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ABSTRACT

LORENTZ INVARIANCE IN LOOP QUANTUM GRAVITY

Sou Thee Her

University of Houston-Clear Lake, 2020

Thesis Chair: Van Eric Mayes, PhD

From the principle of relativity, where the laws of physics is presumed to be the

same in all inertial reference frames, we have Lorentz invariance. This invariance

leads to rotational and boost invariance. These invariances are most recognizable

in the theory of special relativity. For decades, physicists have been attempting to

develop a theory of quantum gravity where all of general relativity, special relativity,

and quantum mechanics can come together. Two of the biggest developments so far

have been that of String Theory and Loop Quantum Gravity. In the case of Loop

Quantum Gravity, Lorentz invariance has not emerged so smoothly. This is because

of the postulates of Loop Quantum Gravity, postulating that a discrete structure

of spacetime exists near the Planck scale, where there is a minimum length and

minimum time. The minimum length and minimum time are the Planck length

and Planck time, respectively. The crucial role of the Planck scale is that it is the
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scale at which gravitational effects become relevant in a quantum setting, unlike in

quantum mechanics where gravitational effects are too weak to play much of a role.

The minimum length, however, appears to be a contradiction to that of Lorentz

invariance since a boost in one frame of reference would lead to a length contraction.

By considering relative locality and the postulates of Loop Quantum Gravity, we

develop two ways in which we could resolve this contradiction.
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CHAPTER I:

INTRODUCTION

A significant problem in the two major fields of quantum mechanics and gen-

eral relativity is that they do not merge together consistently. This is a problem

considering that both fields describe the same universe, although at different scales.

Quantum mechanics describes the universe at the smallest scales while general rela-

tivity describes the universe at much larger scales up to the size of galaxies and much

more. Since both exists in the same universe, it is logical to conclude that at some

point the two should merge and be able to accurately describe the same object or the

same system. This is one of the reasons for the need of a theory on quantum gravity.

Another reason is that a successful theory of quantum gravity would help explain

various problems in cosmology, such as describing quantum effects during the early

universe or on black holes where gravitational forces are strong. Such a theory would

also be a major step in unifying the four fundamental forces, which would eventually

lead to a Grand Unifying Theory and a Theory on Everything. However, for decades

physicists have failed to come up with a successful solution. Currently, there are at

least two major contenders: string theory and loop quantum gravity. The main focus

here in this thesis will be on loop quantum gravity.

In Chapter II, we will dive into some of the developments and roadblocks that led

to Loop Quantum Gravity and then give a brief overview of some of its main concepts.

Chapter III will explore Lorentz Invariance Violation in Loop Quantum Gravity. This

violation is the crux of this thesis and so a few possible solutions will be more closely

inspected in the following chapters. Chapter IV discusses the inclusion of matter in

quantum gravity. Although physicists still do not have a good idea of exactly how

matter comes about in quantum gravity, such an inclusion could arguably preserve
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Lorentz invariance. Chapter V will introduce Deformed Special Relativity, which is

one of the possible solution to Lorentz Violation. This form of special relativity has

been tested via astronomical observations and although results did not look great,

further considerations will still be given, which may lead to a possible solution.
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CHAPTER II:

INTRODUCTION TO LOOP QUANTUM GRAVITY

One could argue that the history of quantum gravity begins all the way back

to 1916 when Einstein realized that atoms also have gravitational energy and thus

quantum mechanics would have to apply to gravity as well. A summary of the

development of quantum gravity can be found by Ashtekar [9]. In quantizing gravity,

one has to recognize that in non-relativistic quantum mechanics particles do not

have a well-defined trajectory x(t) and there is usually only a probability amplitude

Ψ(x, t). With this, there would appear to be a lack of a space-time geometry in

quantum gravity, leading to an exclusion of causality, time, scattering states, and

black holes in the formulation of quantum gravity. There were at least four approaches

in attempting to include these common notions: a canonical approach, a covariant

approach, perturbative string theory, and the anti-de Sitter/conformal field theory

(AdS/CFT) conjecture.

The canonical approach tried to include causality by recognizing the Hamiltonian

formulation of general relativity and using it as a way for quantization. Here, the

idea of causality is recognized by how operators on the fixed three-manifold com-

mute. The variable used here was the three-metric on a spatial segment. Einstein’s

equations can then be broken down into two groups: four constraints on the metric

and its conjugate momentum, and six evolution equations [24]. From this, general

relativity could be seen as the dynamical theory of three-geometries. Wheeler called

this geometrodynamics [20]. The canonical approach would go on to attribute inter-

nal quantum numbers of elementary particles to non-trivial, microscopic topological

configurations. In other words, particles are equivalent to and arose from topological

layouts. Development in this approach, however, became stagnant when it was real-
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ized that other aspects of elementary particles played little to no roles here, such as

quantum electrodynamics and the emergence of gravitons.

The covariant approach took a more opposite route, taking particles into consid-

eration first [21][22][23]. The metric tensor gµν is now split into two parts:

gµν = ηµν +
√
Ghµν (1)

where ηµν is a background, kinematical metric, usually chosen to be flat, G is the

gravitational constant, and hµν is a dynamical field representing the deviation of

the physical metric from the chosen background. From this, it would only be hµν

that is quantized and a discrete amount or quanta of hµν would propagate onto the

background space-time with metric ηµν . Assuming the background to be flat, the

gravitons can be shown to arise via the Casimir operators of the Poincaré group

when the quanta of hµν has spin two and rest mass zero. This perturbation and

expansion technique at first seemed promising; however, it was later found to be

non-renormalizable [25]. It was however later realized from perturbative methods

in electroweak interactions that this approach would be normalizable but only at

low energies or large distances. This also would lead quantum gravity to differ from

general relativity at high energies or at scales near the Planck length. The difference

mainly comes from the simultaneous presence of quantum mechanical effects and

curvature, both of which does not appear to be present at the same time in quantum

mechanics or general relativity, but is presumed to be present in quantum gravity.

Of course at large distances or low energies, gravity is normally too weak, making a

theory of quantum gravity less necessary or at least difficult to test and verify.

The third approach to quantum gravity was string theory. In string theory, point

particles are replaced by one dimensional extended objects called strings. Particle-
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like states are then associated with modes of excitations of the string. Without

intention, string theory already had a mode of spin two, massless excitation, which

translates to a graviton and thus would account for gravity at the quantum scale.

Perturbation could be applied here since strings are assumed to be in flat space-time

[9]. This would bring in new parameters, making the theory more non-local. Also,

renormalization is not necessary here since string theorists believed that perturbation

is finite to all orders. However, perturbative string theory does face the issues of

ultraviolet finiteness and the lack of non-perturbative structures.

The last approach is the anti-de Sitter or conformal field theory (AdS/CFT) con-

jecture, which still relied on particle physics [9]. However, now it provides a relation-

ship between string theory and quantum field theory by forming a non-perturbative

form of string theory with certain boundary conditions. These boundary conditions

exists on the AdS bulk spacetimes and would be where string theory is equivalent

to certain gauge theories. Bulk here refers to a hyperspace or higher-dimensional

space where a brane, which is an object that generalizes a point particle to higher

dimensions, lives. At first the combination of string theory and quantum field theory

would seem to resolve whatever problems that was more unique to either theory, but

it still ran into some key problems though. For example, this conjecture has a neg-

ative cosmological constant while the observed cosmological constant is positive. It

was also realized that the non-perturbative string theory here fails to describe much

of the macroscopic world.

The roadblocks of these approaches brings us to loop quantum gravity (LQG),

which was introduced by Carlo Rovelli and Lee Smolin. LQG is background inde-

pendent, although there is a background manifold, and does not require the use of

perturbation theory. The basis of LQG deals mostly with a quantized geometry.
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Quantum Geometry

In LQG, there are at least two general approaches to quantizing gravity. The first

is finding a quantum geometry. The second is simply quantizing various elements in

space, such as quantizing matter. For a quantum geometry, there appears to exist a

fundamental length and time: the Planck length lp =
√
~G/c3 and Planck time tp

=
√

~G/c5 [5]. The Planck length and time being the smallest measurable distance

and time would indicate that a quantum geometry exists in a discrete spectrum, with

each discrete length and time being proportional to the Planck length and time. Since

many classical variables exist on a continuous spectrum, this would lead to there being

geometric operators that quantizes these variables, resulting in only a discrete set of

possible values. As stated by [5], this result obviously has to be true for there to be

a quantum Minkowski space describing a quantum gravitational field.

An existing fundamental length implies that the fabric of spacetime at some mi-

croscopic level is seen to be discrete. The discreteness of space comes from the

assumption that at some point space cannot be divided any further and that any

smaller division has no physical meaning or is not measurable. This limit is often

times assumed to be the Planck length (∼ 10−35m), but it does not necessarily have

to be. The Planck length lp is said to have been derived by Planck when he consid-

ered combining the fundamental constants of ~, Newton’s gravitational constant G,

and the speed of light c in such a way as to get a constant with the unit of length [10]:

l2 =
~G
c3

−→ lp =

√
~G
c3

Another way to derive the Planck length is shown in [29], where Heisenberg’s uncer-

tainty principle is used, along with the Schwarzchild radius R and rest mass M .
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∆x∆p ≥ ~
2

R =
2GM

c2

M =
E

c2

From the uncertainty principle, a precise measurement in position not only means

that the uncertainty ∆x is smaller than the precision L (∆x ≤ L), but also that

the uncertainty in momentum ∆p becomes larger, leading to a large momentum p.

This translates to a large energy E where we can get a relativistic limit of v → c,

making the rest mass M negligible. This in turn makes the energy as E = pc. The

Schwarzchild radius is used here as a limit to how small L can get before a black hole

is formed. Solving the uncertainty principle for p, where ∆x = L, and setting R = L,

we can combine the above three equations to get

L =
2GM

c2
=

2pcG

c4
=

2~G
2Lc3

−→ L2 =
~G
c3

−→ L = lp =

√
~G
c3

Input the known values of ~, G, and c, we can see that lp has an extremely small

value on the order of 10−35 m. A summary of its history and development can be

found by Hossenfelder [10]. This derivation of the Planck length may be a better way

to see its significance. Seeing how the uncertainty principle and Schwarzchild radius

is used here, it is easier to see that the Planck length is the most precise length or

distance that is measurable and anything more precise than that would either lead
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to a black hole or a great uncertainty in momentum. It is usually assumed then that

a scale well above this leads to a smooth spacetime. However, near the Planck scale

it can be argued that spacetime is more discrete.

Do not be confused here. Even though spacetime is deemed to be discrete near

the Planck scale, it can still be described as a differentiable manifold, where a metric

structure is defined by the expectation values of a gravitational field operator [17].

Space being discrete results in there being points or nodes which are called loops,

and functions of loops on the three-manifold would be taken to be quantum states.

With each neighboring loop a network is formed, called a spin network. This can be

seen in Figure 1 [29]. From here a spin foam is formed, comprising of the summation

of various spin networks. A visualization of the loops and networks would give an

outlook of a lattice structure, consisting of a minimal length, minimal area, and

minimal volume.

Figure 1: A graph, where each quanta of space (left) translates to a node (right)
[29]

In order to have a better idea of what spin networks are, we need to take a closer

look at some elements of general relativity. First off, in general relativity we have the

covariant derivative:
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∇µA
ν = ∂µA

ν + ΓνµλA
λ (2)

where Γνµλ allows us to connect neighboring points in spacetime; thus it is also called

a connection or connection coefficient. In flat spacetime, this connection is zero and

the covariant derivative is just the partial derivative. If the connection is torsion free

(i.e., Γνµλ = Γνλµ) and if it is metric compatible (i.e., ∇σgµν = 0), then the connection

can be determined entirely by the metric:

Γνµλ =
1

2
gλρ(∂µgρν+∂νgρµ−∂ρgµν) (3)

in which case the connection is also called the Christoffel symbol. These connections

comes about when considering parallel transport along a geodesic curve in curved

spacetime, where we would have tangential and normal components. In LQG, the

connection is determined a little bit differently. Here, we start by considering three-

dimensional space instead of spacetime. We then have a set of three vector fields that

are orthogonal: Ei
a(i = 1, 2, 3). The inner product of these vectors results in

qab = Ei
aEj

bδij (4)

where we have flat space in coordinates i, j on the right-hand side and we have curved

space with coordinates a, b on the left-hand side [30]. From this equation, we can see

that the metric is formed from Ei
a, which are called “triads”. Here, a, b, c, ... = 1, 2, 3

are spatial indices and i, j, k, ... = 1, 2, 3 are internal indices [17]. The internal indices

represent a basis in the Lie algebra of SU(2) or the three axis of a local triad. Seeing

how the metric is formed from these triads that have internal indices, it is natural
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to ask “How does the covariant derivative apply to the triads?” For an object Gi, of

only internal index, we can define a derivative similar to the covariant derivative as

∇aG
i = ∂aG

i+ΓiajG
j (5)

Here, the connection Γiaj is called the spin connection, and similar to the connection

in the covariant derivative, it would have to be defined externally. For a scalar (e.g.,

GiGi), in which this derivative would simply be a partial derivative, equation (5)

would become

∇aGi = ∂aGi−ΓjaiGi (6)

For an object of mixed indices, the connections from both equations (5) and (6) would

be used:

∇aE
b
i = ∂aE

b
i−ΓjaiE

b
j+ΓbacE

c
i (7)

Loop quantum gravity goes on to rely on these spin connections in forming the spin

networks. To see how spin networks are actually formed, we would need to dive

deeper into Yang-Mills theory, holonomies, loop representation, Asthekar variables,

etc., which we will not do here, but can be found in [17], [29], and [30]. In short, LQG

utilizes loop algebra and geometric operators to form the basic notions of length, area,

and volume.

One of the approach that LQG takes in quantizing length is to analyze the situ-

ation in 2 + 1 gravity (two spatial dimension and one time dimension). Apparently,

the main reason for this is because length operators are most easily analyzed here,
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and ignoring a cosmological constant, 2 + 1 gravity would be flat and so Lorentz

symmetry would not be much of a concern [5]. Here it is predicted that for spacelike

distances there would be a continuous spectrum, while for timelike distances there

would be a discrete spectrum. The length operator L̂ would act diagonally on spin

networks whose edges are labeled by SO(2,1) and its spectrum would be

L̂Ψ = lp

√
ρ2 + 1

4
Ψ (8)

L̂Ψ = iτpε
√
−n(n− 1) Ψ (9)

where ρ ∈ R+ or (ε = ±1, n ∈ N) label the unitary representations of SO(2,1).

Here Ψ is the quantum state of the gravitational field. There apparently also exists

a quantization ambiguity resulting from the regularization procedure, leading to an

alternative length spectrum [5]:

L̂sΨ = lpρΨ (10)

L̂Ψ = iτpε(n− 1
2
)Ψ. (11)

From here, we can begin to touch upon the question of how these length operators

and their spectrum changes under a moving or boosted reference frame. There are

at least two possibilities. The first is there may be a change in the operators for a

boosted observer. This would lead to a change in the spectrum. The second is that the

spectrum would not change but the operator and the quantum state would change [5]:

L̂boosted(β) = U(β)L̂U−1(β) (12)
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Ψboosted(β) = U(β)Ψ (13)

L̂boostedΨboosted = LΨboosted (14)

where U(β) is the operator corresponding to a Lorentz boost in a representation of

the Lorentz group.

From what has been shown, loop quantum gravity has at least two assumptions

or postulates:

1. Gravity may be weak but at some small enough scale it becomes strong and

unavoidable

2. At some small scale, space may become discrete, having a minimum length

The second postulate of a minimum length implies that Lorentz invariance is not

preserved, especially in a boosted frame of reference where the minimum length would

be seen to be contracted according to Lorentz contraction. It will be shown that these

postulates have a lot of implications, some of which may be key to resolving Lorentz

invariance violation. Lorentz invariance and its violation will be the next topic of

exploration in Chapter III.
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CHAPTER III:

LORENTZ VIOLATION

Lorentz invariance starts with the principle of relativity. This principle goes as far

back as Galileo or even farther, and simply states that the laws of physics is the same

in all applicable frames of reference (usually inertial). From here, it is easy to see

that there is a symmetry that leads to experimental results being independent of a

laboratory’s orientation (rotational invariance) or its velocity (boost invariance) [31].

These invariances are what makes up the core of Lorentz invariance. They essentially

are transformations that does not change experimental results. In special relativity,

these transformations generally leave the spacetime interval (more specifically, the

metric tensor) invariant and are usually represented in matrix notation. For exam-

ple, we have the spacetime interval of (∆s)2 in flat spacetime:

(∆s)2 = ηµν∆x
µ∆xν (15)

where we have the Minkowski metric ηµν :

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Spatial rotations or boosts are transformations that are described via a matrix Λµ′
ν :

xµ
′
= Λµ′

ν x
ν . (16)
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If this transformation is Lorentz invariant, then when applied to the spacetime inter-

val, we should get

(∆s)2 = (∆x)Tη(∆x) = (∆x)TΛTηΛ(∆x) (17)

→ η = ΛTηΛ

In index notation, this becomes

ηρσ = Λµ′
ρ ηµ′ν′Λ

ν′
σ = Λµ′

ρ Λν′
σ ηµ′ν′ (18)

where the order does not matter. The matrices or transformations that satisfy equa-

tion (18) are deemed the Lorentz transformations. An example of a rotation in the

x-y plane (where the rotation angle θ is periodic with period 2π) is [32]

Λµ′
ν =



1 0 0 0

0 cosθ sinθ 0

0 −sinθ cosθ 0

0 0 0 1



whereas a boost in the x-direction with boost parameter φ (defined from −∞ to∞) is

14



Λµ′
ν =



coshφ −sinhφ 0 0

sinhφ coshφ 0 0

0 0 1 0

0 0 0 1


When applied to an object’s coordinates, it becomes obvious that these trans-

formations are simply a coordinate transformation. In fact, there are at least two

types of Lorentz transformations: observer transformation and particle transforma-

tion [31]. An observer transformation is where new coordinates are chosen, such as

doing a translation where the origin would be moved or switching to polar coordi-

nates. A particle transformation is where the system itself is changed, either boosted

or rotated. Either transformations would still result in a coordinate transformation.

At this point, it becomes relevant to ask “How does loop quantum gravity or

quantum gravity in general violate Lorentz invariance?” The violation begins with

the discreteness of the geometry, which gives rise to a lattice structure where there

is a minimum area and minimum volume. This violation is more apparent when

considering a boosted reference frame. Any measured length in an inertial reference

frame will be observed as contracted from the perspective of the boosted reference

frame, especially one that is moving near the speed of light. This means that a

measured Planck length would be contracted; therefore, the Planck length would

no longer be a constant, leading to a continuous spectrum [5]. Of course, applying

Lorentz symmetry that was formulated in a flat Minkowski spacetime to a quantum

geometry could simply be wrong; however we are assuming that such symmetry is

applicable since there are no obvious reasons or signs as to why it would not be.

Another problem with the violation of Lorentz invariance is that it becomes more

pronounced when considering the interaction of quantum fields. Gambini and Pullin
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[3] argue that to avoid these large violations, one needs to consider non-local inter-

actions in the quantum fields similar to those in string theory. They first considered

the type of matter involved and saw that the background quantum states are peaked

around a definite value of the ADM mass when considering the solutions to spherically

symmetric quantum space-times. Their treatment of spherically symmetric quantum

space-times led to the result of the matter fields looking like discrete versions of the

continuum equations, where this discreteness arises from the background quantum

geometry. The matter field is seen to exist at the vertices of the spin network of the

background quantum state and is thus described by ~φ, a vector of values representing

the values of the field at the vertices of the spin network. From this, the quantum

state for the gravitational and matter field is |g̃, ~k,M, ~φ〉, where g̃ is the equivalence

class of graphs under diffeomorphisms of g, ~k is a vector of valences, and M is the

value of the ADM mass. To merge this with quantum field theory on a classical

space-time, the components of ~φ with values of the fields at particular coordinates

φ(r) needs to be identified and would depend on the quantum state of matter and

gravity [3]. If this quantum state is in a superposition of values of the mass and

valences ~k, then this would imply that each value of φ(r) will correspond to a su-

perposition of the components of ~φ. The need for non-local interactions then comes

when considering the calculation for the quantity of self-energy from Collins et al. [1].

Here they showed that the calculations on a discrete quantum space-time results in

dispersion relations that are of a lattice theory and not Lorentz invariant. Gambini et

al. even shows that the second derivatives of the self-energy does not cancel, leading

to large violations of Lorentz invariance [4].

One of the ways to consider non-local interactions was to consider a λφ4/4!

theory, where the interaction in momentum space is replaced by λ[exp(−α2(p2
0 −

~p2)2)φ(p0, ~p)]
4/4! and α is a function of ∆M [3]. In general, this approach has two
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requirements: the interaction should be Lorentz invariant and the exponential na-

ture of the factor is to make it compatible with the non-locality. Interestingly, the

non-local exponential types of interactions considered here have been studied in the

context of string theories and is also the first time where loop quantum gravity limits

the type of matter that can be used.

The preservation of Lorentz invariance in quantum gravity is apparently very dif-

ficult, if not impossible. Such difficulty has led many theorists to simply assume

that Lorentz invariance is violated, and it may be better or easier to constrain this

violation so as to better see when it occurs. Limiting this violation can be done in

many ways. One way is to use high-energy photons or particles. To better see why

high-energy particles are used, consider that Lorentz violation is expected to occur

near the Planck scale. This means that we would need a particle whose energy is close

to that of the Planck mass mp ≡
√

~c/GN ' 1.22×1019 GeV/c2. Such energy has yet

to be seen by any Earth based instruments and even the most energetic particles that

have been detected only have energies of E . 1011 GeV/c2 ∼ 10−8 mp [33]. In many

quantum gravity models, Lorentz violation can be seen through modified dispersion

relations for particles, generally of the form

E2 = (pc)2 + (mc2)2 + f(E, p;µ;M) (19)

where E and p are the particle energy and momentum, respectively; µ is a particle

mass-scale, and M denotes the relevant quantum gravity scale (usually of the order

of the Planck mass) [33]. The particles most often used as constraints are photons

and electrons, and so quantum electrodynamics (QED) plays a significant role here

as well. Thus, for electrons and photons, equation (19) respectively becomes
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E2
e = m2

e + p2 + f
(1)
e p+ f

(2)
e p2 (20)

E2
γ = (1+f

(2)
γ )p2 (21)

where we have set c = 1 and expanded the function f(E, p;µ;M) in powers of the

momentum and considered only the lowest order terms (p, p2, p3). Here, f
(1)
e , f

(2)
e ,

and f
(2)
γ depend on the helicity state of the particles [33]. So far, equations (20)

and (21) only applies for that of particles and not fields. To see what the modified

dispersion relations are for fields, we would have to turn to Effective Field Theory

(EFT) where there are Lorentz violation operators [34]. In [35], we can see that for

fields the lowest order non-renormalizable operators acting on the QED Lagrangian

leads to the modified dispersion relations of

ω2
± = k2 +

ξ
(n)
± kn

Mn−2
(22)

E2
± = p2+m2

e+
η

(n)
± pn

Mn−2
(23)

where equation (22) applies to photons while equation (23) applies to electrons, or

more generally fermions. The constants ξ
(n)
± and η

(n)
± indicate the strength of the

violation, taking on whole real numbers [34]. The plus and minus signs in equation

(22) indicates right and left polarization respectively, while in equation (23) they

indicate opposite helicity states. The values of n indicate the mass dimension of the

Lorentz violation operators. A deeper dive into how these equations are derived and

what they mean can be found in [33], [34], and [35]. In summary, the importance of

equations (20), (21), (22), and (23) is that they are modified dispersion relations which

leads to a constraint procedure allowing us to see where and when Lorentz invariance
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violation may effectively occur. For example, the Greisen-Zatsepin-Kuzmin (GZK)

limit at 5 × 1019eV/c2 has been used as a cutoff for when Lorentz violation occurs,

especially in explaining how heavier elements in ultra-high energy cosmic rays do not

lose energy as they travel towards Earth [34, 35]. This means that if these equations

are true, then we may not need to observe particles with energies anywhere near 1011

GeV/c2 in order to see Lorentz violation; and if we cannot reach the limit where

Lorentz violation effectively begins, then it is highly unlikely that Lorentz violation

will ever be observed if it is such a thing to begin with.

The use of photons and fermions as constraints is a starting point in seeing how

we can preserve Lorentz invariance. This approach leads into the consideration of

matter in Loop Quantum Gravity, which is another way in how Lorentz invariance

may be preserved. This will be explored more in the next chapter. So far, the

constraints considered here assumes Lorentz violation not only exists but occurs at a

certain limit. Other approaches does not make this assumption and instead tries to

modify relativity so as to preserve Lorentz invariance in Loop Quantum Gravity. One

such approach is that of Deformed Special Relativity, also known as Doubly Special

Relativity, and is the main focus of Chapter V.
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CHAPTER IV:

MATTER IN LOOP QUANTUM GRAVITY

The topic of matter in loop quantum gravity has now become more relevant. Not

only is it needed to observe gravity at the quantum scale, but it would also be used

in tests of Lorentz violation. So far there has yet to be a clear cut way of seeing

how matter arises in quantum gravity. One approach in seeing how matter couples

to quantum gravity is via scalar fields. This is because matter fields are often times

seen as a form of a scalar field.

As mentioned above, quantum states exists at the nodes or loops of the spin

network or graphs and are a result of loop functions. This means the background

space-time geometry would be a kinematical Hilbert space and the matter fields can

be scalars (such as ~φ), spinors, and 1-form gauge fields [2]. Scalar fields have been

used as a “clock”. This can be the case when you consider the equation of motion of

a massless, free scalar field φ as

∂µ(
√
−det(g)gµν∂νφ) = 0 (24)

In a spatially homogeneous space-time, this reduces to

∂t(
√
det(q(t))N−1∂tφ) = 0 (25)

The scalar field is then seen as a “clock” if the lapse function N is
√
det(q(t)). This

means φ ∝ t, suggesting that we can use a massless scalar field as an internal clock,

instead of the coordinate time t, to describe the dynamics, avoiding the “problem of

time” in quantum gravity [2].
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To see a scalar field with mass, one needs to consider the Higgs scalars. Here the

background space-time is Minkowski space-time and the Hilbert space is usually con-

structed via Gaussian measure, leading to the standard Fock Hilbert space. A problem

arises from the fact that the Hilbert space in loop quantum gravity is background

independent while Gaussian measure is not diffeomorphism invariant. Therefore, con-

sidering the Higgs scalars in loop quantum gravity becomes problematic. A possible

way to avoid this problem is summarized by [2] as using a set of bounded variables

for quantizing the Higgs scalars. So far, this applies to compact scalar fields. Other

scalar fields to be considered are non-compact scalars, parametrized scalars, etc., and

even fermions.

In LQG, this begins by considering the Lagrangian for a scalar field [30]:

L = −1

2

∫ [
∂µφ∂

µφ+V (φ)
]
d3x (26)

where V (φ) is a potential that indicates how the field interacts with itself. If the

field has mass, then the potential would contain a term like m2φ2/2 where m is the

mass of the field. If the field is massless, then V (φ) = 0 and the wave motion of the

field would move at the speed of light. This wave motion is described through the

equation of motion of the Lagrangian and is a wave equation [30]:

∂µ∂
µφ− dV (φ)

dφ
= 0 (27)

Equation (27) basically comes from inputting equation (26) into the Lagrange equa-

tion of motion:
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∂L

∂~rk
− d

dt

∂L

∂~̇rk
= 0

where ~r is the position vector and k = 1, 2, 3 indicates the position. The Hamiltonian

then becomes

H =
1

2

∫ [
π2+(∇φ)2+(mφ)2

]
d3x (28)

In equation (28), π is the canonical momentum conjugate to the field and is defined

as π = δL/δφ̇ = φ̇. Quantization of the Hamiltonian results in φ and π becoming

operators (φ→ φ̂, π → π̂) and their Poisson brackets become commutators [30]:

[φ̂(~x), π̂(~y)] = i~δ3(~x−~y) (29)

[φ̂(~x), φ̂(~y)] = [π̂(~x), π̂(~y)] = 0 (30)

Expanding the field φ̂ in Fourier space gets us the relation between momentum and

position space:

φ̂(~x, t) =

∫
ei~p·~xφ̂(~p, t)√

(2π)3
d3p (31)

From this, the Klein-Gordon equation, which describes the scalar field, becomes

(
∂2

∂t2
+~p 2 +m2)φ(~p, t) = 0 (32)
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where we have set c = 1 [30]. This also applies to a harmonic oscillator of frequency

ω(~p) =
√
~p 2 +m2. Like the harmonic oscillator, the field and momentum operators

would have creation and annihilation operators as well

φ̂(~p) =
â~p + â†−~p√

2ω(~p)
(33)

π̂(~p) = −i
√
ω(~p)

2
(â~p − â†−~p) (34)

with the creation and annihilation operators commuting as

[â~p, â
†
−~p] = δ3(~p− (−~p)) (35)

This allows us to quantize the Hamiltonian in equation (26) as [30]

Ĥ =

∫
ω(~p)

{
â†~p â~p +

1

2
[â~p, â

†
~p]
}
d3p (36)

The steps taken so far have allowed us to begin quantizing the scalar fields. How

does matter or mass actually arise in the quantized scalar fields? As stated, there is

no obvious answer to this; even though we can see in equations (24) and (34) that

there is a way to include a mass term, we still do not know of how such terms comes

about without adding it ad-hoc, arbitrarily or forcefully. One approach is to see how

matter or gravity couples to the classical scalar fields and then go from there. In [30],

this begins with the Lagrangian action,

S =

∫
Ldt
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which for a field becomes

S =

∫
L(φi, ∂µφ

i)d4x (37)

Here, L is a Lagrange density and is a function of the fields and their spacetime

derivatives. Looking at equation (24), we can see that for a curved spacetime where

there is dependence on the metric and its determinant, equation (35) becomes

S =

∫ {
−gµν∂µφ∂νφ−V (φ)

}√
−det(g) d4x (38)

From this, we eventually get that the Hamiltonian in equation (26) becomes

H =

∫
N
{ π̃2√

det(q)
+
√
det(q)

[
qab∂aφ∂bφ+ V (φ)

]}
d3x+Naπ̃∂aφ (39)

where π̃ is still the canonical conjugate momentum π̃ = ∂L/∂φ̇, and qab being the

positive definite spatial metric living on the three-dimensional manifold Σ and is re-

lated to the metric via

qab ≡ gab + nanb

where n is a vector field perpendicular to Σ and a, b = 1, 2, 3. In equation (39),

we also have the lapse N and the shift vector Na, which can be viewed as a scalar

and vector living in Σ, respectively. These can be defined in terms of the metric as [29]

N =
√
−g00
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Na = ga0

In equations (36) and (37), we have the factors
√
−det(g) and

√
det(q), respec-

tively. Such factors come from the fact that we are integrating a scalar along a volume.

Multiplying these factors by a scalar function we would get an object called a scalar

density, and applying it to equation (4) would result in densitized triads [17]:

Ẽa
i =

√
det(q)Ea

i

→ q̃ab = det(q)qab =
√
det(q)Ea

i

√
det(q)Eb

jδ
ij

= Ẽa
i Ẽ

b
jδ
ij = Ẽa

i Ẽ
b
i (40)

With this, we can see that the Hamiltonian from equation (37) becomes,

H =

∫
N√
det(q)

{
π̃2 + det(q)qab∂aφ∂bφ+ det(q)V (φ)

}
d3x+Naπ̃∂aφ

=

∫
N√
det(q)

{
π̃2+Ẽa

i Ẽ
bi∂aφ∂bφ+det(q)V (φ)

}
d3x+Naπ̃∂aφ (41)

We now have the Hamiltonian in terms of Ashtekar variables and it clearly has two

parts. The first part with the integral is how the scalar field contributes to the

Hamiltonian constraint. Integrating the second part of equation (39) (i.e., Naπ̃∂aφ)

with respect to the three-dimensional space is how the scalar field contributes to the

diffeomorphism constraint. These contributions of the scalar field, when added to the

Hamiltonian constraint and the diffeomorphism constraint, is how gravity couples to

the scalar field [30].
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So far we have seen how gravity can be coupled to the scalar field and how such

fields can be quantized. Other approaches have used parameterized field theory and

have mainly tried coupling fermions to gravity in order to see how matter through

gravity arises [2, 16, 17]. Classically we know that matter goes with gravity, although

here we do not know exactly how matter arises in quantum gravity. Therefore, in

the context of this thesis, we can only make an argument as to how matter in loop

quantum gravity can preserve Lorentz invariance. The argument is simply that the

size of observable matter constrains Lorentz invariance to be preserved. For example,

any length contraction that would not preserve the Planck length would not be of

concern since the matter that would be used to make such an observation would have

a size significantly larger than the Planck length itself. This is similar to the argument

in the previous chapter, regarding the GZK limit.

A last approach in preserving Lorentz invariance at the Planck scale is to take

a closer look at how special relativity or general relativity behaves at such scale.

At the scale of the Planck length, it can be assumed that gravity is strong. This

assumption of a strong gravity automatically results in a curved spacetime. This

means that we need to investigate how lengths contract in a curved spacetime and

formulate a transformation rule. This approach requires a closer look at how basis

and unit vectors change in a curved space. The reason to focus on basis and unit

vectors is because the Planck length can be considered to be the magnitude of a basis

or unit vector, which forms all of space and does not change magnitude regardless of

the frame of reference. This translates to a discrete spacetime where the motion of

all objects is seen to be discrete and not continuous. This discreteness or minimum

length applied to that of special relativity leads to some physical implications, which

will be explored in the next chapter.
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CHAPTER V:

DEFORMED SPECIAL RELATIVITY

So far there are two main attempts at resolving the issue of Lorentz violation in

Loop Quantum Gravity: the inclusion of matter and deformed special relativity.

Also known as doubly special relativity, deformed special relativity (DSR) begins

with two postulates [26]:

• The relativity principle holds even at the Planck scale.

• The Planck mass κ (or length where length λ = κ−1) is observer independent,

along with the speed of light c.

These postulates mean that if the Planck length is a fixed invariant minimal

length, then it can be measured by any observer and the measured value should be

the same for all inertial observer in any frame of reference. The development of DSR

assumes this observation would be in flat Minkowski space and is realized via quantum

deformation of the Poincare algebra of symmetries [6]. This quantum deformation of

the Poincare algebra would require some mention of quantum algebra, particularly

quantum groups.

Quantum groups here deal mostly with non-commutative algebra (i.e. Hopf alge-

bra). In the case of DSR with its two postulates and flat Minkowski space, we would

have the Poincaré group, where there are not only ten dimensional groups of symme-

tries, corresponding to rotations, boosts, and translations, but there is also a second

scale κ. Because of this scale, the De Broglie dispersion relation E2 = c2p2 + c4m2

would have to be modified. Although [26] did not mention any specific modifications,

[13] did suggest that the modification may depend on the measurement procedure.

For example, a modification of the dispersion relation may result in the form of

E2 − c2p2 + f(E, p;κ−1) = 0, where the function f(E, p;κ−1) is the same for all iner-
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tial observer and all inertial observers would agree on the leading κ−1 dependence of

f : f(E, p;κ−1) ' κ−1cp2E . This scale κ taken in consideration with other constants

in quantum gravity (i.e. c,G, ~, and Λ) may say that in the limit of quantum gravity,

we do not have Minkowski spacetime [26]:

1. lim
G,Λ→0

√
G
Λ

= κ−1 6= 0

2. lim
G,~→0

√
~
G

= κ 6= 0

It is unclear if either of these limits are true. In the first case where we have a posi-

tive cosmological constant Λ, the excitations of a three dimensional quantum gravity

would transform under representations of the quantum deformed deSitter algebra

SOq(3,1), which is seen to be a generalization of Lie algebra [27]. Here, q is the

deformation parameter and is related to Λ by

q = ei
√

Λ~G = eiπ/r (42)

Being a generalization of Lie algebra, the quantum algebra would have the following

commutation relations, which are still assumed to be antisymmetric and obeying the

Jacobi identity,

[M2,3,M1,3] =
1

z
sinh(zM1,2)cosh(zM0,3)

[M2,3,M1,2] = M1,3

[M2,3,M0,3] = M0,2

[M2,3,M0,2] =
1

z
sinh(zM0,3)cosh(zM1,2)

[M1,3,M1,2] = −M2,3

[M1,3,M0,3] = M0,1

[M1,3,M0,1] =
1

z
sinh(zM0,3)cosh(zM1,2)
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[M1,2,M0,2] = −M0,1

[M1,2,M0,1] = M0,2

[M0,3,M0,2] = M2,3

[M0,3,M0,1] = M1,3

[M0,2,M0,1] =
1

z
sinh(zM1,2)cosh(zM0,3)

where Mij (i, j = 0, 1, 2, 3) is the generator of the Lorentz transformation and the

parameter z is related to q by z = lnq. In the limit that z → 0, we get back out the

standard SO(3,1) algebra. Notice here that the commutations do not result in linear

function generators but instead results in analytic functions of them. The generators

can be found via

Mij = [Ji, Jj] = iεijkJk (43)

where J1, J2, and J3 are the generators of the rotation around the x, y, and z-axis,

respectively [28]. In matrix notation, they have the forms of

J1 =



0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0


, J2 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


, J3 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


So far, we can see that SOq(3,1) is a deformation of deSitter algebra. Similarly,

there is also a deformation of Poincaré algebra, called κ-Poincaré algebra. To see this,

we can rescale some of the generators [26]:
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E =
√

Λ~M0,3

Pi =
√

Λ~M0,i

M = M1,2

Ni = Mi,3

If G or Λ is small, then we have z = lnq = i
√

Λ~G ≈
√

Λ~κ−1 where G = κ−1. With

this, the commutation relations would obviously change. For example, [M2,3,M1,3]

and [M0,2,M0,1] becomes

[M2,3,M1,3] =
1

z
sinh(zM1,2)cosh(zM0,3)

=
κ

~
√

Λ
sinh

(~√ΛM

κ

)
cosh

(E
κ

)

= [N2, N1] (44)

[M0,2,M0,1] =
1

z
sinh(zM1,2)cosh(zM0,3)

=
√

Λ~κsinh
(~√ΛM

κ

)
cosh

(E
κ

)

= [P2, P1] (45)

In the limit of Λ→ 0 and κ being constant, equations (44) and (45), along with the

rescaled generators, can be generalized to become

[Ni, Nj] = −Mεijcosh(E/κ)

[M,Ni] = εijN
j
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[Ni, E] = Pi

[Ni, Pj] = δijκsinh(E/κ)

[M,Pi] = εijP
j

[E,Pi] = 0

[P2, P1] = 0

These generalized commutations are what is called the three dimensional κ-Poincaré

algebra in the standard basis and are a deformation of the Poincaré algebra. A more

exact derivation of these relations can be found in [36]. As a result, κ-Poincaré algebra

is also a quantum algebra and we can change the basis of the generators arbitrarily as

to get back out the classical Lorentz transformation generators. This has been shown

in [37] and such a basis is called a bicrossproduct. In this basis, the commutation

relations become

[Ni, Nj] = −εijM

[M,Ni] = εijN
j

[Ni, E] = Pi

[Ni, Pj] = δij
κ

2

(
1− e2E/κ +

~P 2

κ2

)
− 1

κ
PiPj

[M,Pi] = εijP
j

[E,Pi] = 0

[P1, P2] = 0

The DSR model in this basis, following these relations is called DSR1. Getting back

out the classical Lorentz transformation generators also means that this model is in

flat spacetime, while at the same time containing an observer independent scale κ.

This makes DSR1 appear to be of appropriate use in loop quantum gravity since
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it would not only preserve the speed of light but also the Planck length. However,

depending on the dispersion relation, the speed of massless particles, such as photons,

can begin to vary. Assuming that the relation v = dE/dp still holds and depending

on the sign of f(E, p;κ−1), it is found that the speed of massless particles in the low

energy limit may begin to decrease as energy decreases, although the speed of light

(≈ 3× 108m/s) is still the maximum observable speed [39]. For example, in [39] it is

found via the modified dispersion relation of

E2 = ~p2 +m2 + λE~p2

that the velocity of particles become

v ' 1− m2

2E2
+ λE

where λ is the wavelength and is deemed to be positive. Some calculations suggest

that this energy-dependent speed holds only for seeing particles as waves, while for

point particles, the speed of light is expected to not be energy-dependent. See [26]

for more details.

There are other models of DSR that are formulated slightly differently but can

still have similar results. We will not go into too much details but an example here

is in [38], where similar to E2 − c2p2 + f(E, p;κ−1) = 0, the dispersion relations used

is E2 = p2 + m2 + λE3 + . . . (in natural units). In terms of frequency, this becomes

E2f1
2(E;λ) − p2f2

2(E;λ) = m2. Here, λ is instead a proportionality factor of the

order of the Planck length and may be positive or negative. This model is sometimes

called DSR2. Unlike DSR1, it has no deformations but depending on how one defines

the functions f1 and f2, it can be seen that the dispersion relations of DSR2 is still
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the same or at least of the same leading-order modification as those in the κ-Poincaré

group [38]. Like DSR1, it still results in an energy-dependent speed of light for mass-

less particles in the low energy limit. For example, if f1 6= f2 then from dE/dp the

speed of light is [38][41]

c =
dE

dp
=

f3

1− Ef ′3
f3

where f3 = f2/f1 and f ′3 = df3/dE. This of course shows that the speed of light is

not constant but becomes energy-dependent.

Basically, DSR not only has the maximum speed of light as a constant but also

the Planck length as a constant as well. If this is the case, then does that mean

there is a factor, like the Lorentz factor, at play here that keeps the Planck length

constant, similar to how the Lorentz factor keeps the speed of light constant and

prevents speeds faster than the speed of light from existing? Such a question has

been asked, and like in DSR1 and DSR2 it has been found that the speed of massless

particles would not be constant but would vary depending on frequency or the energy

of the particle [5]. It has been found that c is only the speed of light at low energies,

E → 0, and approaches ∞ as E reaches the Planck energy [7]. This varying speed

of light may preserve Lorentz invariance; however, it has not been observed yet, with

some evidence even contradicting it. For example, in 2009 the Fermi Gamma-ray

Space Telescope made an observation from a burst and saw that a 31 GeV photon

arrived at approximately the same time as other photons of the same burst [8]. This

obviously supports the classical notion that the speed of light for massless particles

is not frequency or energy dependent.
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An example of the effects of this varying speed of light is how it affects length.

Seeing as the speed of light is used to define unit length, we see that a theoretical

distance is given, with T(E) as the measured time of travel, as [5]

d =
T(E)

2
× c(E ), (46)

which is different from an effective distance of

deff =
T(E)

2
× c . (47)

As stated above, the speed c(E) would increase with energy, and if d is to remain con-

stant, then T(E) would decrease. This decreasing T(E) leads to the measured distance

deff decreasing, even though it theoretically should remain constant. Therefore, the

measurement of a single distance in DSR has no meaning. Distances in DSR only be-

gin to have meaning when considering their ratios, since their ratios does not depend

on c(E) [5].

Relative Locality

We have now begun to see that in DSR the Planck length and the maximum speed

of light can be preserved to remain constant, all the while resulting in a varying speed

for massless particles which normally travels at the speed of light. For the rest of this

thesis, we will take a closer look at the postulates of loop quantum gravity and see

how the Lorentz transformations or the Lorentz factor is affected.

The first postulate of a strong gravitational field in quantum gravity translates

to significant curvature in spacetime. If we are working near the Planck scale with

strong curvature, then the assumption of local flatness would not apply (or would be
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much more limited) since local flatness would require one of two things: 1) shrink our

frame of reference to be significantly smaller than the Planck length, or 2) expand our

frame of reference to be much larger than the Planck scale, both of which would not

only make local flatness viable but also make gravity significantly weaker, allowing

gravity to be ignored all together. We do not want this; thus, we are not assuming

local flatness at all, and if we do, then we would need to define a limit at which it is

applicable. This means that we have to take curvature into account when considering

the Lorentz invariance and Lorentz transformations.

Let us start by considering the notion of relative locality. In this framework, there

is no such thing as absolute locality, resulting in different observers seeing different

spacetimes and the spacetimes are energy and momentum dependent. From this, we

can define the Principle of Relative Locality [40]:

Physics takes place in phase space and there is no invariant global projection that

gives a description of processes in spacetime. From their measurements local observers

can construct descriptions of particles moving and interacting in a spacetime, but

different observers construct different spacetimes, which are observer-dependent slices

of phase space.

The usage of phase space in this principle comes from using the Planck mass mp

as an energy scale. Although in [40] it is assumed that gravitational effects (such as

curvature distorting spacetime) may be ignored, we will not be assuming that here,

as stated above. Instead, we will be utilizing the basic idea of relative locality where

different observers in different local reference frames observes different spacetimes and

seeing how that might preserve the Planck length.

Deriving the Lorentz transformations in curved spacetime would also require de-

riving the Lorentz factor in curved spacetime. A quick way to derive the Lorentz

factor is to consider an object moving in the x direction with velocity v. An observer
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moving in the x′ frame of reference would normally see the object with the same

velocity; however, if the object is moving through space with non-uniform curvature,

then in the x′ frame the object may instead be observed to have velocity v′, as seen

in the figures below. Both velocities are less than and proportional to the speed of

light. The curvature of space may also change the value of the speed of light by a

proportionality χ. The justification for this possibility is that a curved space would

also change the metric, thus changing the speed of light in that curved frame to be

different than the speed in flat space. Of course accounting for the curvature may

keep the speed of light the same in every frame of reference.

x

ct

v

v = βc

Figure 2: An object moving in the x frame with velocity v
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x′

c′t′

−v′

v′ = β′c′

Figure 3: The same moving object from the boosted x′ frame

v = βc (48)

v′ = β′c′ =
β′

χ
c (49)

c = χc′ (50)

Using the relation of

c =
lp
tp

(51)

we can see that in the x′ frame, c′ from equation (50) is equal to

c′ =
l′p
t′p

(52)

where
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l′p =
lp
kl

t′p =
tp
kp

To clarify, the Planck length lp, Planck time tp, and speed of light c in the x frame

of reference is cautiously assumed to be proportional to the Planck length l′p, Planck

time t′p, and speed of light c′ in the x′ frame of reference. This is where the pro-

portionality factors kl, kp, and χ comes from. Their exact form or values will not

be explored here but could be a result of curvature or the metric being different in

different frames of reference. Substitute this into equation (50) and we see that

lp
tp

=
χl′p
t′p

=
χkplp
kltp

⇒ χkp
kl

= 1

χ =
kl
kp

(53)

Equation (53) is an obvious result, telling us that the proportionality between the

speed of light in different reference frames comes from the ratio between the propo-

tionalities of their Planck length and Planck time. In flat spacetime or spacetime with

uniform curvature, χ = 1 or kl = kp, which leads to c = c′. This could still be the

case regardless of whether or not there is uniform curvature, which we will consider

in our derivation; however, it may be safer to assume that kl 6= kp in this scenario.

The distance traveled by the object is then seen in the x and x′ frame respectively

as

38



x = γ′(x′+v′t′) = kxlp (54)

x′ = γ(x−vt) = k′xl
′
p =

k′xlp
kl

(55)

both of which are proportional to the minimum length lp. Also in equations (54) and

(55) we have t and t′ as

t = kttp (56)

t′ = k′tt
′
p =

k′ttp
kp

(57)

Any proportionality that lp has in the x′ frame to the x frame can be absorbed into

k′x. To clarify, we could absorb kl into k′x, resulting in x′ = k′xlp. However, we will

see that this is not necessary when we solve for γ. The same can be said for that of

kp being absorbed into k′t. We then have γ as being proportional to γ′ since it may

be safer to assume that the Lorentz factor is not uniform or constant everywhere but

changes proportionally from one frame to another:

γ = ηγ′ (58)

If the Lorentz factor is uniform or the same in all frames of reference and does not

differ by any proportionality from frame to frame, then we simply have η = 1 in

equation (58). Of course, if the Lorentz factor takes curvature into account, then as

curvature changes from one frame to another the Lorentz factor will change without
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the need of η. The inclusion of η is due to the Lorentz factor possibly changing and

being different in a different frame of reference.

Now to find the Lorentz factor γ, we can multiply equations (54) and (55) together

and simplify to get

xx′ =
kxk

′
xlp

2

kl
=
γ2kxk

′
x

ηkl
(lp

2 +
β′k′tklctplp
χk′xkp

− βktctplp
kx

− ββ
′ktk

′
tklc

2tp
2

χkxk′xkp
)

⇒ lp
2 =

γ2

η
(lp

2 +
β′k′tklctplp
χk′xkp

− βktctplp
kx

− ββ
′ktk

′
tklc

2tp
2

χkxk′xkp
) (59)

Now divide equation (59) by lp
2 and using the relation from equations (51) and (53),

we get

1 =
γ2

η
(1 +

β′k′t
k′x
− βkt

kx
− ββ

′ktk
′
t

kxk′x
) (60)

Solve for γ,

γ2 =
η

(1 +
β′k′t
k′x
− βkt

kx
− ββ′ktk

′
t

kxk′x
)

⇒ γ =

√√√√ η

(1 +
β′k′t
k′x
− βkt

kx
− ββ′ktk

′
t

kxk′x
)

(61)

As seen in equation (61), γ does not depend on kl and so it was not necessary to

absorb it into k′x. With this, the Lorentz factor now not only depends on the ratio

between the velocity of the boosted frame and the speed of light (i.e., β, β′), but also

on the proportionalities of distance and time to that of the Planck length and time

(i.e., kx, k
′
x, kt, k

′
t). If η = 1 (γ = γ′) and the distance and time proportionalities are

40



equal (kt = kx, k
′
t = k′x), then this simply becomes

γ =

√
1

(1 + β′ − β − ββ′)
(62)

In flat spacetime, β = β′, which makes this become the usual Lorentz factor:

γ =

√
1

(1− β2)

This could effectively still be the case if gravity is weak enough, resulting in β ≈ β′

and thus their difference would be very small (β′ − β ≈ 0). The result of equations

(61) or (62) could preserve the Planck length depending on the values that kx, k
′
x, kt, k

′
t

take and also on the sign of β and β′. We might not know exactly how to find these

values at this point but considering that equation (61) can turn back into the usual

Lorentz factor gives us a clue. First off, we know that 0 ≤ β ≤ 1, 0 ≤ β′ ≤ 1, since

they are just the proportionality factor between velocity and the speed of light, with

velocity being less than c. Secondly, from equations (51) through (57) we can see

that the average velocities in the x and x′ frame gives us

v =
kxlp
kttp

=
kx
kt
c

v′ =
k′xl
′
p

k′tt
′
p

=
k′x
k′t
c′

which indicates that kx < kt and k′x < k′t. This also indicates that the value of their

ratios in equation (61) is at least 1:
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∥∥∥∥ ktkx
∥∥∥∥ ≥ 1

∥∥∥∥ k′tk′x
∥∥∥∥ ≥ 1

The ratios of these variables can also change the form of equation (61) in at least two

ways:

1. If

∥∥∥∥ k′tk′x
∥∥∥∥�∥∥∥∥ ktkx

∥∥∥∥ , then

γ ≈
√√√√ η

1 +
k′t
k′x
β′ − k′tkt

k′xkx
β′β

=
√√√√ η

1 +
k′t
k′x
β′(1− kt

kx
β)

(63)

and if
k′t
k′x
β′ � k′tkt

k′xkx
β′β (or 1− kt

kx
β ≈ 1) then we have

γ ∼
√√√√ η

1 +
k′t
k′x
β′

2. If

∥∥∥∥ k′tk′x
∥∥∥∥�∥∥∥∥ ktkx

∥∥∥∥ , then

γ ≈
√√√√ η

1− kt
kx
β − k′tkt

k′xkx
β′β

=
√√√√ η

1− kt
kx
β(1 +

k′t
k′x
β′)

(64)

and if
kt
kx
β � k′tkt

k′xkx
β′β (or 1 +

k′t
k′x
β′ ≈ 1) then we have

γ ∼
√√√√ η

1− kt
kx
β
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In both cases, length contraction may actually become a dilation depending on the

sign of k′tβ
′/k′x and ktβ/kx, which could depend on the frame of reference or the

curvature within those frames. This means that the Planck length in one frame of

reference could instead look dilated in a boosted frame. The second conditions in

both cases where 1− kt
kx
β ≈ 1 and 1 +

k′t
k′x
β′ ≈ 1 seems to indicate that this condition

only applies at low velocities where β, β′ → 0 since the lowest value that k′t/k
′
x and

kt/kx can have is 1. At higher velocities, this second condition appears to no longer

apply, and instead we would have to rely on equations (63) and (64).

Observability

Now as stated, equation (61) holds under a modified definition of Lorentz in-

variance where curvature is present, especially considering our postulates. However,

under the insistence of inertial reference frames, where there is no curvature, we can

still try to resolve Lorentz invariance violation under the postulate of discrete space-

time. Not only does this postulate arise out of the definition of the Planck length and

Planck time being the minimum observable length and time respectively, but it also

goes on to have some important implications on what is observable and what is not.

The first implication is that any distance or time below that of the Planck length

and Planck time can exist but would not be observable. From this we would see that

any distance or time that is not a discrete size of the Planck length or Planck time

would also not be observable, even if they are larger than the Planck length or Planck

time. Take for example a distance of 3.1415 Planck length; it is greater than a Planck

length but would be observed as 3 Planck lengths since 0.1415 Planck lengths is not

observable. The second implication is that velocities slower than the speed of light

would effectively be an average of total distance traveled over total time. By this we

mean that continuous velocity and discrete velocity would be observed to effectively
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be the same. Take for example, a particle at the Planck scale moves a distance of

one Planck length over ten Planck times, which results in a velocity of 0.1c. Now

the particle could be moving continuously during the total time of ten Planck times,

but each distance per unit time would be smaller than a Planck length and thus is

not observable until the total distance is at least a Planck length. This is effectively

the same as the particle being stationary for nine Planck times and then moving at

the speed of light for one Planck length and one Planck time, resulting in an average

velocity of 0.1c. Therefore, continuous velocity and discrete velocity are effectively

indistinguishable.

The postulate of discrete spacetime and its implications would imply that an ob-

servable length contraction would have to be at least one Planck length long. This

means that for a length contraction to be observable, the difference between an ob-

ject’s contracted and uncontracted length would have to be at least a Planck length.

The question then becomes “What is the minimum velocity that an object of length

L0 = n0lp, where n0 ≥ 1, can have in order for it to contract by a minimum length of

one Planck length?” The derivation for this is shown below, and we shall see that it

has a major implication. Starting with the length contraction equation, we have

L =
L0

γ
= L0

√
1− β2 (65)

where L is the contracted length and L0 is the uncontracted length. The minimum

difference between the two leads to

∆l = L0−L = L0(1−
√

1− β2) = 1lp (66)

1lp = n0lp(1−
√

1− β2)
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1 = n0(1−
√

1− β2) = n0(1−
√
c2 − v2

c
)

=
n0

c
(c−

√
c2 − v2)

c− c

n0

=
√
c2 − v2 (67)

Solve equation (65) for v and we get

v =
c
√

(2n0 − 1)

n0

(68)

This answers the above question, becoming the minimum velocity that an object

would have to have in order to contract by a minimum observable length of one

Planck length. We can generalize this equation to apply for any amount of observable

contraction (i.e., ∆l = nlp, n ≥ 1):

nlp = n0lp(1−
√

1− β2)

n = n0(1−
√
c2 − v2

c
)

n =
n0

c
(c−

√
c2 − v2)

c− nc

n0

=
√
c2 − v2

v2 = (c− nc

n0

)2 − c2
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⇒ v =
c
√

(2n0n− n2)

n0

(69)

where n, n0 ≥ 1 and

n0 ≡ how large L0 is to lp

n ≡ how much L0 contracts by in terms of lp

From equation (68), we can see that an object of size one Planck length would have

to move at the speed of light in order for any length contraction to be observable, and

if such object contracts, then it would contract to be observed as having no lengths

at all, making the object not observable. We also know that length contraction does

not apply for the speed of light, and therefore we can arguably conclude that length

contraction does not apply for the Planck length. This preserves the Planck length

as being the minimum observable length.

A closer look at equation (69) reveals that there appears to be a major implication.

Equation (69) reveals that the observable velocity an object can have is dependent on

its size and how much it contracts by. The larger its size, the greater its velocity can

be and the more it can contract. Near the Planck scale, the values of n and n0 can only

take on discrete values in order for any length or length contraction to be observable.

This discreteness may still be true at the macroscopic scale where n and n0 would take

on much larger values. The reason why this is still the case is simply because n and

n0 comes from the normalization of ∆l and L0, respectively, via dividing both by lp.

Considering how small the Planck length is at the macroscopic scale, verifying that

∆l, L0, and L are all discretely proportional to lp would be extremely difficult and

would require extremely accurate measurements. Even a small amount of systematic
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or random error could affect this discreteness. In fact, it could be argued that the

smallest amount of error in measuring the Planck length would be equal to that of

the Planck length, which effectively would also preserve the Planck length as being

the minimum length when it comes to actual experimental measurement.

Thus far we have seen that by taking relative locality into account, we can change

the Lorentz factor in such a way as to see how it might preserve the Planck length.

If we applied this to the Lorentz transformation, then likewise the transformations

may or may not differ by a factor similar to those of kx, k
′
x, kt, k

′
t. We have also seen

that taking the postulates of LQG into account would lead us to a discrete spacetime,

where the velocity of an object may only take on certain values depending on its size

or length. These values are represented by n and n0 in equation (67), and although

it will not be explored here, it might be the same as or similar to the wavenumber of

a particle. Both approaches have shown or at least argued for a way to preserve the

Planck length and by extension the preservation of Lorentz invariance at the Planck

scale.

Discussion

After string theory, Loop Quantum Gravity is the second most well known theory

trying to unite general relativity and quantum mechanics. It came about after many

roadblocks in formulating a successful theory of quantum gravity, such as the canon-

ical approach failing to realize the importance of elementary particles in quantum

gravity. So far loop quantum gravity has also run into many roadblocks. Two major

ones are the violation of Lorentz invariance and the consistent inclusion of matter.

Lorentz invariance is what is responsible for length contraction (L = L0/γ) and time

dilation (∆t′ = γ∆t), with the Lorentz factor: γ = 1/
√

1− v2/c2. The violation of

Lorentz invariance basically comes about when one considers the Planck length or
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the Planck scale. Being the smallest possible length, the Planck length theoretically

should not shrink any further. However, classical length contraction says otherwise.

The mitigation of this problem has been attempted via constraining Lorentz viola-

tion to occur at a scale much higher than the Planck scale. This can be done via an

Effective Field Theory or matter.

In the case of an Effective Field Theory, a modified dispersion relation points to

a procedure of how to constrain when and where Lorentz violation may occur. This

has pointed to the use of ultra-high energy cosmic rays (UHECRs) as a limit. We

have for example the GZK limit where photons from UHECRs are expected to have

a maximum energy of around 1011eV/c2, which is no where near the Planck scale

energy of about 1019GeV/c2.

In the case of matter, no one knows of exactly how matter arises in quantum

gravity. This is on top of the fact that matter certainly exists at the quantum scale

and is usually responsible for the observation of gravity. So one attempt for this is

by using scalar fields, since matter or mass is usually thought of as a scalar, and

then coupling gravity to that scalar field. Considering that fundamental particles,

such as the electron, are seen to have sizes (via their wavelengths) no where near

the Planck scale, this would constrain Lorentz invariance to unlikely be violated.

Regardless of how matter comes about, the inclusion of matter in quantum gravity

will be necessary since it is through the utilization of matter in experiments and

observations that measurements are made.

If these constraints are not enough to preserve Lorentz invariance at the Planck

scale, then the theory of special relativity may need to be reformulated to not only

preserve the speed of light but also the Planck length. This has led to the theory of

deformed (or doubly) special relativity. Here we have seen that there are different

models relying on a modification of their dispersion relation. This modification usu-
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ally comes in the form of a function, such as f(E, p;κ−1), that has the Planck length

represented via a scale factor, κ−1. Although deformed special relativity appears to

preserve Lorentz invariance, it has made predictions, such as a varying speed of light,

that has not held up to observations from gamma-ray bursts.

From the idea of a modified theory of special relativity, we have instead attempted

to modify the Lorentz factor so as to see how it would preserve the Planck length. We

have done this by utilizing the basic idea of relative locality and the postulates of Loop

Quantum Gravity. In using the idea of relative locality, we saw that the Lorentz factor

γ changed mostly by the factors of kx, k
′
x, kt, k

′
t, which are proportionality factors

between distance and time in different frames of reference. We also saw that β is not

the same in all reference frames. Depending on the values and signs of these factors,

along with β and β′, this new γ could preserve the Planck length via length dilation.

Although not explored, this result does sound like a Doppler effect where sometimes

we can get a contraction (blue shift) or a dilation (red shift), depending on the values

and signs of these factors.

If we insist that Lorentz invariance only applies in flat-spacetime and thus the

Lorentz factor cannot be changed, then using the postulates of Loop Quantum Gravity

where there is a minimum observable length lp and minimum observable time tp, we

have seen that length contraction and time dilation must come discretely. This has

led to the requirement of an observable length contraction being at least one lp, which

resulted in the speed of a particle or object being dependent on its size. If an object

is of one lp then its minimum velocity is the speed of light in order for it to have any

observable length contraction. We of course know that length contraction does not

apply for the speed of light, and therefore can conclude that length contraction would

not apply for the Planck length.
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Future Work

The next steps in this work would be to find a way of determining what values the

factors of kx, k
′
x, kt, k

′
t can actually take. Do their sign and the sign of β and β′ lead

to a Doppler-like effect? This would require a deeper dive into how geometry and

curvature affects length and time, and how energy affects curvature. All of this would

lead to a closer study of the Einstein field equations and how they may be changed to

better fit a quantized spacetime. Likewise, we would also need to study what values

n and n0 in equation (69) can take and how are they related to the wavenumber. If

at the quantum scale, these values can only be discrete then that could mean velocity

may only take on discrete values as well.
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