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ABSTRACT

QUANTUM MAGNETIC COLLAPSE IN NEUTRON STAR BINARY

SYSTEMS

Craig Lee Brooks

University of Houston-Clear Lake, 2019

Thesis Chair: Samina Masood, PhD

Quantum magnetic collapse is a phenomenon that corresponds to the collaps-

ing of stars due to the generation of high magnetic field. Such stars are highly

magnetized objects (such as neutron stars) where the particle processes take

place in the presence of very high external magnetic field B. When the mag-

netic energy inside the star exceeds the internal energy of electrons and/or

positrons fluids it will lead to breaking of hydrostatic equilibrium. In the

astrophysical context, this will occur when B corresponding to electron mass

(1013 Gauss). At this energy, there is a collapse of the neutral matter with

a magnetic moment since the pressure transverse to the magnetic field van-

ishes. Typically, we would calculate the magnetization and particle number

N of this system using derivatives of the thermodynamic potential Ω with re-

spect to magnetic field and chemical potential, but this can be difficult since

Ω diverges. Additionally, for neutron stars, we would like to consider how
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these quantities may change as electrons are accreted onto the neutron star.

We develop a method for calculating the particle number N in the static case,

then extend this to the accreting system to calculate the dynamical particle

number density with the orientation of using this result for calculating the

magnetization as it changes in time.
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CHAPTER I:

INTRODUCTION

This thesis will proceed as follows: Chapter II will analyze accretion pro-

cesses and study the two main models, which are thin disc accretion and

Bondi-Hoyle accretion. We will look at the mechanics, energetics, and ther-

modynamic properties of each model.

Chapter III proceeds by discussing the properties of neutron stars and how

they are formed. The ideal gas equation of state will be derived that forms

the basis of the original neutron star models proposed by Baade and Zwicky

[2] and later detailed by Oppenheimer and Volkoff [28]. Next, we discuss

the types of neutron stars such as magnetars and pulsars, then compare the

different binary configurations in which they exist,

Chapter IV discusses the phenomena of quantum magnetic collapse in

detail, explaining the conditions leading up to collapse with a focus on the

particle number density, ground state energy, and anisotropic pressures from

the induced magnetization of the constituent particles. A quantum statistical

mechanics approach is used to develop a calculation scheme is developed to

determine the particle number density with the orientation to calculate the

magnetization as a function of the number density.

In the final Chapter V, a scheme for variable number density will be de-

veloped with the results from Chapter 4 as a basis. This scheme will examine

how the particle number density changes in time during the accretion pro-

cess in binary systems. We then determine the limitations on the accretion

1



process in the limit that radiation pressure is greater than the gravitational

force, and when the gravitational force is greater than the radiation pressure

and set a temperature scale for when the accretion process is steady (hydro-

dynamics equilibrium). In the discussion we will present a summary of these

results.
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CHAPTER II:

ACCRETION

In astrophysics, a binary system are two bodies that orbit each other around

their mutual center of gravity. Most often, we are considering two stars or

a black hole and a star. We call the accreting object the primary and the

donating star the secondary.

If the primary is sufficiently massive, and the secondary is sufficiently

close, the primary may begin to accrete matter from the secondary onto

itself. Since this process is essentially a transfer of matter and energy, it

is more appropriate to study the details of this process, and then discuss

observations of X-ray binaries and how strongly they align with theoretical

models.

Thin disc Accretion: Mechanics

In strong magnetic fields, the accretion tends to be channeled to the poles

and is nonsteady. This occurs when the magnetic field is of the order of

B < 108G. [43] At these field strengths, some portion of the matter will follow

the magnetic field lines from the equatorial latitude to the poles.[21][29]

We will begin by making a few assumptions to simplify our analysis.

First, assume that the fluid is electrically neutral. This would also entail

that n+ = n− where n+ is the number density of positive charges and n− the

number density of negative charges.

We will consider a simplified binary accretion where the particles initially

3



assume a Keplerian orbit around the neutron star. At this point it will serve

us well to understand the limits of a stable fluid flow from the secondary.

For a Keplerian orbit of particles of massm and radius r from the neutron

star, the total energy can be written as

E = 1
2mv

2 + D

r
(2.1)

Where D
r

= GMm
r

+ kQqlR
2

r3 . Here, the second term in D
r

gives us the

electromagnetic contribution to the effective potential, where k = 1
4πε0, q is

the charge of particle species l, and Q is the bulk charge in the region of the

neutron star.

We will proceed by using the treatment used by Melia [21]. For a thin disc

accreting onto a star, the geometry is axially symmetric, so it is suitable to

carry out the analysis in cylindrical coordinates. Let us consider gas elements

in the disc α′ and β at different locations which move radially outward and

inward, respectively. Element α has an azimuthal velocity vφα denoted as

vφα = RΩ(R) (2.2)

where R is the radial position of the mass element at α and Ω(R) is the

angular velocity at point R.

The specific angular momentum contribution δl′α→α from point α to α′ is

δlα→α′ = (R + λ)RΩ(R) (2.3)

where λ is the scale length, which is the distance over which particular

quantity decreases by a factor of e. In this case, the specific quantity decreas-
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ing ove this scale length is the angular momentum. β, on the other hand,

takes azimuthal velocity

vφβ′→β = (R + λ)Ω(R + λ) (2.4)

and contrinbutes to the specific angular momentum

δlφβ′→β = R(R + λ)Ω(R + λ) (2.5)

Since these two elements have different angular momenta, a torque τout

is exerted by the inner element on the outer element

τout ≈ Ṁα→α′(R + λ)RΩ(R)− Ṁβ′→βR(R + λ)Ω(R + λ) (2.6)

Figure 2.1: Neighboring disc rings exchange matter, the outer ring from B’
and the inner from A. As the azimuthal velocities are not the same, they
carry angular momentum away from their respective locations, resulting in
a net torque on the outer ring.

where Ṁα→α′ is the mass-loss rate from radial location α to α′ in the

accretion disc. For a steady state disc of thickness H

Ṁα→α′ = Ṁβ′→β = (2πRH)ρ(R)vR (2.7)

5



where vR is the velocity, ρ is the density of the disc at radius R.

Let us define the surface density Σ ≡ ρH and the shear viscosity ν ≡

λvR. By these definitions, the torque is then defined as

τout = −2πνΣR3Ω (2.8)

Since Ω(R) decreases as the radius R from the central accretor increases,

then τ > 0, so the outer elements will spiral in slower than the inner elements.

Close to the orbital plane

vφ(R) = RΩk(R) (2.9)

where

Ω(R)k ≡
(
GM

R3

)1/2
(2.10)

is defined as the Keplerian angular velocity. If R is a radial location on

the disc and ∆R is the differential change in the radius, then between R and

∆R, the mass M and angular momentum L are

M = 2πR∆RΣ (2.11)

L = (2πR∆RΣ)R2Ω (2.12)

We can calculate the mass loss rate Ṁi by letting R′ = R+ ∆R equal the

new radial position by

dMi

dt
= d

dt
(2πR∆RΣ) = vR2πRΣR − vR′2πR′ΣR′ (2.13)

6



Figure 2.2: While motion of matter in the Z - axis is suppresssed by colli-
sions, particles will move azimuthally so that angular momentum is conserved
Source:[21]

dMi

dt
≈ −2π∆R d

dR
(RΣvR) (2.14)

where vR is the radial velocity inward at R(orR′) and ΣR (or Σ′R) is the

surface density at R(orR′)

→ R
dΣ
dt

+ d

dR
(RΣvR) = 0 (conservation of mass for disc) (2.15)

Where vR is the velocity at R. Because we assumed Keplerian orbits of

the accreting material from the outset,Ω→ Ωk, thus

1
2RΣvR

(
GM

R

)1/2
= d

dR

[−3
2 (GMR)1/2νΣ

]
(2.16)

Therefore, the radial velocity vR is

vR = − 3
ΣR1/2

d

dR
(νΣR1/2) (2.17)

If ν is constant (steady state) thenRΣvR is also constant and the accretion

rate is

dM

dt
= 2πRΣ(−vR) (2.18)

7



Power and Energy of Accretion

Since some portion of the gravitational potential energy is converted into

kinetic and thermal energy, necessarily this fraction of gravitational energy

is radiated away, and the rest is advected inward [21]. Keeping with thin-disc

accretion theory, the assumption is that all the energy is radiated from the

same location. The corresponding change in the torque on a ring of material

can be calculated by,

τout(R)− τout(R + ∆R) = −dτout(R)
dR

dR (2.19)

We now want to caculate the power exerted on the ring through viscosity

P = −Ωdτout(R)
dR

dR = − d

dR
[τoutΩ− τoutΩ′] (2.20)

P =
∫ Rout

Rin

d

dR
(τoutΩ) dR = τoutΩ|out − τoutΩ|in (2.21)

this means the contributions to the total power are determined by the

inner and outer edges of the disc. [21]. In the power equation (2.20), the

second term gives the local heat dissipation. Given that the total surface area

per ring is 2(2πR)dR, where dR is the width of the ring, then the dissipation

rate per unit surface area D(R) is

D(R) = τoutΩ′
4πR = −1

2νΣ(RΩ′)2 (2.22)

Unfortunately, it is not always feasible to determine the viscosity ν from

first principles. Instead we have observables which will allow us to obtain

the dispersion.

8



From Melia [21], we can let the angular momentum equation to be

R
d

dt
(ΣR2Ω′) + d

dR
(RΣvRR2Ω) = − 1

2π
d

dR
τout (2.23)

If we use Equations 2.23 and 2.15, maintaining the steady state, which

means angular momentum is conserved, by setting the change in angular

momentum to zero, we obtain

RΣvRR2Ω = −1
2τout + C (2.24)

Substituting 2.8 for τout, we obtain

νΣΩ′ = Σ(vR)Ω + C

R3
(2.25)

where C is a constant. The rotational velocity of the disc near a neutron

star must match the rotation of the neutron star in order for accretion to

occur. Letting Ω′ → 0 and Ω = Ωk(R∗) where R∗ is the radius of the neutron

star, this leads to

Ṁ

2π (GMR∗)1/2 = C (2.26)

Therefore,

D(R) = 3GMṀ

8πR3

[
1−

(
R

R∗

)1/2]
(2.27)

Thus, we have an expression for the dissipation rate of the heat per unit

volume in terms of observables. In the next section, we will examine an

accretion process where, instead of the disc structure we are accustomed to,

the matter accretes radially onto the primary.

9



Bondi-Hoyle Accretion

We are able to detect compact objects usually because they accrete mate-

rial from the surrounding environment. Most notably, active galactic nuclei

(AGN’s), the supermassive black holes that are in the center of galaxies, are

the most obvious case for this kind of observation.

However, in tight binary systems, the companion member may exceed

its tidal radius, the distance which a celestial object from another celestial

object when, if exceeded, will cause the object to lose hydrostatic equilibrium

and be ripped apart. This tends to happen the companion object expands

during its evolution. This is the scenario of accretion for high mass X-ray

binaries (HMXBs), which will be discussed in the next chapter,

In the following sections we will examine how we determine the tidal

radius, the mechanics of Bondi-Hoyle accretion and its relationship to ther-

modynamic properties, and more realistic accretion models.

Determining the Tidal Radius: The Roche Limit

The tidal radius can be determined by considering the effective mass u at the

point of interaction that exists on the surface of a satellite on the side closest

to the primary, and assume the satellite is in freefall (i.e. no other forces

other than the tidal forces are relevant). We can then find the differential

force from the primary to the edge of the satellite and the center of mass

The gravitational force Fgu on mass u from the satellite of mass m and

radius r is

Fgu = Gmu

r2
(2.28)

10



The tidal force is found exactly by taking the difference between the

primary’s attraction on the center of mass of the secondary and that of the

mass element u on the surface.

Figure 2.3: Depiction of the Roche limit with 2 massive bodies with centers
of masses at distance d and radii R and r. On top, the body is outside the
Roche limit, on bottom, the smaller body has exceed the tidal radius

FT = GMu

(d− a)2 −
GMu

d2 (2.29)

Factoring out GMu and finding a common denominator d2(d− a)2

FT = (GMu)d
2 − (d− a)2

d2(d− a)2 (2.30)

FT = (GMu)d
2 − (d2 − 2ad+ a2)
d2(d2 − 2ad+ a2)

(2.31)

FT = (GMu)d
2 − d2 + 2ad− a2

d4 − 2ad3 + (ad)2 (2.32)

where r is the radius of the satellite and d is the separation distances

11



between the centers of mass of the primary and satellite. Let a << R and

R < d with R being the radius of the primary. Under these conditions, all the

terms in with a2 in the numerator and denominator and a in the denominator

are ignorable. The tidal force FT on mass u toward the primary of mass M

can then be expressed as

FT = GMu
2dr
d4 = 2GMur

d3
(2.33)

When the tidal force on mass element u is balanced by the gravitational

force from the satellite, the Roche limit, or tidal radius, is reached.

Fgu = FT (2.34)

Therefore

2GMua

d3 = Gmu

a2 → 2a3M

m
= d3 → d = a

(2M
m

) 1
3 (2.35)

If M ∼ 106, we can drop the factor of 2, for an order of magnitude

calculation.

Bondi Accretion

Accretion can occur in several astrophysical forms, such as accretion onto

a black hole, infalling of matter into a galactic cluster, or perhaps infalling

of matter into a star. To simplify our understanding of this process, we

assume a spherically symmetric system, like a star. We can also assume that

the flow is smooth and the viscosity is insignificant. Stellar winds and/or

shocks may be associated with accretion events. Because the solutions to

12



the fluid equations must satisfy very different conditions at the same point,

these solutions are discontinuous.

Although it is not common that matter would fall radially towards the

source of gravity, spherical accretion can be useful when analyzing matter

accreting in deep potential wells [21]. This can happen when the donor

object is relatively far away from the accreting object (as in the case of high

mass X-ray binaries)

Figure 2.4: Top view of the orbital plane displaying Roche equipotential
lines. A test particle places on any particular line will continue on the same
trajectory. Source: [5]

At this point, we would like to examine how material falls onto some

central mass from the radial direction in some environments. This theory

of accretion is called Bondi − Hoyle accretion. We would like to use this

theory primarily because it allows us to examine accreting systems in terms of

thermodynamic quantities, which will be much simpler than the treatment in

the previous section. In the following sections, we will develop an expression

13



for the accretion rate by using the enthalpy into the momentum equation for

fluids.

Fluid Mechanics of Bondi-Hoyle Accretion

As a simplifying assumption, let us take the pressure p of the fluid to be a

function of its density only, and is a barotropicfunction. The enthalpy h is

defined as

h =
∫ dp

ρ
(2.36)

Where ρ is the density of the fluid [42]. Taking the gradient, we obtain

∇h = ∇p
ρ

(2.37)

We can then write the momentum equation for a nonviscous fluid using

the convective derivative as

ρ
Dv
Dt

= −∇p− ρ∇ψ (2.38)

Where v is some macroscopic property of the fluid (in this case velocity)

and ψ is the potential function. The convective derivative, D
Dt
, describes

how the velocity of a matter element changes as a function of position and

time. From this, we can obtain the continuity equation as well.

Using the vector calculus identity,

1
2 (v · v) = (v · ∇)v + v× (∇× v) (2.39)

and knowing that (v ·∇)v = 0 since the change in the velocity is perpen-

dicular to the flow of the fluid. By rearranging, we can show that

14



∇1
2v

2 − v× (∇× v) = −1
ρ
∇p−∇ψ (2.40)

And inserting the gradient of the enthalpy, we obtain

v× (∇× v) = ∇(1
2v

2 + h+ ψ) (2.41)

→ v · ∇(1
2v

2 + h+ ψ) = 0 (2.42)

As is shown, the quantity v2/2 + h + ψ is constant along all streamlines

of the fluid. This result is called Bernoulli′s theorem, which states that

the pressure or the potential energy in a flowing fluid must decrease if the

velocity of the fluid increases. Stated another way, it says that the energy of

the accretion flow must be conserved.

We can now use this result to proceed in our discussion of Bondi accretion,

and therefore determine the radius at which matter begins to accrete from a

binary companion. Let us consider a system such as a neutron star that is

accreting from a stellar companion that is accreting smoothly with a pressure

p = P (ρ) and ignore effects from the self gravity of the accreting gas and

assume a viscosity that is negligible. Integrating the continuity equation, we

obtain

4πr2ρv = −Ṁ = constant (2.43)

The above is known as the Bondi accretion rate. If the flow is isothermal,

p = ρv2
sound , where v2

sound is the speed of sound in the medium.

Going back to the Bernoulli equation, we can set v = 0 and then

15



h−GM/r = p

ρ
→ v2

sound = GM

rB
(2.44)

rB = GM

v2
sound

(2.45)

This yields theBondi radius, which is the distance at which matter begins

to accrete from the secondary to the primary. From this derivation, it can

be shown that from a few thermodynamic quantities such as the enthalpy,

pressure, and potential energy, we can determine required thermodynamic

parameters to have a better understanding of hydrodynamic equilibrium.

Additional Thermodynamic Quantities

Clearly, an accreting fluid will have a force, energy, and other thermody-

namic quantities associated with it. Obtaining these quantities is relatively

straightforward. Starting from the first law of thermodynamics

du = Tds+ Pdv (2.46)

Keeping the same assumption that the density of the fluid is constant,

which means that P
ρ2
dρ
dt

= 0. Thus, we obtain the entropy from simply rear-

ranging the above equation and integrating.

du

dt
= T

ds

dt
+ P

ρ2
dρ

dt
(2.47)

→ du
dt

dt
= Tds (2.48)

→
∫ du

T
=
∫
ds (2.49)
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In summary, the enthalpy and pressure are two thermodynamic quantities

that govern the fluid flow in accreting systems. From this fluid flow, we can

easily understand when matter will begin to accrete by calculating the Bondi

radius. Thermodynamic potentials are directly calculable from the first law,

and we can therefore understand other properties of the accretion process

as it evolves in time. In addition, we can show that the energy and mass is

conserved in the accretion flow given certain assumptions in the analysis.

Realistic Accretion Model

At this point, we will discuss the properties of X-Ray binary accretion using

the model proposed by Pringle and Rees[32] . The model for the accretion

disc typically depends on the assumptions about the macroscopic properties

such as viscosity or turbulence. In their model, Pringle and Rees assume that

the accreting matter assumes a Keplerian orbit around the neutron star.

They also considered the contributions of the disc gravity and relativistic

effects were negligible. The radial velocity vR can be then determined by

vR = y
vorb
100

(2.50)

where y is the dimensionless viscosity parameter ∼ 1 , and vorb is the

orbital velocity. If M is the mass of the central neutron star and R4 is the

orbital radius given in units of 104cm

vorb ≈ 1.15× 1010(M/MSun)1/2R4
−1/2m s−1 (2.51)

We can therefore find the flux F of the accreting matter by
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F = 2πR× 2bρvR (2.52)

Substituting in vorb and b, ρ is determined to be

ρ = 1.4× 10−4y−1x−1
(
M

Msun

)
(2.53)

where x and y are dimensionless parameters dependent on the radius R

and viscosity, respectively. And the power per unit area p(R) is

p(R) = 2FGM
4πR3

(2.54)

For a neutron star of radius R, when the accretion disc reaches the surface

of the neutron star, the luminosity L of the disc

L ≈ 7 × 1035 F16 (M/MSun)
(
R

106

)−1
ergs s−1 (2.55)

where F16 is the flux given in units of 1016g s−1 ≈ 1.5× 10−10MSun yr
−1

The lower temperature limit, assuming the disc radiates like a blackbody, is

the blackbody temperature Tbb which is

Tbb = p(R)
2σ

(2.56)

where σ is the Stefan-Boltzmann constant. Since this is a lower limit, this

means that the temperature of the disc can be hotter if the cooling processes

are not efficient enough to radiate energy at the blackbody temperature.[32]

Four Cases of Neutron Star Accretion

Neutron stars can participate in the accretion process in four different ways:
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I. For neutron stars, If the mass is too large or too small, accreting matter

is expelled because the radiation pressure prevents steady accretion in the

first case, or the gravitational energy cannot be radiated effectively in the

latter

II. The accretion disc will extend to the surface if the magnetic field of

the neutron star is small enough, so it can be expected that the amount of

x-rays should be similar from the neutron star and the disc.

III. For a slowly spinning magnetized neutron star, the accreting matter

will follow the field lines and accrete near the poles. Therefore, X-rays should

be emitted most strongly from the poles.

IV. For a rapidly rotating neutron star, or a star with a very strong

magnetic field, then accretion will fail to take place, and rotational energy

will be the main source of energy to the system.

For cases such as II, the dominant source of emission is bremsstrahlung

radiation (or free-free, meaning that the radiation is generated by free parti-

cles that scatter each other) with the bremsstrahlung temperature Tff (R)

at radius R

Tff (R) = 1.1 ∗ 1010F16
−2 M

MSun

x2y4R6
−2K (2.57)

Assuming the effects of electron scattering were negligible, then

T ≈ max [Tbb, Tff ] (2.58)

As we move further away from the central mass, Tff decreases more

sharply than Tbb,
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When electron scattering is significant, then the luminosity cannot exceed

the Eddington limit, which is the maximum luminosity a star can attain

when the gravitational force and force from radiation pressure is balanced.

This condition is also called hydrostatic equilibrium When the mass flux

is very large, the disc will become almost spherical and the mass will fall

radially inward without radiating much energy.

The inner section of the disc has to meet criteria 1 and 3 to maintain

accretion

R6 = 0.6F16x
−1 (2.59)

T ≤ Tmax = 2.4× 109 M

MSun

R6
−1x2K (2.60)

R6 ≥ 5F16x
−2( M

MSun

)3y4 (2.61)

Or, when the gravitational influence of the accreting star becomes signif-

icant.

If the neutron star does not have a magnetic field, then the innermost

radius will extend to the surface of the neutron star.

For our purpose, it is desirable to look at neutron binary accretion during

quiescence, that is, the duration through which neutron star activity is at

its lowest level- because it simplifies the analysis by ignoring thermonuclear

bursts.

Neutron Star Accretion at Low Eddington Rates

Degenaar,et al. [10] describe observations of neutron stars accreting at low

Eddington rate using data from NuSTAR, Swift and Chandra [?] [40] [9]
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observations of the low-mass X- ray binary IGRJ17062− 6143 to study low

mass X-ray binaries with long accretion period[10].

Low mass X-Ray binaries (LMXBs) are compact systems (such as a neu-

tron star or black hole) that accrete matter from a lower mass star. As the

accretion process persists, X-rays are emitted over a wide range of luminosi-

ties.

The X-ray luminosity Lx occurs at various rates. However , they can be

most readily observed when Lx/LEdd > 0.1, where LEdd is the Eddington

luminosity. Additionally, the accretion that leads to the emission of X-rays

may occur during relatively quiet periods which we call quiescent periods.

While LMXB’s spend only a short time in the quiescent phase, there are

nearby neutron stars which remain in this phase over an extended period,

sometimes for as long as several years. These kinds of X-ray binaries, called

very faint X-ray binaries (VFXBs), are good candidates in order to study

how low level accretion takes place.

It has been observed that for neutron stars, when Lx > 0.01 LEdd, matter

in the inner accretion disc may evaporate into a hot accretion flow, which

will inhibit the accretion efficiency. As a result, the X-rays emitted are less

energetic when Lx is in the range of 0.0001 LEdd. However, this energy

is small when compared to the thermal energy from resulting from matter

heated by the neutron star’s surface as it is being accreted. The authors

of this paper therefore construct models using several codes to determine

whether this is the case or not, and ascertain the consequences.

Currently, the disc instability model of accretion would suggest that these

low accretion flows should not be stable for the relatively long periods we
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observe them. One explanation for this is that low rate of accretion stability

may be maintained if the neutron star has a sufficiently strong magnetic field

that slows accretion.

When the authors looked at spectral data from NuSTAR/Swift [?] [40]

from IGRJ17062 − 6143 in the .5 − 79 keV range, they observed that a

broadened iron-potassium line ∼ 7 keV , which is common in LMXB that

are more luminous. This seems to suggest that the innermost section of the

accretion disc truncated at some distance away from the innermost stable

circular orbit (ISCO).

From the Chandra data [9] [29], emission lines of 12 Angstroms are ob-

served at ∼ 1 keV that may be modelled as reflection spectra or possi-

bly plasma that is ionized due to collisions. In addition, at ∼ .77 keV , a

broad 16 Angstrom absorption line is observed that can be modelled as an

photo-ionized plasma outflow. These results together seems to support two

ideas. Either the inner accretion disc is truncated by inefficient flows near

the surface of the neutron star, or the magnetosphere is acting as a propeller

directing the accreting matter toward the poles. Furthermore, if the flow

inhibited in this manner, this constrains the spin period and the strength of

the magnetic field.
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CHAPTER III:

NEUTRON STARS

Neutron stars are highly degenerate compact objects that are believed to

form when a massive star ∼ 8− 30 MSun goes supernova, which occurs when

a star gravitationally collapses after it has expended its nuclear fuel. The

have a mass between 1-4 solar masses and a radius no greater than 15 km.

Astronomers Walter Baade and Fritz Zwicky were the first to hypothesize the

existence of neutron stars [2]. They also proposed that such objects might

form from supernovae (which is now the current consensus).

Five years later, J Robert Oppenheimer and George Volkoff were able

to determine a possible interior structure of a neutron star by solving the

relativistic equations of a neutron gas [28]. This was accomplished by as-

suming the degenerate neutrons behaved as an ideal gas at high density. At

the time, most work on neutron stars was oriented toward the notion that

neutron cores may be a source of energy for stars [35]. Unfortunately, the

astronomical community moved away from this research until the late 1960s.

However, this changed with the discovery of cosmic radio sources by Gi-

acconi et al. in 1962 [12]. Schmidt, however, would discover, in 1963, the

presence of the first quasi stellar object (QSO)[36]. As a result of these dis-

coveries, theoreticians began to focus on the properties of neutron stars in

equilibrium and on stellar collapse [35], but the astrophysics community at

large still did not seriously entertain the idea that these objects actually ex-

isted. With the discovery of pulsars in 1967, and Tommy Gold’s proposal
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that these pulsars were rotating neutron stars, the general acceptance of the

existence of neutron stars was established [13].

In the following sections, we will discuss the structure of neutron stars,

the equation of state (and perhaps ways to obtain a more realistic equation

of state experimentally), the types of neutron stars, and possible objects that

may form when neutron degeneracy pressure is exceeded (but not yet lead

to total gravitational collapse).

Figure 3.1: An artist depiction of pulsar type neutron star.
Source:https://www.skyandtelescope.com/astronomy-news/
magnificent-neutron-star-found

Structure of Neutron Stars

The structure of matter at the densities found in neutron stars is of paramount

interest to physicists, and, currently, is an unresolved problem in modern

physics [43]. Matter at the core of neutron stars is compressed much more

tightly than the density of atomic nuclei. Therefore, we expect exotic forms

of matter not seen in ’normal’ circumstances.

If there are an equal number of protons and neutrons, there are various

observational constraints at the saturation density. Since we cannot directly

observe neutron star cores, we instead try to look at macroscopic properties

24

https://www.skyandtelescope.com/astronomy-news/magnificent-neutron-star-found
https://www.skyandtelescope.com/astronomy-news/magnificent-neutron-star-found


such as the mass, radius, charge, or temperature to infer other properties

which are not as easily determined.

These properties will allow us to ascertain or at least constrain the equa-

tion of state (EOS). In the astrophysical context, the equation of state will

allow us to understand events like binary mergers and gravitational wave

signals.

Figure 3.2: Internal structure of neutron star. Source: https://heasarc.
gsfc.nasa.gov/docs/objects/binaries/neutron_ltar_structure.html

Nucleonic (protons and neutrons) interaction govern the properties of

neutron stars. Oppenheimer and Volkoff [28] demonstrated that if the neu-

tron star is composed of non-interacting neutrons, the maximum mass of the

star is 0.7Msun. This entails that the nucleons inside neutron stars must exert

a repulsive force. However, at low energies, the interaction between these nu-

cleons is attractive. Two and three nucleon interactions become significant

at higher densities. As a result, neutron stars are sensitive to many-body

interactions [1]

At the densities inside neutron star cores, it is possible that non-nucleonic

matter made from strange quarks may form. This may occur in the form
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of hyperons (baryons composed of quarks other than u or d quarks), non-

confined quarks, Bose-Einstein condensates or, and possibly the most exotic

circumstance, the formation of a strange quark star. [34]

Neutron Star Regions

The physical structure of a neutron star consists primarily of four regions:

the surface, crust, outer core, and inner core. At this point, we will discuss

each region briefly

At the surface of a neutron star, there exists an atmosphere and an en-

velope. As the density in this region is only ∼ 106g/cm3, the contribution

to the overall mass of the star is minimal [34]. The crust has a thickness

of approximately 1-2 km and is comprised of nuclei. In this region, 56Fe

dominates at ρ < 106g/cm3

At neutron drip, the limit which nuclear decay by emission of neutrons no

longer occurs, ρ = 4×1011g/cm3 and the chemical potential is zero. Neutron

will begin to leak out of nuclei, creating a sea of disassociated neutrons. For

high density matter at the core of neutrons stars, the quarks that compose

the baryons may be compressed so tightly that the interactions between the

quarks are weakened and therefore act as if they are free, which is called

asymptotic freedom. Thuss the nuclear interaction is only defined for a very

short range, that is sufficiently smaller than the size of the atomic nuclei.

26



Neutron Star Ideal Equation of State (Above Cold Neutron Drip)

In 1939, Volkoff and Oppenheimer performed the first neutron star model

calculation by assuming that neutron stars behave as an ideal gas at high

density. Unfortunately, we know that this is not the case, as fusion reactions

are abundant in neutron stars. Setting this technical detail aside for the

moment, we revisit the structure of neutron stars using the ideal equation

of state for a self gravitating Fermi gas of neutrons, originally presented by

Shapiro and Teukolsky [35]. In this model, the energy of the system E is

expressed in terms of the Fermi momentum pf defined by

E2 = mn
2c4 + pf

2c2 (3.1)

Where mn is the neutron rest mass. The number density n can be calcu-

lated by

n =
∫ dN
d3xd3p

d3p (3.2)

where N and x and p are the standard 3 dimensional variables in phase

space. Note here that

dN
d3xd3p

= g

h3f (3.3)

Where g is the degeneracy, h is Planck’s constant, and f is an arbitrary

distribution function. If the system is isotropic then the pressure P is given

as

P = 1
3

∫
pv

dN
d3xd3p

d3p, (3.4)
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where v = pc2/E. The distribution functions of particles at energy of the

system E depends on their spin statistics and are expressed as

f(E) = 1
exp(E−µln

kT
)± 1 (3.5)

Here, +1 indicates that the gas obeys Fermi-Dirac statistics, and -1 obeys

Bose-Einstein statistics. For degenerate fermions (T → 0 or µl/kBT →∞),

f(E) =


1/2, if E ≥ Ef

0, if E < Ef

(3.6)

Therefore,

nn = 2
h3

∫ pf

0
4πp2dp = 8π

3h2pf
3 (3.7)

Here, a variable substitution can be made such that

x = pf
mnc

(3.8)

Then,

nn = 1
3π2λc

3x
3 (3.9)

Where nn is the neutron number density λc is the Compton wavelength

of the neutron. Therefore the neutron pressure Pn

Pn = 2
2h3

∫ pf

0

p2c2

(p2c2 +m2c4) 1
2

4πp2dp = 8πmn
4c5

3h3

∫ pf

0

x4dx

(1 + x2) 1
2

(3.10)

A relatively realistic model of neutron star can be constructed based on

the proper calculation of pressure. And an equation of state can be written

from the rate of change of this pressure.
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Realistic Theoretical Model of Equation of State

The classical stellar structure equations describe the internal structure of a

self-gravitating, spherically symmetric star. While there are four equations

governing stellar structure, we will only be concerned with 3 of them. These

are

dP

dr
= −GMrρ

r2 (hydrostatic equilibrium) (3.11)

dMr

dr
= −4πr2ρ (mass continuity) (3.12)

dL

dr
= −4πr2ρ(ε) (energy equation) (3.13)

Because of general relativistic effects arising from the compactness of the

neutron star, the second equation must be modified using the Einstein field

equations. Thus, the hydrostatic equilibrium equation becomes

dPr
dr

= −ρm
r2

(
1 + P

ρ

)(
1 + 4πPr3

Mr

)(
1− 2Mr

r

)−1
(mass continuity)

(3.14)

This equation, called the Tolman − Oppenhiemer − V olkoff equation,

governs the changes in the internal pressure P of neutron stars as a function

of the radius r of the star and help to determine the size of the star.

A spherically symmetric, isotropic body will maintain hydrostatic equi-

librium if it is solvable under an equation of state of the form

P = P (ρ) (3.15)

where P is pressure and ρ is the density of the neutron star [35].
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(a) Mass vs Radius (b) Mass vs Density

Figure 3.3: (a) mass vs. radius and (b) mass vs. density for various NS
equations of state. Source: [35]

However, we do not have a singular model, as the equation of state of

nuclear matter can be difficult to determine. Instead, one can construct

a sequence of stars with the same equation of state (EOS) but different

central core densities. If we parameterize this sequence with a critical density

ρc, we can determine where in the sequence of stars we achieve stability,

in particular models when dM/dρc > 0, and those with dM/dρc < 0 are

considered unstable.

It is useful for us to compare different models for the equation of state.

From Table 3.1 and Figures 3.3b and 3.3a, a few trends become apparent. For

’stiff’ EOSs (those for which numerical solutions to the differential equations

describing them must have a small step size to be solvable), the maximum

mass is greater than models with ’soft’ EOSs. As a result, they have a

lower central core density, a thicker crust, and a larger radius [35]. Pion

condensation-which occurs when a pions under tremendous pressure occupy

the lowest energy state and exhibit quantum effects on macroscopic scale-

if any, also contracts neutron stars for any particular mass and limits the
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Figure 3.4: Cross sections of a 1.4 solar mass NS for Reid and TNI equations
of state. Source: [35]

maximum mass.

Equation of State Maximum Mass (MSun)
π 1.5

Reid 1.6
Bethe-Johnson (BJ) 1.9

TNI 2.0
Tensor-Interacting (TI) 2.0

Mean Field (MF) 2.7

Table 3.1: Maximum masses for several equations of state model. ’Stiff’
equations of state lead to larger maximum masses. Source: [3]

X-Ray Timing and Equation of State

Understanding the processes in the interiors of neutron stars can be difficult.

However, it may be feasible to determine “external” properties, such as the

radius of a star . This could allow us to determine the equation of state, and

therefore the internal structure, of neutron stars. Watts, et. al [43], using
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complementary techniques, proposed a couple of approaches to determine

the equation of state.

The first part involves waveform modeling. This allows us to measure

the radius of a neutron star by observing a particular area on the surface of

the neutron star and notice that the flux will begin to be modulated at the

star’s rotational frequency, resulting in pulsation. The emissions from the

surface will encode information about the radius as relativistic effects act on

the photons escape the surface.

Accreting neutron stars have been observed to produced millisecond x-

ray oscillations. It is believed that this happens because accreting matter

striking the surface of the neutron star causes the region to heat up to a

temperature that is hotter than the average temperature of the star as a

whole. This region then rotates around the star near rotational frequency,

which produces a modulated flux from the point of view of a distant observer.

X-ray pulses may also occur as matter will tend to accrete near the poles.

These pulses would allow us to glean information about the mass and radius

of the accreting neutron star.

Since neutron stars are so dense, we can expect general relativistic effects,

which depend on the compactness (the ratio of the mass to the radius), and

special relativistic effects which arise from the orbital velocity, to affect the

waveform. These effects depend on the ratio

fs
f0

= .24
(

fs
600Hz

)(
M

1.8Msun

)−1/2( R

10km

)3/2
(3.16)

where fs is the frequency of the spin of the neutron star and f0 =
√

GMR3

2π is

the fundamental frequency. An expansion of this function with respect
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to fs will describe a spherically symmetric neutron star with an external

Schwarzschild spacetime metric in the zeroth order, the Kerr model in the

first order, and the Hartle-Thorne model in the second order. In the first

order, the amount of gravitational lensing depends not only on the mass, but

the angular momentum of the star. Therefore we can determine facts about

the density profile of the star, which also depends on the equation of state.

Secondly, we can look at the distribution of spin in the neutron star by

looking at the pulsations while it is accreting. The maximum spin frequency

is a function of the neutron star mass and radius and is determined by

fmax ≈ C
[
M

Msun

]1/2[ R

10km

]−3/2
kHz (3.17)

The radius is therefore limited to

R < 10 C2/3
[
M

Msun

]1/3[ fs
1kHz

]−2/3

km (3.18)

The parameter C, for a hadronic equation of state under general relativis-

tic effects, depends on neutron star’s mass distribution and is determined to

be 1.08 (the Newtonian value is 1.838). Therefore, fast spinning neutron

stars would constrain the equation of state.

In conclusion, using the waveform and spin distribution will allow us to

understand what goes on in the interiors of neutron stars. Despite not having

a clear understanding of the structure of the interior, quantities such as the

radius, mass, and spin distribution constrain the equation of state.
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Types of Neutron Stars

X-ray Binaries

X-ray binaries are binary systems that contain a primary neutron star or

black hole accretor and a non-compact companion star that accretes onto

the primary. As a result of the accretion process of the primary, the system

will radiate X-rays. While a few hundreds of these binaries are thought to

exist, relative to the estimated abundance of stellar mass black holes ( 108),

this would make X-ray binaries quite rare.

These can be classified into two distinct categories: low mass X-ray bi-

naries (LMXBs) and high mass X-ray binaries (HMXBs). These two classes

of binaries account for around 90% of galactic x-ray sources [34]. LMXBs

and HMXBs are thought to come from different stellar populations, for the

reason that LMXBs have a slowly evolving low mass companion and HMXBs

have a young, massive companion and are located near the spiral arms in the

galactic plane. In the next sections, we will describe each one of them in a

little more detail.

High Mass X-Ray Binaries

High mass X-ray Binaries (HMXBs) occur when the donor star has a mass

greater than 10 solar masses. In high mass x-ray binaries, matter falls onto

the surface of the compact star (called an accretor) through transfer by stellar

winds from the donor star driving matter in the direction that are ultimately

captured by the gravitational pull of the compact star [21]. This occurs when

the companion fills its Roche lobe completely until matter is able to escape

34



to accrete onto the primary in a process called Roche lobe overflow.

In HMXBs, the optical source of photons tends to be the supergiant

companion, while source of X-rays is the result of gravitational potential

energy being released as matter accretes onto the primary. Most HMXBs

discovered thus far are Be/X-Ray binaries [25], meaning that the companion

star is a B-class star with emission lines. Since the lifetime of these types of

stars are limited, they tend to be found near the star-forming regions in the

Galactic Disc [34]. As of 2007, about 130 HMXBs have been discovered [19]

Approximately half of HMXBs have pulsation cycles from 10-300 seconds.

Orbital periods can range from a few hours to hundreds of days Strong X-

ray sources, such as Cen X-3 and SMC-1, are characterized by periodic X-

ray eclipses and double wave ellipsoid light variations as a result of tidally

deformed subgiant companion stars with M > 10 solar masses [41]. From

Table 1, we can see that the X-ray spectra tend to be hard (high energy with

E ≥ 15 keV) with the accreting neutron star or black hole having a high

magnetic field.

Low Mass X-Ray Binaries

In the case of LMXBs, a smaller star accretes onto the compact star when

the donor star encroaches within a critical distance of the compact object.

At this distance, called the Roche limit, a disc will form around the accreting

compact stars that channels matter onto the compact star. In this scenario,

the donor star is less massive than the accretor. The companion of a LMXB

is usually less than 1 solar mass. The types of companions in an LMXB may

be white dwarfs, late main-sequence stars, A, and F-G subgiants [19]
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HMXB LMXB
X-ray spectra kT ≥ 15 keV (hard) kT ≤ 10 keV

Type of time variability regular X-ray pulsations
no X-ray bursts

only a very few pulsars
often X-ray bursts

Accretion Process wind (or atmos. RLO) Roche-lobe overflow
Timescale of Accretion 105 years 107 − 109yr
Accreting compact star high B field NS (or BH) low B-field NS(or BH)

Spatial Distribution Galactic plane Galactic center and
spread around the plane

Stellar Population young age < 107 years old age > 109yr

Companion stars
luminous, Lopt/Lx > 1
early type O(B) stars
> 10MSun (Pop. I)

faint, Lopt/Lx << .1
blue optical counterparts
≤ 1MSun (Pop I and II)

Table 3.2: Classification of the two main X-Ray Binary Types. Source [41]

From observed LMXBs, the orbital period for these systems can range

anywhere from 11 minutes to 17 days. Because the companion is not very

luminous due to its size, oftentimes the optical spectrum of the companion

is not observable. Instead, the optical component of the binary is the result

of the accretion disc that is formed around the primary. Unlike HMXBs,

LMXBs have a relatively weak magnetic field (only 109 − 1011G), and thus

are not likely to be X-ray pulsars (discussed in the next section). LMXBs

tend to be ’soft’ sources of X-rays with energies less than 10 keV.

LMXBs are located in globular clusters and in the Galactic bulge, and are

therefore believed to be older systems. While some have velocities in excess

of 100 km/s, those in globular clusters must have velocities of less than 30

km/s to remain bound to them [41]
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Pulsars

Jocelyn Bell Burnell and Anthony Hewish would later make the first obser-

vation of an extrasolar source that exhibited regular pulsations. Burnell and

Hewish eventually found three more of these sources, called pulsars, and were

theorized to be rotating neutron stars with a very strong magnetic field. This

discovery led to the awarding of the 1974 Nobel Prize to Hewish along with

Martin Ryle.

Locating Pulsars

Pulsars tend to be located most often in the galactic disc [34]. We can give

a rough estimate of the distance to a pulsar by its pulse dispersion. Since

pulses with higher group velocities will arrive at a detector here on Earth

earlier than pulses with longer wavelengths, we can show the period between

the arrival of signals as a function of the distance

∆t = 4150s
(

1
vlow2 −

1
vhigh2

)
ρD (3.19)

where ρD is the dispersion measure, which is effectively the intensity of

the signals as a function of distance x, is defined as

ρD =
∫ d

0
ne(x)dx (3.20)

where d is the distance from the observation position to the pulsar and

ne is the electron number density along the line of sight.

While this calculation is model dependent with respect to the distribution

of free electrons, it provides a reliable estimate of the distance within a factor
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of two [34].

Are Pulsars Neutron Stars?

Pulsars have properties that lead us to believe that they are indeed neutron

stars. For one, they have short rotational periods (P ∼ 1.5 ms)that may

slowly increase
(
dP
dt
∼ 10−15s−2

)
. Lastly, the signal they emit is very regu-

lar, and therefore be used as a "clock" [34]. We can therefore deduce other

characteristics based on these properties.

Consider a source with diameter Ds. If it emits a signal with period τ ,

then by mere mechanics, Ds < cτ . If we assume τ = 1.5 ms, then

Ds < cτ = (3.00× 108m/s)(1.5× 10−3s) = 450km (3.21)

This is much smaller than a white dwarf of a mass approximately the

Chandrasekhar limit, the maximum allowable mass of a stable white dwarf(≈

1.4MSun). Additionally, since it is improbable that black holes will emit

signals with the intensity observed, this leads us to suspect neutron stars as

the most likely source.

Pulsation or Rotation?

If we assume neutron stars pulsate with a period of approximately that of

the dynamic timescale τd ≈ 10−3 s

P ≈ τd = 1√
Gρ

(3.22)

where G is the gravitational constant and ρ is the mean neutron star

density. Rearranging and taking the pulsation period
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ρ = 1√
GP 2

≈ 7× 1012 g

cm3 (3.23)

which is about 100 times less than the average known density of neutron

stars.

If we consider rotation, the maximum rotation occurs when the gravita-

tional force of the star dominates the centrifugal force on a mass element

on the surface [34]. If we equate the angular acceleration at the surface we

obtain

dω

dt
= G

M

R3 = G
4
3πρ

(3.24)

Thus,

ρ = 3π
GP 2

(3.25)

Here, P is the rotational period of the neutron star. The density ρ is a

lower limit on the real average density [34]. Again letting P = 1.5 ms, the

average density for a neutron star is ≈ 6× 1013g/cm3.

Magnetars

Magnetars are a class of neutron stars which is highly magnetized and is

variable across its entire spectrum. This may manifest as shot bursts, large

bursts, giant flares, and quasi-periodic oscillations [15]. the activity is best

explained by the formation and decay of very strong magnetic fields. As these

fields form and collapse, this causes the crust to stress and break, which in

turn affects the magnetosphere and drives energetic magnetic currents. In
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the following subsections, the basic properties and behaviors of magnetars

will be discussed.

Properties of Magnetars

The catalogue of Olausen and Kaspi [27] has a compendium of the 30 known

magnetars and their respective properties given in Table 2.1. The majority

of the known magnetars have been found by detecting short X-ray bursts in

surveys such as the Swift Burst Alert Telescope and the Fermi Gamma−

ray Burst Monitor.[40] [11]

While our current methods of observations seem to bias toward the detec-

tion of magnetars that are likely to burst, it has been shown that currently

the magnetars share common properties such as the emission of X-rays and

gamma rays, and a magnetic field ' 1015G [27]

Magnetars are observed to have X-ray pulsations ' 2−12 seconds. Mag-

netars, without exception, are spinning down, with the spin-down time scales

of order of a few thousand years. These spindown rates also imply that the

magnetic field B > 1013 Gauss with the majority having B > 1014G. unlike

other kinds of neutron stars, magnetars are generally thought to have longer

rotational periods despite being young (young neutron stars tend to have 1

ms or even sub-millisecond rotational periods)

On the other hand, there is a wide range for the X-ray luminosity from

1030 − 1035ergs s−1 in the 2-10 KeV band [15]. The quiescent (quiet) lumi-

nosities seem to be grouped into two categories: Brighter magnetars which

are "persistent", and the fainter magnetars are "transients".
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Figure 3.5: On the left:top down view of the galaxy showing the locations
of known magnetars (in red) On the right: The fraction of magnetars at
particular z-heights from the galactic plane. Source: [15]

Where are Magnetars Located?

As with other types of neutron stars, magnetars are confined to the disc

of the galaxy, with a scale height of 20-30 parsecs. The scale height is in

this context is the length in which particular features drop by a factor of e.

the spacial velocity is approximately 200 km/s. This would indicate that at

most, magnetars are ∼ 105 years old.

Exotic Stars

While neutron stars, under ’normal’ circumstances, collapse into black holes

once they exceed the Tolman−Oppenheimer−V olkoff (TOV) limit, there

are some hypothetical states which may be achieved under special conditions.

These types of stars, called exotic stars, represent a theoretical frontier that

isn’t well understood. While quark stars, a subclass of exotic stars, are the

best understood and has the strongest evidence supporting their existence,

other types such as strange stars and preon stars are also possibilities.

41



Although this isn’t the focus of this research, it may be useful to briefly

discuss the different types of exotic stars, as they may possibly be an end

result of magnetic collapse, or magnetic collapse may be a prelude or require-

ment for these stars to form.

Quark Stars

Quark Stars are an exotic star class where neutrons are compressed so tightly

under extremely high temperatures and pressures that a state of "free" quarks

forms.

Depending on the temperature and chemical potential, we can expect two

regimes under which conditions occur naturally. The first of these (T >> µl)

is the ’hot’ phase and would have been present the first few seconds after the

Big Bang. In this kind of plasma, the quarks are close enough together that

they are asymptotically free. This is called a quark-gluon plasma.

The other regime occurs when T << µl and is expected in the interiors of

neutron stars. In these stars, neutron matter is thought to undergo a phase

transition where u- and d-quarks absorb electrons and neutrinos to produce

s-quarks.

Preon Nuggets

Preon nuggets are hypothetical objects composed of preons, a hypothetical

particle that form the substructure of quarks and leptons first suggested by

Hansson and Sandin in 2005 [14]. Preons nuggets are believed to be compact

objects that are unable to survive as neutron stars, yet stable enough to not

collapse into black holes. Asymptotically free fermions in QCD put an upper

42



limit on which kinds of compact objects can exist stably under the Standard

Model and stellar structure equations, new physical models superseding the

Standard model will be necessary in order to explore this regime.

Structure and Stability of Preon Nuggets

It is necessary, like all other compact objects, that preon nuggets have a total

mass that is a function of the central core density and is also stable to radial

oscillations.

Preon nuggets are expected to be very small ( 10−1−10−4m). Primordial

preon ’nuggets’ may have possibly formed in the early universe (Hansson and

Sandin). These preons would not have taken part in big bang nucleosynthesis

and also would not evaporate via Hawking radiation. That is why they failed

to attract enough attention of astrophysicists and were not easily observable

either.

Preon nuggets are also a possible candidate for dark matter in galaxies.

Given that 4% of the total mass of the universe is in the form of luminous

matter. Let us assume that the dark matter density ρDM = 10−25g/cm3,

then we expect the number density of preon stars to be 104 per cubic parsec

[14]. In principle, it should be possible now to detect preon stars using

gravitational microlensing.[14]
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CHAPTER IV:

QUANTUM MAGNETIC COLLAPSE

Under certain conditions, a relativistic neutron gas in a magnetic field (such

as a neutron star) may experience anisotropic pressures parallel and perpen-

dicular to the magnetic field generated by the constituent charged particles

[8] . The pressure transverse to the magnetic field can be less than that of

the pressure parallel to the field. This phenomena, called quantum magnetic

collapse (QMC), describes the dynamical behavior of a massive star and is

related to its stability. A star at the limit of QMC can result in stellar rem-

nants such as a strange star - a star composed of strange quarks - or an oblate

black hole [22].

This collapse can be expected to occur when the magnetic energy is of

the same order as the internal energy. Since it is the case that magnetic

collapse is at the stability limit of degenerate systems, the nature of the

phase transitions would seem to suggest that new physics is necessary to

explore this phenomena further.

At this point, we will take the time to discuss the specific conditions

needed for quantum magnetic collapse. In particular, we assume that the

neutron "gas" has a background of neutrons and protons in thermodynamic

equilibrium, which is needed for neutron stability [22]. This necessarily means

that there are equal numbers of positive and negative charges so that the

system in consideration is electrically neutral. In addition, the spins of the

particles of each species are coupled with the magnetic field B. We also
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assume that the external B-field is uniform.

A calculation scheme for the particle number for each of the species of

leptons and bosons, which we are concerned with, will be developed in the

following sections. By virtue of the fact that gases are multiparticle sys-

tems, quantum statistical mechanics will need to be employed to examine

the family of leptons and bosons relevant to the effect. Considering the lep-

tonic component of the energy (electrons and positrons) requires employing

Fermi-Dirac statistics in the grand canonical ensemble, and Bose-Einstein

statistics when we consider the bosonic component.

The Conditions of Quantum Magnetic Collapse

In order to understand how quantum magnetic collapse occurs, it is impor-

tant to know how much the lepton and quark families each contribute to

the generation of the magnetic field, and therefore the contribution to the

energy density (or pressure) along the magnetic field and perpendicularly

to the magnetic field. Since particles and energy are being exchanged, the

grand canonical partition function is most appropriate to calculate the par-

ticle number density. As a background assumption, we consider leptons and

quarks are in chemical equilibrium. It is also important to note which regime

is being considered, whether it be in the astrophysical or cosmological case.

In the cosmological regime, we expect bosonic sectors to be significant due

to the energy scales involved, whereas in the the astrophysical context, the

leptonic sectors will dominate [8][22] Let us define Z as the grand canonical

partition function for leptons and bosons with
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Z = (1± exp(−β(E − µl))(1± exp(β(E − µl)) (4.1)

where β = T−1 (or kT in SI units), E is the average energy particle

species l, and µl is the chemical potential of the particle species l. This

expression takes into consideration the first and second terms of this product

corresponds to the spin up and spin down contributions of the particle species,

respectively.

The thermodynamic potential Ω is the energy per unit volume for both

leptons and bosons is defined as Ω = −T ln Z. where Z is the grand canonical

partition function and T is the temperature. Here, the potential is the sum of

the Helmholtz free energy from electrons and the W bosons (Ω = Ωl+Ωb). If

we consider the lepton/anti-lepton component of Ω as Ωl = Ωsl + Ω0l, where

Ωsl = − eB4π2

∑∞
0 an

∫ ∞
−∞

dE ln
[
(1 + e−(E−µl)β)(1 + e−(E−µl)β)

]
(4.2)

where B is the magnetic field, E =
√
p2 +ml

2 + 2(n+ 1)eB is the energy

per particle where p is the pressure parallel to the magnetic field, an ml is the

mass of the lepton. The factor an is the degeneracy factor where an = 2−δ0N

For the bosons, Ωb = Ωsb + Ω0b, where

Ωsb = eB

4π2

∑∞
0

∫ ∞
−∞

dE0q ln
[
(1− e−(E0q−µb)β)(1− e−(E0q−mub)β)

]
+eh̄cB4π2

∑∞
0 bn

∫ ∞
−∞

dE ln
[
(1 + e−(E−µb)β)(1 + e−(E−µb)β)

] (4.3)

where the degeneracy bn = 3 − δ0n. The thermodynamic potentials in

both cases diverge. However, what we are most interested in is calculating

the particle number, and the magnetization. In the following sections, we will

develop a scheme to calculate the particle number density without having to
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calculate the energy density directly.

Calculating Mean Particle Density and Magnetization

Ideally, we would like to be able to compute the thermodynamic potential

in order to determine quantities such as the magnetization. However, the

integrals for the thermodynamic potential discussed in the previous chapter

diverge in the domain under which they are considered. Computing the

mean number density, on the other hand, is a much more tractable task.

Therefore, we will proceed to do so for the relevant bosons and leptons in

quantum magnetic collapse. We will work in the limit which is most relevant

to us, where µl >> T (as the case is in neutron stars). To determine the mean

number density Nl, we will first consider the ’static’ case, then generalize to

the accreting binary case. To do this, we will need to determine the chemical

potential at time t by examining how the total mass and energy change as a

function of the time.

For our treatment, we will be using natural units for Planck′s constant h̄,

the speed of light c, and the Boltzmann constant kb where h̄ = c = kb = 1

Calculating Particle Number for Leptons

We will utilize the technique developed by Masood [24]. Starting with the

leptons, we will begin with the Fermi-Dirac distribution and assume that the

positron contribution to this is low. Let us define the particle number for the

leptons Nl by integrating the number density nl as

Nl =
∫ ∞

0
d3p nl± = 4π

∫ ∞
0

dp p2nl± (4.4)
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In this representation, the integration is over p, covering the entire mo-

mentum space volume. Instead, we would like to do a change of variable

from p to E. For the energy

E2 = p2 +ml
2 + eB(2n+ 1) (4.5)

In the limit that E is sufficiently larger than the electron mass and the

magnetic field such that E2 >> eB >> ml, we can binomial expand to

obtain

Nl = 4π
∫ ∞

0
dE E2

(
1− ml

2

2E2 −
eB(2n+ 1)

2E2

)
nl (4.6)

Here, we take nl± as the antilepton and lepton particle densities, respec-

tively, as

nl+ = (eβ(E+µl) + 1)−1 =
∞∑
1

(−1)ne−nβ(E+µl) (4.7)

nl− = (eβ(E−µl) + 1)−1 =
∞∑
0

(−1)ne−nβ(E−µl) (4.8)

The integrals can be broken up into a linear combination and solved

individually

Nl± = 4π
[∫ ∞

0
dE E2nl± −

ml
2

2

∫ ∞
0

dEnl± −
eB(2n+ 1)

2

∫ ∞
0

dEnl±

]
(4.9)

where nl± = nl− − nl+ is defined as the net lepton contribution The

solutions to each integral can be obtained from the a, c, and d functions from

Masood[23]. In the current case, when µl >> T , the first integral becomes
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∫ ∞
0

dE E2nl± = 2
β3d(mlβ,∓µl) + 2ml

β2 c(mlβ,∓µl) + ml
2

β
a(mlβ,∓µl)

(4.10)

where

d(mβ,∓µl) = µ3
l −ml

3

3ml
3 −

∞∑
k=0

(−1)k
µkl

∞∑
n=1

(−1)n
(nβ)k e

−nβ(ml−µl) (4.11)

c(mβ,∓µl) = µ2
l −ml

2

2ml
2 −

∞∑
k=0

(−1)k
µkl

∞∑
n=1

(−1)n
(nβ)k e

−nβ(ml−µl) (4.12)

a(mlβ,∓µl) = µl −ml

ml

−
∞∑
k=0

(−1)n
(nβ)1−k e

−nβ(ml−µl) (4.13)

Therefore

∫ ∞
0

dEnl± = 1
β
a(mlβ,∓µl) = 1

β

(
µl −ml

ml

−
∞∑
k=0

(−1)n
(nβ)1−k e

−nβ(ml−µl)
)
(4.14)

In the limit where µl is large, the summation for all of these integrals

vanishes, and, if we assume that the antileptonic contribution to the particle

number < Nl+ >= 0 we are left with this for the final expression for the

leptonic number

Nl− = 4πµl
βml

[
µ2
l

3β2ml
2

(
1− ml

3

µ3
l

)
+ µl
β

(
1− ml

2

µ2
l

)
+m2µl

(
1− ml

µl

)]

−4πµl
βml

[
ml

2µl

(
1− ml

µl2

)
+ eBµl

]
(4.15)

In the limit that ml << T << µl, the ml
µl

terms are ignorable

Nl = 4πµl
βml

[
µ2
l

3β2ml
2 −

eBml
2

βµ2
l

(
1− ml

µl

)]
= 4πµ3

l

ml
3

[
1

3β3 −
eBml

2

βµ2
l

(
1− ml

µl

)]
(4.16)
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In the astrophysical context, we assume that the lepton number is dom-

inant over the antilepton component, and that the type lepton that we are

interested in is the electron. Dividing this expression by the lepton mass ml,

we will obtain the expected electron number in the neutron star.

Nle = 4πµ3
l

ml
3

[
1

3β3ml
3 −

eB

βml
3

(
ml

2

µ2
l

)(
1− ml

µl

)]
(4.17)

It should be noted that this result, while primarily concerned with elec-

tron particle number, is generally true for all leptons. From 4.17, the particle

number Ne is directly related to the chemical potential µl, the temperature T ,

and the external magnetic field B. In the limit that µl >> ml, the magnetic

component to the particle number is dominant. When µl = ml, the particle

number does not depend on the magnetic field, and is only a function of the

mass.

Vanishing Pressure

Standard electroweak theory places an upper limit on the magnetic field

generated by the accelerated charged marticles as essentially a function of

their mass. If we consider the electrons, for example, the average energy E

in the ground state is

E =
√

(p)2 + (m2
l )2 − (2n+ 1)eB (4.18)

where p is the pressure parallel to the magnetic field B, ml is the mass

of the lepton (in this case we are considering electrons), and e is the electron

charge.
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In the ground state and as the pressure p vanishes, this becomes

E0s =
√

(msc2)2 − eB = 0 (4.19)

Also, the total energy of the system is determined by comparing the

energy of the boson plus the magnetic energy, therefore, in natural units, the

critical value of the magnetic field Bc is

m2
s

e
= Bc (4.20)

for the proton, Bc ∼ 1024 G. Performing the calculation for the magnetic

field corresponding to the electron mass, Bc ∼ 1014 G.

Utilizing results from Landau and Lifschitz [18], the pressures p‖ and

p⊥ can be found from the energy momentum tensor Tµlν =< Tµlν > and

taking the statistical average of the Lagrangian [8] [33], the longitudinal and

transverse pressures are

p‖ = −Ω and p⊥ = −Ω−BM (4.21)

where B is the magnetic field and M is the total magnetization. Note

that in the above scenario, the transverse pressure is more than the pressure

parallel to the magnetic field. This can lead to a “squeezing” of neutron

stars.

When the magnetization is positive, the pressure transverse to the mag-

netic field is smaller than the pressure p‖ by an amount BM. In the limit

where the external magnetic field is very strong eB >> T 2, the electrons are

confined to the Landau ground state n = 0. At these energy densities, the

vacuum term is ignorable, therefore
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p⊥ = 0→ Ωe = −BMe (4.22)

If we consider a local region in a neutron star where the charge is domi-

nated by electrons, this may lead to a collapse of the neutron star.
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CHAPTER V:

DYNAMIC LEPTON NUMBER IN ACCRETING NEUTRON STARS

Determining the Dynamic Particle Number

At this point, we would like to determine the particle number and magne-

tization as a function of time by considering how many particles are added

to the neutron star as it accretes matter from the donor star. For our pur-

pose, we will be considering the astrophysical scenario whereby the dominant

contribution to the particle number will come from ionized hydrogen. As a

consequence, we are primarily concerned with the increase in particle number

from electrons as the neutron star accretes. In the static case, for electrons,

we can simply take the particle number Nl = Ne0 as the initial number

of electrons which we are considering using Eq 4.17, which is our particle

number for the electrons in the static case.

N0e = 4πµ3
l

ml
3

[
1

3β3ml
3 −

eB

βml
3

(
ml

2

µ2
l

)(
1− ml

µl

)]
(5.1)

However, since the neutron star is accreting, the total number of particles

composing the neutron star changes with time and the initial concentration

can be expressed as

Ne ≡ Ne(t) (5.2)

Therefore, if we have some initial number of particles in the neutron star,

then the change in the number of particles at time t becomes
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Ne(t) = Ne0 + δN(t) (5.3)

where δN(t) is the change in the particle number as a function of time.

Now consider the accreting matter stream. The amount of energy that

each particle has is only dependent on the kinetic energy and the gravitational

mass, since the interactions between particles is neglected. Therefore we will

approximate the matter accretion as if it were an ideal gas, Furthermore,

since the system has to be chemically neutral, the number of positive and

negative charges must be equal. In addition, the number of particles from the

second and third generations (e.g. muons and tauons) in the matter stream

must be ignorable.

We can determine how much of the accreted mass is composed of protons

and electrons very simply by compatin the proton massmp938MeV/c2 (1.672×

10−27 kg) and the electron me = 0.511 MeV/c2 (9.109 × 10−31kg), which

would imply that the protons contribute ' 99.95 % of the total accreting

mass. Thus, for every 1 kg transferred to the neutron star from the donor,

0.9995 kg will be protons and 0.0005 kg will be electrons. After this, we

can simply determine how many of each particle is accreted. In the most

general sense, we will represent this fraction as ml
mp

, where ml is the mass of

the lepton and mp is the mass of the proton.

Calculating Mass Loss Rate

A simple model for the change in particle number can be constructed by

assuming the neutron star is electrically neutral. Therefore, there must al-

ways be, at any given moment, equal numbers of negatively and positively
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charged particles. Furthermore, we already assumed that µe +µp = 0. Since

the accretion disc itself is donating particles to the neutron star, the chem-

ical potential for each particle species in the neutron star must necessarily

increase while maintaining chemical equilibrium.

We can obtain a time dependent relation for the mass which will in turn

allow us to determine the change in particle number δNt at time t. As-

sume that individual particles from the donor star are in free-fall towards

the accreting star. By conservation of energy

1
2mlvff

2 = GM∗ml

R
(5.4)

whereml is the mass of particle species l, vff is the free-fall velocity of the

relevant particle, M∗ is the mass of the neutron star, and R is the distance

between the center of mass of the neutron star and the particle itself.

The luminosity L is defined as the change in energy as a function of time,

which is

L = 1
2
dml

dt
v2
ff (5.5)

It should be noted that not all of the matter being lost from the donor

star is actually accreted onto the primary, as some of it is released as heat.

The accretion efficiency η is defined as

η = GM∗ml

Rc2
(5.6)

From Eq 5.4, the free-fall velocity is easily determined

vff =
√

2GM∗
R

(5.7)
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plugging 5.7 into 5.5, we obtain the luminosity as

L = 1
2
dM

dt
v2
ff = 1

2
c2

c2
2GM∗
R

dM

dt
= ηṀc2 (5.8)

For a neutron star of mass M∗ ≈ 1MSun and radius R ≈ 10km, the

efficiency η ≈ .1

When the accreting binary system is in hydrodynamic equilibrium, it is

accreting at its maximum rate. This also entails that the luminosity is at the

maximum as well. In this state, we can define the Eddington accretion rate ṀEdd

and the Eddington luminosity LEdd. The Eddington luminosity can be ob-

tained by considering the spherically accreting case, although this is also a

good approximation for the disc accretion as well [?]

Let Fgrav = Frad, where Fgrav is the gravitational force acting on a single

particle and Frad is the force of the radiation pressure coming from the pho-

tons that are generated as they strike the surface of the neutron star. From

Newton’s law of gravitation,

Fgrav = GM∗(mp +me)
R2 ≈ GM∗mp

R2
(5.9)

since mp/me ≈ 1876. Frad can be related to the Thomson cross −

section σT , which can be defined as

σT = 8π
3

(
αλe
2π

)2

(5.10)

where α is the fine structure constant ≈ 1/137 and λe = h
mec

is the

Compton wavelength for the electron. Therefore,

Frad = pΦσT (5.11)

56



where Φ, known as flux is the number of photons passing per unit area

per second and p is the momentum per photon. The energy per photon

E = h̄ω, so the flux Φ is

Φ = L
h̄ω4πR2

(5.12)

From here, the number of collisions per second can be calculated as

number of collisions = L
h̄ω4πR2σT

(5.13)

Frad = LσT
h̄ω4πR2

h̄ω

c
= LσT

4πR2c
(5.14)

Setting Equations 5.9 and 5.14 equal to each other,

GM∗mp

R2 = LσT
4πR2c

(5.15)

We obtain the following expression for the Eddington luminosity LEdd

LEdd = 4πGM∗cmp

σT
(5.16)

Notice here that the LEdd is independent of the temperature and is only

dependent upon the mass of the particles and the Thomson cross section.

If we equate the luminosities and solve for the mass loss rate at Eddington

luminosity,ṀEdd , comes out to be

ηṀEddc
2 = 4πGM∗cmp

σT
(5.17)

Therefore,
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ṀEdd = 4πGM∗mp

ηcσT
(5.18)

Notice here that with the exception of M∗ on the right side, all the other

terms are constant. Therefore, we will define a constant ζ such that

ζ ≡ 4πGmp

cσT
(5.19)

Thus, we now have an equation that turns in separable integral, relating

the mass loss rate Ṁ to the initial mass of the neutron star M∗

ṀEdd = ζ

η
M∗ (5.20)

δMt = M0e
ζ
η

(t−t0) (5.21)

where M∗ is the initial mass of the neutron star and t0 is the initial time

from the onset of accretion. Thus, we have the accretion rate in terms of the

time parameter t.

Going back to our example of the accreting neutron star, from LIGO

gravitational wave data of GW17817 [20],the maximum mass of a neutron

star is constrained to ≈ 2.73 MSun [20] [31]. Given that constraint, we can

determine how long it will take to reach a maximum mass Mmax from an

initial neutron star mass M∗. the neutron star will accrete 1.73MSun to

reach Mmax. If the Thomson cross section is 6.6524 × 10−29 m2 ,and the

efficiency η = .1, then ζ = 7.02 × 10−16 s−1 If we assume an initial mass of

1MSun = 1.989× 1030 kg and we let t0 = 0 and we consider the time period

of 1 year (tf = 3.154× 107 s)
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(a) (b)

Figure 5.1: (a) For steady state accreting systems, the rate of accretion is
rapid as ln(M/M∗) changes. In (b) efficiency drops off as radius increases

δMt = MSun (7.02× 10−16 s−1)(3.154× 107 s) = 2.2× 10−8MSun (5.22)

Figure 5.1a shows the change in mass fraction as a function of time with

(M/M*) on a logarithmic axis. This would indicate a gentle increase early on

in the accretion process and a more rapid accretion beginning at ∼ 514 years.

In Figure 5.1b, we observe a decrease in efficiency as the radius increases.

Therefore, we can infer that neutron stars with larger radii will dissipate

heat more slowly than those with larger radii. Effectively, this means larger

stars, given the definition of efficiency η given earlier, can accrete mass more

effectively than smaller stars.

Given that Mt is the total mass being transferred, and it was stipulated

earlier that we are only concerned with the electron component of the accre-

tion flow, the total electronic mass Me− accreting onto the neutron star in

time is

Me− = ml

mp

M∗e
ζ
η

(t−t0) (5.23)
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To obtain the final expression for Nl(Ne0, t) explicitly, we must first divide

Mt by the reduced electron-proton mass µep = mpme
mp+me and setting it equal to

δN(t). The reduced mass µep is used instead of the electron mass me when

we consider that, while the electrons are not bound to the protons in ionized

hydrogen, for the matter stream for the donor to remain electrically neutral,

a kind of pairing must be present in such a way that the lighter electron

drags the heavier proton with it.

Furthermore, we must consider that most of the electrons and protons will

participate in weak interactions to form more neutrons. Therefore, we define

a dimensionless parameter Γ << 1 that represents the fraction of electrons

that remain free once they are accreted. Thus, our final expression is

Thus

Nl(Ne0, t) = 4πµ3
l

ml
3

[
1

3β3ml
3 −

eB

βml
3

(
m2

µ2
l

)(
1− m

µl

)]
+ Γ ml

mpµep
M∗e

ζ
η

(t−t0)

(5.24)

From this expression, the chemical composition of different lepton species

can be obtained with the corresponding background [8] [23]. The determina-

tion of the chemical composition also indicates the size of the neutron star

given a particular model. [8] [35]

Limitations on the Accretion Rate

We must also note here that in a viscous disc, particles will rub against each

other, causing them to radiate. The radiation pressure acts on the accreting

matter with a tendency to push the particles away from the neutron star.

As long as Frad = Fgrav, hydrodynamic equilibrium will be maintained and
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accretion will continue. However, if Frad > Fgrav, the neutron star, in prin-

ciple, will not accrete, and the system itself is in no longer in hydrodynamic

equilibrium. Additionally, the effective surface temperature and luminosity

of the star increases, so Ledd sets an upper limit to how fast mass will accrete

to the neutron star in hydrodynamic equilibrium. [32]. If Frad < Fgrav, then

the system becomes unstable, leading to complete gravitational collapse of

the system.

As such, we can determine a criterion under which accretion will occur,

and when the binary system is not sufficiently luminous enough to resist

gravitational collapse. When Frad > Fgrav,

L > 4πGM∗cmp

σT
(5.25)

Approximating the neutron star as a blackbody, then the luminosity L

can also be expressed as

L = σSBAT
4 (5.26)

where σSB = 5.67×10−8W ·m−2K̇−4 is the Stefan−Boltzmann constant,

A is the surface area of the neutron star, and T is the effective temperature.

Replacing L in 5.25 with 5.26, and rearranging,

Tc >
4

√
4πGM∗cmp

σSBAσT
≈ 106K = 86 eV (5.27)

Thus, we obtain a critical temperature Tc which, if greatly exceeded, will

cut off the accretion process for a starM∗ = MSun. If the temperature is much

less than this, the neutron star is not hot enough to maintain hydrodynamic

equilibrium, and will therefore collapse.
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Discussion

In summary, the particle number density for the e− (assuming the e+ contri-

bution is negligible) for a neutron star in a magnetic field B was obtained us-

ing a straightforward Fermi-Dirac distribution. A time-dependent expression

for the particle number density N(t) = 4πµ3
l

ml3

[
1

3β3ml3
− eB

βml3

(
ml

2

µ2
l

) (
1− ml

µl

)]
+

Γ ml
mpµep

M∗e
ζ
η

(t−t0) was obtained for an accreting neutron star binary system

for a ’high’ efficiency system with η = .1, and by extension, we can determine

the chemical composition of an accreting neutron star of initial mass M∗ at

time t. The efficiency would account for radiation pressure that would inhibit

the accretion efficiency In Figure 5.1a, we showed that, assuming a steady

state disc with negligible viscosity, this shows a gentle accretion of matter

for the duration of ' 1015 s (' 107 years), which is consistent for a young

LMXB. For the lifetime of a HMXB, it is suitable to adjust parameters ζ or η

to be consistent with the observed lifetime. For an accreting neutron star, an

upper limit to the accretion rate is determined when the critical temperature

Tc ' 86eV ' 106K

It is desirable to know what factors tend to most affect the number density

of charged particles. In Figures 5.2a and 5.2b, we plot the change in number

density as a function of both the magnetic field and the chemical potential.

These 3D graphs indicate the change in the number density of electron with

the increasing chemical potential and the magnetic field. The magnetic field

in Gauss is plotted on a semi-logarithmic scale with a range of 108 − 1013 G

on one axis and the chemical potential ranging from 70− 200 MeV plotted

on the other axis in the same plane. These ranges of chemical potential and
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(a)
(b)

Figure 5.2: Contour plots featuring showing the change in number density
as a function of chemical potential and magnetic field. The right figure is a
rotation of the left

the magnetic field are relevant for neutron stars. On the vertical axis is the

change in number density as a function of both the magnetic field and the

chemical potential. It is apparent that the chemical potential affects the

(a) (b)

Figure 5.3: In (a), The particle number density increases with chemical po-
tential. On the other hand, in (b),particle number density remains constant
with increasing magnetic field

number density to a much greater degree than the magnetic field strength.

To illustrate this further, Figures 5.3a and 5.3b are a cross section of the
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contour plot which effectively show the number density vs magnetic field and

number density vs. chemical potential, respectively. When number density

vs chemical potential is examined, the number density ranges from ∼ 1013−

1014, starting off gradually for 70 ≤ µl ≤ 100 MeV and rapidly increasing

afterwards. However, if we look at the number density vs. magnetic field

plot, we don’t see very much change at all, if any, throughout the entire

range of magnetic field strengths, which is expected. It is expected that

the magnetic field will affect the orientation of the charged particles in the

neutron star region. Therefore, we determine that the chemical potential

is the most relevant quantity to determine the particle number density of

charged particles, as expected.

Future Work

To take this project further, the next step would be to derive an expression

for the dynamical magnetization for the electrons. Me(t). When that is

accomplished, it would then be straightforward to obtain an expression for

the dynamic potential Ωe(t). Additionally, different fluid models for the

accretion may be tested including viscous models, superfluid models, and

relativistic plasmas (QED and QCD plasmas). Finally, we would like to see

how the critical density ρc (the density at which black holes form) and the

critical number density Nc (the density at which quantum magnetic collapse

occurs) coincides, if at all. If not, this may present some interesting scenarios

where we have an instability due to the anistotropic pressures before the

critical density ρc is reached.
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