

Copyright

by

Mahrukh Sameen Mirza

2020

SOFTWARE ENGINEERING FOR ALL – WHY AND HOW

by

Mahrukh Sameen Mirza, B.E.

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Software Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2020

SOFTWARE ENGINEERING FOR ALL – WHY AND HOW

by

Mahrukh Sameen Mirza

APPROVED BY

 __

 Soma Datta, PhD, Chair

 __

 James Helm, PhD, Committee Member

 __

 Jana Willis, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Associate Dean

__

Miguel Gonzalez, PhD, Dean

Dedication

This thesis is dedicated to my parents, siblings, and my very supportive husband.

v

Acknowledgements

Firstly, I would like to thank my parents for making me better human and always

teaching me the value of time and education. Without their teachings, I wouldn’t have

even thought of being where I am today. I can never pay back the sacrifices they made

for me and my education. I miss you mom, dad, Chickoo (Sadaf, my sister) and Chazu

(Shahzain, my brother).

 I always dreamt of doing Masters from the United States of America but

considering the situation of females back home, that dream looked near to impossible.

Then, I got married to my most loving and supportive husband. He is that person who

supported me to pursue my dream. Abrar, my Master’s degree is dedicated entirely to

you. I remember the time you worked hard day and night just so you can pay my Masters

tuition fee. I am blessed to have you as my soul mate.

I would like to thank Dr. Soma Datta for being an inspiration and helping me with

my research work. I learnt a lot under your supervision. You are my wonder woman and I

will always look up to you. Dr. Jana Willis, thank you for joining the committee and

helping me out with my work. You inspire me for my next career goal. Dr. Sadhana

Weerasinghe, thank you for taking time off your busy schedule in order to teach me few

Mathematical concepts.

Lastly, I would also to thank Atchyutha for being a part of my thesis testing.

vi

ABSTRACT

SOFTWARE ENGINEERING FOR ALL – WHY AND HOW

Mahrukh Sameen Mirza

University of Houston-Clear Lake, 2020

Thesis Chair: Soma Datta, PhD

A lot of the software industry has moved from the planned method of software

development to an Agile development process. Agile is one of the widely used

methodologies today and has several benefits over the planned method. While Agile has

taken over the software industry, it is also expanding in the field of education. It is a great

tool for better organization and rapid feedback. The following study starts by stating

differences between planned and Agile software development processes. Next, to

demonstrate how Agile can be used in other non-software related environments, this

study shows a pilot study conducted with a group of online students through use of the

ensemble method named “Feature Driven Scrum” (a tailor method created by the

amalgamation of Feature Driven Development and Scrum). The study shows how Agile

is a great tool for organization and self-assessment. Agile has several principles and

manifestos, and these are similar to the ones supported by Design Thinking. A course

named “Agile Design Thinking” has been proposed in this study to show how Agile and

vii

Design Thinking support the same principles. Several games have been introduced in the

course, which help students understand concepts better and retain those concepts for a

longer time. In order to help students, learn and understand this course better, a pedagogy

using Agile principles has been developed. This pedagogy can be used to teach students

from the Engineering discipline as well as other disciplines. The pedagogy has been

tested in a Data Science course, and the results are stated. Lastly, an e-learning android

application that uses flashcards (using C# and XML, Xamarin platforms) was developed

using Agile Design Thinking principles. This application can be used to enhance the

student learning experience. The application has been validated and findings show that

Agile and Design Thinking support the same principles and that great customer

experience can be created using the Agile Design Thinking principles.

viii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

CHAPTER I: INTRODUCTION ... 1

CHAPTER II: LITERATURE REVIEW .. 3

Software Engineering Curriculum .. 6

Software Failures Due to Lack of Understanding the Customer 9

Pedagogy using Agile principles .. 10

CHAPTER III: RESEARCH QUESTIONS .. 12

CHAPTER IV: METHODOLOGY ... 13

Feature Driven Scrum ... 13

Agile Design Thinking .. 15

What is Design Thinking and Why Do We Need It?................................ 15

What is the Goal of this Course? .. 16

How Will Students Benefit from this Course? ... 17

Unit I ... 19

Design Thinking Framework and Agile ... 19

Unit II .. 22

Empathize ... 22

Unit III .. 35

Define .. 35

Unit IV .. 41

Ideate ... 41

Unit V.. 48

Prototype ... 48

Unit VI .. 53

Test and Design Sprints in 5 Days .. 53

Pedagogy using Agile Principle and Manifestos .. 61

Working Agreement .. 61

Estimation ... 62

Stand Up Meetings .. 63

Backlogs .. 64

Sprint Review Meetings .. 64

Pair Programming ... 65

CHAPTER V: RESULTS .. 67

ix

Feature Driven Scrum Validation ... 67

Agile Design Course Validation ... 71

Empathize ... 71

Define .. 72

Ideate ... 75

Prototype and Test .. 82

Agile Pedagogy Validation ... 87

CHAPTER VI: CONCLUSION AND FUTURE WORK ... 90

REFERENCES ... 91

APPENDIX A: FLASHCARD APPLICATION CODE .. 95

x

LIST OF TABLES

Table 2.1 Search Keywords ... 4

Table 2.2 Strengths and Limitations of Agile and Planned Methodologies 5

Table 4.1 Agile Design Thinking Curriculum ... 18

Table 4.2 Customer Journey Map Example ... 31

Table 4.3 Example of Test Cases for Child Stories ... 38

Table 4.4 Storyboard Showing Before Situation with Notes ... 44

Table 4.5 Storyboard Showing After Situation with Notes ... 45

Table 4.6 Example Checklist for Day 0 ... 55

Table 4.7 Example of Timeboxed Activities for Empathize Stage 57

Table 4.8 Example of Timeboxed Activities for Define Stage .. 58

Table 4.9 Example of Timeboxed Activities for Ideate Stage ... 59

Table 4.10 Example of Timeboxed Activities for Prototype Stage 60

Table 5.1 Pre-assessment Sheet Questions and Averaged Answers 68

Table 5.2 Survey Questions and Answers ... 70

Table 5.3 User stories and Test cases for Flashcard Application 74

Table 5.4 Notes for Before Situation ... 77

Table 5.5 Notes for After Situation.. 80

Table 5.6 Questions and Averaged Answers for Agile Pedagogy 88

xi

LIST OF FIGURES

Figure 4.1 Design Thinking Framework ... 21

Figure 4.2 Google Image of a Person ... 25

Figure 4.3 Google Image of a Good Persona .. 25

Figure 4.4 Design Thinking Framework ... 26

Figure 4.5 Empathy Map for Sierra who wants to buy a mobile phone 29

Figure 4.6 Example Empathy Map for “Making Breakfast for Grandparents” 34

Figure 4.7 Storyboard Showing Before Situation ... 42

Figure 4.8 Storyboard Showing After Situation ... 43

Figure 4.9 Example of Mind Mapping ... 47

Figure 5.1 Empathy Map for Flashcard Application .. 72

Figure 5.2 Storyboard Showing Before Situation for Flashcard Application 75

Figure 5.3 Storyboard Showing After Situation for Flashcard Application 76

Figure 5.4 Splash Screen for Flashcard Application .. 82

Figure 5.5 Empty Card .. 83

Figure 5.6 Adding First Card .. 83

Figure 5.7 Adding Question and Answer ... 84

Figure 5.8 Added First Question ... 84

Figure 5.9 Added First Answer ... 85

Figure 5.10 Second Card... 85

Figure 5.11 Editing Card... 86

Figure 5.12 Edited Card .. 86

Figure 5.13 Deleting Card... 87

Figure 5.14 Card Deleted .. 87

1

CHAPTER I:

INTRODUCTION

For a long time, the planned method [1] was used for developing software. These

planned models were known to be cost saving for bigger, off shore projects. Although

they were widely used, they still had limitations, which resulted in software failures [1].

These failures led software practitioners to develop an “Agile Manifesto” [2]. These

manifestos support individuals and interactions over processes and tools, support working

process over detailed documentation, support customer collaboration over contract

negotiation, and support responding to change over following a plan [3]. The software

industry saw huge shift when they used Agile methodologies over planned methods such

as fewer software failures, better teams and organizations, and rapid delivery. Under

Agile there are methodologies like Scrum, XP, DSDM, Lean, Kanban, and Crystal that

exist. The strengths and limitations of different Agile and planned methods are listed later

in this study.

While Agile has gained popularity in the software industry, it can also be used in

non-software related industries such as a non-software related work environment, an

online study group, or any other industry such as telecommunication, education, and

supply chain management. In order to overcome the limitations of one methodology,

different methodologies are often tailored together. Similarly, two Agile methodologies,

Scrum and Feature Driven Development, have been tailored together to create “Feature

Driven Scrum”. This ensemble method has been used to demonstrate how Agile can be

used in non-software related workspace. The methodology has been tested and the results

are stated in Chapter V (Results).

Agile has benefits like fewer software failures and faster delivery, but are all these

developed applications actually used? There are several creative applications available,

2

but more than half are hardly used. The applications completely misalign with the

outcomes users expect. Before developing anything, it is important to know what is

important to the customer, what are their problems, will they use what is developed, and

are they motivated to have a new solution. Developing wasteful application results in

wastage of a lot of resources including time, money, and resources. In order to avoid such

wastage it is important to take steps early, even before the development starts. Great user

experiences can easily be created using Design Thinking framework [4]. Several benefits

are associated with design thinking, which are innovation, customer satisfaction,

organizational transformation, and better decision-making. While Agile is a way to solve

a problem, design thinking is a way to find the problem. But are they better together? A

course, which uses principles and methods of both Agile and Design Thinking, was

introduced in this study. This course demonstrates how both Agile and Design Thinking

support the same principles. As an example of how an Agile Design Thinking course is

beneficial to develop useful software, an android mobile application was developed using

the principles of this course. This application was developed in C# and XML language

using the Xamarin Platform in Visual Studio 2019. It is an e-learning application where

the user can add their questions and answers using flashcards. Questions are added on the

front of the flashcard and answers are added on the back. With a double-tap from the

user, the flashcard flips to show answers. In order to make the learning and teaching

experience better, several games and a pedagogy using Agile principles were introduced.

This pedagogy uses different Agile principles like daily stand up meetings, pair

programming, effort estimation, and working agreement. This pedagogy was tested in a

data science class and the results are stated later in this study.

3

CHAPTER II:

LITERATURE REVIEW

According to Mandal et. al [3], the limitations of planned software development

methods are excessive documentation, too sequential, excessive planning, a lack of

results until the end, late communication to stakeholders, delays in project delivery, and

increased project costs. Twelve Agile principles and four Agile Manifestos were created

to overcome the limitations of existing planned software development models. In spite of

the fact that Agile has been successful in overcoming the limitations, it still has its own

limitations [5]. Overall, the limitations of Agile as stated by Tarwani et. al [5] are

miscommunication, resource increase, overall cost increase, inappropriateness for large

projects, and lack of coordination.

In order to learn more about strengths and limitations of Agile and planned

methodologies, a systematic literature review of 25 papers was conducted. The search

strategy resulted in 91 papers initially, out of which 25 were selected as primary studies

from year 2012 to 2019. Different keywords were used to search for papers. Out of those

91 papers, using keywords, 72 papers were selected by reading the abstract. Out of 72

papers, considering the inclusion and exclusion criteria, 25 papers were selected for

detailed reading. The search keywords are listed below in Table 2.1.

4

Table 2.1

Search Keywords

Subject Search Keywords

Traditional

Traditional software development OR traditional Agile

OR software development life cycle OR SDLC OR

traditional models OR traditional model OR traditional

software model OR traditional software models OR

waterfall Agile

Agile

Agile methodologies OR Agile software OR Agile

development OR XP Agile OR eXtreme programming

Agile OR Scrum Agile OR Crystal Agile OR DSDM

Agile OR dynamic system development method Agile

OR FDD Agile OR feature driven development Agile

OR Lean Agile OR Kanban Agile OR Agile manifesto

The inclusion criteria were as follows:

1) Papers published between 2012 to 2019

2) Papers written in English

3) Papers that were scholarly & peer reviewed and journal articles

4) Papers having computer science and engineering discipline

5) Papers having search terms software engineering, software, and engineering

6) Papers where the search terms were found in the abstract

7) Papers that spoke about Agile, traditional, or core engineering design process

The exclusion criteria were:

1) Papers that are duplicates of papers already included

2) Papers that did not talk about traditional, Agile, or core engineering design

process

3) Papers older than 2012

Table 2.2 summarizes the strengths and limitations of different Agile and planned

methodologies.

5

Table 2.2

Strengths and Limitations of Agile and Planned Methodologies

Process Strength Limitations

Scrum

Results in good communication among team

members

Widely used and has one of the best

management practices

Continuous feedback from the customer

which results in customer satisfaction

Helps in growth of the team and individual

through Daily Scrum and Scrum Meeting

Produces quality product

Can handle unclear and changing

requirements

Simple to understand but

difficult to master

Lacks engineering practices

Suitable for small projects

Extreme

Programming

Has concepts like continuous integration and

pair programming

Works well simple and small-scale projects

Improves productivity

Less focus on design

Less documentation

Poor architectural structure

Common skillset and

understanding between

developers are required for

pair programming

Lean

Eliminate waste

Maximize value of product

Reduces waste

Lack of details about

implementations

Kanban

Helps in managing the product

Increases communication

Reduces waste

Lack of implementation

details

Test Driven

Development

Produces quality product

Encourages testing first

Removes duplication

Time consuming

Requires knowledge and

specific skillset

Crystal
Classification of projects is easier

Increases communication in the team

Needs special training to

write the requirements

Only two crystal categories

are defined

Feature Driven

Development

Produces quality product

Adaptive and incremental in nature

Less responsive to change

Needs trained staff

Not for small scale projects

Waterfall

Simple to use

Each phase is clearly defined

Detailed documentation

Not suitable for projects with

changing requirements

Rational Unified

Process (RUP)

Produces quality product

Requires less development time

Needs trained staff

Complex development

process

Spiral

Handles changing requirements

Delivers product frequently

Lower risk of failure

Can continue without an end

point

Not suitable for small projects

6

Software Engineering Curriculum

A systematic literature review of 33 studies was conducted [6] by Garousi et al.,

which shows how software engineering graduates find it difficult to begin their careers

after graduation. This is due to misalignment of skills taught at the university and what is

actually needed in the industry. The summary of 33 studies shows that requirements,

design, and testing are the most important skills required for a software engineering

graduate. Apart from soft skills such as professionalism, group dynamics, and

communication skills which are also desirable by the industry. Mathematics and

engineering foundations are ranked the lowest desirable skills. The paper later talks about

how soft skills are important along with hard skills. Soft skills contribute significantly to

the growth of an individual as a professional and they are one of the most desirable skills

the industry looks for when selecting an employee. Garousi’s and his co-author’s

findings say universities place more emphasis on teaching software engineering students

mathematical topics and underemphasize business topics. They suggest universities must

educate their software engineering students using “real world” examples of software

systems. They highly suggest universities align their curriculum with respect to topics in

requirements, design, testing, and also include soft skills.

A similar study was conducted [7] where the authors investigated if there was a

gap between the education provided by the universities in Software Engineering

Department and what is expected from a graduate in industry. They conducted interviews

of both newly graduated software engineers, having one to three years of working

experience, and of hiring personnel at different companies. They investigated areas where

recent graduates frequently struggled. They also sought to find out through interviews

whether there were other challenges experience than the ones that mentioned by the

recruiters. Finally, they investigated whether a knowledge gap existed between the

7

university and the industry. Their findings are similar to Garousi et al., [6], whose

findings suggest universities must improve their Software Engineering curriculum by

including real life projects where practical knowledge is included, including soft skills

and business skills, and be up to date with present technology. Also, 56% of their

interviewees say that Software Testing was something they wished to improve on. The

interviewees also talk about improving on software design, computing foundations, and

software maintenance. It was found that the most important skills in industry were

requirements, design, and testing. The least important skills were Software Engineering

Economics, Mathematical Foundation, and Maintenance. The largest gap that existed was

with Software Professional Practice and this skill was considered as the most important.

The skills that had the largest gap but were the least important are Software Engineering

Models, Methods, and Maintenance. The smallest knowledge gap existed in the area of

Development and this was the most important skill required by a Software Engineer. The

skill with smallest gap and least importance was Mathematical Foundations. Soft skills

were also considered as one of the most important skills. The student interviewees

desired that the university could add the following to their education – version control

management, better and more testing courses, architecture design, better user experience

courses, more cooperation, modern technologies, and more development.

A systematic mapping study of papers from 1976 to 2011 was done in “Software

Engineering Curriculum: A systematic mapping study” [8]. There was huge contribution

of papers towards software engineering education from 1998 to 2011. Papers were

written at both the program level as well as the course level, and it was seen that there

was more contribution of research towards the course level compared to the program

level. The authors suggested that there needs to be improvement in Software Engineering

8

education, and this can be done by putting more efforts towards overall Software

Engineering discipline.

According to Boehm et al. [9], a T-shaped person is someone who has technical

debt of systems aspect, be it at least one. He is a person who has general understanding of

other systems aspects. An I-shaped person has a great understanding of software

technology, but they have little understanding of other disciplines such as business,

medicine, transportation, and Internet of Things, etc. The author says many graduate

students fall into the I-shaped category, which leaves them with poorer understanding of

multi-disciplined system thinking, thus why Boehm and Mobasser [9] have developed a

curriculum for CS majors with a mission to produce more T-shaped graduates. The

curriculum includes different courses such as software management, human computer

interaction, software architecture, software requirements, verification and validation, and

more. Apart from these courses, the curriculum also includes a long-term real-client

project to provide students a platform to apply the skills learned. The validation of this

curriculum was completed via feedback from students who engaged in internships and

found jobs after completing the curriculum. The curriculum proved to be effective as the

feedback indicated students and their employers had high rates of success in job offers

and job performance.

A study conducted by Devadiga [10] compared the dynamics and engineering

practices of employees working at startup companies and how their exposure to the

current curriculum of Software Engineering benefitted them in their jobs. The authors

indicated universities needed to adopt the latest development trends in their curriculum so

Software Engineering graduates would develop better technical, interpersonal, and

communication skills. Software processes, engineering, and DevOp practices should be

included in the curriculum so graduates develop their abilities to take up multiple roles.

9

Graduates who join established companies do not have problems transitioning to the

development environment as these organizations have training programs for incoming

employees, but this is not the same for graduates who end up working for startup

companies. The environment in startup companies is chaotic, unpredictable, and

dynamic. They do not have the resources or the time to prepare their employees. It is

important to bridge the gap between the university curriculum and what skills are

required to be part of founding team at a startup company so that graduates have the

knowledge and skills to succeed.

Software Failures Due to Lack of Understanding the Customer

Software failures can threaten the existence of a company. They result in wastage

of precious resources of a company including time, money, and energy. According to Liu

[11], a recent study conducted on 5,400 IT projects revealed that 17 percent of the

projects threatened the existence of the companies because of their failure. The study

revealed that many software failures were due to over and underestimation as well as not

being able to satisfy their customers’ needs. The study reporeds that 45 percent of the

projects were over budget, seven percent were not scheduled, and 56 percent delivered

less value than expected.

Agile is a process which supports customer satisfaction. Companies’ success

comes from producing quality software’s, which satisfies the customers, and they start

building customer centric products in order to maintain long-term relationships with their

customers [12]. They know customer satisfaction will occur when developers know the

customer well and understand their needs. Therefore, customer satisfaction has been

identified as the central business factor [12].

Leem et. al in [13] stated many companies fail to keep up with continuous

implementation of customer satisfaction. In order to help maintain customer satisfaction,

10

they developed an evaluation system by combining traditional software process

assessment models with general customer satisfaction models. However, in this paper, the

authors did not specify what the actual reasons were for companies that were failing to

keep up with their customer satisfaction.

Pedagogy using Agile principles

While Agile has gained popularity in the software industry, it has started gaining

popularity in education as well. Several instructors from different disciplines are trying to

use Agile principles in their pedagogies. Using Agile encourages students to ask

questions and work collaboratively as a team [14]. Teaching with Agile provides better

experiences for both teachers and students, as it encourages trust, engagement, and

accountability among students [14]. With the many advantages Agile has on teaching and

learning, it can also be used in online courses [14]. A major concern with online courses

is facilitating collaboration and clear communication among the team members and with

the instructor. Using Agile principles in online courses has yielded good results. It helped

students to have better learning experiences, deliver their projects on time and with

quality, and helped them use their time effectively. It helped them to keep track of work

and kept them accountable for their time.

Krehbiel et. al in “Agile Manifesto in Teaching and Learning” [15] created Agile

Manifesto of Teaching and Learning. These manifestos can be used to direct the work of

higher education faculty in the classroom and beyond. The results indicate that using

Agile principles increased student engagement, encouraged students to take responsibility

of their learning, enhanced quality, increased collaboration, and produced quality

deliverables.

Agile supports collaboration between team members, users, customers, and

stakeholders. This is an important part of Agile and students must learn collaboration

11

practices, which can be handy when joining an organization [16]. The authors [16] show

educational projects can be set up in such a way that students understand the importance

of collaboration. They use Agile collaboration techniques to accomplish this. Modern

collaboration tools have been used to coach students and assess their progress. This

helped students understand how Agile is used for collaboration and why collaboration is

important.

In this chapter (background), strengths, and limitations of different Agile and

planned methodologies has been discussed. Two methodologies were selected to create

an ensemble process named “Feature Driven Scrum” to show how Agile could be used in

non-software environment. This chapter also revealed that Software Engineering

curriculums in universities need to change and courses that teach students about design,

soft skills, and testing should be added. Students need to learn how they can contribute to

the organization they work for by reducing the number of software failures because

software failure is a real problem, reusulting in wastage of resources. Hence this study

proposed an “Agile Design Thinking” course, which teaches students design thinking in

Agile ways and teaches them how to reduce failures by empathizing with the customers.

In a way, this course teaches students soft-skills that are required for collaboration and

teaches them why collaboration is an important part of development. Without

collaborating and understanding the customers, customer needs are clear, which in turn

results in software failures. Apart from this, this chapter also revealed that Agile is

beneficial when used in pedagogy for teaching and learning. Hence, this study proposes a

pedagogy using Agile Manifestos and principles to teach Agile Design Thinking course.

12

CHAPTER III:

RESEARCH QUESTIONS

RQ – 1 Can Agile be used in a non-software environment?

RQ – 2 How can Agile and Design Thinking help to reduce software failures? Do they

support same principles and manifestos?

RQ – 3 How can Agile Manifestos and principles enhance teaching and learning

experience?

13

CHAPTER IV:

METHODOLOGY

Feature Driven Scrum

In this section, Feature Driven Scrum methodology is discussed. A new course

named Agile Design Thinking was introduced, which has several games and activities to

retain the concepts for a longer time. In order to make the learning and teaching

experience better for both teachers and students, a new pedagogy using Agile Manifestos

and principles is also introduced later in this section. Along with this, an e-learning

application named Flashcards is discussed. The testing of Feature Driven Scrum and

pedagogy have been done and its results are presented in the next section.

A new ensemble methodology named “Feature Driven Scrum” was developed in

order to test whether Agile can be used in a non-software environment. Scrum and

Feature Driven Development were tailored to create this methodology. The testing of this

methodology was conducted with an online study group of students and in a non-software

educational workspace.

Study groups help students to develop self-learning skills. They also help students

develop confidence, collaboration, communication skills, and make them better decision

makers. It teaches them how to be accountable for their own work and time. Students

learn a lot from being a part of study groups, they learn from each other through

discussions, and learn to respect their peers [17]. The steps involved in Feature Driven

Scrum are as follows:

1. Develop an Overall Draft

2. Planning Meeting

3. Daily Scrum Meeting

4. Sprint Review Meeting

14

5. End of Sprint Retrospective

Each step is discussed below in details.

Develop an Overall Draft – this is the first step of Feature Driven Scrum. It aligns with

the first step of Feature Driven Development (FDD). An overall draft plan is developed

in this phase. This draft is a high-level plan of the work to be completed. During this step,

the team can brainstorm and discuss ideas about how to achieve their final goal. This step

also teaches the team about the importance of communication in Agile development and

that Agile is a people centric process.

Planning Meeting – after brainstorming and developing an overall draft of how to reach

the final goal, the next step is planning the meeting. This step is similar to the Sprint

Planning Meeting in Scrum. Here, the team decides what their goals are for the next

sprint. The goals are small and achievable in one sprint. For this study, each sprint was

three days long while this methodology was tested.

Daily Scrum Meeting – the team meets every day to discuss their progress. This step

aligns with the Daily Scrum Meeting step of Scrum. The team discusses “what did they

do yesterday”, “what are they doing today” and “what are the obstacles that they are

facing?”. This step shows each user how bigger chunks of work are broken down into

smaller achievable goals and how progress, in Agile is measured through work

completed. The progress of study groups was measured by the topics they covered each

day, and the progress of workspace environment was measured by the amount of work

completed.

Sprint Review Meeting – after every sprint, which was 3 days long, the team conducts a

Sprint Review Meeting just the way it is done in Scrum. The main objective of this

meeting is to reflect on the previous sprint and examine the work done. The team checks

back to see if they reached their goal that they had decided to reach by the end of the

15

sprint. The goals that were not achieved in the previous sprint are considered as backlogs.

They learn from their experience and discuss how they can improve for the next sprint.

After this meeting, plan-by-day and plan-by-week meeting is conducted to decide the

goals for next sprint.

End of Study Retrospective – this step is conducted at the end of the project. The team

reflects and discusses about what they learned from the process and how they can

improve for the next time.

The evaluation of Feature Driven Scrum is given in the “Results” section (Chapter

V).

Agile Design Thinking

What is Design Thinking and Why Do We Need It?

Design thinking is not just a methodology or a framework, but a process where

empathy of the user is developed in order to know what their problem is and what is

important to them. Just like problem solving, design thinking is natural and ubiquitous

human activity [18]. It helps to investigate the reason you are building that software or

service. According to Stanford d.school, the framework for design thinking includes five

main steps – Empathize, Define, Ideate, Prototype, and Test [4]. It gives several unique

and creative ways to approach a real problem. It is completely different from the normal

way of business thinking where designers give solutions to a problem. While in design

thinking, designers first try to understand the users and the problem better and then

provide a meaningful solution to the problem. Through design thinking, designers try to

investigate if users are motivated enough to use this new solution leaving behind the old

one. Large companies like IDEO and IBM are moving towards design thinking. It

involves the entire team along with the designers. According to [19], “design thinking is a

16

human-centered innovation that draws from the designers toolkit to integrate the needs of

people, the possibilities of technology, and the requirements for business success”.

Different software companies develop different applications, but how many of

them are actually used? There are several creative applications available, but more than

half of them are hardly used. The applications completely misalign with the outcomes

users expect. Before developing anything, it is important to know what is important to the

customer, what are their problems, will they use what is developed, and are they

motivated to have a new solution? Developing wasteful applications result in wastage of

resources including time, money, and manpower. In order to avoid such wastage, it is

important to take steps early, even before the development starts. Great user experiences

can easily be created using design thinking framework. Several benefits are associated to

design thinking, which are innovation, customer satisfaction, organizational

transformation, and better decision making [20].

Agile and design thinking are different in that Agile is a way to solve a problem

and design thinking is a way to find the problem [21]. But are they better together? Do

they support the same principles and manifestos?

What is the Goal of this Course?

Several creative products often end up being something no one wants or uses.

Almost more than half of the products developed by the software industry suffer this

problem. It is important to know what exactly is valuable to the customer so that

resources, time, and money developing wasteful products are saved. Doing so early in the

development process helps. This course combines Agile and design thinking so that the

budding software engineers know how important it is to develop a meaningful product.

Developing meaningful software helps the company to reduce cost, time, and effort on

wasteful products.

17

How Will Students Benefit from this Course?

At the end of this course, the students will be able to use Agile framework to

understand what is valuable to the customers. They will be able to test their ideas using

Agile user stories and prototype. They will understand the use of design methods. Apart

from this, students will use design sprints, understand usability testing, and product

architecture. They will learn how to test their value propositions to make sure it is usable

before starting to build the product. Following in Table 4.1 is the Agile Design Thinking

course curriculum.

18

Table 4.1

Agile Design Thinking Curriculum

UNITS TOPICS SUGGESTED

GAMES/

ACTIVITIES

ESTIMATED

COMPLETION

TIME

Design Thinking

Framework and

Agile

Introduction to Agile

Difference between

traditional and Agile

Agile Manifestos

Different Agile

Methodologies

Introduction to Design

Thinking Framework

Steps in Design Thinking

Framework

 1 class

Empathize Interviewing the customer

Personas

Empathy maps

Customer journey maps

Making breakfast

for your

grandparents [22]

1 class

Define 4 W’s and 5 Y’s

Epics

User stories

Child stories

INVEST

Moscow

POVs

 1 class

Ideate Brainstorming

Storyboarding

Mind mapping

Back to high

school [23]

1 class

Prototype Types of prototyping

Kano model

MVP

Time boxed prototypes

Spaghetti and

marshmallow

exercise [24]

1 class

Test

Design sprints in 5

days

Usability testing

Test and gather feedbacks

Design Sprint 5 days

 1 class

19

Unit I

Design Thinking Framework and Agile

Introduction to Agile and Manifestos of Agile Software Development

Agile software development is one of the most widely used methodologies in the

software industry. It has changed the software development game since its evolution. The

term ‘Agile’ was popularized by the Manifesto of Agile Software Development in 2001

[25]. It supports iterative and incremental development process and supports

collaborative effort of self-organized and cross-functional teams. Compared to traditional

software development processes, Agile provides early delivery, customer satisfaction,

response to changing requirements, and adaptive and evolutionary development. The

Manifesto’s of Agile Software Development are:

1. Individuals and Interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

The items on the left of the Manifesto’s are valued more than the items on the right.

Introduction to Design Thinking Framework and its stages

Design thinking plays a major role in success or failure of a project. A lot of

software often end up not being used by the customer because they were not what the

customer needed. The customer either lacks the motivation to use that software, or the

team does not really understand what the customer needs. Several software could have

been successful just by developing empathy with the customers. In simple words, design

thinking is a process that helps the organization gain understanding of the customer and

his or her needs better. It also helps the team to stay innovative, be creative, challenge

assumptions, and redefine the problems of the customer. It helps the team to think out of

20

the box and create news ways to address customer problems [26]. Using design thinking,

software can be prototyped even before they are developed so organizations know if the

customer will actually use the developed software over the present alternative. It is an

iterative process where testing happens frequently, starting from the earlier stages. It

helps to reduce wasteful software, and in turn it also helps to reduce the cost, effort, and

time wasted building the software. It does not only help to cut wastage but also is good

for communication in the organization. Design thinking brings all the members of the

organization together. Everyone can be a part of this team including designers,

developers, managers, and sales persons. Design thinking helps to tackle ill-defined and

unknown problems.

There are 5 stages to Design Thinking Framework [4]:

1. Empathize

2. Define

3. Ideate

4. Prototype

5. Test

Design Thinking Framework in Figure 4.1 below shows different stages of design

thinking and the flow of the framework.

21

Figure 4.1

Design Thinking Framework

Let us have a brief look at each of these stages.

1. Empathize – the very first stage and the most important stage. It is this stage

where the team gets to know their customer and their needs better through various

means. Without gaining empathy with the customer, it is not possible to move on

to the next stages.

2. Define – the next stage is where after empathy with the customer, the team

defines customer needs and problems. After gathering information in the first

stage, this information is then analyzed and synthesized. Defining the problem

with a different point-of-view (POV) will lead to several innovative ideas.

3. Ideate – this stage is about thinking outside the box. Several methods such as

brainstorming, mind spacing, and many more are used to generate as many ideas

as possible.

4. Prototype – it is in this stage that the team tests if their proposition will be used by

the customer over the present alternative. The team creates a minimum viable

product (MVP) to experiment and identify the best possible solution. This is an

iterative process where several inexpensive prototypes are created.

22

5. Test – They say at the Stanford d.school, “Prototype to see if you are right and

test to see if you are wrong”. In this stage, prototypes are tested with real

customers, and feedbacks are collected for betterment.

While design thinking practice is considered an important one by different industries,

it is still new in the software development industry, especially with Agile [27]. Both

Agile and design thinking are iterative in nature and focus on customer satisfaction.

While Agile software development promises project success, a lot of software still fail

[27]. Although all the methodologies (Scrum, XP, Lean, Kanban etc.) under Agile

provide different ways to develop software, manage the development of the software, and

values the customer, there are still software failures. Using Design Thinking, software

can be saved from failing simply by connecting with the customers and knowing their

needs better. Understanding and meeting the end users’ expectations are the main factors

eto ensure software success . Thus, design thinking is a strong tool to effectively solve

problems and can be used with Agile software development [28].

Throughout this study, we will discuss several methods used for different stages of

design thinking while also seeing how Agile Manifestos and principles support design

thinking framework.

Unit II

Empathize

Introduction

Empathy is the heart of design thinking process. It is the ability to understand the

person in front of you and share their feelings [29]. In a normal company set up, teams

spend hours trying to brainstorm innovative ideas on a whiteboard without paying

attention to customer problems. These teams hardly connect with the customers to know

what would satisfy them or if the customer will use the product they are developing.

23

Teams often end up getting small survey feedbacks from customers to evaluate user

experience. No doubt, this will help but not completely. Customers are hard to predict,

they might say yes to whatever is asked in order to save their time and the developers.

Discovering the customer and his needs is the foundation of design thinking. By

practicing empathy, the customer’s situation is seen from the customer’s point of view.

Good empathy will provide a whole new perspective about the customer and his needs

[30].

Interviewing the customer

By interviewing the customer and asking what they need upfront is not going to

tell what they need. If the customer is asked – is that what you needed? Do you like it?

The customer probably will say yes simply because they wants to save time. Customer

know that if they say no then there are several other questions waiting for them in line.

It is best to interview the customer in person, but this can be done over a phone

call or video chat. Interviewing the customer in person helps observe them while they are

in their “everyday experience.” Observing the customer helps to see if what they say they

do is actually what they do or not do. Observing the customer’s body language, tone of

voice, and reaction reveals a lot about the customer. Interviewing this way helps to focus

on the subconscious aspect of the user. This helps the team uncover the differences and to

propose unexpected yet innovative, meaningful solutions to their problems [31].

• The very first step to conducting an interview is to create an interview guide.

Asking straight questions to the customers should be the least priority.

• While some questions only reveal irrelevant details, others would provide great

insight about the customer.

• It is always good to have one person for asking questions and other person for

taking notes so that you can reflect back later and discuss.

24

• Ask “when was the last time” and “what are the five things” questions more. This

will get the customer to give long answers which definitely would be useful.

• Try to explore emotions like “how do you feel” or “what do you think about”

[32].

• Don’t forget to go deeper. Try to explore their motivation and emotions by asking

“why?”

Personas vs Persona

To make valuable software that is successful, it is important to understand the

customer and understand what really matters to them. Personas is an effective tool. It is

nothing but a simple humanized description of the customer. It helps to understand goals

and behavior of the users. They also help to make a better product, write better user

stories, run better Lean startup experiment, and facilitate collaboration. Apart from this,

personas help in developing a better hypothesis. Personas are created by interviewing the

users. A persona should have the following four fundamentals – a name, screener,

description, and perspective. The name should be a real name like Andrew the driver and

Laura the florist. Next, always starting with a screening question helps to identify the

subject. Example: for “Laura the florist,” ask a question like “How many flower orders

have been completed in the last five months.” Ask descriptive questions like who the

persona is and what keeps them motivated. Focus the perspective of a persona using

empathy maps. What the persona thinks, feels, sees, and does helps to focus on the

perspective.

It is desirable that a persona be vivid, testable, and durable for weeks, months and

even years. If a persona is not testable or is vague, then it means it is not written

correctly. Usually a persona is written in a generalized manner. An example of a bad

persona is provided in Figure 4.2 –

Jeffery, the father

25

• Men

• Age 35-45

• Goes to work

• Has kids

• Active on social media

• 50% said they said want to be more organized

• 70% said they would use the application to become

more organized

The persona in Figure 4.2 is a generalized one. It does not really tell exactly what the

customer wants.

So how do we know if our persona is good enough? A good persona always tells a

story. Goodness of a persona can be determined by using a REACT list. REACT is Real,

Exact, Actionable, Clear, and Testable. An example of a better persona is provided in

Figure 4.3–

Adam the father

Adam is a software engineer and a single parent

to his three sons. He is a successful engineer with a

handsome salary. He manages to be spend quality time

with his sons in spite of his busy and hectic schedule. He

goes cycling with them every morning and swimming

every weekend. He says being a single father is a job.

While he is both a good engineer and a good father, he

wants to be his best at his both jobs. He wants to be

organized and keep in touch with other single fathers to

Figure 4.2

Google Image of a Person

Figure 4.3

Google Image of a Good

Persona

26

know how they are doing. He likes to socialize and is active on both Facebook and

Twitter.

The example Figure 4.3 has a name. The use of full name helps with vividness.

The use of full sentences shows the detail of the persona. It is also desirable to use a real

picture of the persona. This persona is real because it talks about a real father and its

desire. It is exact and actionable. It is also testable. A good persona helps you make

decisions and design ways to test whether you are producing something valuable or not.

Empathy Maps

Creating an empathy map is another way to gain empathy from the customer; like

user personas. It helps gain deeper insights of the customer and their needs. What the user

thinks, sees, feels, or does is uncovered by using empathy maps. Empathy maps have the

following structure, shown in Figure 4.4 [33] –

Figure 4.4

Design Thinking Framework

27

Thinks

Using “think” the team can examine what the customer thinks about the present

situation and what does he think should change. A few example questions that might be

asked are

• Tell me about your work.

• Tell me about a few things you find hard at your job.

• What would be the one thing you would change out of those things you find hard?

Example of Laura the florist:

Laura thinks the cancelation of orders should be more organized to avoid last

minute cancelations. She wonders if there is a better way to know if the customers want

to cancel the order before ordering them in bulk. This is important to her because this

would save her time and save her unnecessary business deals, which involve losing large

a initial deposit amount.

Sees

“See” is a description of how the persona arrived at that point of view, which was

discussed in “think.” Few example questions that might be asked are

• What do others do?

• Who do you think is doing it right?

Example of Laura the florist for see:

Laura sees that a lot of big orders are mismanaged. She sees her friend who works at

another place has more staff to manage big orders. Sometimes, due to many big orders

coming in, she has to work overtime.

Feels

“Feel” is emotional thoughts of the persona regarding his job. Few example

questions are

28

• Tell me about the last time…

• What motivates you? What is the most rewarding thing and why?

Example of Laura the florist for feel:

While doing her overtime job to manage big orders, Laura feels angry and feels

that the company does not care about her. She feels that the company should pay her

more for the hard work she is doing.

Does

This part is an important one. We really want to know what the persona does and

how much he/she does it. Questions that might be useful here are

• How many hours did you work last week?

• How many customers did you attend?

• How many orders did you take?

Example of Laura the florist for does:

Laura typically completes 5 big orders and 10 small orders in a week. Last week

she has outdone herself by completing 7 big orders and 15 small orders.

Consider another example of Sierra who is a marketing manager and wants to buy

a mobile phone for the first time. An empathy map for Sierra would look like as shown in

Figure 4.5 –

29

Customer journey maps

Customer journey maps are another tool that can be used to better understand the

customer. They define a process, a customer journey to achieve a particular goal with the

organization. They can be used for reference by the entire team or can be used to make

decisions. It is one of the best ways to visualize how the customer would react to a

particular business [34]. It is a strategic tool, which is good for capturing and presenting

customer goals, desires, reactions, and pain points. [31]. As mentioned earlier, it helps the

organization collaborate and make collective decisions. It helps to unfold complex

customers and helps the team make sound decisions and investments. Several names of

customer journey maps exist, such as customer journey, journey map, and experience

journey [28]. In simple words, customer journey maps are a series of touch points or

emotions that a customer will experience while engaging with the application. There are

several templates that exist. Below in Table 4.2 is a simple example of customer

sequence of trying to book a table at the restaurant through placing an order [35]. Notice

Figure 4.5

Empathy Map for Sierra who wants to buy a mobile phone

30

how the emotional aspect of the customer’s journey is also presented in the picture. The

example is adapted from Colin Shaw and John Iven’s book named Great Customer

Experience [35].

31

Table 4.2

Customer Journey Map Example

STEP BOOKING TRAVEL ARRIVE

AT CAR

PARKING

ENTER

RESTAURANT

PLACE

ORDER

EXPECTATION They will

have

availabilit

y for me

I can see

several

forms of

directions

I will get my

car parking

easily

They will attend

me with smiles

They had

several

choices on

the menu

THREAT They are

completely

booked

Customers

have hard

time finding

the

directions

The parking

is completely

full

They were busy

and did not have

time for me

They did

not have

whatever I

liked

OPPORTUNITY

TO EXCEED

PHYSICAL

EXPECTATIONS

They had

my details

from the

last time

and also

had what I

ordered

The

restaurant

has sent me

details

about their

directions

They have a

reserved

parking for

me

They upgraded

my table to the

city view rooftop

table

Chef

himself

suggested

me his

best seller

item on

menu

OPPORTUNITY

TO EXCEED

EMOTIONAL

EXPECTATIONS

The staff

remember

ed me and

remember

ed what I

ordered,

wow!

Menu looks

great, I am

excited

They called a

valet to park

my car,

wow!

They

remembered me

and greeted me

They

remember

ed my

order from

the last

time and

got me the

same thing

EMOTION

INVOKED

Surprise,

feels cared

Excitement,

they care!

I feel special I feel happy I feel

cared

32

Suggested game for teaching empathy to students

Making breakfast for grandparents

This is a simple game to teach empathy to students. The scenario is – imagine you

have a visitor; your grandparents for the weekend and you have to make a perfect

breakfast for them. You know they normally like eggs. What is not known is how they

would like them prepared – omelet style, fried, boiled etc. By using empathize of design

thinking process what they would like can be known. Here the teacher can act as a

grandparent of students. Students can be divided into teams or can play individually.

Students have to empathize with the teacher to know his or her needs better. They can

interview the teacher and create any of these– empathy map, persona, or customer

journey map. Approximaetly30 minutes are needed for this game. Students can use first 5

minutes to brainstorm and create questions they will be asking. They can interview the

teacher for 10 minutes and spend other 15 minutes creating any of the above tools. This

game is adapted by Stem Family Games available on [22]. This game by Stem Family

does not provide any example solutions. It uses interviewing and brainstorming to

demonstrate the entire Design Thinking process. In this study, this game is used to

concentrate only on the concept of empathy and different tools are used to gain empathy.

An example solution is also provided below.

Before creating any empathy map, persona, or customer journey map, grandfather

is interviewed. The following questions can be asked –

• What do you do as soon as you wake up?

• What does grandmother do while you are doing that?

• What time do you wake up?

• What are three things you like about being a morning person?

• Does it bother you if you wake up late?

33

• Do you help grandmother while she is preparing breakfast?

• Do you like broccoli or any other vegetable served along with your eggs?

• How many eggs do you think would keep a person full for the next 3-4 hours?

• Do you like any juice or coffee served with your breakfast?

• By what time do you think you should finish your breakfast and get to work?

• How do you feel when you visit your son and when breakfast is served by him?

Assuming the answers, an empathy map is prepared as an example solution found in

Figure 4.6. However, personas or customer journey maps can also be used. By the

empathy map below, we understand that grandfather is health conscious. We see that

grandmother understands this and tries to use fresh vegetables and olive oil along with

two whole eggs. Through the empathy map below, we understand that grandfather likes

to have toasted bread along with his eggs and prefers fried eggs with onions and

tomatoes. He feels excited and nervous at the same time because today, the breakfast is

served by someone else and not by grandmother. We understand through the empathy

map that grandfather feels hungry as soon as he wakes up. We do not know if he can

make breakfast for himself but we know that he likes to wait for grandmother. He does

not like to disturb her while she is sleeping and tries to help her out by getting other

things ready like cutting vegetables and toasting the bread. They also like to work as a

team.

34

Empathy map –

Figure 4.6

Example Empathy Map for “Making Breakfast for Grandparents”

Relation of Agile to the Empathize stage

This stage (empathize) of design thinking completely supports one of the Agile

Manifesto – “Customer collaboration over contract negotiation.” This statement is one of

those pillars that has built the foundation of Agile Manifestos. In order to develop

software that is acceptable by the customer and that meets customer requirements, regular

communication with the customer is important. It is the key to create a great user

experience. The empathize stage of design thinking is doing the same thing. Just like

Agile, this stage involves the customer to gain insights about their needs, problems, and

requirements early in the development process. It supports face-to-face communication

with the customer and also brings all the team members together as a team. Agile

believes in bringing the business people and the developers together and creating self-

organizing teams. Empathizing with the customer is not just the designer’s job but it is

35

desirable for all the members of a team to self-organize and communicate with the

customers and communicate within the team. Creation of personas, journey maps, and

empathy maps encourage communication within the team and helps the team connect by

making decisions together. The team becomes stronger and better as they continuously

communicate and listen to each other while making decisions about their customers.

They learn to value each other’s decisions and also learn to value their customer. Hence,

the empathize stage of design thinking completely supports Agile Manifestos and

principles.

Unit III

Define

Introduction

After collecting stories and insights from the customer, the next step is defining

their problems in a formal way. This step is about reframing the problem to create

innovative solutions. It gives an opportunity to synthesize the problems discovered and

come up with a problem statement [30]. These problem statements are meaningful and

actionable in nature. Before understanding how to define a problem in the right way, let

us gain an understanding about what is analysis and synthesis. Analysis is breaking down

problems into smaller pieces, making it easier to understand the constituent. However,

synthesis is bringing small pieces together to make a big picture. An example of analysis

can be the empathy stage where a lot of information about the customer is gathered and

then broken down into pieces to focus on specifics. An example of synthesis is the define

stage where we try to make sense of the data we have gathered in order to make a

problem statement [36, p. 2]. Good design thinkers often first analyze the problem to

synthesize and later analyze it. A good problem statement should be broad enough to

have innovative solutions and it should be narrow enough to be manageable.

36

4 W’s and 5 Y’s

After researching the customer, questions having 4 W’s (who, what, where and

why) and 5 Y’s (why is the customer, why has the customer, why hasn’t the customer,

why doesn’t the customer and why is it a problem) should be asked. These questions help

to understand if you can move on to the next phase of design thinking – “the define

stage”.

Epics, user stories and child stories

User stories help to create a good user experience for the user. They help to define

the user needs in achievable goals. They have three clauses – epics, stories, and test

cases. Epics are larger user stories, which are eventually broken down into child stories.

For explaining epics and child stories, let us take an example of organizing a party.

Organizing party is the epic here and the child stories for this could be - first create a

guest list, decide on a date and time for party, call all guests to inform them, prepare food

according to number of guests, and host the guests. Creating personas and user stories can

help the team to debug problems if there is something wrong with the software, if it

comes out to be a wasteful product, or if nobody uses the developed product. The format

of a user story is as follows –

“As a [persona], I want to [do something] so that I can [realize a reward]”

Here “persona” is a humanized description of a user, “do something” is the goal

that the user wants to achieve and “realize a reward” is a testable statement to know if the

user has achieved his goal. The realizing a reward is the most important clause of a user

story and should not be ignored.

An example of a user story can be – “as an online shopper, I want to compare

prices of products so that I can buy things for the best price”. The child stories for this

user story would be –

37

Child story 1 – “as an online shopper, I want to browse multiple options of same category

so that I see what options are available”

Child story 2 – “as an online shopper, I want to compare two products of same category

and different price so that I see which one is cheaper”

Every user story should be testable and must have important details. A user story

must be broken down further into child stories if the story is not immediately actionable.

Testing user stories

For making a product successful, it is important to see two things – motivation

and usability. Often software companies are so focused on usability that they forget about

the motivation. They see that the product must provide good usability to the user, but do

they think that the customer will use the product over his current alternative? That’s the

motivation that is needed to be focused on along with the usability.

By usability tests on user stories, only the actual usability of the product is tested

without considering the customers motivation to actually use the product. The product

may work fine, but that does not mean the customer will use it. These tests are designed

assuming that the user is already motivated. It always helps if the test cases are written

along with the child stories. For this, consider previous example of online shopper –

Epic story –

As an online shopper I want to compare products so that I can buy them for the best price

available

Child stories and test cases –

38

Table 4.3

Example of Test Cases for Child Stories

Child story Test cases

A) As an online shopper, I want to browse

multiple options of same category so that

I see what options are available

Make sure it’s possible to search by

category

Make sure descriptive information appears

to avoid confusion of options

… …

D) As an online shopper, I want to

compare two products of same category

but different price so that I see which one

is cheaper

Make sure that prices of each item appear

Make sure the website compares prices for

the customer

Table 4.5 helps the team to stay organized and focused. As the team keeps completing

each child story, testing of user stories is carried out simultaneously.

INVEST

Writing good user stories comes with time and practice, but one way to write a

good breadth of the user stories is by using the INVEST acronym. The full form of

INVEST is Independent, Negotiable, Valuable, Estimable, Small, and Testable. These are

a set of questions asked to determine the quality and breadth of the written user stories.

Are the user stories independent? Each user story should stand-alone without dependence

on others. If they are independent, they can be completed in small iterations and can be

worked upon spending a good amount of time on each one. By negotiable, it means that

the user stories are not requirements. They can be used for communication between the

team members and changes can be made when better ideas come up. User stories should

39

be negotiable between collaborators. They are meant to be valuable to the customers and

to the development team when they are translated. Are the stories estimable? If the

stories are estimable that means they are small enough to work on. If they are not

estimable then it is an indication that the user story needs to be broken down further. User

stories being estimable leads to “small” acronym of INVEST. Are the user stories

testable? For every user story written, tests must be written. Writing functional stories in

advance always helps the team.

MoSCoW

MoSCoW is a method used for prioritizing user stories. It stands for – [37] …

M – Must have this

S – Should have this if at all possible

C – Could have this if at all it does not affect anything else

W – Won’t have this time but would like it in the future

Requirements that are in the MUST section must be included in the current

delivery time box in order for the product to be successful. The SHOULD haves are those

which should be included but are second in the list. They are critical to success but can be

done after MUST haves are completed. The COULD haves are less critical and good to

have. The WON’T haves should not be included at that particular time [38].

Point of View (POV)

The problem statement that you create in the define stage of design thinking is

through POV. It is an actionable problem statement that will derive the rest of the design

work. There are 3 main elements to POV – user, need and insight [30]. Three questions

are answered in a POV – Who is your user? What is their unmet need? And why is this

insightful? A good POV [30]

40

• Should focus on the problem and state it clearly

• It should inspire the team

• It should help the team to make decisions according to their high-level goals

• Capture the hearts and minds of the customers

Consider an example of a technician who says – “I am a technician and I hate getting

stuck in the traffic as I get paid hourly, I feel it eats up my time which I could use for

work”.

The POV statement could be – “How might we create a way for this technician to

avoid traffic and use that time for working peacefully?”

Notice how this statement has all the three elements of POV – user, need, and insight.

Here the user is the technician, his needs are he wants to more money than he is making

now and from this we gain an insight that the traffic is affecting his work hours. The

amount of time he spends in traffic can be used to work and make money.

Relation of Agile to Design stage

Agile Manifesto states that it gives priority to individuals and interactions over

process and tools. While several tools are available to get things done, Agile gives

importance to interactions and individuals. Collaboration on different levels to focus on

details can help the team to create great user experience. By asking questions of each

other, new dimensions of a problem can be discovered. New ideas and new insights are

always welcomed in an Agile environment. The same goes with the define stage of

design thinking. Teams come together to discuss and discover customers. They together

create POVs and user stories. Together, they try to think from the perspective of the

customer. New insights and new needs are discovered by communication within the

team. In define stage, continuous attention is given to the customer needs in order to

create good design. Out of twelve Agile principles, this one principle discusses how

41

continuous attention to useful design and technical excellence enhances agility. In a way,

the define stage of design thinking totally supports Agile and strives to enhance agility by

trying to create a good design.

Unit IV

Ideate

Introduction

Ideate stage is a simple and fun stage of design thinking framework. It should be

remembered that this stage should be done only after you understand the customer and

their needs. This phase is all about unleashing the imagination and designing creative

solutions for solving the defined problem [4]. Brainstorming, storyboarding, and mind

mapping are different techniques that can be used to carry out the ideate phase. Good

definition of the problem leads to good ideation phase. The team should follow the,

“there are no bad ideas,” policy through this stage. The team is not trying to find any

“correct answer” here, instead they have fun and use their creativity. A broad perspective

can be gained by involving several team members from different departments in an

organization. It is always good to have several good items on list rather than focusing on

one great idea. If that one great idea does not work during the prototype phase, other

alternative ideas that were brainstormed during ideate phase can be considered.

Storyboarding

Storyboarding is an effective design tool that helps the team visualizes what the

user wants. It helps to predict a user’s experience with the product. It enhances the user

experience by visualizing how the user will interact with the product. Apart from that,

storyboarding is a good communication initiator with team members, and it pushes them

to stay creative throughout the process. Through this process the team members should

42

think about what is necessary and, in enough detail, rather than to overdo their thinking

process.

As an example, consider Mac who is a software engineer. He is a busy person and

hardly finds time for shopping. He chooses to shop online as it is more convenient for

him. He wants to order a new phone for himself. Mac sees that the website has many

options available, but the website does not compare prices for him. We suggest creating

an application which will compare prices for him from all the website he is viewing and

provides him the best deal.

Storyboarding of this example in before and after situation are depicted in Figure

4.7 and Figure 4.8 respectively –

Figure 4.7

Storyboard Showing Before Situation

43

Figure 4.8

Storyboard Showing After Situation

The Storyboardthat.com tool was used to create these storyboards. It is a free

online storyboarding tool.

Once the before and after storyboarding situations are completed, the stories can

be then broken down to describe them in detail and take notes. Each scene in the

storyboard should be broken down as one and notes should be taken on them. Let us

again look back at the Mac’s example. Table 4.4 and Table 4.5 below show Mac’s

example of storyboarding along with notes.

44

Table 4.4

Storyboard Showing Before Situation with Notes

Notes Board

Mac the software engineer is looking for

a new phone because he bought his old

phone 5 years ago and needs an update.

Since he is busy with his work and

hardly finds time to go shopping, he

decides to checkout new phones online.

He checks out IPhone XR at the

phones4u.com website but sees that he

has to scroll and go back again and

again to compare prices and features of

other phones with the IPhone XR.

He notices that the website does not

compare phones for him. Due to lack of

time, he just goes with IPhone XR.

45

Table 4.5

Storyboard Showing After Situation with Notes

Notes Board

Mac the software engineer is looking for

a new phone because he bought his old

phone 5 years ago and needs an update.

Since he is busy with his work and

hardly finds time to go shopping, he

decides to checkout new phones online.

He checks out IPhone XR at

phones4u.com website. He sees that by

using the comparison tool he is able to

compare phones of his choice. The tool

also gives him best deals by auto

comparing bestselling phones on the

website.

He sees a better deal which saves him

$200 and orders a Samsung Galaxy A9

for himself. This has helped him get a

better deal and saved a lot of his time.

46

Brainstorming

There are no steps for brainstorming. All you need is paper, pen, people, and their

ideas. It is important to know the aim of the brainstorm session. The team should try to

make each other comfortable and tell each other that they are not going to judge anyone.

As mentioned earlier, there is no such thing as a “bad idea”. Every out of the box idea

should be honored and must be written down at least as a future consideration. It is also

considered as a collaborative activity, which brings the team together for innovation [39].

Try to keep the obvious solutions aside, remember the team has to think out-of-the-box.

Try to set time boxed sessions, which helps to be quick and innovative. Brainstorm

session games would elevate if it has a facilitator who keeps asking the team questions

like, “how about this”, “how might we”, or “how do we do this the other way”. The team

members can encourage each other by building their ideas on other member’s ideas. After

the brainstorming session, the team votes for a good idea to start with. Other ideas can be

honored by keeping them on the future consideration list.

Mind mapping

Mind map is an excellent tool for visualization or imagination. It is a map, which

talks about the idea without having much text included. All it has is pictures, colors,

arrows, and keywords [40]. They can be used to convey complex information in a very

simple way, using figures, tables, or charts [41]. In mind mapping, a series of ideas are

created in a tree like structure, which has branches and sometimes even sub-branches.

During ideation phase, mind mapping can be used as another technique to visualize the

idea that the team has decided to move forward with. Any keyword related to the problem

statement can be placed in between and branches can be built surrounding that keyword.

The mind mapping activity can be done as a team together or can be done individually

and later merged together. They are great for organization, communication,

47

brainstorming, and for discovering connections between different things. They can be

used for anything from a technical mind mapping to a very informal one. Let us consider

a simple example of mind mapping a dinner party menu (Figure 4.9).

The example in Figure 4.9 has two levels of mind mapping. The first level has

“starters, main course and deserts”. The second level has the dishes in each of starters,

deserts, and main course. However, a mind map can have any number of levels.

Relation of Agile to Ideate stage

Agile software development encourages developers to build software around

motivated individuals. Individuals in a team can be motivated if they are allowed to speak

their minds out. Their confidence level increases immensely and they get a sense of

contribution towards the project they are involved in. Agile suggests providing an

Figure 4.9

Example of Mind Mapping

48

environment and support to the team members where the team members can collaborate

and trust each other to get the job done. Ideate phase of design thinking attempts to

provide a similar environment to the team members. It in builds enthusiasm and

encourages team members to speak out without being judged. By brainstorming, mind

mapping, or storyboarding, team members get a chance to trust and respect each other’s

ideas. They learn to honor the other team member’s ideas. Agile and ideate phases of

design thinking both support innovation in order to create good products for the

customer. Satisfaction of the customer is the first priority for both Agile framework and

design thinking framework.

Suggested game/activity to teach students about Ideate stage of design thinking

Back to High School

This activity is an individual activity where students would need a paper and a

pen. A scenario is given to them, which states – “Go back to your high school memories.

What was that one problem you faced while you were in your high school and could

never solve ? Brainstorm five ideas you would use to solve that problem. Ideas can be

crazy and will never be judged. Based on one best idea, create a storyboard.”

This activity requires an estimated total time of 20 minutes. Five minutes can be given to

students to brainstorm 5 ideas, and another 5 minutes to create a storyboard for one best

idea. The 10 minutes resting period can be utilized to discuss these ideas with the entire

class. This activity is adapted from Stanford d. Schoolgrand [23].

Unit V

Prototype

Introduction

After the Ideate stage, next is the prototype stage. This stage is entered with

several good ideas that are expected to work. The ideas should be selected based on the

49

quality and every idea will have a prototype to be developed. Ideas should be organized

and sorted according to do-ability. Prototyping does not mean creating lines of code to

develop a smaller version of your bigger application; it can just be something with the

least minimum resources to test if that will be used by the customer. A minimum viable

product is developed in this stage. Prototypes are taken to the test stage for testing

customer’s motivation. An example of prototyping is given below.

There are students who want to share their skills with other students at the

university and they need a platform to share their work as well as record it in an

organized manner. Currently, they exchange links through Whatsapp or use Skype to

share their skills with other students who are interested and use Google docs to record

their work for future use. But if we offer them an application that allows them to share

their work as well as store it then we will observe that the students will use this

application and also share it with other friends at other universities.

For example, taking the previous student skills example, a concierge MVP can be

- being on Skype with the students recording what they speak, organizing the links and

documents they share, and posting it in a group email. This does not require any line of

code but we get the results. We see if the students like what we did, if doing this made

their work easier or not. Here a person does the job of an application. It is the cheapest

prototype with minimum and available resources. The idea in prototyping phase is to

avoid developing waste applications that nobody would use and to test ideas early in the

process.

Types of Prototyping

Prototyping is generally divided into two types [42]. Low fidelity prototyping and

high-fidelity prototyping. Low fidelity prototypes involve those prototypes, which are

developed using very basic, inexpensive and minimum resources. Storyboarding is an

50

example of low fidelity prototype. High fidelity prototypes are the prototypes, which look

closer to the finished product but are not finished product itself. Example, a 3D view of a

house under construction is a high-fidelity prototype. It can also be a very initial version

of software with a few lines of code. It is always advisable to build from the perspective

of the user. The easiest and the most used type of prototyping is low fidelity.

KANO Model

The KANO model was developed at the Tokyo Rika University in 1984 [43]. It

was developed for achieving customer satisfaction. It divides the software attributes into

several categories for delighting and exciting the customer. It classifies the customer

requirements into 5 categories – indifferent attributes, reverse attributes, delight

attributes, basic attributes, and performance attributes. The KANO model can be used

while in the prototype stage to achieve customer satisfaction. Reverse attributes are those,

which are supposed to be avoided duirng the development of the software. Adding these

attributes will result in customer dissatisfaction. Example, adding a feature to store

customer credit card details even when the app has nothing to do with buying or selling

goods. Indifferent attributes are those, which add no value to the software. Adding these

attributes will have no effect on the user or software. Example, coloring of buttons. Any

color or any most commonly used color can be used. it does not matter to the customer

unless specified by him. Basic attributes are those, which should be on the application.

Not having them will dissatisfy the customer. Example, having a payment option for a

shopping application. Customer might not mention these attributes but they are very basic

and must be included. Performance attributes are those for which the customer is paying

us. These attributes will result in immense customer satisfaction and cannot be missed.

Example, HD video on Netflix. Delight attributes are those, which cause customer

51

satisfaction when implemented but does not matter if they are not implemented. Example,

giving free t-shirt on first purchase with the application.

The KANO model can play a role while prototyping. Its attributes can be used to see

what matters to the customer and what can create delight for the customer. Keeping those

attributes in mind, a prototype can be developed.

MVP

The team needs to be creative on how they can get the results with fastest and

lowest possible efforts and cost. Sometimes the team would not even need to build

anything, not even a single line of code. The results can either prove or disprove the idea.

This is called as an MVP (Minimum Viable Product). An MVP is not the first version of

the product; instead it is a ‘proxy’ of the product. The whole point of MVP is to avoid

waste so that time or effort is not wasted in building something, which no one wants or

something which nobody is motivated to use. Below are three different types of patterns

that the MVP uses

• The concierge MVP – in concierge MVP, an experience for the user is created. It

does not require any line of code but results are guaranteed.

• The wizard of Oz MVP – in this, customer experience is shown or faked.

• The sales MVP – the idea here is to see if the customer buys product before even

the team actually has it. For example, using a response rate or sign up from the

emails to see if the customer is interested. Unfortunately, this MVP does not give

much depth on the motivation of the customer.

Few big companies like Dropbox and Zappos have used Lean and MVP concept

[44]. People in those times were still not used to buying products online. An observed

problem scenario by Zappos was their persona could not find the shoes they wanted at the

local shoe store, they did not have the time to go out and explore, and were frustrated. An

alternative that their persona used was to wait until he has time to go to a bigger market

52

or mail the order. The value hypothesis that Zappos came up with was - make shoes

available online so that people do not have to come to the store and make their user

experience better so that they come back again whenever they needed new shoes. For

this, Zappos made an agreement with local shoe store, put up pictures online on a very

basic site and waited to see the response. As soon as they got an order, they went down to

the store, bought it, and shipped it to that person. The point here was to see if people

would really used what they created, if they really needed something like this, or is it

something valuable to them.

Relation of Agile to Prototyping stage

Agile is a software development methodology, which is responsive to changing

customer needs. Customer needs are never the same. The market keeps changing every

other day. one of the biggest reason Agile methodology was chosen over traditional

methodology was because it was responsive to changing customer requirements. The

prototype stage of design thinking is also responsive to the same. While prototyping, if

the customer decides to change the requirements then those changes are welcomed. This

can be done at any stage of design thinking.

Agile prefers working software over comprehensive documentation. By

developing MVPs in the prototype stage, the team has something to show the customer,

other than just mere documentation. It may be something, which is not valuable to the

customer but it probably will result in customer satisfaction later in the development

process. Through the prototype stage, we try to understand if the customer is really going

to use the proposed solution over the present alternative. Agile practices like KANO can

be used to attain customer satisfaction in design thinking framework. Hence, both

AgileAgile and prototype stage of design thinking support the same ideology.

53

Suggested game/ activity to teach students about prototype stage of design thinking

Spaghetti and marshmallow exercise

This exercise is adapted from Stanford d.school [24]. In this exercise, students

have to develop a tower using very basic and simple resources – spaghetti, tape, string

and a marshmallow. The estimated time required to complete this task is 10 minutes. This

activity is a group activity where each group should use a minimum amount of spaghettis

and one marshmallow to make their tower. After 10 minutes, the teacher should examine

which team used the least number of spaghettis and also has the tallest tower. Debriefing

after the exercise can be done by asking students what they found difficult in the exercise

and how they could relate this to prototype stage of design thinking.

Unit VI

Test and Design Sprints in 5 Days

Introduction

This stage is the last stage of design thinking. By this point, it must be clear that

design thinking framework does not need to be followed as it is. It is an interactive and

incremental process. If there is a need to iterate the prototype stage then the team can

freely do that. Same goes with every other stage. All the prototypes that are being

developed in the prototype stage are tested in the test stage of design thinking. It is best if

the team tries to get at least two to three prototypes to test stage. If after the test stage, the

team discovers that the user does not like the proposed solution then they can go back to

carry out the process again and determine where they went wrong.

Usability testing

It is desirable that the prototype is tested in a time boxed session and tested it in

the environment in which the user will actually use the prototype [4]. There is more in the

testing phase than just getting customer feedback on a survey form. The team needs to be

54

present while the prototype is being tested as this will help the team members to observe

the reactions of the user. Getting a simple feedback from the users normally does not

yield actual results. The customer is smart and knows that if he or she answers a NO in

the feedback then they will have to answer several other questions. This does not mean

that one should not use feedbacks. Feedbacks can work great if clumped with observation

of reactions. Hence it is good to have the customer and observe their reactions. Here, the

team is not just testing the prototype but they are also testing if the user is motivated

enough to use the proposed solution. There are three stages to usability testing. Those are

–

• Exploratory test – this is the first stage of performing the usability test. Here, the

team tries to figure out which testing approach fits best for a particular application

• Assessment test – during this phase, the team creates a rough functional space of

the selected approach

• Validation test – this phase is where the team bring in the users, times the process

and records their reaction.

Customer experience with the prototype along with its feedback should be recorded.

Getting negative feedback from the customer is a good way to learn more about them and

give your best again.

Design thinking sprint in 5 days

Now that all the concepts are clear, how are these concepts going to be used in a

design thinking sprint of 5 days? Starting with an unknown customer on Monday, the

team can finish a design thinking sprint on Friday with a tested prototype in hand. These

sprints do not need to be followed as it is, they can be customized according to the needs

of the team or the software being build. A suggested way to carry out these design

thinking sprints is given below:

55

Day 0 – preparation day

Monday – empathize stage

Tuesday – define stage

Wednesday – ideate stage

Thursday – prototype stage

Friday– test stage

Day 0 – this day is the preparation day. By this day, the team should have a list of

customers who are ready to be interviewed. It is preferable to have those customers who

are going to use the developed software directly. It is also preferable to have more than

one customer to gain a better insight. By this day, the team must know all their concepts

better. A checklist can be prepared by the team to see if they are on track. An example of

checklist is provided in Table 4.6

Table 4.6

Example Checklist for Day 0

DONE? ITEMS

 Slides?

 Room?

 Sprint guide?

 Supplies?

 Screen sharing?

 Subjects?

 Google Docs?

 Emails to Subjects?

56

Slides having all the concepts well written can help the team to go back and brush

up when needed. As these sprints do not only have the design team working, but will also

have different members from other teams. A room with comfortable environment can

help the team to be motivated. A sprint guide having all the details about the upcoming

sprints can also be helpful. Screen sharing is optional. The team might need screen

sharing while they are storyboarding or developing high-level fidelity prototypes.

Subjects are the customers. As mentioned earlier, the team should have their customers

ready and those customers should be emailed about agreed meeting time. Google Docs

are needed to document the entire sprint and to reflect back if needed.

Monday – today is the first day of the sprint. Before starting this sprint, the team

should have the list of customers ready. They should have carried out preparation day 0.

Today, the team strives to discover the customers by interviewing them, creating

personas, customer journey maps, and empathy maps. Interviews with the customer

should be timed. It is suggested to prepare the interview questions before hand and to do

a mock interview with the team so that they can discuss and come up with new questions

that would gain more insight about the customers and their needs. During the interview,

the team records the answers and the reactions of the customer. After the interview, the

team sits together to draft customer personas. Personas can be drafted as a team or by

every individual in the team and converge it later. The next step is to prepare empathy

maps and customer journey maps to unwind what was observed and learned about the

customer. Every activity can be timed as shown in Table 4.7.

57

Table 4.7

Example of Timeboxed Activities for Empathize Stage

MIN ACTIVITY

90 Revision of concepts

15 Draft personas in pairs, individually or as a team

20 Converge personas

10 Discussion on drafting personas

15 Create Empathy map

10 Discussion on empathy map

15 Create customer journey map

10 Discussion on customer journey map

Tuesday – by today, the team knows their customer well. The team asks 4 W’s

and 5 Y’s questions to cross check their understanding of the customer. Now it is time to

define the customer needs in a formal format so that the team can comes up with good

ideas to solve their problems. The team writes all the problems in a user story format and

creates a POV (point of view) of customer needs and insights. User stories can be

prioritized using MoSCoW and see if good user stories have been written using the

INVEST acronym. Activities can be time boxed as shown below in Table 4.8.

58

Table 4.8

Example of Timeboxed Activities for Define Stage

MIN ACTIVITY

10 Revision of concepts / 4 w’s and 5 y’s

10 Draft user stories

20 Discussion and converge

5 INVEST acronym

20 MoSCow to prioritize user stories

20 Create POVs

20 Discussions, review, compare and update

Wednesday – since the team knows the customers and has their needs are defined

in a proper format, now is the time to come up with ideas that could solve their existing

problems. The team gets together to brainstorm the ideas and create mind maps and

storyboards of the ideas selected. Following in Table 4.9 is an example of how the

activities can be time boxed.

59

Table 4.9

Example of Timeboxed Activities for Ideate Stage

MIN ACTIVITY

10 Revision of concepts

15 Brainstorm ideas

20 Discus ideas

20 Rank ideas

20 Crate mind maps

20 Discuss and converge

20 Create storyboards

90 Discussion

Thursday – the team has top ideas on the list and now is the fun stage of

prototyping these ideas. Ideas from previous day are prototyped to test the customers

motivation. An example of time boxed sessions for this day is shown in Table 4.10.

60

Table 4.10

Example of Timeboxed Activities for Prototype Stage

MIN ACTIVITY

10 Revision of concepts

15 Brief discussion on idea 1

20 prototype idea 1

15 Brief discussion on idea 2

20 Prototype idea 2

15 Brief discussion on idea 3

20 Prototype idea 3

90 Discussions on how to carry out next day

Friday – today is the final day of the design thinking sprint. The team members

meet the customer again to test their prototypes and also to test if the customer is

motivated to use their proposed solution over the present alternative. As mentioned

earlier, it is desirable to allow the customer to test in the environment they will be using

the actual software. Remember to time box the tests. If the ideas work well with the

customer then the team moves to building of software else the team goes back to find

where they went wrong.

Relation of Agile to test phase of design thinking

Agile has methodologies like Test Driven Development (TDD) whose idea is

about development along with testing. In traditional methodologies, testing of software

was done only after the entire software development was completed or sometimes the

software were not even tested. Testing in Agile is not a phase that has to be completed

instead it is a continuous process that goes along with the software development.

Similarly, each prototype developed is tested in the test stage of design thinking. Testing

61

is an integral part both in Agile and in design thinking and cannot be ignored. Testing of

prototypes also encourages the team to come back with better ideas and prototypes. It

encourages them to focus on little details, which would have otherwise been ignored.

Pedagogy using Agile Principle and Manifestos

In this section, different Agile principles and manifestos are used for teaching.

These include working agreement, estimation, daily stand up meetings, backlogs, sprint

review meeting, and pair programming. These principles were used to teach data science

to software engineering students. Details of how these principles were used is provided

below.

Working Agreement

Working agreements are one of the core concepts of Agile [45]. They help to

create transparency and accountability among the team members along with negotiating

different issues that they have. It helps the team to have a clear conversation of things

they think are inappropriate. Questions that a team must ask are – who are we? What is

our team name? What are our values? How do we handle our conflicts? How do we run

our meetings? How will we manage our work? How will we know if we are successful?

[14]

In a classroom environment, a working agreement can be used for the same reasons

as it is used in Agile methodology. In the data science class, the instructor introduced the

working agreement concept on the first day of class. Several questions were asked so that

the students could discuss and come to one agreement. Following is the list of questions

that were asked:

1. What time during the class should the stand meeting be held?

2. How assignments are going to be done – like in teams, individually or pairs?

62

3. How will they help another student if he or she is unable to attend the class?

After discussion, the students came to an agreement that the daily stand up meetings

would be held in the last 15 minutes of the class. They agreed that the assignments

would be done individually, but the activities in class would be paired. The students who

missed their classes would be briefed by other students on call or by using Skype. During

these discussions, the students got along with each other. This acted as an icebreaker for

most of the students as they did not know each other. Apart from this, it helped the

students create a sense of transparency and accountability among each other.

Estimation

Effort estimation is one of the important activities for successfully planning and

executing a project. Research shows that almost 66 percent of projects run over budget

and 33 percent run over the schedule [46]. This often results in great loss to the software

companies in the form of time, effort, money, and resources. Underestimations result in

work overload, budget overruns, schedule overruns, and affect the quality, whereas

overestimation results in wastage of resources, time, and money. There are several effort

estimation techniques that exist, namely, planning poker, expert judgments, story points,

functional points, and the Delphi method. Out of these, expert judgment and planning

poker are most commonly used [47]. In expert judgment, an estimate is provided by an

expert in the particular domain. The expert uses story points for estimation. Story points

are a unit of measure for expressing the overall size of a user story, feature, or other piece

of work.

At the start of planning poker, each developer is given a deck of cards, which has

Fibonacci numbers (0, 1, 1, 2, 3, 5 and so on.) on them. These cards are usually prepared

before the estimation session starts. The customer explains all the requirements of a

project. The developers ask any questions they have regarding the requirements. After the

63

question-answer session, the developers estimate the complexity of each requirement.

The developers show their cards to other team members. The highest estimate and the

lowest estimate then explain the reason of their estimate to other team members.

Estimation process is again repeated until the entire team reaches a consensus.

Carrying out an estimation activity in class will help the teacher know whether students

find the course easy or difficult. Depending upon the estimations of students, the course

difficulty level can be increased or decreased. In the data science class, the students wrote

their estimates on cards and shared with other students. Students having highest and

lowest estimates were asked the reason of their estimates.

Stand Up Meetings

Daily stand up meetings are a part of scrum methodology. In this, the team

members have to meet each other in order to discuss their progress. They stand in a group

and answer three questions – what did they do yesterday? what are they doing today?

And what are the roadblocks they are facing [48]? This meeting is supposed to be no

longer than 15 minutes. Each member of the team should answer the questions.

If a particular class is every day, then daily stand up meetings can be carried out as is, but

if that class is once in a week then they can be done online and can be done every other

day depending upon the availability of the students. This will help students to become

accountable of their work. Stand up meetings will help the students to take some time out

of their schedule and give it to that particular course. It will help them to find questions

while reading the course contents and discuss it with other students. Transfer of

knowledge can also take place while doing the stand-up meetings. Face-to-face students

as well as online students can be a part of this meeting.

While doing the working agreement activity, the students in the data science class

agreed that they would do their stand up meetings face-to-face every week during the last

64

15 minutes of the class. They discussed what they read last week, what are they going to

read this week, and what are the questions that they have in the course content so far.

The teacher also became a part of this meeting and acted as a facilitator. Complicated

questions that other students could not answer were answered by the teacher. If the

teacher noticed any student struggling to give their answers then the teacher could contact

that student to further investigate the issue. This helps in creating positive interaction

between the students and between the teacher and students.

Backlogs

Scrum has two artifacts, namely product backlog and sprint backlog [48]. The

product backlog is a list of items that the customer wants to be completed throughout the

lifetime of a project. These tasks are prioritized according to the business value of the

customer. Sprint backlog is similar to product backlog but the items in sprint backlog

must be completed by the end of the sprint. Sprints usually are 1-2 weeks long. Product

backlog comprises of sprint backlog [48]. If any item is not completed in the previous

sprint then it is taken as a priority in the next sprint.

In a class environment, depending upon the class, the sprint length can vary.

Course contents can be divided into items that are to be completed in one class, similar to

sprint backlog (to be completed in one sprint). The entire course can be treated as a

product backlog. Items that are not completed in the present class can be taken as a

priority in the next class.

In the data science class, the sprint was one week long. As mentioned, items not

completed in previous class were taken as a priority in the next class. Usage of backlogs

in class environment helped the students as well as the teacher stay goal oriented. It

motivated them and helped them with time management.

Sprint Review Meetings

65

A sprint review meeting is one of the four scrum ceremonies (scrum ceremonies

include daily scrum meeting, sprint review meeting, sprint planning meeting, and sprint

retrospective) [48]. This ceremony takes place at the end of each sprint. This meeting is

conducted to reflect back and gather feedback on the previous sprint. Mistakes are

learned from the previous sprint and improvements for the next sprint are discussed. This

meeting is insightful and reflective.

Sprint review meetings in a class environment help teachers make revisions to the

course content if needed. It also helps the teacher understand whether or not the students

understand and enjoy the course. These reviews help increase interaction in the class.

Sprint review meetings were held every other week in the data science class. They were

held for 15 minutes at the end of class.

Pair Programming

Pair programming is a technique in extreme programming methodology where

two programmers work sitting side by side in front of one computer system to write code.

There is a driver and a navigator where the driver is the one responsible for writing the

code and navigator is the one who sits beside the driver watching the code for syntax

errors [49]. The programmers can switch roles after some time. There are several

advantages of using pair programming such as better code, better satisfaction, and saved

time.

Using pair programming in a classroom environment will encourage

communication. Students who do not interact with each other might end up

communicating with each other. Working together as a team will help students to build

confidence and will inculcate team management skills. If one student is an expert in a

particular topic and other student is a novice then this pair programming activity will

really help the novice student. Pair programming activity will help the students to

66

develop collaboration skills. In the data science class, as decided in the working

agreement activity, all the activities in class were done in pairs to demonstrate pair

programming. This pedagogy has been tested in the Data Science class and results are

presented in the next section.

67

CHAPTER V:

RESULTS

In this section, results of Feature Driven Development are presented. Then e-

learning application called Flashcards is introduced, which was developed using the

Agile Design course. Later, results of Agile pedagogy are presented.

Feature Driven Scrum Validation

For evaluating the Feature Driven Development methodology, a study group of

students in Masters of Software Engineering was formed to learn Functional C#

programming language. The reason for making an online group was to include online

students who were from different states and different time zones. All of the students were

added on a business platform named “Slack.” All the meetings were conducted online

and there were eight participants. A pre-assessment sheet was asked to be completed by

the students in order to track their progress before and after the validation. The questions

and average responses of the pre-assessment are provided in Table 5.1. The scale of the

assessment was 1-5 or freeform answers. The Likert scale (rubrics) was defined as

follows: 1 being not at all effective, 2 being not effective, 3 been somewhat effective, 4

being effective, and 5 being highly effective.

68

Table 5.1

Pre-assessment Sheet Questions and Averaged Answers

Questions Scale Responses

What is the level of your experience in C#? 1-5 2

Have you been in a study group before? Yes/No No

How good was your previous experience in the study

group? (if applicable)
1-5 3

How familiar are you with Agile methodology? 1-5 1

The first meeting served as an icebreaker for the students. It started with the

introduction of each student. Then, an overall draft plan was developed, taking into

account the topics they wanted to finish by the end of this study group.

Next was the planning meeting, which was conducted the next day. A sprint

length of three days was decided. The students came up with topics they wanted to finish

by the end of these three days (one sprint). These topics were then divided into per day

topics. The daily scrum meetings were conducted online using Slack. The students did

not speak to each other but instead posted their responses to the questions online. If any

student hit an obstacle while studying, then other team members came forward to help.

After one sprint (three days), a sprint review meeting was conducted. Students

discussed whether they achieved the desired goals or not. They also discussed their

concerns and suggestions during this meeting. They considered the topics that were not

completed in this sprint as backlogs and made these backlogs as a priority in their next

sprint.

This online study group was discontinued after two sprints. Since the study group

had students from different regions and different time zones it was difficult for them to

69

come online at the same time for meetings. Coordinating online interactions eventually

became difficult. The students completed two sprints and realized that the study group

would have been successful it was conducted face-to-face. Since the study was

discontinued after two sprints, the end of study retrospective could not be conducted. One

external reason that was identified was that the students had their midterm examinations

when the study group was conducted. Hence, the students were occupied with other

commitments. However, the feedback from the students showed that Feature Driven

Scrum helped them to become organized, helped them to divide big goals into smaller

achievable goals, and instilled confidence in them.

Feature Driven Scrum was also validated in an educational workspace

environment. It was validated in the university setting by the Course Development and

Support Team. The work of this team is to provide quality assurance for courses that are

taught online at that university. Before the introduction of Agile at their office, they

followed the traditional way of working. In the traditional way of working, they

evaluated the course all at once and then sent it back to the professor for changes. They

used red and yellow colored slips to determine mandatory changes and optional changes

respectively. They had few meetings every month and followed a plan than responding to

changes.

There are seven team members in the Course Development and Support Team.

After the introduction of Agile in their office in 2017, they started having several

meetings and started doing their work in sprints. Their feedbacks were collected in the

form of a survey, which is presented in Table 5.2 below. The scale (rubric) was defined

as follows: 1 being not at all effective, 2 being not effective, 3 been somewhat effective,

4 being effective, and 5 being highly effective.

70

Table 5.2

Survey Questions and Answers

Questions Scale Responses

How was the performance of the

team before using Agile?
1-5 3

How was the performance of the

team after implementation of Agile?
1-5 4

How difficult was it to convert from

traditional way of working to Agile?
1-5 4

How effectively can you train an

employee with this process?
1-5 4

How did setting a common goal for

the team effect the team progress?
freeform

The time spent working on a

common goal great paid off in

terms of the long-term gains

associated with the new

methodology.

How often do you have meetings? freeform 2-3/month

Do you have daily scrum meetings? freeform

During peak periods of

development (right before QA

cycles), we will go to non-daily

(but regular) SCRUM meetings.

If yes, how effective were the daily

scrum meetings?
1-5 4

What did you like about Agile in the

workplace
freeform

It gives us flexibility in terms of

meeting a wide variety of

different faculty preferences in

course design. It also makes our

design process more responsive

to a vastly changing workplace

landscape

What did you not like about Agile? freeform

The team tends to fall back into

older model-based practices, so

we do have to plan for

refreshers/retraining of the staff

What changes would you want? freeform None at this time

71

The results from the survey indicate that Feature Driven Scrum works well in an office

environment.

Agile Design Course Validation

For the validation of the Agile Design course, an e-learning application called

Flashcards was developed using C# and XML on Xamarin platform. This application was

developed using the principles of Agile Design course. All stages of Agile Design were

completed in five days starting from Monday to Friday.

Empathize

Designing of the application started from the empathize stage. There was one

customer who was a Masters student at a university. First, the interview with the

customer was conducted followed by the creation of a persona and an empathy map. The

interview was conducted on a video call. This was a 20 minutes interview, which had the

following questions. 4 W’s and 5 Y’s were used to create these interview questions.

• Which university are you studying in?

• What is your major?

• Why did you choose this university?

• Why did you choose this major?

• What are the top three things you like about this major and your university?

• What are the top three things you dislike about this major and your university?

• Which course do you like and dislike?

• What are the top five reasons you dislike that course?

• How do you try to cope up with the difficult courses?

• What do you think would make those courses fun?

• What do you do when you are not studying?

• How many hours do you study?

72

According to the answers of this interview, a persona was created which is shown in

Figure 5.1.

Atchyutha, the student

Atchyutha is a graduate student in software engineering program at a university.

She aspires to become a successful Java developer. She loves to listen to music and is a

huge fan of Selena Gomez. She calls herself a “lazy perfectionist” because she is a lazy

person, but when it comes to finishing something, she hits it hard. She has been a bright

student since her childhood but she found her first semester at the university a little

difficult. She is good at learning and understanding logic but finds theoretical courses

difficult. She wants to make theory learning easy and fun.

Figure 5.1

Empathy Map for Flashcard Application

Define

73

For defining the problem, user stories and child stories were created. Following

are the user stories that were written using the INVEST acronym and these user stories

were sorted using MoSCoW.

As a student, I want to learn my theory subjects as well as enjoy them so that I

can get good grades in them.

This user story was broken down into child stories and test cases were written for

them shown in Table 5.3.

74

Table 5.3

User Stories and Test Cases for Flashcard Application

Child stories Test cases

As a student, I want to create my own

questions from the course material so that I

can learn from them

1. Make sure add button works

2. Make sure new questions can be added on

clicking the add button

As a student, I want to write answers to

those questions I have created so that I can

learn from them

1. Make sure answers can be added on

clicking the add button

As a student, I want to hide the answers

behind the questions so that I can test

myself

1. Make sure the card flips when tapped once

2. Make sure the questions are added at the

front of the card

3. Make sure the questions are added at the

back of the card

As a student, I want to save my questions

and answers so that I can get back to them

whenever I want to

1. Make sure the cards are saved

As a student, I want to edit my previously

saved questions so that I can learn right

content

1. Make sure there is an edit button

2. Make sure the questions can be edited

when the edit button is clicked

As a student, I want to delete my questions

so that I can remove irrelevant questions

1. Make sure there is a delete button

2. Make sure the card can be deleted when

the delete button is clicked

As a student, I want to edit my previously

saved answers so that I can learn right

content

1. Make sure the answers can be edited when

the edit button is clicked

As a student, I want to delete my answers

so that I can remove irrelevant questions

1. Make sure the card can be deleted when

the delete button is clicked

As a student, I want to navigate through

my previous and next questions so that I

can learn better

1. Make sure there is a next button

2. Make sure there is a previous button

3. Make sure the next card appears when the

next button is clicked

4. Make sure the previous card appears when

the previous button is clicked

75

Ideate

After defining the problem, storyboarding was done. The storyboard and notes are

shown below. The before situation is illustrated in Figure 5.2 and the after situation is

illustrated in Figure 5.3. Notes of before and after storyboard are in shown Tables 5.4 and

5.5 respectively.

Figure 5.2

Storyboard Showing Before Situation for Flashcard Application

76

Figure 5.3

Storyboard Showing After Situation for Flashcard Application

77

Table 5.4

Notes for Before Situation

Notes Situation

Atchyutha is a budding

Software Engineer. She is

trying to read and

memorize Software

Architecture course

because she has her

quizzes coming up this

week.

She finds the theory

courses difficult and

boring. She instead finds

the logic thinking courses

much easier and fun. She

struggles to memorize the

course content.

78

Notes Situation

Even after studying for

the quiz, she cannot recall

the answers while taking

the quiz. She is annoyed

and frustrated.

After few days, she gets

her overall score for

Software Architecture

course. She gets a B+

grade. She is sad and

frustrated on seeing that

grade because she had

spent many hours behind

this course.

79

Notes Situation

She gets her C#

programming course

score the same day and

gets a A+. She is a bright

student but needs help

with theory courses. She

does not want her overall

GPA to drop down

because of theory courses.

80

Table 5.5

Notes for After Situation

Notes Situation

Atchyutha is a budding

Software Engineer. She is

trying to read and

memorize Software

Architecture course because

she has her quizzes coming

up this week.

She finds the theory courses

difficult and boring. She

instead finds the logic

thinking courses much

easier and fun. She decided

to use the “XYZ app” to get

make learning easy and fun

She sees that she is able to

learn faster and this is also

fun. The application helps

her to prepare for her

upcoming quizzes. She

feels better.

81

Notes Situation

While taking her quiz for

Software Architecture

course, she is now able to

remember what she learned.

She finds answering those

questions easier.

She gets an A- in Software

Architeture course and this

helps her maintain her

GPA. She feels learning

theory courses isn’t that

difficult or boring after all.

After story boarding, several ideas were written down during the brainstorming session.

The top three ideas that were decided to be prototyped are as follows:

1. Write questions and answers for every unit and email the student

2. Use paper cards and let the student write questions in the front and answers on the

back of the card

3. Use pictures related to the course content to help the student memorize

82

Prototype and Test

All of the above-mentioned ideas were taken to the prototype and testing stage.

The second idea was the most liked by the customer. A deck of blank cards was created

using paper. These cards were given to the customer so that she can write her questions

on the front and answers on the back of the card while reading the course content. She

was asked to use these cards for a day while learning her theory subject. She was able to

add more cards and discard cards whenever needed. She was also able to edit the

questions and answers on the cards. She liked what was prototyped. This did not require

even one line of code and was done using readily available material.

Since this idea was most liked by the

customer, an e-learning application having flip

cards was created. This application lets the user

write questions on the front of the card and

answers on the back of the card. The user can add,

delete, and edit cards whenever wanted. The card

flips when tapped. Next and previous cards can be

accessed when the next and previous buttons are

clicked. The cards are saved automatically

whenever a new card is created using the ‘+’

symbol on the lower right of the application. The

screenshots of the application are given below.

The code of this application is in Appendix.

The first screen of the application is a splash

screen with a logo as shown in Figure 5.4.

Figure 5.4

Splash Screen for Flashcard Application

83

Figure 5.5

Empty Card

Figure 5.6

Adding First Card

Since the application is initially empty without any data on the card a message is

displayed on the card which says, “Empty… Please add data” as shown in Figure 5.5. On

clicking the “+” button shown on lower right, the user is asked to enter question and

answer for the next card. This is shown in Figure 5.6.

The user then adds a question and answer for the card (Figure 5.7). Once the card

is added a toast message is displayed which is shown in Figure 5.8. an answer added is

shown in Figure 5.9.

84

Figure 5.7

Adding Question and Answer

Figure 5.8

Added First Question

A second card is added by clicking “+” sign. Questions are added in the front of

the card and answers are added on the back of the card. This is shown in Figure 5.10.

On clicking the edit button, both question and answer on the card can be edited (Figure

5.11). The edited card is shown in Figure 5.12.

On clicking delete button, an alert message appears (Figure 5.13). If the user

clicks on “yes”, the card is deleted (Figure 5.14) and a confirmation message appears else

the user can cancel deletion of card.

85

Figure 5.9

Added First Answer

Figure 5.10

Second Card

86

Figure 5.11

Editing Card

Figure 5.12

Edited Card

87

Figure 5.13

Deleting Card

Figure 5.14

Card Deleted

Agile Pedagogy Validation

Validation of Agile pedagogy was done at the end of semester through an online

survey using SurveyMonkey. This survey was completely anonymous. There were seven

students who participated in the survey. The scale of this survey was 1-5 or freeform

answers. The scale (rubric) was defined as follows: 1 being not at all effective, 2 being

not effective, 3 been somewhat effective, 4 being effective, and 5 being highly effective.

Following are the questions and the averaged answers in Table 5.6.

88

Table 5.6

Questions and Averaged Answers for Agile Pedagogy

Questions Averaged Answers

Rate the Teaching Methodology of Data

Science class

3.6

How effective did you find the first 15

Minutes of the class? This session

included a review of the previous class

and a question-answer session.

4.1

What are your feedbacks on daily stand up

meetings in class and how do you think

we can improve them?

Not effective. Probably writing on

discussion board is more effective than

actual stand up meetings.

Did you find paired activities better than

those activities done by you alone?

Yes

Would you call this class as an Active

Learning class or a Passive Learning

class? Active learning is a form of

learning in which the teacher strives to

involve students in the learning process

more directly. Passive learning is

“teacher-directed learning” where the

teacher is the leader and students only

follow the instructions of the teacher

without direct involvement.

Active learning

Apart from learning Data Science, did this

class help you learn about the Agile

Framework?

Yes

Mention one take-away from this class

about Agile

Stand up meetings and paired

programming

89

From the survey results, it can be concluded that the students liked the teaching

methodology of the data science class. They found this class as an interactive and active

learning class. They learned about Data Science as well as Agile in the same class.

Students found the review meeting helpful and gave it a rating of 4.1 out of 5. Paired

activities were liked by all seven students. They said that they would prefer working in

pairs than working alone. However, most of the students did not find the daily stand up

meetings effective. They felt that the daily stand up meetings could have been done on

Blackboard rathan than in the class. While six students said they did not find the daily

stand up meetings effective, one student said, “I personally liked the daily stand up

meetings and it is very easy to get to know what are the things that we would do for the

next week or the things that we had done last week.”

90

CHAPTER VI:

CONCLUSION AND FUTURE WORK

In this study, advantages and limitations of both planned and Agile software

development methodologies have been discussed. To demonstrate thatAgile can be used

in an educational as well as a workspace environment, Feature Driven Scrum have been

introduced and validated. Next, Agile Design courses have been introduced to show that

Agile and Design Thinking support the same principles and manifestos. This course has

been validated by designing and developing an e-learning application called Flashcards.

Later, an Agile pedagogy has been introduced and validated in a Data Science class at a

university. This pedagogy was created using different Agile principles.

For future work, the Agile Design course could be taught as an actual university

course and feedback could be collected from the students who use the course principles in

their actual workspace. Agile pedagogy could be used to teach the Agile Design course.

Additions or deletions could be made to the pedagogy based on the feedback. Flashcard

application could be further developed.

91

REFERENCES

[1] University of Houston-Clear Lake,Houston, Texas, USA., M. Sameen Mirza, and S.

Datta, “Strengths and Weakness of Traditional and Agile Processes - A Systematic

Review,” J. Softw., vol. 14, no. 5, pp. 209–219, May 2019, doi:

10.17706/jsw.14.5.209-219.

[2] P. Hohl et al., “Back to the future: origins and directions of the ‘Agile Manifesto’ –

views of the originators,” J. Softw. Eng. Res. Dev., vol. 6, no. 1, pp. 1–27, 2018, doi:

10.1186/s40411-018-0059-z.

[3] A. Mandal and S. C. Pal, “Achieving agility through BRIDGE process model: an

approach to integrate the Agile and disciplined software development,” Innov. Syst.

Softw. Eng., vol. 11, no. 1, pp. 1–7, Mar. 2015, doi: 10.1007/s11334-014-0239-x.

[4] B. R. Ingle, Design Thinking for Entrepreneurs and Small Businesses Putting the

Power of Design to Work, 1st ed. 2013. Berkeley, CA: Apress, 2013.

[5] S. Tarwani and A. Chug, “Agile Methodologies in Software Maintenance: A

Systematic Review,” Inform. Ljubl., vol. 40, no. 4, pp. 415–426, Dec. 2016.

[6] V. Garousi, G. Giray, E. Tüzün, C. Catal, and M. Felderer, “Closing the gap

between software engineering education and industrial needs,” 20181205, Accessed:

Jan. 22, 2020. [Online]. Available: http://arxiv.org/abs/1812.01954.

[7] M. Karlson and F. Olsson, “Investigating the Newly Graduated StudentsExperience

after University,” 2019.

[8] M. M. Qadir and M. Usman, “Software Engineering Curriculum: A systematic

mapping study,” 2011, pp. 269–274, doi: 10.1109/MySEC.2011.6140682.

[9] B. Boehm and S. K. Mobasser, “System Thinking: Educating T-Shaped Software

Engineers,” in 2015 IEEE 28th Conference on Software Engineering Education and

Training, Florence, Italy, May 2015, pp. 13–16, doi: 10.1109/CSEET.2015.11.

[10] N. M. Devadiga, “Software Engineering Education: Converging with the Startup

Industry,” in 2017 IEEE 30th Conference on Software Engineering Education and

Training (CSEE&T), Savannah, GA, Nov. 2017, pp. 192–196, doi:

10.1109/CSEET.2017.38.

[11] S. Liu, “Engineering the Success of Software Development,” IT Prof., vol. 15, no. 5,

pp. 4–5, 2013, doi: 10.1109/MITP.2013.76.

[12] S. Dalal and R. Chhillar, “Empirical study of root cause analysis of software

failure,” ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 4, pp. 1–7, 2013, doi:

10.1145/2492248.2492263.

[13] C. Leem and Y. Yoon, “A maturity model and an evaluation system of software

customer satisfaction: the case of software companies in Korea,” Ind. Manag. Data

Syst., vol. 104, no. 3/4, pp. 347–354, 2004, doi: 10.1108/02635570410530757.

[14] A. Hulshult and T. Krehbiel, “Using Eight Agile Practices in an Online Course to

Improve Student Learning and Team Project Quality,” J. High. Educ. Theory Pract.,

vol. 19, no. 3, pp. 55–67, 2019.

92

[15] T. C. Krehbiel et al., “Agile Manifesto for Teaching and Learning,” J. Eff. Teach.,

vol. 17, no. 2, pp. 90–111, 2017.

[16] M. Kropp, A. Meier, and R. Biddle, “Teaching Agile Collaboration Skills in the

Classroom,” 2016, pp. 118–127, doi: 10.1109/CSEET.2016.27.

[17] M. S. Mirza, A. V. Choday, and S. Datta, “Let’s Do Feature Driven Scrum,” in

Proceedings of the 2019 3rd International Conference on Software and e-Business,

Tokyo, Japan, Dec. 2019, pp. 110–114, doi: 10.1145/3374549.3374573.

[18] R. Razzouk and V. Shute, “What Is Design Thinking and Why Is It Important?,”

Rev. Educ. Res., vol. 82, no. 3, pp. 330–348, 2012, doi:

10.3102/0034654312457429.

[19] T. Kurokawa, Service design and delivery: how design thinking can innovate

business and add value to society, First edition. New York, New York (222 East

46th Street, New York, NY 10017): Business Expert Press, 2015.

[20] D. Dunne, “Implementing design thinking in organizations: an exploratory study,”

J. Organ. Des., vol. 7, no. 1, pp. 1–16, 2018, doi: 10.1186/s41469-018-0040-7.

[21] “Design Thinking vs. Agile: Combine Problem Finding & Problem Solving,”

Mendix, Oct. 25, 2017. https://www.mendix.com/blog/design-thinking-vs-Agile-

combine-problem-finding-problem-solving-better-outcomes/ (accessed Feb. 04,

2020).

[22] “Brainstorm Eggs for Your Grandparents,” STEM Family, Nov. 06, 2017.

https://www.stem.family/2017/11/06/making-breakfast-for-your-grandparents/

(accessed Feb. 10, 2020).

[23] “Back to KG???!!!” https://dschool-

old.stanford.edu/groups/k12/wiki/2bacb/The_Fun_Challenge.html (accessed Feb.

14, 2020).

[24] “Spaghetti & Marshmallow Exercise.” https://dschool-

old.stanford.edu/groups/k12/wiki/c6410/Spaghetti__Marshmallow_Exercise.html

(accessed Feb. 15, 2020).

[25] “Agile software development,” Wikipedia. Feb. 07, 2020, Accessed: Feb. 07, 2020.

[Online]. Available:

https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=93

9575369.

[26] “What is Design Thinking?,” The Interaction Design Foundation.

https://www.interaction-design.org/literature/topics/design-thinking (accessed Feb.

07, 2020).

[27] W. M. D. Ruchira Prasad, G. I. U. S. Perera, K. V. Jeeva Padmini, and H. M. N.

Dilum Bandara, “Adopting Design Thinking Practices to Satisfy Customer

Expectations in Agile Practices: A Case from Sri Lankan Software Development

Industry,” 2018, pp. 471–476, doi: 10.1109/MERCon.2018.8422006.

[28] M. Palacin-Silva, J. Khakurel, A. Happonen, T. Hynninen, and J. Porras, “Infusing

Design Thinking into a Software Engineering Capstone Course,” 2017, vol. 2017-,

pp. 212–221, doi: 10.1109/CSEET.2017.41.

[29] G. Washington and R. Shirvani, “Towards Understanding and Modeling Empathy

for Use in Motivational Design Thinking,” arXiv.org, 2019, Accessed: Feb. 08,

93

2020. [Online]. Available: http://search.proquest.com/docview/2266668155/?pq-

origsite=primo.

[30] “Design thinking | Design Defined | InVision,” Design thinking | Design Defined |

InVision. https://www.invisionapp.com/design-defined/design-thinking/ (accessed

Feb. 04, 2020).

[31] J. Dalton and T. Kahute, “Why Empathy and Customer Closeness is Crucial for

Design Thinking,” Des. Manag. Rev., vol. 27, no. 2, pp. 20–27, 2016, doi:

10.1111/drev.12004.

[32] “Techniques for Empathy Interviews in Design Thinking,” Web Design Envato

Tuts+. https://webdesign.tutsplus.com/articles/techniques-of-empathy-interviews-in-

design-thinking--cms-31219 (accessed Feb. 09, 2020).

[33] W. L. in R.-B. U. Experience, “Nielsen Norman Group: UX Research, Training, and

Consulting,” Nielsen Norman Group. https://www.nngroup.com/articles/empathy-

mapping/ (accessed Feb. 09, 2020).

[34] A. Agius, “How to Create an Effective Customer Journey Map [Examples +

Template].” https://blog.hubspot.com/service/customer-journey-map (accessed Feb.

10, 2020).

[35] Customer journey maps. .

[36] R. F. Dam and Y. S. Teo, “Stage 2 in the Design Thinking Process: Define the

Problem and Interpret the Results,” The Interaction Design Foundation.

https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-

process-define-the-problem-and-interpret-the-results (accessed Feb. 10, 2020).

[37] R. Popli, N. Chauhan, and H. Sharma, “Prioritising user stories in Agile

environment,” 2014, pp. 515–519, doi: 10.1109/ICICICT.2014.6781336.

[38] C. G. Cobb, The project manager’s guide to mastering Agile: principles and

practices for an adaptive approach. Hoboken, New Jersey: Wiley, 2015.

[39] C. Griffiths, “Fostering A Culture Of Creativity In A Smaller Firm,” Leadersh.

Excell., vol. 36, no. 6, pp. 12–13, 2019.

[40] F. Rustler, Mind mapping for dummies. Chichester [England: John Wiley & Sons,

2012.

[41] Evan Afri and Muhammad Khoiruddin Harahap, “INCREASING TOEFL SCORE

USING MIND MAPPING METHOD,” Lang. Lit. J. Linguist. Lit. Lang. Teach.,

vol. 3, no. 2, pp. 234–240, 2019, doi: 10.30743/ll.v3i2.1977.

[42] R. F. Dam and Y. S. Teo, “Stage 4 in the Design Thinking Process: Prototype,” The

Interaction Design Foundation. https://www.interaction-

design.org/literature/article/stage-4-in-the-design-thinking-process-prototype

(accessed Feb. 14, 2020).

[43] “Applying the KANO Model in Mobile Services World: A Report from the

Frontline - University of Houston.”

https://uh.primo.exlibrisgroup.com/discovery/fulldisplay?docid=ieee_s6511800&co

ntext=PC&vid=01UHO_INST:CLAKE&lang=en&search_scope=UHCL_EVRYTH

ING&adaptor=Primo%20Central&tab=Everything&query=any,contains,kano%20m

odel%20Agile%20%20&mode=basic (accessed Feb. 15, 2020).

94

[44] J. Parcell and S. Holden, “Agile policy development for digital government: an

exploratory case study,” 2013, pp. 11–17, doi: 10.1145/2479724.2479731.

[45] “How Working Agreements Help Scrum Teams,” ClearlyAgile - Agile

Transformation, Certified Training, DevOps, and Agile Software Development.

https://www.clearlyAgileinc.com/Agile-blog/how-working-agreements-help-scrum-

teams (accessed Mar. 18, 2020).

[46] H. H. Osman and M. E. Musa, “A Survey of Agile Software Estimation Methods,”

vol. 7, no. 3, p. 5.

[47] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in Agile software

development: a systematic literature review,” in Proceedings of the 10th

International Conference on Predictive Models in Software Engineering, 2014, pp.

82–91, doi: 10.1145/2639490.2639503.

[48] A. A. Albarqi and R. Qureshi, “The Proposed L-Scrumban Methodology to Improve

the Efficiency of Agile Software Development,” Int. J. Inf. Eng. Electron. Bus.

Hong Kong, vol. 10, no. 3, p. 23, May 2018, doi:

http://dx.doi.org/10.5815/ijieeb.2018.03.04.

[49] K. Chen and A. Rea, “Do Pair Programming Approaches Transcend Coding?

Measuring Agile Attitudes in Diverse Information Systems Courses,” J. Inf. Syst.

Educ. West Lafayette, vol. 29, no. 2, pp. 53–64, Spring 2018.

95

APPENDIX A:

FLASHCARD APPLICATION CODE

Splash screen code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Android.App;

using Android.Content;

using Android.OS;

using Android.Runtime;

using Android.Support.V7.App;

using Android.Views;

using Android.Widget;

using Flashcards.SQLite;

namespace Flashcards.Activity

{/// <summary>

/// MainLauncher = true..starting point

/// </summary>

 [Activity(Label = "@string/app_name", Theme = "@style/SplashScreenTheme",

MainLauncher = true)]

 public class SplashScreenActivity : AppCompatActivity

 {

 private SqLiteDatabase DbDatabase = new SqLiteDatabase();

 //protected override void OnCreate(Bundle savedInstanceState)

 //{

 // base.OnCreate(savedInstanceState);

 // // Create your application here

 //}

 protected override void OnResume()

 {

 try

 {

 base.OnResume();

 new Handler(Looper.MainLooper).Post(new

Java.Lang.Runnable(FirstRunExcite));

 }

 catch (Exception e)

96

 {

 Console.WriteLine(e);

 }

 }

 private void FirstRunExcite()

 {

 try

 {

 DbDatabase = new SqLiteDatabase();

 DbDatabase.CheckTablesStatus();

 DbDatabase.CheckDataStatus();

 //start main page

 StartActivity(new Intent(this, typeof(MainActivity)));

 DbDatabase.Dispose();

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 }

}

Main Activity code

using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using Android.Animation;

using Android.App;

using Android.Content;

using Android.Graphics;

using Android.Graphics.Drawables;

using Android.OS;

97

using Android.Runtime;

using Android.Support.Design.Widget;

using Android.Support.V7.App;

using Android.Support.V7.Widget;

using Android.Util;

using Android.Views;

using Android.Widget;

using Flashcards.Anmated;

using Flashcards.Models;

using Flashcards.SQLite;

using AlertDialog = Android.App.AlertDialog;

namespace Flashcards

{

 [Activity(Label = "@string/app_name", Theme = "@style/AppTheme.NoActionBar")]

 public class MainActivity : AppCompatActivity

 {

 private SqLiteDatabase DbDatabase = new SqLiteDatabase();

 CardView cardview_question, cardview_answer;

 TextView txtQuestion, txtAnswer;

 ImageView editImageView, deleteImageView, prevImageView, nextImageView;

 List<QuizeTb> quizList;

 QuizeTb selectedQuize;

 EditText edit_answer, edit_question;

 private Dialog dialog;

98

 int index = 0;

 public string emptyData = "Empty...Please Add data";

 protected override void OnCreate(Bundle savedInstanceState)

 {

 base.OnCreate(savedInstanceState);

 Xamarin.Essentials.Platform.Init(this, savedInstanceState);

 SetContentView(Resource.Layout.activity_main);

 Android.Support.V7.Widget.Toolbar toolbar =

FindViewById<Android.Support.V7.Widget.Toolbar>(Resource.Id.toolbar);

 SetSupportActionBar(toolbar);

 FloatingActionButton fab =

FindViewById<FloatingActionButton>(Resource.Id.fab);

 fab.Click += FabOnClick;

 InitControl();

 FetchDataFromDB();

 }

 private void FetchDataFromDB()

 {

 try

 {

99

 quizList = new List<QuizeTb>();

 DbDatabase = new SqLiteDatabase();

 DbDatabase.CheckTablesStatus();

 quizList = DbDatabase.FetchData();

 DbDatabase.Dispose();

 ShowData(quizList[0]);

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void ShowData(QuizeTb quizModel)

 {

 try

 {

 selectedQuize = quizModel;

 txtQuestion.Text = quizModel.Question;

 txtAnswer.Text = quizModel.Answer;

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

100

 }

 private void DeleteData(QuizeTb quizModel)

 {

 try

 {

 if (quizList.Count>1)

 {

 if (RemoveFromDB(quizModel))

 {

 quizList.Remove(quizModel);

 if (index > 0)

 {

 index--;

 }

 ShowData(quizList[index]);

 }

 }

 else

 {

 if (quizList.Count == 1 && quizList[0].Question.Trim() !=

emptyData.Trim())

 {

 selectedQuize.Question = emptyData;

 selectedQuize.Answer = emptyData;

101

 if (UpdateInDB(selectedQuize))

 {

 quizList[0] = selectedQuize;

 ShowData(quizList[0]);

 }

 }

 else

 {

 if (UpdateFirstEmptyData())

 {

 FetchDataFromDB();

 }

 }

 }

 Toast.MakeText(this, "Thank You..Flashcard updated successfully",

ToastLength.Short).Show();

 ShowData(quizList[index]);

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

102

 private bool UpdateFirstEmptyData()

 {

 try

 {

 DbDatabase = new SqLiteDatabase();

 DbDatabase.CheckTablesStatus();

 DbDatabase.CheckDataStatus();

 DbDatabase.Dispose();

 return true;

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 return false;

 }

 }

 private bool RemoveFromDB(QuizeTb quizModel)

 {

 try

 {

 DbDatabase = new SqLiteDatabase();

 DbDatabase.DeleteRow(quizModel);

 DbDatabase.Dispose();

 return true;

103

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 return false;

 }

 }

 private void EditData(QuizeTb quizModel)

 {

 try

 {

 dialog = new Dialog(this);

 dialog.SetContentView(Resource.Layout.insert_query);

 dialog.Window.SetBackgroundDrawable(new

ColorDrawable(Color.Transparent));

 TextView add =

dialog.FindViewById<TextView>(Resource.Id.textView_add);

 add.Text = "Update";

 edit_answer = dialog.FindViewById<EditText>(Resource.Id.edit_answer);

 edit_answer.Text = quizModel.Answer;

 edit_question = dialog.FindViewById<EditText>(Resource.Id.edit_question);

 edit_question.Text= quizModel.Question;

 add.Click += Update_Click;

104

 dialog.Window.SetLayout((int)(GetScreenWidth(this) * .95),

LinearLayout.LayoutParams.WrapContent);

 dialog.SetCancelable(true);

 dialog.Show();

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void InitControl()

 {

 try

 {

 cardview_question =

FindViewById<CardView>(Resource.Id.cardview_question);

 cardview_question.Click += Cardview_question_Click;

 cardview_question.Visibility = ViewStates.Invisible;

 cardview_answer =

FindViewById<CardView>(Resource.Id.cardview_answer);

 cardview_answer.Visibility = ViewStates.Invisible;

 cardview_answer.Click += Cardview_question_Click;

 txtQuestion = FindViewById<TextView>(Resource.Id.txtQuestion);

 txtAnswer = FindViewById<TextView>(Resource.Id.txtAnswer);

105

 prevImageView = FindViewById<ImageView>(Resource.Id.prevImageView);

 prevImageView.Click += TextView_prev_Click;

 nextImageView = FindViewById<ImageView>(Resource.Id.nextImageView);

 nextImageView.Click += TextView_next_Click;

 cardview_question.Visibility = ViewStates.Visible;

 cardview_answer.Visibility = ViewStates.Invisible;

 editImageView = FindViewById<ImageView>(Resource.Id.editImageView);

 editImageView.Click += EditImageView_Click;

 deleteImageView =

FindViewById<ImageView>(Resource.Id.deleteImageView);

 deleteImageView.Click += DeleteImageView_Click;

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void DeleteImageView_Click(object sender, EventArgs e)

 {

 try

 {

 if (quizList.Count == 1 && quizList[0].Question.Trim() == emptyData.Trim())

 {

106

 Toast.MakeText(this, "Empty FlashCard...Please add data first",

ToastLength.Short).Show();

 }

 else

 {

 // base.OnBackPressed();

 Android.App.AlertDialog.Builder dialog = new AlertDialog.Builder(this);

 AlertDialog alert = dialog.Create();

 alert.SetTitle("Alert!");

 alert.SetMessage("Do you want to delete this FlashCard?");

 alert.SetButton("YES", (c, ev) =>

 {

 alert.Dismiss();

 if (index >= 0)

 {

 DeleteData(quizList[index]);

 }

 });

 alert.SetButton2("CANCEL", (c, ev) => { });

 alert.Show();

 }

 }

 catch (Exception ex)

 {

107

 Console.Write(ex.Message);

 }

 }

 private void EditImageView_Click(object sender, EventArgs e)

 {

 try

 {

 if (quizList.Count == 1 && quizList[0].Question.Trim() == emptyData.Trim())

 {

 Toast.MakeText(this, "Empty FlashCard...Please add data first",

ToastLength.Short).Show();

 }

 else

 {

 EditData(quizList[index]);

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void TextView_next_Click(object sender, EventArgs e)

108

 {

 try

 {

 if (index == quizList.Count-1)

 {

 Toast.MakeText(this, "Sorry..Last Flashcard", ToastLength.Short).Show();

 }

 else

 {

 cardview_question.Visibility = ViewStates.Visible;

 cardview_answer.Visibility = ViewStates.Invisible;

 index++;

 ShowData(quizList[index]);

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void TextView_prev_Click(object sender, EventArgs e)

 {

 try

 {

109

 if (index != 0)

 {

 cardview_question.Visibility = ViewStates.Visible;

 cardview_answer.Visibility = ViewStates.Invisible;

 index--;

 ShowData(quizList[index]);

 }

 else

 {

 Toast.MakeText(this, "Sorry..First Flashcard", ToastLength.Short).Show();

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void Cardview_question_Click(object sender, EventArgs e)

 {

 try

 {

 if (cardview_question.Visibility == ViewStates.Invisible)

 {

 cardview_question.Visibility = ViewStates.Visible;

110

 cardview_answer.Visibility = ViewStates.Invisible;

 //FlipAnimation(this, cardview_question);

 CustomAnim.AnimLeft(this, cardview_question);

 }

 else

 {

 cardview_question.Visibility = ViewStates.Invisible;

 cardview_answer.Visibility = ViewStates.Visible;

 //FlipAnimation(this, cardview_answer);

 CustomAnim.AnimRight(this, cardview_answer);

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private void FlipAnimation(Context context, View view)

 {

 try

 {

 ObjectAnimator anim =

(ObjectAnimator)AnimatorInflater.LoadAnimator(context, Resource.Animator.flipping);

111

 //ObjectAnimator anim =

(ObjectAnimator)AnimatorInflater.LoadAnimator(context, Resource.Animation.flip);

 anim.SetTarget(view);

 anim.SetDuration(3000);

 anim.Start();

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 public override bool OnCreateOptionsMenu(IMenu menu)

 {

 MenuInflater.Inflate(Resource.Menu.menu_main, menu);

 return true;

 }

 public override bool OnOptionsItemSelected(IMenuItem item)

 {

 int id = item.ItemId;

 if (id == Resource.Id.action_settings)

 {

 return true;

 }

112

 return base.OnOptionsItemSelected(item);

 }

 private void FabOnClick(object sender, EventArgs eventArgs)

 {

 try

 {

 //View view = (View) sender;

 //Snackbar.Make(view, "Replace with your own action",

Snackbar.LengthLong)

 // .SetAction("Action",

(Android.Views.View.IOnClickListener)null).Show();

 dialog = new Dialog(this);

 dialog.SetContentView(Resource.Layout.insert_query);

 dialog.Window.SetBackgroundDrawable(new

ColorDrawable(Color.Transparent));

 TextView add =

dialog.FindViewById<TextView>(Resource.Id.textView_add);

 edit_answer = dialog.FindViewById<EditText>(Resource.Id.edit_answer);

 edit_question = dialog.FindViewById<EditText>(Resource.Id.edit_question);

 add.Click += Add_Click;

 dialog.Window.SetLayout((int)(GetScreenWidth(this) * .95),

LinearLayout.LayoutParams.WrapContent);

113

 dialog.SetCancelable(true);

 dialog.Show();

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 public static int GetScreenWidth(Context context)

 {

 DisplayMetrics dm = Application.Context.Resources.DisplayMetrics;

 return dm.WidthPixels;

 }

 public override void OnBackPressed()

 {

 // base.OnBackPressed();

 Android.App.AlertDialog.Builder dialog = new AlertDialog.Builder(this);

 AlertDialog alert = dialog.Create();

 alert.SetTitle("Alert!");

 alert.SetMessage("Do you really want to exit?");

 alert.SetButton("OK", (c, ev) =>

 {

114

 alert.Dismiss();

 var a = new Intent(Intent.ActionMain);

 a.AddCategory(Intent.CategoryHome);

 a.SetFlags(ActivityFlags.NewTask);

 StartActivity(a);

 });

 alert.SetButton2("CANCEL", (c, ev) => { });

 alert.Show();

 }

 private void Update_Click(object sender, EventArgs e)

 {

 try

 {

 if (string.IsNullOrEmpty(edit_question.Text))

 {

 Toast.MakeText(this, "Please add question", ToastLength.Short).Show();

 }

 else if (string.IsNullOrEmpty(edit_answer.Text))

 {

 Toast.MakeText(this, "Please add answer", ToastLength.Short).Show();

 }

 else

 {

115

 QuizModel updatedQA = new QuizModel { Question = edit_question.Text,

Answer = edit_answer.Text };

 selectedQuize.Question = updatedQA.Question;

 selectedQuize.Answer = updatedQA.Answer;

 if (UpdateInDB(selectedQuize))

 {

 quizList[index].Question = updatedQA.Question;

 quizList[index].Answer = updatedQA.Answer;

 Toast.MakeText(this, "Thank You..Flashcard updated successfully",

ToastLength.Short).Show();

 dialog?.Dismiss();

 ShowData(quizList[index]);

 }

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private bool UpdateInDB(QuizeTb selectedQA)

 {

 try

116

 {

 DbDatabase = new SqLiteDatabase();

 DbDatabase.UpdateRow(selectedQA);

 DbDatabase.Dispose();

 return true;

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 return false;

 }

 }

 private void Add_Click(object sender, EventArgs e)

 {

 try

 {

 if (string.IsNullOrEmpty(edit_question.Text))

 {

 Toast.MakeText(this, "Please add question", ToastLength.Short).Show();

 }

 else if (string.IsNullOrEmpty(edit_answer.Text))

 {

 Toast.MakeText(this, "Please add answer", ToastLength.Short).Show();

 }

117

 else

 {

 QuizeTb newQA = new QuizeTb { Question = edit_question.Text, Answer =

edit_answer.Text };

 if (quizList.Count==1 && quizList[0].Question.Trim()==emptyData.Trim())

 {

 selectedQuize.Question = newQA.Question;

 selectedQuize.Answer = newQA.Answer;

 if (UpdateInDB(selectedQuize))

 {

 quizList[0] = newQA;

 ShowData(quizList[0]);

 }

 }

 else

 {

 newQA.QuestionID = quizList[quizList.Count - 1].QuestionID + 1;

 if (AddInDB(newQA))

 {

 quizList.Add(newQA);

 }

 }

 Toast.MakeText(this, "Thank You..Quiz updated successfully",

ToastLength.Short).Show();

118

 dialog?.Dismiss();

 }

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 private bool AddInDB(QuizeTb newQA)

 {

 try

 {

 DbDatabase = new SqLiteDatabase();

 DbDatabase.InsertRow(newQA);

 DbDatabase.Dispose();

 return true;

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 return false;

 }

 }

119

 public override void OnRequestPermissionsResult(int requestCode, string[]

permissions, [GeneratedEnum] Android.Content.PM.Permission[] grantResults)

 {

 try

 {

 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode,

permissions, grantResults);

 base.OnRequestPermissionsResult(requestCode, permissions, grantResults);

 }

 catch (Exception ex)

 {

 Console.Write(ex.Message);

 }

 }

 }

}

Database connections

Creating table

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Android.App;

using Android.Content;

120

using Android.OS;

using Android.Runtime;

using Android.Views;

using Android.Widget;

using SQLite;

namespace Flashcards.SQLite

{/// <summary>

/// Model for Question and answer

/// </summary>

 public class QuizeTb

 {

 [PrimaryKey, AutoIncrement]

 public int QuestionID { get; set; }

 public string Question { get; set; }

 public string Answer { get; set; }

 }

}

Database code

using Android.Database.Sqlite;

using SQLite;

using System;

using System.Collections.Generic;

using System.IO;

namespace Flashcards.SQLite

{

 public class SqLiteDatabase : IDisposable

 {

 //############# DON'T MODIFY HERE #############

 private static readonly string Folder =

Environment.GetFolderPath(Environment.SpecialFolder.Personal);

 public static readonly string PathCombine = Path.Combine(Folder, "flashcard.db");

 private SQLiteConnection Connection;

 public void CheckTablesStatus()

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

121

 Connection.CreateTable<QuizeTb>();

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 private SQLiteConnection OpenConnection()

 {

 try

 {

 Connection = new SQLiteConnection(PathCombine);

 return Connection;

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 return null;

 }

 }

 public void Dispose()

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

 Connection.Dispose();

 Connection.Close();

 GC.SuppressFinalize(this);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 internal void CheckDataStatus()

 {

122

 try

 {

 using (OpenConnection())

 {

 if (Connection == null)

 {

 return ;

 }

 else

 {

 var dataCount = Connection.Table<QuizeTb>().Count();

 if (dataCount == 0)

 {

 InsertDefaultRow();

 //InsertDefaultMultiRow();

 }

 }

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 return ;

 }

 }

 internal List<QuizeTb> FetchData()

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null)

 {

 return null;

 }

 else

 {

 var data = Connection.Table<QuizeTb>().ToList();

 return data;

 }

 }

123

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 return null;

 }

 }

 private void InsertDefaultMultiRow()

 {

 try

 {

 List<object> quizList = new List<object>();

 QuizeTb q1 = new QuizeTb {QuestionID=2, Question = "What is the supreme

law of the land?", Answer = "The Constitution" };

 QuizeTb q2 = new QuizeTb { QuestionID = 3, Question = "What does the

Constitution do?", Answer = "protects basic rights of Americans" };

 QuizeTb q3 = new QuizeTb { QuestionID = 4, Question = "The idea of self-

government is in the first three words of the Constitution. What are these words?",

Answer = "We the People" };

 QuizeTb q4 = new QuizeTb { QuestionID = 5, Question = "What is an

amendment?", Answer = "An addition or change" };

 quizList.Add(q1);

 quizList.Add(q2);

 quizList.Add(q3);

 quizList.Add(q4);

 InsertListOfRows(quizList);

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 private void InsertDefaultRow()

 {

 try

 {

 var dataUser = Connection.Table<QuizeTb>().FirstOrDefault();

 if (dataUser==null)

 {

124

 QuizeTb newdata = new QuizeTb();

 newdata.QuestionID = 1;

 newdata.Question = "Empty...Please Add data";

 newdata.Answer = "Empty...Please Add data";

 InsertRow(newdata);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e);

 }

 }

 #region General

 public void InsertRow(object row)

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

 Connection.Insert(row);

 }

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception);

 }

 }

 public void UpdateRow(object row)

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

 Connection.Update(row);

 }

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception);

125

 }

 }

 public void DeleteRow(object row)

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

 Connection.Delete(row);

 }

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception);

 }

 }

 public void InsertListOfRows(List<object> row)

 {

 try

 {

 using (OpenConnection())

 {

 if (Connection == null) return;

 Connection.InsertAll(row);

 }

 }

 catch (Exception exception)

 {

 Console.WriteLine(exception);

 }

 }

 #endregion

 }

}

Main activity layout code

<android.support.design.widget.CoordinatorLayout

xmlns:android="http://schemas.android.com/apk/res/android"

126

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>

 <LinearLayout

 android:orientation="vertical"

 android:padding="10dp"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginTop="60dp"

 android:id="@+id/linearLayout2" >

 <include layout="@layout/content_main" />

 <RelativeLayout

 android:layout_margin="10dp"

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="wrap_content">

 <ImageView

 android:src="@drawable/prev"

 android:tint="@color/colorAccent"

 android:layout_alignParentStart="true"

 android:layout_width="50dp"

 android:layout_height="50dp"

 android:id="@+id/prevImageView" />

 <ImageView

 android:src="@drawable/next"

 android:tint="@color/colorAccent"

 android:layout_alignParentEnd="true"

127

 android:layout_width="50dp"

 android:layout_height="50dp"

 android:id="@+id/nextImageView" />

 <LinearLayout

 android:orientation="horizontal"

 android:layout_centerInParent="true"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/linearLayout3" >

 <ImageView

 android:src="@drawable/edit"

 android:tint="@color/colorGreen"

 android:layout_alignParentStart="true"

 android:layout_width="50dp"

 android:layout_height="50dp"

 android:layout_marginHorizontal="10dp"

 android:id="@+id/editImageView" />

 <ImageView

 android:src="@drawable/delete"

 android:tint="@color/colorRed"

 android:layout_alignParentEnd="true"

 android:layout_width="50dp"

 android:layout_height="50dp"

 android:layout_marginHorizontal="10dp"

 android:id="@+id/deleteImageView" />

 </LinearLayout>

 </RelativeLayout>

 </LinearLayout>

 <android.support.design.widget.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 app:srcCompat="@drawable/ic_add" />

</android.support.design.widget.CoordinatorLayout>

128

Content page code

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="245dp"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:showIn="@layout/activity_main"

 android:gravity="center_horizontal"

 android:background = "@drawable/roundcorner"

 >

<android.support.v7.widget.CardView

 android:id="@+id/cardview_question"

 android:layout_width="fill_parent"

 android:layout_height="245dp"

 app:cardBackgroundColor="#cabfbf"

 android:layout_gravity="center_horizontal">

 <TextView

 android:text="Question:-"

 android:textSize="12dp"

 android:textStyle="bold"

 android:gravity="top"

 android:textColor="@color/colorGreen"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 />

 <TextView

 android:id="@+id/txtQuestion"

 android:text="Questions"

 android:textSize="16dp"

 android:layout_marginTop="0dp"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center"

 android:textColor="@color/colorBlack"

 android:layout_centerVertical="true"

 android:layout_alignParentRight="true"

 android:layout_alignParentEnd="true" />

</android.support.v7.widget.CardView>

<android.support.v7.widget.CardView

129

 android:id="@+id/cardview_answer"

 android:layout_width="fill_parent"

 android:layout_height="245dp"

 app:cardBackgroundColor="#d6f3da"

 android:layout_gravity="center_horizontal">

 <TextView

 android:text="Answer:-"

 android:textSize="12dp"

 android:textStyle="bold"

 android:gravity="top"

 android:textColor="@color/colorRed"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 />

<TextView

 android:id="@+id/txtAnswer"

 android:text="Answer"

 android:textSize="16dp"

 android:layout_marginTop="0dp"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center"

 android:textColor="@color/colorBlack"

 android:layout_centerVertical="true"

 android:layout_alignParentRight="true"

 android:layout_alignParentEnd="true" />

</android.support.v7.widget.CardView>

</RelativeLayout>

Insert query code

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:background = "@drawable/roundcorner"

 android:padding="5dp">

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 >

130

 <TextView

 android:text="Question:-"

 android:gravity="center"

 android:layout_gravity="center_horizontal"

 android:layout_width="75dp"

 android:layout_height="match_parent"

 android:id="@+id/textView1" />

 <android.support.design.widget.TextInputEditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_gravity="start"

 android:id="@+id/edit_question" />

 </LinearLayout>

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 >

 <TextView

 android:text="Answer:-"

 android:gravity="center"

 android:layout_gravity="center_horizontal"

 android:layout_width="75dp"

 android:layout_height="match_parent" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_gravity="start"

 android:id="@+id/edit_answer" />

 </LinearLayout>

 <TextView

 android:text="Add"

 android:layout_gravity="center_horizontal"

 android:gravity="center"

 android:textColor="#ffffff"

 android:background="@drawable/button_bg"

 android:layout_width="100dp"

 android:layout_height="40dp"

 android:id="@+id/textView_add"

 android:layout_margin="10dp"/>

</LinearLayout>

