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ABSTRACT

A SLIDING WINDOW BASED VOTING CLASSIFIER FOR ACTIVITY

SENSOR BASED USER IDENTIFICATION

Sai Ram Vallam Sudhakar

University of Houston-Clear Lake, 2021

Thesis Chair: Kewei Sha, PhD

Identification is the core of any authentication protocol design as the purpose of

the authentication is to verify the user’s identity. The efficient establishment and

verification of identity remain a big challenge. Recently, biometrics-based identifica-

tion algorithms gained popularity as a means of identifying individuals using their

unique biological characteristics. In this thesis, we propose a novel and efficient iden-

tification framework, ActID, which can identify a user based on his/her hand motion

while walking. ActID not only selects a set of high-quality features based on Optimal

Feature Evaluation and Selection and Correlation-based Feature Selection algorithms

but also includes a novel sliding window based voting classifier. Therefore, it achieves

several important design goals for gait authentication based on resource-constrained
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devices, including lightweight and real-time classification, high identification accu-

racy, a minimum number of sensors, and a minimum amount of data collected. Per-

formance evaluation shows that ActID is cost-effective and easily deployable, selects

only a minimum number of 10 high-quality features, uses only accelerometer sensor

and increases the cost efficiency of user identification, collects only a small amount

of 10 seconds of activity data, satisfies real-time requirements, and achieves a high

identification accuracy of 100% when applied to a 30 user dataset.
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CHAPTER 1

INTRODUCTION

1.1 Background and Significance

User authentication is a valuable method for preventing unauthorized access to sen-

sitive data. The object of authentication is to verify the identity of the user, so

identification is an important part of the authentication protocol design [1, 2, 3, 4].

Several recognition technologies that can uniquely identify users and prevent imper-

sonation have been established over the last few decades. It’s critical that these

recognition solutions provide a realistic and cost-effective method of rapidly iden-

tifying users while still offering a friendly user experience. In the modern world,

username/password identity is commonly used [5], but it is vulnerable to hacking,

theft, and fraud. Another common method for creating a verifiable identity is to

use a digital signature based on cryptographic algorithms [6]. It’s a successful solu-

tion, but it necessitates a powerful processor to produce digital signatures, making

it impossible for devices with limited resources to create such an identity. Physical

Unclonable Function (PUF) [7], a hardware-based solution, has recently emerged as a

means of identifying users, and many authentication protocols are based on it. PUF

is a powerful identity solution, but it necessitates additional hardware. Tokens and

access cards [8] also have a hardware-based identification solution.

Biometric-based identity solutions are the next step in the identification and au-

thentication process [9]. Because of the following factors, they are thought to be more

successful than the previously listed digital identities. First and foremost, biometrics

are an inherent part of the user’s identity. Biometrics, unlike other standard methods

of checking identity, such as usernames/passwords, PINs, tokens, and so on, cannot
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be forgotten, lost, or stolen [10]. Second, biometrics are one-of-a-kind for each in-

dividual, making them difficult to imitate. Third, biometric identities can be easily

verified by analyzing biometric characteristics [11].

Many biometric identities have been created and implemented in modern computer

systems. Face recognition techniques are used by the iPhone X and later models, as

well as the Microsoft Surface Pro, to recognize legal users [12, 13]. In smartphones

and computers, the fingerprint is the most commonly used biometrics-based iden-

tification [14]. Other common biometrics-based identities include ECG/EEG pat-

terns [15, 16], Iris patterns [17], and palm vein patterns [18]. To capture biometrics,

all of these solutions require specialized hardware. This can be costly, inconvenient,

and intrusive to the user’s experience.

Researchers studied human behavior patterns using data obtained by activity

monitors such as accelerometers and gyroscopes and discovered unique characteristics

that can be used as an identification. Activity sensors have been used in the literature

to classify users based on keystroke dynamics [19], hand gestures [20, 21], and gait

patterns [1, 2, 3, 4, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40]. These current methods yield promising results, but the majority of them either

employ computation-intensive algorithms based on a large number of features or use

multiple sensors deployed across the body, which is not practical in real-life scenarios.

The limitations of these approaches in the real-world applications include willingness

to use wearable sensors, ability to wear them, success rate, scalability, ease of use,

battery life, and the approach’s usefulness [41]. Many sensors, such as accelerometers

and gyroscopes, embedded in smartwatches and wristbands, can be used as biometric

measuring devices as these devices become more widely accessible. As a result, using

these sensors to measure biometrics in a cost-effective and convenient manner, we can

design solutions that build and validate digital identity for users. In addition, this
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approach is not expensive and can be used in continuous authentication since it does

not require any user interaction with the device.

1.2 Motivation and Research Challenges

The recent solutions of behavioral biometrics are inexpensive, more appropriate than

conventional biometrics and/or they can be used in combination with traditional

biometrics such as multi-factor authentication to improve security and usability [42].

Current biometrics-based authentication systems require user interaction, which is

inconvenient for the user. Typing the password, lifting the phone for face id, and

pressing the fingerprint sensor are just a few examples. This would be much more

difficult for the user during continuous authentication, as the user must authenticate

several times [43, 44, 45]. This problem can be solved by activity sensor based identity

solutions such as wearable sensor based gait recognition [46], touch gestures based

recognition [47], keystroke based recognition, etc., since the biometric patterns are

captured implicitly while the user interacts with the device [48]. These approaches

address the privacy [41] and power consumption [42] issues better than traditional

vision based activity recognition.

Many previous approaches collected activity data by installing sensors on various

parts of the body, which is inconvenient for the user. The ideal position for sensors,

we assume, is on the user’s wrist. To keep the design cost-effective, only a few sensors

must be used, and existing smartwatch sensors must be used. To minimize time

complexity, only a small amount of data must be obtained, classification algorithms

must be lightweight, and at the same time accuracy must be high.
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1.3 Novelty of the Research

We propose ActID, an efficient system for activity sensor-based user identification,

in this study, to efficiently identify users using wrist-worn sensors. Our classifica-

tion algorithm’s main task is to overcome challenges posed by the authentication

application’s specifications and the application’s resource-constrained devices. We

want to create an efficient system that can reliably classify users in real time using

a small number of sensors, a small amount of data, and only lightweight classifica-

tion algorithms. Our proposed approach is unique in four ways. First, we evalu-

ate the extracted features and select a set of high-quality features that can clearly

identify individuals using the Optimal Feature Evaluation and Selection method

(OFES) [49, 50, 51] and Correlation-based Feature Subset Selection (CFSS) [52] algo-

rithms. As a consequence, the feature set can be kept to a minimum. It also helps to

simplify the algorithm. Second, we introduce a novel classification algorithm for gait

authentication called Sliding Window based Voting classifier [53], which reuses data

to minimize data size and adapts voting to improve accuracy. Third, our proposed

architecture provides a smooth user interface. Unlike other research approaches that

require participants to wear several sensors on various parts of their bodies, our ex-

periment only requires participants to wear one wrist sensor and walk normally on

a flat surface for less than a minute to train the classifier. Fourth, by using only an

accelerometer sensor, we reduce the number of sensors needed and increase the cost

efficiency of user classification based on activity sensor data. The proposed system

can achieve high accuracy of 100% when applied to a 30 user dataset based on a

simple prototype with a multi-class classifier, which is better than similar methods

such as those presented in [3, 4, 22, 26, 28, 32, 37, 39, 46].
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1.4 Contribution

The study makes three distinct contributions. First, we looked at the difficulties of

identifying users using activity sensors. Second, we improved the feature selection

method of Kayastha et al. [50] by using correlation filter, sensor reduction method

and compared the results with other similar approaches. Third, we proposed a new

classification algorithm that incorporates a sliding window technique as well as a

voting system. Finally, we built a prototype for activity sensor-based user recognition

and compared with similar approaches.

1.5 Organization of Thesis

The remainder of the study is written out in the following manner. A group of similar

works is mentioned in Section 2. The aim of this study is discussed in Section 3.

The architecture of the ActID system is discussed in Section 4. The performance

assessment is presented in Section 5 using a simple prototype implementation. In

Section 6, we sum up the thesis and look forward to future work.
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CHAPTER 2

RELATED WORK

Activity-based user identification has been a fascinating research subject. This

section contains a list of works that are relevant to our study.

2.1 Activity Sensor-Based User Identification

Biometrics-based user identification is a good way to classify or validate people based

on their physiological or behavioral traits [54]. Physiological biometrics is concerned

with an individual’s exact dimensions, measurements, and physical characteristics.

Behavioral biometrics, in contrast to physical biometrics, can be easily obtained using

existing hardware or wearable sensors that use less electricity, with only software

needed for analysis. As a result, behavioral biometrics are both inexpensive and

simple to use. Behavioral biometrics is the field in which our research falls.

Activity sensor-based user identification has demonstrated tremendous research

promise in the field of behavioral biometrics in recent years. Gait is one of the most

common activity-based biometric characteristics because it has been proven to be a

feasible authentication method by researchers. Table 2.1 summarizes several recent

findings on activity sensor-based gait recognition. Sensor-based gait authentication

was first proposed by Ailisto et al. [1]. The acceleration sensor attached to the user’s

waist acted as the basis for their gait authentication. Cross-correlation was used as a

test of similarity, and they got 6.4 percent EER. Gafurov et al. [3] expanded on their

methodology and studied it. For gait authentication, some designs have used sensors

attached to various body parts (e.g., leg, waist, hip, arm, and all over the body) [22],

which is not realistic in real-life scenarios. As a result, these innovations have yet to

be deployed on a large scale.
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Study Subjects Sensor Location Results

Ailisto et al. [1] 36 Waist EER: 6.4%

Mantyjarvi et al. [2] 36 Waist EER: 7% - 19%

Gafurov et al. [3] 21 Lower leg EER: 5%, 9%

Al Kork et al. [22]

50

23

Leg, hand, wrist, pant pocket,

shirt pocket and bag (left and

right side)

Hand (holding smartphone)

EER: 0.17% - 2.27%

EER: 1.23% - 4.07%

Derawi et al. [10] 51
Pocket attached to the belt

(right-hand side of the hip)
EER: 20.1%

Rong et al. [24] 21 Waist EER: 5.6%, 21.1%

Sun et al. [25] 22 ankle EER: 3.03%

Kwapisz et al. [26] 36 Front pants leg pocket Accuracy: 82.1%, 92.9%

Thang et al. [27] 11 Trouser pocket position
Accuracy: 92.7%

(SVM)

Johnston et al. [28] 59 Waist (smartwatch) EER: 2.6% - 8.1%

Kumar et al. [46] 12 Wrist (smartwatch) Accuracy: 95%

Liu et al. [32] 7
Four positions, left wrist,

chest, left ankle and waist
Accuracy: 86.7%

Table 2.1: A summary of user identification based on activity sensor.

2.2 Smartphone and wrist sensor-based user identification

Modern smartphones and wristwatches are fitted with powerful sensors that record

activity sensor data from the people who use them. These devices have evolved into

a rich data base for measuring human behaviors like walking, jogging, sitting, as-

cending stairs, and so on [29]. In comparison to other applications, these devices

are unobtrusive, easier to transport, and easier to capture activity data for user

identification. Table 2.2 summarizes several recent findings on smartphone and wrist

sensor-based gait recognition. Nickel et al. [4] used the K-Nearest Neighborhood algo-

rithm to create a method for extracting gait features and demonstrated its feasibility

on smartphones, achieving an EER of 8.24 percent. Al Kork et al. [22] used wear-

able sensors and a smartphone to build a multi-model biometric database for human

gait. They were able to reach an EER of 0.17 percent to 2.27 percent. At the same

time, they used five sensor nodes on various body positions, as well as a smartphone
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with built-in accelerometer and gyroscope sensors that they kept in their hands. In

contrast, we only used a single sensor node in our method. Furthermore, their data

collection time is 4.5 minutes, while ours is 60 seconds, with just 10 seconds of data

used. Garcia et al. [21] were the first to consider hand dynamics for authentication

based on door opening movements. To collect sensor data, they used the accelerom-

eter, gyroscope, and magnetometer installed in Google Nexus 4 smartphones. They

suggested a machine learning-based method for classification that included a number

of statistical and physical features as well as a Support Vector Machine (SVM). They

were able to achieve a 92 percent accuracy rate using their system. Most experiments

on smartphone-based gait recognition presume that the phone is in a fixed position

(e.g., belt, pocket, or hand) such that differences in the walking pattern detected by

motion sensors due to shifts in the phone’s positioning (e.g., from pocket to hand)

can be ignored [30]. However, in fact, there is no specific location of the phone on

the user’s body, and there is currently no proper system that can locate the phone’s

position automatically [46].

Study Subjects Results

Kumar et al. [46] 12 Accuracy: 95%

Primo et al. [30] 30 Accuracy: 82.3%

Liu et al. [32] 7 Accuracy: 86.7%

Johnston et al. [28] 59 Accuracy: 84%

Nickel et al. [4] 20 EER: 8.24%

Al Kork et al. [22] 23
EER: 1.23%

to 4.07%

Johnston et al. [28] 59 EER: 2.6% - 8.1%

Garcia et al. [21] 20 Accuracy: 92%

Table 2.2: A summary of smartphone and wrist sensor-based user identification.

Since users typically wear their smartwatches or wristbands in the same position

and orientation, wrist-wearables such as smartwatches and wristbands provide signif-

icant advantages over smartphones, especially in gait authentication. The wrist posi-
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tion offers more precise information about a user’s movements than the most popular

location for smartphones, such as pockets or handbags [28]. Wearable sensor-based

movement recognition has a variety of uses in health care, patient or elderly tracking,

recovery training, and a variety of other human interaction situations [31]. It is more

realistic to collect activity data from wrist-wearables for user identification due to its

rising popularity, position accuracy, and broad applicability.

Johnston et al. [28] used a smartwatch to gather gait data and found that fea-

tures derived from accelerometer data had an EER of 2.6 percent and data derived

from gyroscope data had an EER of 8.1 percent. They demonstrated their findings

by training five minutes of the dataset with a maximum recognition accuracy of 84

percent using six types of features: average, standard deviation, average absolute dif-

ference, time between peaks, binned distribution, and average resultant acceleration.

In each of the studies described above, a large amount of data was used to train the

model. Our experiment needed just 10 seconds of data and yielded a 100% promising

result.

Kumar et al. [46] suggested four continuous authentication designs based on arm

movement characteristics as people walk. With the aid of a smartwatch’s sensor, they

were able to collect motion data. Their first design captures arm acceleration with

an accelerometer sensor, their second design collects arm rotation with a gyroscope

sensor, their third design uses a mixture of both accelerometer and rotation at the

function stage, and their fourth design uses fusion at the score level.

Liu et al. [32] demonstrated a method for authenticating using 20 different features

from the time and frequency domain in a recent report. In their proposed scheme,

they used the C4.5 decision tree and obtained an accuracy of 86.7 percent. The

author concluded that a feature selection strategy was needed to improve the model’s

performance and reduce computational complexity.

9



López-Fernández et al. [40] proposed a multi-view gait recognition on curved paths

using local variations on the angular measurements along time. They have used a

stream of images from a certain number of fixed cameras (Eg. surveillance cameras)

to recognize a user based on gait patterns whereas we used activity data from the

accelerometer sensor on the wrist of the user. We shared some similar ideas in the

classifier design, but our design couples with a unique feature selection and our iden-

tification approach has fewer constraints on user movement and is less costly. In

addition, we have also introduced a mechanism to obtain optimal values of the pa-

rameters such as window size and sliding interval during the sliding window process.

This study is based on but significantly extends Ms. Namrata Kayastha’s Master’s

Thesis [50]. The differences are summarized below. The focus of the Kayastha’s

thesis is to develop a feature evaluation and selection mechanism, while in this study,

we focus on designing a multi-class classification algorithm. In the evaluation of the

Kayastha’s thesis, the experiments are based on a 14-user single-session dataset, while

in this study, the experiments are based on a 30-user two-session dataset. We have

also improved the feature selection algorithms in this study by applying correlation

analysis and sensor reduction. Consequently, the classification in this study is based

only on a set of accelerometer data, while the classification in the Kayastha’s thesis

uses both accelerometer and gyroscope data. Furthermore, the Kayastha’s thesis only

utilizes and evaluates existing traditional classification algorithms, but we designed

and evaluated a novel sliding-window-based voting classification algorithm in this

study. As a result, the paper improves classification accuracy.

In summary, compared with many previous research, our experiment only uses 10

seconds of data and we tackle the challenges faced by the previous studies. With our

proposed framework, we intend to keep the size of the feature set as small as possible,
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identify a set of high-quality features that can help distinctly identify individuals,

provide a smooth user experience, as well as provide a promising result.
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CHAPTER 3

MOTIVATION

One of the common problems of authentication is its intrusive way of authenti-

cating users. It could be typing the password, raising the phone for face id, touching

the fingerprint sensor, giving the voice to identify the user. These kinds of authen-

tications require user interaction every time the user attempts authentication, which

leads to lots of inconvenience to the user. Syed Zulkarnain et al. studied on finding

the profile of an individual like age, gender etc., based on their behavioral character-

istics of keystroke dynamics [43]. It would be interesting to see if the same can be

achieved with activity sensor data. Heather Crawford et al. proposed a framework

that integrates multiple behavioral biometrics to implement an effortless and con-

tinuous authentication mechanism without user interaction [45]. Similarly, Saevanee

et al. proposed a novel text-based multimodal biometric approach using linguistic

analysis, keystroke dynamics and behavioral profiling so that the number of intrusive

authentication requests required for high security applications will be decreased [44].

All these approaches are trying to achieve authentication without any intrusion to

the user. We believe activity sensor based user identification is less intrusive because

it does not require much user interaction with the device thus to make authentication

easier.

In recent years, activity sensor-based biometrics has been a hot research subject.

The widespread availability of activity sensors such as accelerometers and gyroscopes

has resulted in many new designs and technologies aimed at constructing user iden-

tities based on sensor data. For identities, previous prototypes have used various

movements such as walking, running, jumping, and arm gestures [4, 55, 56]. How-

ever, due to the following issues, we have yet to see large-scale implementations of
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these technologies. For starters, we’ve seen sensors deployed on various body parts,

such as the waist [1, 2], leg [3], sternum [57], wrist [46], and multiple body locations

at once [22]. Many of them are unusable in real-world circumstances. Given the

increasing popularity of smartwatches (e.g., Apple Watch) and fitness bands (e.g.,

Fitbit), we assume it is more realistic to create identification using activity data ob-

tained by activity sensors mounted on these devices. We won’t need to add any

additional sensors to the human body as a result of this process. We will need to

reduce the number of sensors in order to make the design cost-effective. Second, the

large size of the feature set increases the recognition algorithm’s complexity. The

feature set must be kept as minimal as possible. On the other hand, we don’t want to

overlook essential characteristics that contribute to identity uniqueness. It’s difficult

to correctly classify a consumer based on a limited collection of high-quality features.

Third, existing activity sensor-based identification algorithms can still be improved in

terms of accuracy. Fourth, while many user identification applications need real-time

processing, several embedded devices, such as smart lockers and smart wristbands,

are resource constrained, with a slow processor and limited memory. As a result,

user recognition algorithms must be lightweight in order to operate on a number of

smart devices. Finally, in order to have a seamless user interface and meet real-time

specifications, the recognition process should be completed in under a minute. As a

result, only a limited amount of data can be obtained.

In [50], kayastha et al. proposed optimal feature evaluation and selection method

to evaluate features quantitatively and select high quality features. We believe that

there is still scope to improve the filtering of features using correlation method. They

also proposed a prototype user identification based on the high quality features. How-

ever they have used same session data for training and testing. This needs to be tested

in different sessions since training and testing occurs at different times in real case
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scenario. Also they have used a traditional classifier for user identification by us-

ing sliding window method. We believe that applying majority voting to the sliding

window method results in improving the accuracy.

The ActID architecture, which consists of a feature evaluation and selection pro-

cess, a collection of high-quality features from multiple viewpoints, a sliding window

based identity modeling algorithm, and a majority voting method addresses the above

challenges.
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CHAPTER 4

DESIGN OF THE ACTID FRAMEWORK

The purpose of this research is to propose a smooth and non-intrusive way of

authenticating user based on activity sensor data collected from the user’s wrist.

For this, we have designed our ActID Framework. Figure 4.1 illustrates the ActID

structure. The framework is divided into two sections: identity modeling and identi-

fication.

Figure 4.1: The ActID Framework.

The identity modeling phase is depicted by blue arrows in Figure 4.1, while the

recognition phase is depicted by red arrows. When the user walks around in the

first step, the changes in motion are captured by an activity monitor, which consists

of an accelerometer and a gyroscope and is worn on the user’s wrist. The sensing

data is then transmitted via Bluetooth to a smart computer. Following that, the

data is filtered, resampled, and interpolated to enhance its accuracy. The generated
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data is used to extract a collection of features. These characteristics include both

statistical characteristics such as mean, standard deviation, and variance, as well as

physical characteristics such as the peak value for a hand motion acceleration. To

test extracted features and choose high-quality features, feature evaluation algorithms

such as Optimal Feature Evaluation and Selection (OFES) and Correlation-based

Feature Subset Selection (CFSS) are used. Then, using a sliding window algorithm

and voting system, we create a Sliding Window based Voting (SWV) classifier as the

identity model. Similar to the first phase, user interaction data is obtained in the

second phase. Following that, the qualified classifier receives the collected user data

as input, and the classifier identifies the user. The specifics of the ActID structure

are then presented.

4.1 Data Acquisition

We used the same activity data from 30 users in two sessions, collected by Kayastha

et al. [50]. All of these 30 users are student volunteers with nearly similar ages. In

each session, users walk as they usually walk on a plain surface for 60 seconds. They

used MetaWear C board equipped with two sensors including an accelerometer and

a gyroscope, which is placed on the wrist of the user. Sensors capture readings of

an accelerometer and gyroscope along x, y, and z-axes. The two sensors captured

the hand movement of users as they walk and consist of an accelerometer and gy-

roscope readings along x, y, and z-axes. Therefore, each data point was a 6-tuple,

(Ax,Ay,Az,Gx,Gy,Gz), where Ai and Gi specify an accelerometer and gyroscope

on the i axis, respectively. In each of the two sessions, they collected 60 seconds of

data sampled at a frequency of 100 Hz. Figure 4.2 represents the sample consisting

of 0.03 second of raw data. The two sessions of data are collected in an inter-session
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environment which is a realistic scenario since enrollment and verification happens at

different times.

As shown in phase one, the data obtained in the first session is used to create

the classifier. In phase two, the data from the second session will be used to test the

classifier. The classifier’s output is interpreted as the user’s identity.

The sample of an accelerometer data of a user in the X, Y, and Z dimensions for

two sessions (S1 and S2) is shown in the Figure 4.3. The blue color lines in the figure

reflect data from session 1, while the orange color lines represent data from session

2. Several studies [3, 58] have used a vector summation approach to combine signals

from all three dimensions. These methods have the benefit of minimizing computation

time by reducing the number of dimensions. However, if the signal amplitude in one

dimension is much greater than in others, the signal amplitude in the other dimensions

is ignored. We use data in all three dimensions separately for feature computation

and comparison in our analysis since it helps in identifying high-quality features.

Figure 4.2: Samples of Raw Data.

4.2 Data cleaning and transformation

In [50], Khayastha et al. pre-processed the activity data by interpolation and resam-

pling, and smoothing filter. Resampling is the process of filling the missing data point

with the nearest possible value using the linear interpolation method. Khayastha et
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Figure 4.3: Samples of an accelerometer readings of the same user for two sessions.

al. have used only data of 14 users for their experiments, whereas we use activity

data of 30 users. Since the first few and last few data points may contain more noise,

they eliminated the first and the last 2000 data points in the dataset and selected

2000 data points.

We have used the same raw activity data and used linear interpolation and re-

sampling to fill the missing data points of activity data. We have avoided applying

the smoothing filter to the activity data since it resulted in the decrease of identifica-

tion accuracy. We believe that interpolation and resampling is a simple but efficient

method for pre-processing. Finally, we have eliminated the first and last few data

points as mentioned above.

4.3 Feature Evaluation and Selection

One of the most important steps in developing any biometrics-based identification

algorithm is to identify unique features of the biometric dataset [10]. On one hand,

the efficiency of the identification algorithm is influenced by the size of the feature

set. Typically, to identify a user, a single feature may not be sufficient. Most of the

previous studies use a vector of features in their algorithms [22, 14] which increases

both the size and dimension of the dataset and results in the increase of complexity of
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the identification algorithm. On the other hand, the accuracy of the results of iden-

tification is primarily influenced by the quality of selected features. We would need

high-quality features that can differentiate any two users distinctly which increases

the accuracy of the user identification significantly. Distinguishing a particular user

from other users is not significant if they are compared using a weak feature. Thus,

by excluding weak features based on the results of the feature evaluation, we seek to

find a minimum set of high-quality features.

We select a minimum set of high-quality features for gait identification based

on the results of our feature evaluation by applying Optimal Feature Evaluation

and Selection (OFES) [49, 50, 51] and Correlation-based Feature Subset Selection

(CFSS) [52] algorithms. First, we extract biometric features which consist of statis-

tical attributes such as mean, median, and variance, as well as physical attributes

like peak value for an acceleration of hand, from the pre-processed raw dataset.

OFES provides two of the measures, Farness Value and Farness Ratio to evaluate

features [49, 50, 51]. Based on these values, we rank the features according to the

ranking method of OFES and identify the high-quality features subset. Second, we

reduce the number of sensors used to collect data from users during the identifica-

tion process in order to make a cost-effective design. To do so, we select only the

high-quality features from a sensor that contributes to 70% of high-quality features

or more. For example, let’s say that among the top 10 selected features, the first 7

features are from the accelerometer, and the last 3 features are from the gyroscope

sensor. Since the accelerometer contributes to the majority (i.e., 70%) of the high-

quality features, we replace the last 3 features from gyroscope with accelerometer

features whose ranks are closest to those 3 gyroscope features. This way we select the

10 high-quality features from the accelerometer sensor only. Third, we apply CFSS

to select the set of high-quality features that are correlated to the class label, but
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independent of each other. To do so, for each feature, we check correlation with every

other feature with respect to the class label and identify a set of features that are

independent of each other but correlated with the class label.

4.4 Sliding Window Vote (SWV) Classifier

Satisfying the real-time requirements of the user is important in identification. We

need to collect only a small set of data from the user so that identification completes in

a very short period and provides a smooth user experience. Achieving high accuracy

with less amount of data is a challenge in classification. Overcoming this challenge,

we design Sliding Window Vote (SWV) Classifier on top of a traditional classifier. To

make decisions on a small set of data, SWV utilizes sliding windows which not only

helps normalize the data but also helps in reusing data in multiple windows. It also

adopts a voting method which helps to improve the accuracy of identification.

The sliding window method solves three issues. First, while comparing two users,

it is important to align their activity cycles. Second, a small amount of data will not

be sufficient enough to classify a user. With a sliding window, we can generate more

windows by overlapping and reusing a set of data. Third, overlapping data between

subsequent windows improves the accuracy of the classification.

The design of SWV classifier (also referred to be SWV for the rest of the paper)

is depicted in Figure 4.4. It consists of three major components: a set of windows

represented using W1,W2,W3....,Wn, a traditional classifier, and an aggregator.

The windows are used to hold the data segmented from the sensor data stream

using the sliding window approach, the main idea of which is presented in Figure 4.5.

As shown in the figure, di represents the data points at position i. The sliding window

takes the first window of WS data points beginning at position d1 and ending at
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Figure 4.4: Design of the Sliding Window Vote Classifier (SWV).

position dWS, and places it in W1 in Figure 4.4. Then, it slides right by SI positions

and takes the second window of data starting at position d1+SI and ending at position

dWS+SI . This set of data will be placed into W2. This process will be continued until

Wk is filled, which is the last window of the data sequence.

Figure 4.5: Sliding Window Based Feature Extraction.
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In the sliding window approach, two parameters, Window Size that is defined as

the fixed amount of time for how many data points contained in a window, and Sliding

Interval that is defined as a fixed amount of time for how many data points the

window will shift, have a big impact on the performance of the classifier. Therefore,

the values of these two parameters should be carefully determined, which is achieved

by the process of determining optimal values of window size and sliding interval

represented in Figure 4.4. Once the optimal values are determined, they need to be

kept the same for the rest of the process.

The traditional classifier can be any existing lightweight classifier such as Random

Forest, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes

Classifier. Our SWV classifier is built and optimized based on these classifiers. The

choice of classifier also impacts the performance of the SWV classifier.

The last component of SWV is the aggregator. Data in each window will be used

as the input to the traditional classifier. Accordingly, a class label will be generated

for each window of data. The aggregator generates the final class label by aggregating

the class label of each window. Majority voting is used in the process of aggregating.

In other words, the aggregator counts the votes for each label and selects the label

with the highest number of votes.

SWV is trained using the training dataset, which is produced from session one

data collected in Section 4.1. First, we find the optimal values for the parameters such

as window size and sliding interval, the process of which is discussed below. Then, we

generate windows of data with the optimal values of window size and sliding interval

from session one data of activity dataset as discussed before. After that, we extract

selected features from each window of data to generate a feature dataset. This feature

dataset is used as a training dataset and sent to the traditional classifier component

as input to train SWV.
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To determine optimal values of Window Size and Sliding Interval, first, we ini-

tialize window size with any small value and a fixed size for Sliding Interval e.g., 0.5

seconds, corresponding to 50 data points. As before, we generate a training dataset

from session one data of the activity dataset. Then, we train any traditional classifier

with a training dataset. Similar to training data, we generate test data from session

two data of the activity dataset. Next, we test the classifier using test data to measure

accuracy. From our results, we observe that the accuracy of the classifier increases

with the increase of window size until a certain point and then decreases. Hence,

we increase the window size, extract the feature dataset, and generate the classifier

again. We repeat this process until the accuracy of the classifier starts decreasing.

Finally, we select the window size which results in the highest accuracy of the clas-

sifier. Similarly, we determine the optimal sliding interval that gives high accuracy

by fixing the optimal value for window size and increasing the values of the sliding

interval starting from 0.01 second (sliding only one data point), 0.25 second, and so

on. In the process of determining sliding interval, we observe that the accuracy of

the classifier decreases with the increase of sliding interval. However, with a sliding

interval of 0.01 second, data generation time is very long and accuracy is only a little

higher than in case of 0.25 second. Hence, we select 0.25 second as the optimum

sliding interval by trading off the accuracy with the efficiency.

After SWV is trained, it is used to identify the users. In this process, a few seconds

of user activity data is the input to the SWV, and the identity of the user will be the

output of the classifier.
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4.4.1 Evaluation Metrics

We use four metrics commonly used in user identification studies to assess the effec-

tiveness of our proposed method [38, 39].

• False Accept Rate (FAR) is the percentage of identification instances in which

unauthorised persons are incorrectly accepted

• False Reject Rate (FRR) is the percentage of identification instances in which

authorised persons are incorrectly rejected

• Equal Error Rate (EER) is the intersection of FAR (False Acceptance Rate)

and FRR (False Rejection Rate). A device with a lower EER is considered

more precise.

• Accuracy (also known as True Positive Rate, or TPR) is the percentage of all

identification attempts that correctly identify users.

4.4.2 Classification Algorithm

We use the users’ session 1 dataset as our training dataset and the users’ session

2 dataset as our test dataset to construct a classifier. Our labels are based on the

number of users we have, with User IDs ranging from 1 to 30. Training dataset

contains the actual labels for given data points. On the other hand, we delete the

labels from the test dataset to see how well a classifier can classify the consumer. To

train our classifier model, we use the training dataset. The trained model is then

used to classify or predict users on the test dataset.

We send the input of activity data to the classifier in segments of fixed size. For

example, we select 10 seconds of activity data in our experiment as optimal size of

activity data for the segment for training or testing. In training, we send the activity
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data of all the users with User ID from 1 to 30 in segments to the SWV classifier. In

testing, we send the activity data of any user with User ID from 1 to 30 to the SWV

classifier. SWV Classifier outputs with the label of the user. We verify the actual

and predicted labels and measure accuracy i.e accuracy would be 100% if matches

otherwise zero. Similarly, we test all the 30 users and take the average of accuracy.

We also measure equal error rate as a metric to measure the performance of the

classifier. First, we select any user and set the label as positive label (Eg. Label 1),

binarize it as label 1 and all other labels as zero. Next, we send segments of test

data of both positive label and negative label to the SWV classifier. And, store the

percentage of votes of positive label as the predicted score for each data segment.

Finally, we send the array of test labels (actual labels of each data segment) and

array of predicted scores of positive label to the roc curve method [59] from scikit-

learn python library [60] to evaluate false positive rate and true positive rate. By

sending these measures as parameters to brentq method [59], we calculate equal error

rate. We repeat this process for all the labels (i.e., binarize different label for each

time) and take the average of equal error rate.
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CHAPTER 5

PERFORMANCE EVALUATION

In this section, first, we present the performance evaluation of OFES when it

is applied to the activity sensor based user identification application. Second, we

present the performance evaluation of ActID.

In the rest of this section, we first describe the characteristics of the dataset.

Then, we illustrate the performance comparisons between OFES and others. Then,

we illustrate the performance comparisons between ActID and others. Finally, we

discuss about the effectiveness of OFES and ActID, and applications.

5.1 Description of Dataset

As we discussed in Section 4.2, we select 20 seconds of activity data, i.e., 2000 samples

from the processed dataset of 60 seconds of data, i.e., 6000 samples. The training and

testing dataset is the feature dataset calculated from the 20 seconds of activity data

following the window generation procedure as discussed in Section 4.4. As detailed in

Section 5.3.1, we find that 10 high-quality features represent a great trade-off between

the classification accuracy and complexity.

Various window sizes and sliding intervals are used in the process of determining

their optimal values which are discussed in Section 5.3.1. We determine the optimum

window sizes of 6, 8, and 10 seconds for 10, 15, and 20 seconds of activity data

respectively, and 0.25 second as an optimum sliding interval in all three cases. After

that, the optimal values of window size and sliding interval are used in the rest of the

experiment for the specific activity data size. Later, these optimal values of window

size and sliding interval are used in the process of generating feature dataset. For

each specific feature, we will have two sessions of feature dataset. Session one feature
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dataset was used as train dataset whereas session two feature dataset was used as

test dataset.

5.2 Performance comparison of our feature selection method

with other algorithms

Some common feature selection algorithms include ReliefF, Principal Component

Analysis (PCA), Correlation Based Feature Selection (CFSS), Information Gain Fea-

ture Ranking (IGFR), and Random Projections. Of all the current literature, [46, 38,

39] did a fantastic job of providing detailed work on feature evaluation and selection,

which is very relevant to our research. We compare our proposed feature evaluation

and selection algorithm with these two best previous efforts by Kumar et al. [46]

who used Information Gain Feature Ranking and Damaševičius et al. [39] who used

Random Projections with Matlab feature ranking for feature selection. In addition,

we also compare OFES with a feature selection approach that randomly selects a set

of features from the feature set.

We select top ten ranked features in [46, 39] to compare with top 10 selected

features of OFES. In addition, we also compare the performance of classifiers using

features selected by above approaches and random selected features. For OFES,

feature sets with both 8 feature and 10 feature are used. For the rest of the section,

we use OFES(10) to refer OFES selecting 10 features and OFES(8) to refer OFES

selecting 8 features.

In the rest of this section, we first compare the differences among top 10 selected

featured using OFES, IGFR, and Random Projections with Matlab feature ranking.

Then, for each compared feature selection approach, we train classifiers based on

27



four classification algorithms, including K-Nearest Neighbors (KNN), Support Vector

Machine (SVM), Naive Bayes, and Random Forest Classifier using the set of features

selected by that approach. For consistency and fairness, we use the same activity data

set for all the methods in order to build classifiers. The performance of these classifiers

reflects the performance of these feature evaluation and selection approaches.

5.2.1 Feature evaluation results

Based on our feature evaluation method, we filter the features that have FV ≥ 0.15

and FR ≥ 15 as high-quality features from the total of 96 extracted features because

the bigger FV and FR implies significant difference between two classes.

From the filtered features based on specific values of FV and FR, we first rank

them from the highest to the lowest based on FV and FR separately. Then, we rank

them again considering both FV and FR, and select the top 10 and top 8 features

out of 96 features.

5.2.2 Comparison of selected feature sets

The authors in [46] have extracted a total of 76 features (32 features from the ac-

celerometer readings and 44 features from the gyroscope readings). They used infor-

mation gain based feature ranking to rank the features. They ranked the features of

accelerometer and gyroscope separately [46] whereas OFES ranks all the features at

the same time.

The authors in [39] have extracted 99 features from the collected data based on

the extensive analysis of the literature and features used by other authors. They used

Random Projections for dimension reduction, and Matlab feature ranking to rank the

features.
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Rank OFES IGFR [46]
Random Projections +

Matlab feature ranking [39]

1. Mean ACC X Median ACC Y Variance GYRO Z

2. Median ACC X Energy ACC X Variance ACC M

3. Mean ACC Y Energy ACC M

First eigenvalue of moving covariance of

difference between ACC and GYRO

Eag = eig1 (cov (ax − gx, ay − gy , az − gz))

4. Median ACC Y Median ACC Z Energy GYRO Z

5. Energy ACC X Energy GYRO Z

Moving energy of difference between ACC Z

and GYRO Z

MEag = 1
N

∑N
i=1 (xi − yi)

2 , here x = az , y = gz

6. Median ACC Z Median GYRO M Variance ACC X

7. Mean ACC Z
Mean Rotation Rate

GYRO M

First eigenvalue of moving covariance

between ACC

Ea = eig1 (cov (ax(1 : N), ay(1 : N), az(1 : N)))

8. Energy ACC Y Energy GYRO M

First eigenvalue of moving covariance

between GYRO

Eg = eig1 (cov (gx(1 : N), gy(1 : N), gz(1 : N)))

9. Skew ACC Y
Mean Rotation Rate

GYRO Z

Moving energy of orientation vector of ACC

MEA = 1
N

∑N
i=1 ϕ

2
i , here ϕ =

arccos(ax·ay)
|ax|·|ay|

10. RMS ACC X Median ACC X GYRO M

Table 5.1: Comparison of top 10 features selected by different feature selection
algorithms.

Table 5.1 shows the comparison of top 10 features selected by different feature se-

lection algorithms. In the table, ACC M and GYRO M are defined as
√

(ax)2 + (ay)
2 + (az)

2

and
√

(gx)2 + (gy)
2 + (gz)

2 respectively. We observe that there are no common fea-

tures selected by all three algorithms. However there are four common features be-

tween OFES and IGFR, including Median ACC X, Median ACC Y, Median ACC Z,

and Energy ACC X , and none between OFES and Random Projections with Matlab

Ranking. We also observe that OFES selected only accelerometer based features.

Hence we can reduce the number of sensors by using only accelerometer sensor and

improve cost efficiency of user classification based on activity sensor data.
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5.2.3 Performance comparison in scalability to the number

of class labels

In multi-class classification, the accuracy of classifier usually decreases with the in-

crease in the number of class labels [61]. Classifiers constructed based on high-qualify

features should be scalable with the class labels. That is to say, the classifiers should

maintain high accuracy with the increase of the number of class labels.

In this experiment, we compare the performance of five feature selection ap-

proaches in 14, 20, 25, 30-class classification. We select four different classifiers in-

cluding K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naive Bayes,

and Random Forest Classifier and select the best classifier with high accuracy. The

results are depicted in Figure 5.1, where x-axis specifies the number of class labels,

and y-axis indicates the accuracy of the best classifier constructed using the features

selected by the corresponding feature selection algorithm. Each colored line repre-

sents the accuracy of best classifier constructed based on the selected feature set for

a specific number of class label.

Figure 5.1: Performance comparison in scalability to the number of class labels.
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From the figure, we observe that accuracy of classification tends to decrease with

increase in the number of class labels (users) for all algorithms. Among all approaches,

IGFR features results in the most significant accuracy drop, which is 10%, dropping

from 100% for 14-user classification to 90% for 30-user classification. Following that

is random selection features with a drop of 9.8%. Random Projections with Matlab

feature ranking has similar scalability performance to OFES(10) and OFES(8). They

all drop about 5% with the increase of number of users. However, the classifiers

constructed using OFES(10) and OFES(8) achieve way better accuracy than that

using Random Projections with Matlab feature ranking.

5.2.4 Performance comparison in sensitivity to classification

algorithms

Features selected with a feature selection algorithm should be less sensitive across

different classifier models because each classifier will have its own advantages and

disadvantages. Hence, there is a need for selected high-quality features to perform

well with any kind of classifier model.

We select four classifier models, including K-Nearest Neighbors (KNN), Support

Vector Machine (SVM), Naive Bayes, and Random Forest Classifier in order to test

the sensitivity of the feature selection algorithms. Figure 5.2 shows the comparison

of sensitivity between different classifiers with respect to feature selection algorithms

for 30-user classification. In the figure, the x-axis specifies different classification

algorithms, and y-axis indicates the accuracy of the classifier constructed based on

the corresponding classification algorithm by using the selected feature set. Each

line in the figure denotes the accuracy of the classifier constructed by using feature

set selected by a specific feature selection approach based on different classification
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algorithms. We compare the sensitivity based on standard deviation of the accuracy

of classifier.

Figure 5.2: Performance comparison in sensitivity to classification algorithms.

From the figure, we observe that Random Projections with Matlab feature ranking

and random selection features exhibit high standard deviation of 8.22, 8.84 respec-

tively while OFES (10), OFES (8) and IGFR exhibit consistent accuracy results with

very small standard deviation of 2.26, 1.39, 1.59 respectively across different classifier

models. The gap between accuracy of the best and the worst classifiers for Random

Projections with Matlab feature ranking and random selection features ranges be-

tween 14 − 20% while for OFES and IGFR, it ranges between only 3 − 5%. This

indicates OFES and IGFR are less sensetive to different classification algorithms.

Compared with IGFR, OFES has higher accuracy in general. In summary, OFES

achieves both consistency and accuracy across different classifiers.
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5.2.5 Performance comparison in the impact of the features

on accuracy of classifiers

Selecting the high-quality features is necessary to accurately distinguish the classes.

We use accuracy of the classifier models as a measure to evaluate the performance of

feature selection algorithms. In order to compare the performance of feature selection

algorithms, for each feature selection algorithm, we build four different classifiers

including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naive Bayes,

and Random Forest Classifier for multi-class classification of 30 users with the features

selected by the corresponding feature selection algorithm.

5.2.6 Accuracy in 30-user classification

In this section, we compare the overall performance of feature selection algorithms

for all the classifier models. Figure 5.3 shows the performance comparison in the

impact of the features selected by different feature selection algorithms on accuracy

of classifiers in classifying 30 users. In the figure, the x-axis specifies different feature

selection algorithms, and y-axis indicates the accuracy of the classifier constructed by

using the selected feature set based on the corresponding feature selection algorithm.

Each line in the figure denotes the accuracy of the specific classifier constructed by

using feature set selected by different feature selection algorithms.

From the figure we observe that Random projections with Matlab ranking results

in the least accurate results with an average accuracy of 45.9% among all classifier

models. IGFR with an average accuracy of 88.42% exhibits better results than ran-

dom selection features and Random Projections with Matlab ranking, but it is not as

good as OFES. OFES(10) achieves better results when compared to others for all the
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Figure 5.3: Performance comparison in the impact of the features on classification
accuracy.

selected classifier models with an average accuracy of 92.45%. Even OFES(8) exhibits

higher average accuracy of 92.62% when compared to others. We also observe that

KNN is the best classification method for the majority of feature selection algorithms.

5.2.7 Best accuracy in 30-user classification

In this section, we compare the classifiers that achieve the highest accuracy for the

corresponding feature selection algorithm. Table 5.2 shows the comparison of OFES

with other approaches for 30-user classification in terms of accuracy and best classi-

fication method. With KNN as the best classification method, random selection fea-

tures and Random Projections with Matlab ranking achieves accuracy of 78%, 55%

respectively, while IGFR achieves accuracy of 90% with Random Forest Classifier as

the best classification method. OFES(8) and OFES(10) achieves higher accuracy of

94%, 95% respectively with KNN as the best classification method when compared

to others.
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From all above analysis, we conclude that OFES outperforms other feature evalua-

tion and selection algorithms as it is less sensitive to different classification algorithms

and more scalable to the number of class labels. It also achieves higher accuracy for

most classification algorithms by identifying a smaller set of high-quality features.

Feature Selection Algorithm Best Classification Method Accuracy

Random selection KNN 78%

Random Projections + Matlab feature ranking [39] KNN 55%

Information Gain Feature Ranking (IGFR) [46] Random Forest Classifier 90%

OFES(8) KNN 94%

OFES(10) KNN 95%

Table 5.2: Performance comparison in accuracy of the best classification method.

5.3 Performance comparisons between ActID and others

In this Section, we first determine the parameters of the SWV classifier such as

optimal window size and sliding interval, choice of the best classifier, selection of

feature sets, and activity data size. Next, we conduct a performance evaluation of

SWV based on the optimal parameters. The evaluation includes performance in the

reduced data set, performance of the scalability, and performance in the accuracy.

Finally, we perform a comparison between ActID and other frameworks.

5.3.1 Finding optimal values of SWV parameters

Optimal Feature Set In this experiment, we considered 96 features that are used

in [49, 50, 51]. We extract these features and apply OFES and CFSS algorithms as

we discussed in Section 4. To identify the high-quality features, first we ranked them

from highest to lowest based on Farness Value and Farness Ratio [49, 50, 51]. Then,
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we identify the top 10 features each from the Farness Value and Farness Ratio list.

In both of these lists, 8 out of 10 features are in common. Next, we select the top 10

features from both Farness Value and Farness Ratio list considering the ranks of both

Farness Value and Farness Ratio. Table 5.3 represents the top 10 features selected. In

the table, all the top 10 features belong to accelerometer readings. Hence, we use only

one sensor, i.e., an accelerometer to collect activity data during user identification.

Rank OFES Definition

1. Mean ACC X

Mean of acceleration data along the x-axis.

The mean is the most common measure of central tendency.

It is simply the sum of the numbers divided by the number

of numbers.

2. Median ACC X

Median of acceleration data along the x-axis.

The median is also a frequently used measure of central

tendency. The median is the midpoint of a distribution.

3. Mean ACC Y Mean of acceleration data along the y-axis.

4. Median ACC Y Median of acceleration data along the y-axis.

5. Energy ACC X

Energy of acceleration data along the x-axis.

The total energy of a signal x is defined as the sum of

squared moduli.

6. Median ACC Z Median of acceleration data along the z-axis.

7. Mean ACC Z Mean of acceleration data along the z-axis.

8. Energy ACC Y Energy of acceleration data along the y-axis.

9. Skewness ACC Y

Skewness of acceleration data along the y-axis.

Skewness is a measure of symmetry, or more precisely, the

lack of symmetry. A distribution, or data set, is symmetric

if it looks the same to the left and right of the center point.

We compute the Skewness by using the scipy.stats.skew

library in Python.

10. RMS ACC X

RMS of acceleration data along the x-axis.

The root mean square, also known as the quadratic mean, is

a statistical measure of the magnitude of a varying quantity, or

set of numbers. Its name comes from its definition as the square

root of the mean of the squares of the values.

Table 5.3: Top 10 features selected.
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Optimal Window Size This experiment was conducted to find the optimum win-

dow size required to uniquely identify a person. We select SVM classifier as our

default standard classifier which is discussed in the following sections. To find the

optimal window size, we use various values of window sizes starting from 2 seconds

and a fixed size of sliding interval. For example, we use 0.5 second of sliding interval

for this experiment.

Figure 5.4 demonstrates the accuracy with different window sizes for 15 and 20

seconds of activity data or data segment respectively. In these figures, the x-axis

represents the window size in seconds whereas the y-axis represents the accuracy of

the SVM classifier. From both figures, we observe that, since the size of the total

dataset is fixed in this study, the graph achieves a peak and then starts to fall. We

select the window sizes at the peak point which are 8 seconds and 10 seconds as

optimum values in the case of 15 and 20 seconds of activity data respectively.

Optimal Sliding interval Similar to window size, an experiment was conducted

to find the optimum sliding interval required to uniquely identify a person. Likewise,

when analyzing the impact of sliding interval to the classification accuracy, we fix the

window sizes to optimal values of 8 seconds and 10 seconds for 15 and 20 seconds of

activity data respectively.

Figure 5.5 demonstrates the accuracy of SVM classifier with different sliding

intervals for 15 and 20 seconds of activity data. In the figure, the x-axis represents

the sliding interval in seconds whereas the y-axis represents the accuracy of the SVM

classifier. We use different values for sliding intervals such as 0.01, 0.25, 0.5, 1 second,

and so on. As mentioned in Section 4.4, we skip the sliding interval size of 0.01 second.

We observe that since the size of the total dataset is fixed in this study, the accuracy

of the classifier decreases with the increase in the sliding interval. As per our analysis,
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(a)

(b)

Figure 5.4: Impact of window size on a) 15 seconds of data and b) 20 seconds of
data.

0.25 second of the sliding interval is an optimum size of the sliding interval in both

cases of 10 and 20 seconds of activity data which results in the highest accuracy of

the SVM classifier.

Optimal number of features The size of feature set impacts the accuracy as well

as time complexity of the classifier. Hence, it is necessary to select a minimum number

of high-quality features. We conduct an experiment where a set of classifiers are

constructed using various classification algorithms and based on a different number

of selected features. We select four lightweight classification algorithms which are
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Figure 5.5: Impact of sliding interval.

widely used in user identification applications, including K-Nearest Neighbors (KNN),

Support Vector Machine (SVM), Naive Bayes, and Random Forest Classifier. Four

different sets of top-ranked features with sizes 8, 10, 12, and 14 are used to construct

different classifiers and the accuracy of each classifier is evaluated.

Figure 5.6 shows the results of the above experiment, where the x-axis specifies

the size of the feature set, and the y-axis indicates the accuracy of the classifier

constructed using a different number of selected features. Each colored line represents

the accuracy of a classifier constructed based on a different classification algorithm for

a specific number of selected features. From the figure, we observe that classifiers built

based upon 4 different sets of features exhibit close performance in terms of accuracy,

which is mostly between 90% and 100% except for the Random Forest Classifier

which results in around 85%. Classifiers built based on 8, 12, and 14 features have a

very close performance for all four classification algorithms, while the classifier on 10

features has slightly higher accuracy. Hence, we select 10 feature set as the minimum

feature set that results in high accuracy. Among the four classification algorithms, the
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Figure 5.6: Impact of number of features.

SVM exhibits the best accuracy while Random Forest Classifier has the least accuracy.

Some classification algorithms like Naive Bayes and Random Forest Classifier are less

sensitive to the number of features. The above observations confirm our belief that a

small number of high-quality features is sufficient to build a highly accurate classifier.

It is also necessary to identify a set of high-quality features to reduce the complexity

of the classification process.

Optimal Classifier Our SWV classifier is built on top of a traditional classifier.

Therefore, the choice of different classifiers may impact the performance of our voting

classifier. We believe that deep learning classifiers are too heavy for real-time user

identification. Hence, we test four popular lightweight classifiers including KNN,

SVM, Naive Bayes, and Random Forest Classifier. We compute the accuracy of the

SWV Classifier built on top of these traditional classifiers for comparison.

40



Classifier Model KNN Naive Bayes RFC SVM

SWV 96.66% 96.66% 86.66% 100%

Standard Classifier 96.53% 94.76% 85.76% 97.98%

Table 5.4: Performance comparison between SWV and traditional classifiers in
terms of accuracy.

A comparison between standard classifier and SWV classifier built on top of re-

spective standard classifier can be found in Table 5.4. The results mentioned in

the table represents the accuracy of the multi-class classifier that classifies 30 users

with 20 seconds of activity data each. SWV classifier with traditional classifier as

Random Forest Classifier achieves the least accuracy of 86.66% whereas KNN, SVM,

and Naive Bayes results in the accuracy of 96.66%, 100%, and 96.66% respectively.

For all the four traditional classifiers, the SWV classifier improves the accuracy. We

select the SVM classifier as the best traditional classifier for the SWV classifier since

it achieves the highest accuracy compared to others.

5.3.2 Performance evaluation of SWV

From the above experiment, we select SVM classifier as our standard classifier to

build SWV classifier, SWV-SVM, in terms of accuracy, scalability, and stability when

applied to a small dataset.

Performance comparison between SWV and traditional classifiers Fig-

ure 5.7 represents the performance of SWV-SVM with other traditional classifiers.

In the figure, the x-axis represents different classifiers whereas the y-axis represents

the accuracy of the classifier for 20 seconds of activity data. Random Forest Classifier

achieves the least accuracy of 85.76% whereas KNN, SVM, and Naive Bayes results
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in the accuracy of 96.53%, 97.98%, and 94.76% respectively. SWV-SVM achieves the

highest accuracy of 100% when compared to others.

Figure 5.7: Performance comparison between SWV classifier and other traditional
classifiers.

Scalability of SWV The accuracy of classifiers usually decreases with the increase

in the number of class labels in a multi-class classification [61]. Classifiers constructed

based on high-quality features should be scalable with the number of class labels. In

other words, classifiers should maintain high accuracy with the increase in the number

of class labels.

In this experiment, we compare the performance of the SVM classifier (the best-

performed classifier among the four evaluated traditional classifiers) and SWV-SVM

in 14, 20, 25, and 30-class classification. The results are depicted in Figure 5.8, where

the x-axis specifies the number of class labels, and the y-axis indicates the accuracy
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of the classifier for 20 seconds of activity data. Blue color represents SVM classifier

where red color represents SWV-SVM classifier.

Figure 5.8: Scalability of SWV.

From the figure, we observe that, for all datasets with 14, 20, 25, and 30 users,

SWV-SVM results in consistent high accuracy while traditional SVM classifier’s ac-

curacy decreases with the increase of the number of users. Similar results are seen

using other traditional classifiers as well. It shows that SWV not only improves the

accuracy of traditional classifiers, but it is also scalable to the size of labels.

Stability of SWV when applied to a small dataset Increasing the size of

collected data will both result in a longer data process and longer data collection

time, and cause inconvenience to the user. However, smaller activity data size may

not capture the entire cycle of walking. Therefore, an optimum size of activity data

is required.
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Figure 5.9 demonstrates the accuracy of the SVM and SWV-SVM with 10, 15,

and 20 seconds of activity data. In the figure, the x-axis represents the activity data

size in seconds whereas the y-axis represents the accuracy of classifiers. We observe

that SVM trained with 15 seconds and 20 seconds of activity data results in similar

performance with an accuracy of 97.7% and 97.96% respectively whereas SVM trained

with 10 seconds of activity data results in slightly lesser accuracy of 95.74%. SWV

classifier results in 100% accuracy in all three cases. In general, the accuracy of

traditional classifiers decreases when the dataset size gets smaller, e.g., 10 seconds.

SWV exhibits a better performance than the traditional classifier. As shown in the

figure, it not only always has a better performance than traditional SVM but also

remains 100% accurate even when the dataset size is reduced to 10 seconds. This

helps to achieve real-time authentication.

Figure 5.9: Impact of activity data size.
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5.3.3 ActID with other similar user identification approaches

In this section, we compare ActID with other similar user identification approaches.

Table 5.5 shows the comparison of ActID with others in terms of a number of features,

best classification method, user set size, activity data size, and accuracy. In the table,

two measures including EER, and accuracy are used to show the results. EER is

defined as the equal error rate which indicates that the proportion of false acceptances

is equal to the proportion of false rejections. The lower the EER, the higher the

accuracy of the identification.

In the table, [4] uses the highest number of 52 features with EER 8.24% whereas [3]

uses only one feature with EER 5% and 9%. We observe that both the highest and

least number of features result in a significant decrease in accuracy. ActID uses an

optimum number of 10 features which results in the highest accuracy of 100%. Along

with accuracy, we have also measured the equal error rate when applied to the 30 user

dataset as mentioned in Section 4.4.2 and ActID results in an EER equal to zero. [28]

uses 5 minutes of activity data and results in a lesser accuracy of 84%. [22] results

in low EER of 1.23% to 4.07% but collects 4.5 minutes of activity data. [32] collects

20 minutes of activity data and results in lesser accuracy of 86.7%. ActID only uses

10 seconds of activity data but results in the highest accuracy of 100%. [4] and [46]

select K-NN as the best classification method, while ActID selects SWV-SVM. [28]

uses highest user set size of 59, [32] uses lowest user set size of 7, whereas ActID uses

a user set size of 30. [39] and [46] results in accuracy of around 95% whereas ActID

results in the highest accuracy of 100%.

In summary, ActID uses an optimum number of features, i.e., 10 features, least

amount of activity data, i.e., 10 seconds, yet results in the highest accuracy of 100%

when compared to others.
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Paper Features
Best Classification

Method

Size of

User Set

Activity

data size
Results

[46] 31 features K-NN 12 2 min Accuracy: 95%

[39] 10 features

Heuristic (random

projections + PDFs

+ Jaccard distance)

14 Accuracy: 95.52%

[32]

20 features

(time and

frequency-

domain)

C4.5 decision

tree classifier
7 20 min Accuracy: 86.7%

[28] 6 features Rotation Forest 59 5 min Accuracy: 84%

[4] 52 features K-NN 20 1.7 min EER: 8.24%

[22]
3 types of

features
Manhatten method 23 4.5 min

EER: 1.23%

to 4.07%

[3] 1 feature

Histogram Similarity

and Cycle Length

methods

21 EER: 5%, 9%

Our

Approach

10 features

(time and

frequency-

domain)

SWV-SVM 30 10 sec Accuracy: 100%

Table 5.5: Comparison of our approach versus other approaches.

5.3.4 Discussion

Stability of High-Quality Features We believe the results of our feature selection

method are consistent across a different number of users. To verify this hypothesis, we

compare the top 15 selected features obtained based on 14-user and 30-user datasets.

We have the following two observations. First, all the top 15 features are from the

accelerometer sensor. This supports our hypothesis that an accelerometer alone may

be sufficient for identifying users based on their behavior. Second, 12 out of the top

15 resulted features are in common. This supports our hypothesis that the top-ranked

features from our feature selection process are consistent with gait characteristics in

different individuals. Table 5.6 lists the 12 common features.

Analysis of the Perfect Accuracy The accuracy results published in this study

are based on a 30-user dataset, using our top 10 selected features as well as the

optimal values of model parameters, including window size, sliding interval, and data
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No. Features

1. Energy ACC X

2. Energy ACC Y

3. Energy ACC Z

4. Variance ACC X

5. Variance ACC Y

6. Variance ACC Z

7. Mean ACC X

8. Mean ACC Y

9. Median ACC X

10. Median ACC Y

11. Root Mean Square ACC X

12. Root Mean Square ACC Z

Table 5.6: List of high quality features

segment size. Many factors may impact the accuracy, including the number of users,

the types of users, the choice of parameters, etc., so we believe, for larger size user

sets, accuracy may not always be 100% but it could still be very close to 100%,

because in our experiments all participants are college students who may have similar

activity patterns, which can be considered as a challenging case for identification. In

the future, we plan to verify the results of both the feature selection method and the

SWV classifier (based on features selected from our feature selection method) with a

diversified and large number of user sets.

The two sessions of user data are collected at separate times as we tried to avoid

unnecessary similarity introduced in the data collection process. However, we also

have to agree that the changes in user’s moving patterns over time may have an

impact on the identification accuracy. We are currently investigating new approaches

that can cope with the pattern changes. This is our future work.

Efficiency Analysis of the Classification Algorithm We believe our classifi-

cation algorithm is lightweight. First, because of the feature selection algorithm, we

can significantly reduce the number of features. This reduces the complexity of the

algorithm while maintaining high accuracy. The feature evaluation is done before the
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classifiers are trained and it only needs to be done once. We can perform feature

evaluation on a powerful device such as at the computing edge. Second, the classifier

training phase can be separated from the identification phase. The training phase

is more computing-intensive than the identification phase. Third, the identification

phase is only based on a small amount of data, 10 seconds of activity data. Fourth, we

can adjust the sliding intervals to keep the classification phase even more lightweight;

however, the impact of accuracy also needs to be considered. All the above designs

make the algorithm to be a lightweight algorithm. To verify these arguments, we

conducted a preliminary experiment to evaluate the computing cost of the proposed

algorithm in terms of execution time as summarized below.

In the experiment, we first evaluated the execution time of identification on an

old Macbook Air (Early 2015 model) with a 1.6 GHz Intel Core 5 processor (64-bit

dual-core) and 8GB memory size. The identification only took 4 milliseconds. If we

consider more computing-intensive tasks, feature extraction and classifier training,

the execution time is 2 seconds and 33 milliseconds respectively. Although we were

not able to find a direct performance comparison between the processing speed of

Macbook Air (early 2015 model) and Apple Watch 6, we found a performance com-

parison between MacBook Air (early 2015 model) processor and Snapdragon 200,

as well as Apple Watch 6 processor and Snapdragon 200. This enables us to have

an indirect comparison. The report from Notebookcheck [62] said the processor of

Apple Watch 6 is comparable to Snapdragon 200, while the processor of MacBook

Air (early 2015 model) is 10 times as fast as the processor of Motorola Moto E i.e.,

which uses Snapdragon 200 [63]. Therefore, we estimate that the execution time in

the smartwatch (Apple Watch 6) would be approximately 20 seconds for feature ex-

traction, 330 milliseconds for classifier training, and 40 milliseconds for identification.

When we offload the feature extraction and classifier training to a smartphone like
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the iPhone 12, which executes 3 times as fast as MacBook Air (early 2015 model) [63],

the estimated execution time will be less than 1 second for feature extraction and 11

milliseconds for classifier training. In conclusion, we believe our algorithm is suffi-

ciently lightweight to be executed on mobile devices, even for smartwatches like Apple

Watch 6, especially when we offload the heavy computing tasks to an edge device like

the iPhone.

Currently, we are developing a continuous authentication protocol based on both

smartwatch and smartphone. We will build a prototype to quantitatively evaluate

the CPU utilization rate, communication cost, and power consumption.

Applications We believe that activity-based gait recognition can be used in a va-

riety of applications, including multi-factor authentication, where it can be used for

continuous authentication, to grant access to a particular room assigned to an indi-

vidual in a building instead of using key cards to unlock, and so on.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this study, we proposed a novel ActID framework that selects only a minimum

number of high-quality features, and effectively addresses various real-time challenges

of user authentication based on activity sensor data. We introduced a novel Sliding

Window Vote Classifier which significantly improved the identification accuracy over

traditional classifiers. It demonstrates that even a small amount of activity data and

optimal feature dataset is sufficient to uniquely identify a user. This suggests that a

balance can be achieved between computation time and accuracy while designing an

identification protocol. Furthermore, the SVM classifier is shown to be the consistent

and best classifier among the traditional classifiers for user identification based on

activity sensor data. Our empirical analysis provided a mechanism to determine the

optimal window size and sliding interval, and to reduce the number of sensors used to

collect activity data. We demonstrated validity and necessity of finding the parame-

ters such as optimal window size and optimal sliding interval for a specific segment

size of activity data in sliding window based feature extraction. Our performance

evaluation results show the promising results of activity based user identification.

6.2 Future Work

In the future, we plan to extend the ActId framework to continuous authentication

applications and evaluate several factors such as a large number of user sets, diversified

user sets, spoofing, etc. We would also introduce a mechanism to learn the biometric
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changes of the user that occur as the user ages along with a method to detect various

activities of the user like walking, running, sitting, etc.
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