0.

If rst or R is chosen, it will give a change of $1.00 and will go to state S0.

If $0.25 is added by the user, it transits to state S5 ($1.25).

The transition from S5:

Now, we are at S5.

If A1 is selected A1 is dispensed with change of $1.00 and it will go to S0.

If A2 is selected A2 is dispensed with change of $0.75 and it will go to S0.

If A3 is selected A3 is dispensed with change of $0.50 and it will go to S0.

If A4 is selected A4 is dispensed with change of $0.25 and it will go to S0.

If A5 is selected A5 is dispensed and it will go to S0.

If A6 is selected it will get change of $1.25 and the output “insufficient amount”

is displayed, and it will go back to state S0.

If rst or R is chosen, it will give change of $1.25 and go to state S0.

If $0.25 is added by the user, it transits to state S6 ($1.50).

The transition from S6:

Now, we are at S6.

If A1 is selected A1 is dispensed with change of $1.25 and it go to S0.

If A2 is selected A2 is dispensed with change of $1.00 and it go to S0.

If A3 is selected A3 is dispensed with change of $0.75 and it go to S0.

If A4 is selected A4 is dispensed with change of $0.50 and it go to S0.

If A5 is selected A5 is dispensed with change of $0.25 and it go to S0.

21

If A6 is selected A6 is dispensed and goes back to its ideal state S0.

If rst or R is chosen, it will give change of $1.50 and go to state S0.

If $0.25 is been added by the user, it will transit to S0 and change of $1.75 is

returned.

Table 3.1

State Assignment

State Assignment(Q2Q1Q0)

S0 0 000

S1 0.25 001

S2 0.50 010

S3 0.75 011

S4 1.00 100

S5 1.25 101

S6 1.50 110

Above Table 3.1 depicts how the states are assigned S0 to S6 as 3-bits (Q2Q1Q0).

22

Table 3.2
Item Assignment

Item Assignment

(D2D1D0)

A1/D1 0

01

A2/D2 0

10

A3/D3 0

11

A4/D4 1

00

A5/D5 1

01

A6/D6 1

10

Above Table 3.2 depicts how the items as inputs (A1 to A6) and output items

dispensed (D1 to D6) are assigned as (D2D1D0).

23

Table 3.3
Next State Table

State Diagram

 P.S.

(Q2Q1Q0)

Next State (Q+
2 Q

+
1 Q

+
0)

1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 1 0

0 1 1 1 0

1 0 0 1 0 1 0

1 0 1 1 1 0

1 1 0 1 1 0

The Table 3.3 explains how the next states are obtained with the current states and

the inputs.

Next State Equations:

With the help of Table 3.3 and [9], we obtained the next state equations in terms

of inputs and current state.

Q0
+ = A’. C’. E’. F’. G’ + B’. C’. E’. F’. G’ (A – Q2; B - Q1; C – Q0; D – X3; E –

X2; F – X1; G – X0)

Q1
+ = B’. C. E’. F’. G’ + B. C’. E’. F’. G’

Q2
+ = A. E’. F’. G’ + B. C. E’. F’. G’

24

Table 3.4
Output Table

P.S.

(Q2Q1Q0)

Output (D2 D1 D0 C2 C1 C0)

 for Inputs (X3X2X1X0)

1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0 1 0 0 0 0

0 0

0 0 1 0

0 0

0 0 0 0

0 1

0 0 0 0

0 1

0 0 0 0

0 1

0 0 0 0

0 1

0 0 0 0

0 1

0 0 0 0

0 1

0 1 0 0 0 0 0

0 0

0 0 1 0

0 1

0 1 0 0

0 0

0 0 0 0

1 0

0 0 0 0

1 0

0 0 0 0

1 0

0 0 0 0

1 0

0 0 0 0

1 0

0 1 1 0 0 0 0

0 0

0 0 1 0

1 0

0 1 0 0

0 1

0 1 1 0

0 0

0 0 0 0

1 1

0 0 0 0

1 1

0 0 0 0

1 1

0 0 0 0

1 1

1 0 0 0 0 0 0

0 0

0 0 1 0

1 1

0 1 0 0

1 0

0 1 1 0

0 1

1 0 0 0

0 0

0 0 0 1

0 0

0 0 0 1

0 0

0 0 0 1

0 0

1 0 1 0 0 0 0

0 0

0 0 1 1

0 0

0 1 0 0

1 1

0 1 1 0

1 0

1 0 0 0

0 1

1 0 1 0

0 0

0 0 0 1

0 1

0 0 0 1

0 1

1 1 0 0 0 0 0

0 0

0 0 1 1

0 1

0 1 0 1

0 0

0 1 1 0

1 1

1 0 0 0

1 0

1 0 1 0

0 1

1 1 0 0

0 0

0 0 0 1

1 0

The Table 3.4 explains how the outputs are obtained with the current states and

the inputs.

Output Equations:

With the help of Table 3.4 and [9], we obtained the next state equations in terms

of inputs and current state.

D2= A.E.F’.G’ + A.C.E.F’ + A.B.E.F’ + A.B.E.G’

D1= A.E’.F + B.E’.F.G’ + B.C.E’.F + A.B.F.G’

25

D0= A.E’.G + C.E’.F’.G + B.E’.F’.G + B.C.E’.G + A.C.F’.G + A.B.F’.G

C2=

A.B’.E.F + A.E.F.G + A.B’.C’.E.G + A.C.E’.F’.G + A.B.E’.F’.G + A.B.E’.F.G’

C1=

A’.B.C’.E + A.C.E’.F + B.C’.E’.F.G + B.C’.E.F’.G’ + B.C.E’.F’.G + B.C.E’.F.G’ + A.B’

.E’.F.G’ + A.B’.C’.E’.F’.G + B.E.F.G

C0=

C.F.G’ + A’.C.E + C.E.G’ + C.E.F + A’.B’.C.F + A.C’.E’.G + A.B.F’.G + B.C’.E’.F’.G

3.1.2 Simple State Transition

Figure 3.4
Simple State Transition

Figure 3.4 explains the state transition for simple state transition design with the

input. This design is used for evaluation of the methodology in both behavioral and Gate

Level designs.

There are a total four states with the following:

Inputs: x_in is the only one input.

26

Outputs: out which is the state in which the system is present.

At any stage of the process if rst button is pressed the out would be state 0.

The transition from S0:

Initially, we are at S0 (state zero – initial state).

If x_in is 1, we will get an output state 2.

If x_in is o, we will get an output state 0.

If rst is chosen, system will be in state S0.

The transition from S1:

Now, we are at S1.

If x_in is 1, we will get an output state 3.

If x_in is o, we will get an output state 1.

If rst is chosen, system will be in state S0.

The transition from S2:

Now, we are at S2.

If x_in is 1, we will get an output state 1.

If x_in is o, we will get an output state 2.

If rst is chosen, system will be in state S0.

The transition from S3:

Now, we are at S3.

If x_in is 1, we will get an output state 0.

If x_in is o, we will get an output state 3.

If rst is chosen, system will be in state S0.

27

Table 3.5
Simple state transition next state and output table

Input Current State Next State Output

x_in A B A B O

0 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 1 0 1 0

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 0 1 0 1

1 1 1 0 0 0 0

From the above Figure 3.4 and Table 3.5, we can infer that if the input x_in is

given then the state transition takes place else system will be in its own state.

3.1.3 Elevator

Figure 3.5

Elevator State Transition

Figure 3.5 explains the state diagram for elevator design with the inputs up and

down. This design is used for evaluation of the methodology in behavioral Level designs.

28

There are a total three states with the following:

Inputs: up and down are the inputs.

Outputs: out, which is the state in which system is present.

At any stage of the process if rst button is pressed the out would be state 0.

There are total of 3 states.

The transition from S0:

Initially, we are at S0 (state zero – initial state).

If up is 1, we will get an output state 1.

down can not be selected.

If rst is chosen, system will be in state S0.

The transition from S1:

Now, we are at S1.

If up is 1, we will get an output state 2.

If down is 1, we will get an output state 0.

If rst is chosen, system will be in state S0.

The transition from S2:

Now, we are at S2.

Up cannot be selected.

If down is 1, we will get an output state 1.

If rst is chosen, system will be in state S0.

29

Table 3.6
Elevator next state and output table

Input Current State Next State Output

Up Down A B A B O

1 0 0 0 0 1 0 1

1 0 0 1 1 0 1 0

0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 1

From the above Figure 3.5 and Table 3.6, we can infer that if the input up is given

then the state transition takes place to the next state if down is selected system goes to the

previous state.

30

CHAPTER 4: RESULTS

The circuit methodology discussed in Chapter 3 was followed to build a complete

testing harness. Each of the nine Golden designs was mutated a number of times. Each

mutation was tested individually with appropriate test vectors. Multiple mutations were

not tested as a subset. The output results of each test, where the mutation was detected are

show as 1 in the Table columns. If the output results of the test did not detect the

mutation a 0 is shown in that column.

Detected in Middle:

If we have a weak or firm mutation the result is presented in column, “Detected in

Middle”. This is the OR value for the outputs obtained in the process of obtaining the

end outputs. This is where the mutation has been detected in the middle of the design, but

not at the outputs.

Detected at End:

If we have a strong mutation the result is presented in column, “Detected at End”.

This is the OR value obtained for the end outputs. This is where the mutation has been

detected at the end of the process at the output.

4.1 Gate Level

Here, the designs are made in the gate level code using model-sim in system

Verilog.

4.1.1 Gate Level FSM

4.1.1.1 Vending Machine

The Table 4.1 shows the mutation results for four mutations tested with the same

tests as shown in the left most column:

1)Mutation m0:

31

 In this mutation, we added a D-FF to the (Present State) PS [0] for

Vending Machine design.

2) Mutation m1:

 In this mutation, we added a D-FF to the PS [1] for Vending Machine

design.

3) Mutation m2:

 In this mutation, we added a D-FF to the D [0] for Vending Machine

design.

4) Mutation m3:

 In this mutation, we removed a D-FF from the PS [0] for Vending

Machine design.

Here, in Test Line S0_1 means input 1 is selected in the state S0. 2,3,4,5,6, R, Q

are for input 2,3,4,5,6, Return and Quarter respectively. Total there are states S0, S1, S2,

S3, S4, S5, S6. State S0 has only two lines in the text file used as a test vector. First line

for the selection of inputs and the second line for the output. State S1 has three lines, as

the first line for a quarter inserted, second line is for the input chosen and the third line is

for the output obtained. Similarly, one extra line is added in the test vector as the state

moves on. The extra line is for the addition of quarter. So, detected in middle values

shown in Table 4.1 increases from state to state.

32

Table 4.1
Vending Machine Gate Level FSM Mutation Results

Test
Line

Mutation (m0) Mutation (m1) Mutation (m2) Mutation (m3)

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

S0_
1 0 0 0 0 0 0 0 0

S0_
2 0 0 0 0 0 0 0 0

S0_
3 0 0 0 0 0 0 0 0

S0_
4 0 0 0 0 0 0 0 0

S0_
5 0 0 0 0 0 0 0 0

S0_
6 0 0 0 0 0 0 0 0

S0_
R 0 0 0 0 0 0 0 0

S0_
Q 0 0 0 0 0 0 0 0

S1_
1 0,0 0 0,0 0 0,0 0 0,0 0

S1_
2 0,0 0 0,0 0 0,0 0 0,0 0

S1_
3 0,0 0 0,0 0 0,0 0 0,0 0

S1_
4 0,0 0 0,0 0 0,0 0 0,0 0

S1_
5 0,0 0 0,0 0 0,0 0 0,0 0

S1_
6 0,0 0 0,0 0 0,0 0 0,0 0

S1_
R 0,0 0 0,0 0 0,0 0 0,0 0

S1_
Q 0,0 1 0,0 0 0,0 1 0,0 1

S2_
1 0,0,1 0 0,0,0 0 0,0,1 0 0,0,1 0

S2_
2 0,0,1 0 0,0,0 0 0,0,0 0 0,0,1 0

33

Test
Line

Mutation (m0) Mutation (m1) Mutation (m2) Mutation (m3)

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

S2_
3 0,0,1 0 0,0,0 0 0,0,0 0 0,0,1 0

S2_
4 0,0,1 0 0,0,0 0 0,0,0 0 0,0,1 0

S2_
5 0,0,0 0 0,0,0 0 0,0,0 0 0,0,0 0

S2_
6 0,0,1 0 0,0,0 0 0,0,0 0 0,0,1 0

S2_
R 0,0,1 0 0,0,0 0 0,0,0 0 0,0,1 0

S2_
Q 0,0,0 1 0,0,0 1 0,0,0 1 0,0,0 1

S3_
1 0,0,0,1 0 0,0,0,1 0 0,0,0,1 1 0,0,0,1 0

S3_
2 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
3 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
4 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
5 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
6 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
R 0,0,0,1 0 0,0,0,1 0 0,0,0,0 0 0,0,0,1 0

S3_
Q 0,0,0,0 1 0,0,0,0 1 0,0,0,0 1 0,0,0,0 1

S4_
1 0,0,0,0,1 0 0,0,0,0,1 0 0,0,0,0,1 1 0,0,0,0,1 0

S4_
2 0,0,0,0,1 0 0,0,0,0,1 0 0,0,0,0,0 0 0,0,0,0,1 0

S4_
3 0,0,0,0,1 0 0,0,0,0,1 0 0,0,0,0,1 1 0,0,0,0,1 0

S4_
4 0,0,0,0,1 0 0,0,0,0,0 0 0,0,0,0,0 0 0,0,0,0,1 0

S4_
5 0,0,0,0,0 0 0,0,0,0,0 0 0,0,0,0,0 0 0,0,0,0,0 0

34

Test
Line

Mutation (m0) Mutation (m1) Mutation (m2) Mutation (m3)

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

Detected
in Middle

Detecte
d at
end

S4_
6 0,0,0,0,1 0 0,0,0,0,0 0 0,0,0,0,0 0 0,0,0,0,1 0

S4_
R 0,0,0,0,1 0 0,0,0,0,1 0 0,0,0,0,0 0 0,0,0,0,1 0

S4_
Q 0,0,0,0,0 1 0,0,0,0,0 1 0,0,0,0,0 1 0,0,0,0,0 1

S5_
1

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
1 1

0,0,0,0,0,
1 0

S5_
2

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
0 0

0,0,0,0,0,
1 0

S5_
3

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
1 1

0,0,0,0,0,
1 0

S5_
4

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
0 0

0,0,0,0,0,
1 0

S5_
5

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
0 0

0,0,0,0,0,
1 0

S5_
6

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
0 0

0,0,0,0,0,
1 0

S5_
R

0,0,0,0,0,
1 0

0,0,0,0,0,
1 0

0,0,0,0,0,
0 0

0,0,0,0,0,
1 0

S5_
Q

0,0,0,0,0,
0 1

0,0,0,0,0,
0 1

0,0,0,0,0,
0 1

0,0,0,0,0,
0 1

S6_
1

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 1

0,0,0,0,0,
0,1 0

S6_
2

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,0 0

0,0,0,0,0,
0,1 0

S6_
3

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 1

0,0,0,0,0,
0,1 0

S6_
4

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,0 0

0,0,0,0,0,
0,1 0

S6_
5

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 1

0,0,0,0,0,
0,1 0

S6_
6

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,0 0

0,0,0,0,0,
0,1 0

S6_
R

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,1 0

0,0,0,0,0,
0,0 0

0,0,0,0,0,
0,1 0

S6_
Q

0,0,0,0,0,
0,0 1

0,0,0,0,0,
0,0 1

0,0,0,0,0,
0,0 1

0,0,0,0,0,
0,0 1

35

4.1.1.2 Simple State Transition FSM GL

Here, the mutations are explained, and the results obtained are shown in Table

4.2.

1)Mutation m0:

 U10 is a wire in the design.

 In this mutation, we added a D-FF to the U10 wire for Simple State

Transition FSM GL design.

2) Mutation m1:

 U7 is a wire in the design.

 In this mutation, we added a D-FF to the U7 for Simple State Transition

FSM GL design.

3) Mutation m2:

 U9 is a wire in the design.

 In this mutation, we added a D-FF to the U9 for Simple State Transition

FSM GL design.

4) Mutation m3:

 In this mutation, we removed a D-FF for the (Current State) CS [0] for

Simple State Transition FSM GL design.

L_1, L_2, L_3, L_4, L_5, L_6, L_7, L_8, L_9 are the possible tests for this design

passed in a single text file. The last results in Table 4.2 are one that are remained even

after all the tests are run. The Mutation m1 has no effect on the design as the outputs are

same as the original design which is shown in the Table 4.2. The mutation is never

detected in this case.

36

Table 4.2
Simple State Transition Gate Level FSM Mutation Results

Test Mutation (m0 - U10) Mutation (m1 - U7) Mutation (m2-U9) Mutation (m3-CS [0])

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 0

L_2 0 0 0 0

L_3 0 0 1 0

L_4 0 0 0 0

L_5 1 0 0 1

L_6 0 0 0 1

L_7 1 0 1 1

L_8 0 0 0 1

L_9 0 0 0 0

 0 0 0 0

4.1.2 Gate Level Combinational

4.1.2.1 Large Combinational Gate Level

Here, the mutations are done for this design to be explained below and the results

in the Table 4.3.

X [0] is least significant bit of the binary number obtained after the encoding of

the inputs. C [0], C [1] and C [2] are the one-bit values of change. Similarly, D [1] and D

[2] are for item dispensed. L_1 to L_57 are the possible 57 tests for this design passed in

a single text file.

1)Mutation m0:

 In this mutation, we added a D-FF to the X [0] that goes to the C [0] and D

[2] for Large Combinational Gate Level design.

2) Mutation m1:

 In this mutation, we added a D-FF to the X [0] that goes to the D [1] for

Large Combinational Gate Level design.

3) Mutation m2:

37

 In this mutation, we added a D-FF to the X [0] that goes to the C [1] and D

[1] for Large Combinational Gate Level design.

4) Mutation m3:

 In this mutation, we added a D-FF to the X [0] that goes to the C [2] and D

[1] for Large Combinational Gate Level design.

Table 4.3
Large Combinational Gate Level Mutation Results

Test

Mutation (m0 – X
[0] for C [0] & D

[2])

Mutation (m1 – X
[0] for D [1])

Mutation (m2 – X
[0] for C [1] & D

[1])

Mutation (m3 – X
[0] for C [2] & D

[1])

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 0
L_2 0 0 0 0
L_3 0 0 0 0

L_4 0 0 0 0
L_5 0 0 0 0
L_6 0 0 0 0
L_7 0 0 0 0
L_8 0 0 0 0

L_9 0 0 0 0
L_10 0 0 0 0
L_11 0 0 0 0
L_12 0 0 0 0
L_13 1 0 0 0

L_14 1 0 0 0
L_15 0 0 0 0
L_16 0 0 0 0
L_17 1 0 0 0
L_18 1 0 0 0

L_19 0 1 1 1
L_20 0 1 1 1
L_21 0 0 0 0

38

Test

Mutation (m0 – X
[0] for C [0] & D

[2])

Mutation (m1 – X
[0] for D [1])

Mutation (m2 – X
[0] for C [1] & D

[1])

Mutation (m3 – X
[0] for C [2] & D

[1])

Detected at end Detected at end Detected at end Detected at end

L_22 0 0 0 0
L_23 0 0 0 0
L_24 0 0 0 0
L_25 0 0 1 0
L_26 0 0 1 0
L_27 0 0 1 0
L_28 0 0 1 0
L_29 1 0 0 0

L_30 1 0 0 0
L_31 0 0 1 0
L_32 0 0 1 0
L_33 1 0 1 0
L_34 1 0 1 0

L_35 1 0 1 0
L_36 1 0 1 0
L_37 1 0 0 1
L_38 1 0 0 1
L_39 0 0 0 0
L_40 0 0 0 0
L_41 0 0 0 1
L_42 0 0 0 1
L_43 0 0 0 1
L_44 0 0 0 1

L_45 1 0 0 0
L_46 1 0 0 0
L_47 0 0 0 0
L_48 0 0 0 0
L_49 1 0 0 0

L_50 1 0 0 0
L_51 1 0 1 0
L_52 1 0 1 0
L_53 1 0 1 0
L_54 1 0 1 0
L_55 1 1 1 1

39

Test

Mutation (m0 – X
[0] for C [0] & D

[2])

Mutation (m1 – X
[0] for D [1])

Mutation (m2 – X
[0] for C [1] & D

[1])

Mutation (m3 – X
[0] for C [2] & D

[1])

Detected at end Detected at end Detected at end Detected at end

L_56 1 1 1 1
L_57 X X X x

4.1.2.2 Simple Combinational Gate Level

Here, how the mutations were done for this design will be explained below with

the results in Table 4.4.

x_in is the input to the design.

1)Mutation m0:

 In this mutation, we added a D-FF to the x_in for (Next State) NS [1]

while anding with (Current State) CS [1] for Simple Combinational Gate Level design.

2) Mutation m1:

 In this mutation, we added a D-FF to the x_in for Simple Combinational

Gate Level design.

3) Mutation m2:

In this mutation, we added a D-FF to the x_in for one in NS [1] while ANDing

with CS [1] and in NS [0] while ANDing with CS [0] for Simple Combinational Gate

Level design.

4) Mutation m3:

 In this mutation, we added a D-FF to the x_in for all of NS [1] for Simple

Combinational Gate Level design.

40

Test Line says the line in the text file which we checked for eight possible cases.

Table 4.4
Simple Combinational Gate Level Mutational Results

Test
Line

Mutation (m0 – NS
[1] in x_in)

Mutation (m1-all
x_in)

Mutation (m2-NS
[1] & NS [0] for

x_in)
Mutation (m3-NS

[1] x_in)

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 1

L_2 0 0 0 1

L_3 0 0 0 1

L_4 0 0 1 1

L_5 0 1 0 1

L_6 0 1 0 1

L_7 0 1 1 1

L_8 0 1 1 1

4.2 Behavioral Level

Here, the designs are made in the behavioral level code using model-sim in

system Verilog.

4.2.1 Behavioral Level FSM

4.2.1.1 Simple State Transition Behavioral Level FSM

Here, how the mutations are done for this design will be explained below with the

results in Table 4.5.

x_in is the input to the design. S0 is state zero, S1 is state one and S3 is state

three.

1)Mutation m0:

 In this mutation, we added a D-FF to the x_in of S0 for Simple State

Transition Behavioral Level FSM design.

2) Mutation m1:

41

 In this mutation, we added a D-FF to the x_in of S1 for Simple State

Transition Behavioral Level FSM design.

3) Mutation m2:

 In this mutation, we added a D-FF to the ~x_in of S3 for Simple State

Transition Behavioral Level FSM design.

4) Mutation m3:

 In this mutation, we removed a D-FF from the (Current State) CS [0] for

Simple State Transition Behavioral Level FSM design.

The test text file has nine lines of possible cases as shown in Table 4.5. From the

Table 4.5, it can be clearly seen that mutation m2 has never been detected.

Table 4.5.

Simple State Transition Behavioral Level FSM Mutation Results

Tes
t

Mutation (m0 - so-
x_in)

Mutation (m1-s1 -
x_in)

Mutation (m2-s3-
~x_in)

Mutation (m3-CS
[0])

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 0

L_2 1 0 0 1

L_3 0 0 0 0

L_4 0 0 0 0

L_5 1 1 0 0

L_6 0 1 0 0

L_7 1 1 0 0

L_8 0 1 0 0

L_9 1 1 0 1

 1 1 0 1

4.2.1.2 Elevator Behavioral Level FSM

Here, how the mutations are done for this design will be explained below with the

results in Table 4.6.

S0, S1, and S2 are states in the design.

1)Mutation m0:

42

 In this mutation, we added a D-FF to the up of S0 for Elevator Behavioral

Level FSM design.

2) Mutation m1:

 In this mutation, we added a D-FF to the down of S1 for Elevator

Behavioral Level FSM design.

3) Mutation m2:

 In this mutation, we added a D-FF to the down of S2 for Elevator

Behavioral Level FSM design.

4) Mutation m3:

 In this mutation, we removed a D-FF from the (Current State) CS [0] for

Elevator Behavioral Level FSM design.

As shown in the Table 4.6, the test text file has been made with 10 possible cases

with the test as shown. From the Table 4.6, it has been clearly seen that mutation m1 has

never been detected.

43

Table 4.6
Elevator Behavioral Level FSM Mutation Results

Test
Line

Mutation (m0 - up
s0)

Mutation (m1 -down
s1)

Mutation (m2- down
s2)

Mutation (m3-CS
[0])

Detected at end Detected at end Detected at end Detected at end

L_1 1 0 0 1

L_2 1 0 0 1

L_3 1 0 0 1

L_4 1 0 0 1

L_5 0 0 1 1

L_6 0 0 0 0

L_7 0 0 0 0

L_8 1 0 0 1

L_9 1 0 0 1

L_10 1 0 0 1

 0 0 0 0

4.2.2 Behavioral Level Combinational

4.2.2.1 Simple Combinational Behavioral Level

Here, how the mutations are done for this design will be explained below with the

results in Table 4.7.

x_in is the input to the design. S0 and S2 are states.

1)Mutation m0:

 In this mutation, we added a D-FF to the x_in of S0 for Simple

Combinational Behavioral Level design.

2) Mutation m1:

 In this mutation, we added a D-FF to the x_in of S2 for Simple

Combinational Behavioral Level design.

3) Mutation m2:

 In this mutation, we added a D-FF to the x_in only and not ~x_in for

Simple Combinational Behavioral Level design.

44

4) Mutation m3:

 In this mutation, we added a D-FF to the x_in main input that goes for

both x_in and ~x_in for Simple Combinational Behavioral Level design.

The test text file was made with nine possible cases and all the possibilities in the

file are represented the test vector column of the Table 4.7.

Table 4.7

Simple Combinational Behavioral Level Mutation Results

Test
Line

Mutation (m0 - so
in x_in)

Mutation (m1-s2 in
x_in)

Mutation (m2-
x_in)

Mutation (m3-both
x_in and ~x_in)

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 0

L_2 1 0 1 1

L_3 1 0 1 1

L_4 0 0 1 1

L_5 0 0 1 1

L_6 0 0 1 1

L_7 0 1 1 1

L_8 0 0 1 1

L_9 0 0 1 1

 0 0 0 0

4.2.2.2 Combinational Behavioral Level_1

Here, how the mutations are done for this design will be explained below with the

results in Table 4.8.

up and down are inputs to the design. S0, S1, and S2 are states.

1)Mutation m0:

 In this mutation, we added a D-FF to the up of S0 of Combinational

Behavioral Level_1 design.

2) Mutation m1:

 In this mutation, we added a D-FF to the up of S1 of Combinational

Behavioral Level_1 design.

45

3) Mutation m2:

 In this mutation, we added a D-FF to the up of S0 and S1 of

Combinational Behavioral Level_1 design.

4) Mutation m3:

 In this mutation, we added a D-FF to the down in S1 and S2 of

Combinational Behavioral Level_1 design.

The test text file has been made with five possible cases.

From the Table 4.8, it has been clearly seen that mutation m3 has been never

detected.
Table 4.8
Combinational Behavioral Level_1 Mutation Results

Test
Line

Mutation (m0 -
up S0)

Mutation (m1-
up S1)

Mutation (m2 - S0 &
S1 up)

Mutation (m3-S1&S2
down)

Detected at end Detected at end Detected at end Detected at end

L_1 0 0 0 0

L_2 1 0 1 0

L_3 0 0 0 0

L_4 0 1 1 0

L_5 0 0 0 0

4.2.2.3 Combinational Behavioral Level_2

Here, how the mutations are done for this design will be explained below with the

results in Table 4.9.

Q is the input quarter. A1, A2, A3, A4, A5, and A6 are the items that can be

selected.

1)Mutation m0:

 In this mutation, we added a D-FF to the Q of Combinational Behavioral

Level_2 design.

2) Mutation m1:

46

 In this mutation, we added a D-FF to the A1 of Combinational Behavioral

Level_2 design.

3) Mutation m2:

 In this mutation, we added a D-FF to the A2 of Combinational Behavioral

Level_2 design.

5)Mutation m3:

 In this mutation, we added a D-FF to the A3 of Combinational Behavioral

Level_2 design.

6) Mutation m4:

 In this mutation, we added a D-FF to the A4 of Combinational Behavioral

Level_2 design.

3) Mutation m5:

 In this mutation, we added a D-FF to the A5 of Combinational Behavioral

Level_2 design.

4) Mutation m6:

 In this mutation, we added a D-FF to the A6 of Combinational Behavioral

Level_2 design.

The test text file has been passed with possible tests (L_1 to L_37) and checked at

the times as shown in the Table 4.9. The values for the respective mutations are the XOR

values of output bits of original design and mutated design. The values are C0, C1, C2,

D0, D1, and D2 respectively.

47

Table 4.9
Combinational Behavioral Level_2 Mutation Results

XOR Values (C[0], C[1], C[2], D[0], D[1], D[2])
Tes

t
Q_mutati

on
Mutation_

A1
Mutation_

A2
Mutation_

A3
Mutation_

A4
Mutation_

A5
Mutation_

A6

L_1 x,x,x,x,x,x x,x,x,x,x,x x,x,x,x,x,x x,x,x,x,x,x x,x,x,x,x,x x,x,x,x,x,x x,x,x,x,x,x

L_2
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_3
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_4
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_5
1,1,1,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_6
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_7
1,0,1,0,1,

0 1,0,0,1,0,0 0,0,1,1,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_8
1,0,0,0,1,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_9
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

0
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

1
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

2
1,1,1,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

3
0,1,0,1,1,

0 0,0,0,0,0,0 0,0,0,0,0,0 1,0,1,0,1,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

4
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,1,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

5
0,1,0,1,1,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

48

XOR Values (C[0], C[1], C[2], D[0], D[1], D[2])
Tes

t
Q_mutati

on
Mutation_

A1
Mutation_

A2
Mutation_

A3
Mutation_

A4
Mutation_

A5
Mutation_

A6

L_1

6
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

7
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

8
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_1

9
1,1,0,0,0,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,1,0,1,1,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

0
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,1,0,1,1,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

1
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,1,0,1,1,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

2
1,1,0,0,0,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

3
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

4
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_2

5
0,0,0,1,0,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 1,1,0,0,0,1 0,0,0,0,0,0

L_2

6
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,1 0,0,0,0,0,0

L_2
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,1 0,0,0,0,0,0

49

XOR Values (C[0], C[1], C[2], D[0], D[1], D[2])
Tes

t
Q_mutati

on
Mutation_

A1
Mutation_

A2
Mutation_

A3
Mutation_

A4
Mutation_

A5
Mutation_

A6

7

L_2

8
1,1,1,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,1 0,0,0,0,0,0

L_2

9
0,0,1,1,0,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_3

0
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_3

1
1,0,0,0,1,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,1,0,1

L_3

2
1,1,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,1,0,1

L_3

3
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,1,0,1

L_3

4
1,1,1,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,1,0,1

L_3

5
1,0,0,0,0,

0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,1,0,1

L_3

6
1,0,1,0,1,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

L_3

7
1,0,1,0,1,

1 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0

50

CHAPTER 5: CONCLUSION AND FUTURE WORK

Conclusion

This research brings a new dimension of time into mutation testing. Currently,

only the functional operators, such as, arithmetic, logical and relational operators are

being used in mutation testing. A significant number of design bugs are related to signal

timing, before this research there was no way to do mutation testing for these signal

timing bugs. This research expands the mutation testing into the time domain with use of

time-shift operator. The research shows that the time-shift operator can be successfully

used for mutation testing on behavioral-combinational, behavioral-sequential, gate-level-

combinational, and gate-level-sequential designs. This research has used the D-FF as the

time-shift operator. For sequential designs this research shows that signal time can be

speeded up or slowed down by removing and adding D-FF respectively. For pure

combinational designs, D-FF can only be added, as no memory elements are present in

the Golden design, so signal timing can be slowed down but not speedup. This research

tested each design with multiple mutations. Each mutation was individually inserted and

all the tests were applied to get the results.

The results show that mutation testing using the time-shift operator is possible.

Time-shift operator can find cases where certain signal with timing fault cannot be

detected.

51

Future Work

Below are some possible research and implementation ideas for future work.

Further research should be conducted to test which other time-shift operators

would be suitable for mutation testing, other than the D-Flip Flop used in this research.

The time-shift operator was inserted randomly in the design for mutation testing.

It would be desirable to develop an algorithm to identify insertion location for the time-

shift operator more intelligently. This intelligent algorithm would be especially useful in

case of large designs.

Once the random location was identified, the time-shift operator was manually

inserted in the design. This procedure is error-prone and time consuming. A better way

would be to automate the insertion process, once the location has been identified either

manually of using a intelligent algorithm.

The designs chosen for testing time-shift operator was not guided by any

methodology. It would be more appropriate if a set of standardize or well published

designs were used. This would increase the confidence that time-shift operator can be

universally applied to any design.

52

REFERENCES

[1] P. Lisherness, N. Lesperance, and K.-T. Cheng, "Mutation analysis with coverage

discounting," pp. 31-34: EDA Consortium.

[2] T. Xie, W. Mueller, and F. Letombe, "Mutation-analysis drove functional

verification of a soft microprocessor," pp. 283-288: IEEE.

[3] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe, "Functional

qualification of TLM verification," pp. 190-195: European Design and

Automation Association.

[4] K. Huang, P. Zhu, R. J. Yan, and X. L. Yan, "Functional Testbench Qualification

by Mutation Analysis," VLSI DESIGN, vol. 2015, pp. 1-9, 2015.

[5] Y. Serrestou, V. Beroulle, and C. Robach, "Functional Verification of RTL

Designs driven by Mutation Testing metrics," pp. 222-227: IEEE.

[6] H.-Y. Lin et al., "A probabilistic analysis method for functional qualification

under mutation analysis," presented at the Proceedings of the Conference on

Design, Automation, and Test in Europe, Dresden, Germany, 2012.

[7] https://archive.cnx.org/contents/27336337-8b30-455f-8620-

a9547afede27@1/chapter-5-dsd-moore-and-mealy-state-machines

[8] https://archive.cnx.org/contents/27336337-8b30-455f-8620-

a9547afede27@1/chapter-5-dsd-moore-and-mealy-state-machines

[9] http://www.32x8.com/var7.html

[10] http://www.asic-world.com/verilog/pli.html

53

[11] https://stackoverflow.com/questions/8964225/verilog-compilation-error-

unexpected-expecting- identifier-or-type- ident

[12] https://www.doulos.com/knowhow/sysverilog/tutorial/constraints/

[13] https://asic4u.wordpress.com/category/system-verilog/

[14] http://www.asicguru.com/system-verilog/tutorial/sv-arrays/4/

[15] http://verilog.renerta.com/source/vrg00013.htm

[16] http://testbench.in/SV_09_ARRAYS.html

[17] T. B. Nguyen, C. Robach,"Mutation Testing Applied to Hardware: The Mutants

 Generation", LCIS-ESISAR, BP 54, 50 rue B. de Laffemas, 26902, Valence,

 France.

[18] N. Bombieri, F. Fummi, V. Guarnieri, and G. Pravadelli, "Testbench

Qualification of SystemC TLM Protocols through Mutation Analysis," IEEE

Transactions on Computers, vol. 63, no. 5, pp. 1248-1261, 2014.

[19] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, "Application of genetically

engineered finite-state-machine sequences to sequential circuit ATPG," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

17, no. 3, pp. 239-254, 1998.

[20] Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation

Testing," IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649-

678, 2011.

[21] Y. Serrestou, V. Beroulle, and C. Robach, "Impact of hardware emulation on the

verification quality improvement," pp. 218-223: IEEE.

54

[22] Alsubaei, S., S. M. Qaisar, and W. Alhalabi. 2017. "A VHDL based Moore and

Mealy FSM example for education." In 2017 IEEE 2nd International Conference

on Signal and Image Processing (ICSIP), 456-59.

[23] https://courses.cs.washington.edu/courses/csep567/10wi/lectures/Lecture2.pdf

[24] https://inst.eecs.berkeley.edu/~cs150/Documents/FSM.pdf

55

APPENDIX A: VENDING MACHINE TRANSITIONS

Table A.1
Change Assignment

Change Assignment

(C2C1C0)

0 000

0.25 001

0.50 010

0.75 011

1.00 100

1.25 101

1.50 110

Above TableA.1, depicts how the change output is assigned to 3 bits as C2C1C0.

56

Table A.2
Input Encoding

Input Encoding

(X3X2X1X0)

Dime 1

000

A1 1

001

A2 1

010

A3 1

011

A4 1

100

A5 1

101

A6 1

110

Return

Change

1

111

The above TableA.2, depicts how the 8 – different inputs are encoded into 4

inputs X3X2X1X0.

57

Table A.3
Output Encoding

Output Encoding(DC)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C0

C1

C2

C

Dispense A1

Dispense A2 Dispense A3

Dispense A4

Dispense A5

Dispense A6

D0D1D2

D

The above Table A.3, explains how the outputs are obtained.

58

Table A.4
State Transition Table

State Transition Table (Q+
2Q

+
1Q

+
0)

State

(Q2Q1Q0)

Inputs (X3X2X1X0)

1000 1001 1010 1011 1100 1101 1110 1111

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 1 0

0 1 1 1 0

1 0 0 1 0 1 0

1 0 1 1 1 0

1 1 0 1 1 0

The above TableA.4, depicts the transition of states depending on the inputs.
Table A.5
Change Table

Change Table (C2C1C0)

State

(Q2Q1Q0)

Inputs (X3X2X1X0)

1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1

1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0

59

The above Table A.5 depicts the change obtained when an input is chosen in that

state.

Table A.6
Dispense Table

Dispense Table (D2D1D0)

State

(Q2Q1Q0)

Inputs (X3 X2X1X0)

1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0

The above TableA.6, depicts the items dispensed upon selection of inputs in that

state.

