
REAL-TIME CONTROL OF BALANCING ROBOT USING ROS

by

Mike Moore

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

DECEMBER, 2018

REAL-TIME CONTROL OF BALANCING ROBOT USING ROS

by

Mike Moore

APPROVED BY

Thomas Harman, PhD, Committee Chair

James Dabney, PhD, Committee Member

Luong Nguyen, PhD, Committee Member

Carol Fairchild, M.S., Committee Member

APPROVED/RECEIVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

Said Bettayeb, PhD, Associate Dean

Ju H. Kim, PhD, Dean

Dedication

This work is dedicated to three of my most important supporters and unconditional

advocates. Dad, thank you for teaching me the importance and value of education.

Though you didn’t know it at the time, you were the first engineering teacher I ever

had. I may have been a reluctant pupil in those days, but it is wonderful to reflect

on how far I have come. None of this would have happened without you. Mom, you

spent many patient hours with an impatient kid. Thank you for teaching me to write.

It has given me an outlet for my creativity while encouraging clarity of mind. I will

carry those lessons with me for the rest of my life. Kristen, my future wife, it has

been an incredible journey so far, and it is only the beginning. Thank you for the love

and encouragement throughout all the recent late nights and grumpy next mornings.

As you do with your own students, you bring to light the best in me. I cannot wait

to begin the next phase of our lives together. We still have so much to offer to the

ones we love.

Acknowledgments

We don’t accomplish anything in this world alone... and whatever hap-

pens is the result of the whole tapestry of one’s life and all the weavings of

individual threads from one to another that creates something.

– Sandra Day O’Connor

The "tapestry" that is Bobble-Bot is more of the two-wheeled, mini-robotic,

Frankenstein variety. He is held together by 3D printer filament, caffeine induced

control software, and of course, a little bit of duct tape. Nevertheless, the quote

above applies all the same. I must take a moment to recognize and give thanks to

those around me. They too, for better or worse, share in his creation.

First, thank you to my thesis committee for help in promoting this work, reviewing

it, and inspiring me to see it through to the end. I am grateful for the faculty and

staff at UHCL, and especially grateful to my advisors Dr. Koc and Dr. Harman.

Thank you to all my friends and colleagues at NASA Johnson Space Center and

CACI. Bob Zehenter, Dan Erdberg, Louis Nguyen, Rachel Borland, Jason Harvey,

and Robert Mcphail have been especially great supporters and mentors to me over

the years. I am thankful to all of my friends, but most especially James Holley, Josh

Sooknanan, Daniel Ponce, and Andy Welton. Bobble-Bot would not exist without

the electrical and mechanical designs contributed by James and Josh. Daniel and

Andy, thanks for being supportive of all of our crazed efforts over the years. Thanks

to you guys, this all started in a garage off Ramada Drive over five years ago.

Lastly, I want to thank my brother Dennis, my sister Leah, and my friends Ryan

Brewer and Zach Barrera. You all have been with me through the good times and the

bad. Your friendship, love, support, and inspiration have made this work possible.

iv

ABSTRACT

REAL-TIME CONTROL OF BALANCING ROBOT USING ROS

Mike Moore

University of Houston-Clear Lake, 2018

Thesis Chair: Thomas Harman, PhD

Real-time computing is an important feature in many robotic systems, particularly

safety and mission-critical applications such as autonomous vehicles, spacecraft, and

industrial manufacturing. To help meet the growing needs of the robotics commu-

nity, the Robot Operating System (ROS) is currently undergoing a major redesign in

which one of its primary design goals is to prioritize support for real-time computing

(ROS2). This paper documents the design and development of a custom built, two

wheeled, self-balancing robot that successfully demonstrates the use of ROS for high

bandwidth, real-time control of an unstable system. An overview of the hardware

and software design is provided before detailing the approach taken to implement

and test the real-time system. A high fidelity simulator is developed to test the

controller initially in software. An analysis is then carried out in order to predict

desirable control gains and their expected performance. The work concludes with

results from hardware system tests that show good comparison with the predictions

made by the simulator.

v

TABLE OF CONTENTS

Chapter Page

1. Introduction . 1
1.1 Inverted Pendulum Systems . 1
1.2 Real-Time Systems . 8
1.3 ROS . 11

2. Theory . 15
2.1 Mathematical Formulation . 15
2.1.1 Pendulum Dynamics . 17
2.1.2 Wheel Dynamics . 18
2.2 Linearization . 19
2.3 State Space Form . 20

3. Design . 23
3.1 Hardware Components . 24
3.2 Assembly . 28
3.3 User Interface . 31
3.4 Software Components . 33
3.5 Controller . 39
3.5.1 Control Algorithm . 41
3.6 Simulation . 45
3.6.1 Python . 46
3.6.2 Matlab Simulink . 46
3.6.3 Unreal Engine 4 . 47
3.6.4 Gazebo . 48
3.7 Summary . 52

4. Implementation . 55
4.1 Achieving Real-Time . 56
4.1.1 Building the Real-Time Kernel . 57
4.1.2 Benchmarking the System . 59
4.1.3 Best Practices for Real-Time Programming 61
4.1.4 A Real-Time ROS Node . 65
4.2 Device Drivers . 68
4.2.1 CAN Communications . 69
4.2.2 Motor Driver . 72
4.2.3 IMU and State Estimation . 75
4.3 Control Algorithm . 76
4.4 Control Tuning . 83
4.4.1 Simulated Tilt Control . 84

vi

4.4.2 Simulated Velocity Control . 86
4.4.3 Simulated Turning Control . 89
4.4.4 Validation with Hardware Testing . 91

5. Conclusion . 98
5.1 Hardware vs Simulation . 99
5.2 Future Work . 101

Glossary . 110

6. Appendix . 113
6.1 Bobble-Bot Chassis Mass Properties . 113
6.2 Bobble-Bot Wheels Mass Properties . 114
6.3 Python Double Pendulum . 115
6.4 RasPi CAN Driver Configuration Files 118

vii

LIST OF TABLES

Table Page

3.1 Hardware Modules with Data Sheet Ref. 26

3.2 Bobble-Bot User Specific Features . 31

3.3 List of Software Modules . 39

4.1 Bobble-Bot CAN Devices . 69

4.2 BLDC Motor Configuration . 73

4.3 IMU Sensor Summary . 75

4.4 Controller States . 81

4.5 Select controller configuration parameters 83

4.6 Control Gains for HW Test . 92

viii

LIST OF FIGURES

Figure Page

1.1 A Modern Inverted Pendulum System 2

1.2 PENS-Wheel Inverted Pendulum Model Riattama et al. (2016) 4

1.3 Inverted Pendulum on a Mobile Base . 5

2.1 Pendulum Free Body Diagram . 17

2.2 Pendulum Free Body Diagram . 18

2.3 State Space Fricke (2012) . 20

3.1 Bobble-Bot Physical Design . 23

3.2 Bobble-Bot System Diagram . 25

3.3 Primary Hardware Components (1/2) 27

3.4 Primary Hardware Components (2/2) 28

3.5 Bobble-Bot Assembly . 29

3.6 Actuator Assembly CAD . 30

3.7 Left Actuator Parts . 30

3.8 User vs Developer Controls . 32

3.9 Real-Time System Monitoring . 34

3.10 Bobble-Bot Software Architecture . 36

3.11 Controller Block Diagram . 42

3.12 Same Controller in HW and Sim . 44

3.13 Bobble-Bot Simulator . 45

3.14 Simulink Based TWIP Simulation Yamamoto (2018) 47

3.15 Bobble-Bot in Simulated Garage Environment 48

3.16 Bobble-Bot Gazebo Simulation . 49

3.17 Controller Architecture in Simulation Environment Chitta et al. (2017) . 50

3.18 Simulated Impulse Force Testing . 52

ix

3.19 Tilt Control Stability With Varying CG 53

3.20 Velocity Control Stability With Varying CG 53

4.1 Bobble-Bot on Test Stand . 55

4.2 Comparison of Cyclic Test Benchmark 61

4.3 Bobble-Bot Real-Time Verification . 68

4.4 Bobble-Bot CAN Communications Architecture 70

4.5 SocketCAN Architecture Linux-Foundation (2012) 71

4.6 Bobble-Bot CAN Messages . 71

4.7 Chupacabra BLDC Motor Controller . 72

4.8 Motor Test Stand . 74

4.9 Motor Driver Verification . 74

4.10 General 1D Digital Filter . 79

4.11 Controller States . 80

4.12 Tilt Control Tuning . 84

4.13 Tilt Control Without Velocity Control 86

4.14 Velocity Control Tuning . 87

4.15 Velocity Control . 88

4.16 Turning Controller Performance . 89

4.17 Tilt/Velocity While Turning . 90

4.18 Tilt/Velocity During HW Impulse Test 93

4.19 Turn Rate/Position During HW Impulse Test 95

4.20 Turn Rate/Heading Control During HW Turning Test 96

4.21 Tilt and Position During HW Turning Test 97

5.1 Simulation vs Hardware Impulse Response 99

5.2 Simulation vs Hardware Square Drive Comparison 100

x

1

INTRODUCTION

Bobble-Bot is a modern take on a classical problem in control theory. The robot

represents a unique solution to the well understood problem of control of a two wheeled

inverted pendulum (TWIP). This subject has a rich history in both academia and in-

dustry. Inverted pendulum control systems see application within robots for domestic

and industrial use, control of rockets and missiles (see figure 1.1), and object trans-

port utilizing drones Lundberg and Barton (2010). Boubaker (2017) describes how

inverted pendulum systems have been well documented and understood within the re-

search community for over one hundred years. Though the theory is well understood,

a real implementation of such a robot remains anything but a trivial endeavor. The

Bobble-Bot control system requires coordination between several important systems

– power, sensors, control, communications, and a variety of cooperating software al-

gorithms all have to run in harmony in order for the robot to perform its qualitatively

simple, but technically complex task of balancing itself. This report will focus on a

modern design including the hardware component selection, software implementation,

and validation of the robotic system. The design of a real-time controller optimized

for low latency will be the focus of this work. Simulation will be used to determine

control gains for the system before testing and demonstrating the final working im-

plementation. This first chapter will provide some background on inverted pendulum

systems, real-time control, and ROS.

1.1 Inverted Pendulum Systems

The inverted pendulum and TWIP systems are a classical problem in dynamics and

control theory. They are often used as a demonstration system for testing different

1

Figure 1.1: A Modern Inverted Pendulum System

control design and implementation approaches Boubaker (2017). In this respect,

Bobble-Bot is no different. Historically, studies of inverted pendulum systems have

contributed to advancements in control of under-actuated robotic systems, design of

mobile inverted pendulums (the Segway being the most recognizable), and even gait

pattern generation for humanoid robots Boubaker (2012). The list of contributions

made by researchers in this area is extensive. This section will cover a few selected

works that were useful to the understanding of the theory or influenced the design

and development of Bobble-Bot in some way.

A particularly interesting and inspiring application of inverted pendulum control

is the attitude control of rockets during ascent and landing. One of the most striking

and modern applications of the theory can be witnessed when watching SpaceX’s

recent landing of the Falcon Heavy boosters (see SpaceX 2018 video). This company

is currently developing re-usable rocket technology whose design leverages the theory

of inverted pendulum control to accomplish the feat depicted in figure 1.1. Each

2

Falcon Heavy booster accomplishes its balancing technique in part by using its nine

engines, each of which can be throttled and gimbaled. The engines are commanded

by a feedback controller that is continually monitoring the rocket’s dynamical state

as it comes in for its landing. Just like Bobble-Bot’s controller, the mathematics of

inverted pendulum control theory can be applied to help design the Falcon Heavy’s

booster landing controller. Of course, this is a simplification of the real detail involved

in the full entry, descent, and landing software for the boosters. For the interested

reader, Tan and Wheeler (2014) and Carson et al. (2011) provide a good starting

point towards understanding some of the finer details. Landing rocket boosters is

a critical first step in a re-usable rocket design that has the potential to save U.S.

tax payers millions of dollars Mosher (2017). These recent SpaceX Falcon booster

landing demonstrations show that the study of inverted pendulum systems continues

to produce important technological advancements.

Sometimes inverted pendulum systems are implemented for less serious reasons

than the previous example. Many have heard of and used the Segway. This is one

of the most recognizable inverted pendulum systems today. Riattama et al. (2016)

provides a lesser known implementation of an inverted pendulum system designed

to transport a person. As seen in figure 1.2, the PENS-Wheel also uses an inverted

pendulum model for its balance controller. The motivation for building the PENS-

Wheel appears to be similar in spirit to the motivations for building Bobble-Bot.

The main conceptual difference between the two comes in the number of actuators

available to the controller. Bobble-Bot is a TWIP, whereas the PENS-Wheel is more

closely related to the cart-pendulum system.

3

Figure 1.2: PENS-Wheel Inverted Pendulum Model Riattama et al. (2016)

The cart-pendulum system is a form of an inverted pendulum that consists of a mass

at the end of a massless rod that is attached by a rotational pin joint to a movable

cart. This system is shown in figure 1.3. The inverted pendulum on top of the cart is

in an unstable equilibrium when it is standing upright. Theoretically, this equilibrium

can be maintained without active control as long as there are no disturbance forces

acting on the system. Clearly such conditions do not exist in reality. The real system

can be kept in balance by using a force based feedback controller. This controller

applies a force to move the pendulum’s center of gravity (CG) in such a way that

it dampens the resulting motion. The force is actively controlled based on sensor

feedback in order to bring the system back to its natural unstable equilibrium. The

system is analogous to a person balancing a broom in their hand.

The cart-pendulum system shown in figure 1.3 is a simplified version of the TWIP

as it has only two degrees of freedom as opposed to the TWIP’s three degrees of

freedom. In 1.3, we see that the pivot point of the pendulum constrains its motion to

a single rotation axis coming out of the page. Furthermore, the force, F, is controlled

4

Figure 1.3: Inverted Pendulum on a Mobile Base

to move the cart mass in a single horizontal direction. Taken together, these motions

describe the cart-pendulum system’s two degrees of freedom. A simple math model

for the system is provided using the variables depicted in 1.3. The following equations

of motion were verified using the Newtonian and Lagrangian approach and come from

Castro (2012).

(M +m)ẍ−mlθ̈cosθ +mlθ̇2sinθ = F

lθ̈ − gsinθ = ẍcosθ

The robot presented in this paper is an inverted pendulum anchored to a base

platform with a wheel on each side. Bobble-Bot’s CG is about six inches above the

center of its wheels. In this case, motors drive each wheel independently. The torque

from the motors spins the wheels and moves the base of the robot in order to keep

the tilt angle of the pendulum in balance. In this sense, the torque imparted to

the wheels accomplishes the same thing as the force controlled in the cart-pendulum

system example. Unlike the cart-pendulum system though, the TWIP can act like

a differential drive robot. Commanding a torque differential between the two wheels

allows the robot to turn. A TWIP with two independently driven motors, like Bobble-

5

Bot, can move along curved paths. The TWIP is a more maneuverable system than

the cart-pendulum, but it is a more complicated dynamical system to model. Chapter

two presents a simplified set of the Bobble-Bot equations of motion that were used

early on to gain insight during the design of the balance controller. Katariya (2010)

is a great starting point reference that provides a more rigorous derivation of the non-

linear equations of motion of the TWIP system with independently driven wheels.

Katariya also presents a controllability and observability analysis of the system using

Matlab. This is one of many references available in academic literature that focuses

on mathematical modeling, simulation, and controllability of TWIP systems. An

and Li (2013), Oktay Erkol (2018), and Perez-Polo et al. (2014) provide even more

background material on the relevant dynamics and control theory.

This work extends the theoretical approaches by providing a working design and

implementation of a high performance balance controller running as a real-time pro-

cess within an embedded Linux system. The final implementation produces a self-

balancing robot that is capable of a great deal of maneuverability. Bobble-Bot can

drive quickly, make sharp turns, and go up and down ramps. The focus of this work is

kept on the design and implementation details that make this possible. The software

design calls for the development of interfaces that enable real-time monitoring and

logging of many of the critical system parameters as the robot is driving. This allows

the robot to be used as a platform for testing the accuracy of the math models and

control theory found in the literature. As an added benefit, many elements of the

adopted software architecture for Bobble-Bot are flexible enough to be reused for the

control of other robotic systems that may be defined by a different set of differential

equations.

6

Linear control theory is one of the most commonly adopted approaches when de-

signing controllers for arbitrary robotic systems. Azar et al. (2019) and Pratama

et al. (2015) show that these kinds of classical controller designs can produce practi-

cal working solutions for TWIP balance control. For this reason, Bobble-Bot adopts a

cascaded Proportional-Integral-Derivative (PID) controller design for its balance and

drive controllers. This design adds yet another entry to the list of non-linear dynam-

ical systems that can be effectively controlled using the techniques of linear control

theory. As suggested by the numerous publications on the various modeling and

simulation approaches to TWIP control design, the performance of a TWIP balance

controller can be greatly enhanced by analyzing and tuning the closed loop system

using techniques from the field of modeling and simulation. This work confirms the

effectiveness of that approach in section 4.4.

The implementation of a real TWIP balance controller that is capable of robust dif-

ferential drive control heavily depends on minimizing the latency seen by the balance

controller during the execution of its feedback control loop. This is a topic that is of-

ten overlooked in the literature. Furthermore, providing a data logging and real-time

monitoring capability is heavily dependent upon the selected software architecture.

In Bobble-Bot’s case, the latency problem is addressed by incorporating a real-time

operating system into the software design. The logging and real-time monitoring ca-

pability is accomplished by leveraging the open-source tools and software packages

found within the ROS community. The final two sections of this chapter will provide

a bit of background and terminology relevant to these two topics.

7

1.2 Real-Time Systems

When reviewing the literature cited in the previous section we see that real-time

control issues are not generally discussed in the presentation of TWIP control designs.

Many of the implementations rely on Matlab’s Real-Time Workshop. While this is a

useful software tool for rapid prototyping, it has the disadvantage of hiding the real-

time aspects from the control engineer. This creates a separation from the real world

problems that often emerge during time-critical applications like inverted pendulum

systems. It is useful to study best practices for implementing real-time controllers

especially before attempting to build a system like Bobble-Bot. Gambier (2004)

provides a nice introduction to the subject.

We begin with the definition of a real-time system from the IEEE Portable Oper-

ating System Interface Standard (POSIX) repeated in Natale (2014).

A real-time system is one in which the correctness of a result not only

depends on the logical correctness of the calculation but also upon the time

at which the result is made available.

This definition makes it clear that real-time systems are inherently concerned with

how their own internal timing synchronizes with the outside world. These types of

systems are composed by various tasks that must control or react to events within the

environment that are happening in "real time". Real-time computing is concerned

with guaranteeing a result is available at a prescribed point of time within a defined

time tolerance. This requirement is referred to as a deadline. Real-time systems are

further classified into hard and soft real-time systems depending on the criticality of

meeting these deadlines. Hard real-time systems are systems which will fail when

timing deadlines are missed. These failures may cause serious damage or loss of life.

8

See Koopman (2014) and Faccini (2013) for two recent examples of critical failures

in hard real-time systems which resulted in disaster and tragedy. It is clear that

hard real-time systems must take a considerable amount of extra precaution in order

to keep them as safe as possible. Fault tolerance is an important concern in these

safety-critical systems because without it, a single component failure could lead to a

missed deadline and a catastrophic system failure.

Bobble-Bot falls under the latter category of real-time systems known as soft real-

time systems. In these systems, the meeting of the timing deadline is desirable but

not mandatory. Delay and jitter within the balance control loop causes degraded

performance and can result in the robot toppling over. For that reason, great care is

taken to ensure that the control loop operates at as close to a fixed 250 Hz loop rate

as possible. Banking systems, video game consoles, air conditioning, temperature

control, and streaming audio and video are some other examples of soft real-time

systems.

A real-time system can be implemented by carefully programming an embedded mi-

crocontroller like the ATmega328P found on the Arduino Uno. The problem with this

approach is that it leaves the developer to manage the system’s timing on their own.

It is very easy to make mistakes and inadvertently adopt programming paradigms

which violate best practices for real-time programming. Furthermore, many of the

commonly used Arduino libraries are not written with real-time systems in mind.

They often make use of hardware interrupts that make real-time determinism impos-

sible. The serial communication libraries that are pervasive in the example sketches

are a good example of this. Many self-balancing robots found online are able to

achieve limited success with their balance controllers using an Arduino based system.

9

Likely the jitter within their control loop is hampering the system from performing

as well as it could.

In practice, problems like this can be avoided by adopting a Real-time Operating

System (RTOS) like VxWorks, QNX, eCos, and RTLinux. These operating sys-

tems are especially designed with real-time programming in mind. They provide

software libraries and drivers that are carefully designed for real-time applications.

Within an RTOS, real-time tasks are scheduled by a special scheduling algorithm.

These scheduling algorithms enable the developer to have more control of the overall

computer-system orchestration by the use of process priorities. An RTOS generally

contains a real-time kernel and other higher-level services such as file management,

protocol stacks, a Graphical User Interface (GUI), and other components. Most of

the additional services revolve around real-time Input/Output I/O device drivers Mi-

crium (2015).

To achieve its own soft real-time requirements, Bobble-Bot makes use of the Pre-

emptive Real-Time patch set to the Linux kernel (PREEMPT_RT) to convert vanilla

Linux into an RTOS. Section 4.1 covers the subject in much greater detail. The PRE-

EMPT_RT patch was completed in 2009 by a small team of kernel developers. Lots

of companies use PREEMPT_RT as their RTOS of choice in order to build indus-

trial systems with somewhat relaxed timing requirements of around one millisecond

precision. BMW is one such company that uses the PREEMPT_RT patch set to

build real-time capable autonomous driving prototypes within their Car IT division.

The development of these self-driving car prototypes and their reliance on a patched

version of the Linux kernel caused quality concerns within the organization. Hence,

BMW Car IT began making significant contributions towards making main-line Linux

10

real-time capable in 2014 Bulwahn (2018). At the time of this writing, the community

is still waiting on real-time capability within main-line Linux.

This section serves as a mere introduction to an entire sub-discipline within controls

engineering. Consult the provided references for a jumping off point. The final

section of this introductory chapter will provide background on ROS and provide

some justification in its selection as Bobble-Bot’s core software infrastructure.

1.3 ROS

Most of the self-balancing TWIP robots that were researched for this work were

either based around an Arduino or other microcontroller and SDK platforms that

support Matlab’s Real-Time Workshop. Hau-Shiue and Lum (2013) and Gu et al.

(2013) are some examples of implemented TWIP robots using an Arduino or em-

bedded Real-Time Workshop. Arduino based TWIP platforms come with their own

challenges often related to tuning the controller for the system. This is a challenge

on the Arduino because it is difficult to get insight into the controller’s performance

as it is running. The Matlab Real-Time Workshop approach relies heavily on Matlab

Simulink for simulation to do the controller design and tuning. Once the desired per-

formance is achieved in simulation, the controls developer auto-generates real-time C

code that implements the logic captured in the Simulink diagram of the controller.

This approach works well when the simulation adequately captures the real system

dynamics. Matlab has a variety of tools to assist in this whole process which they

refer to as Model Based Design (MBD). The trade-off is that these tools all come

at a hefty price tag for anyone that is not a student. Furthermore, the controller’s

intrinsic reliance on auto-generated C code which is targeted at a particular embed-

11

ded platform restricts the generality of the solution approach. Future code re-use for

similar systems becomes unlikely. It also becomes more difficult to change and adapt

the controller to other platforms and systems later on.

Significantly less common in the available literature are self-balancing robots that

run ROS. RoboSavvy (2017) and Radovnikovich (2017) are examples of simulated

TWIP robots within the ROS environment. These works do not include published

information on any real robot that implements the controller they have running in

their simulators. One potential reason for this is the lack of direct support or readily

available documentation on how to design and build ROS enabled real-time systems.

It is possible to do, Bobble-Bot serves as proof, but it is not an easy endeavour. One

goal for this work is to lay out an architecture for others to follow, but before that is

done, it is helpful to provide some explanation of what ROS is and why one would

want to build a robot that uses it.

The Robot Operating System (ROS) is an open-source collection of software frame-

works useful for the development of robotics software. Despite what the name might

imply, ROS is not actually an operating system. Instead, ROS provides a common

messaging system, device drivers, controllers, hardware abstraction layers, simulation

frameworks, and automation tools. While responsiveness and low latency are desir-

able qualities in many robotic systems, ROS is not an RTOS and it provides very

limited support for real-time systems. However, ROS2 is being developed to address

these limitations Kay (2015). When you also include hobbyist robots, most of the

robots in the world run Linux. For this reason, ROS and ROS2 are built on top of

Linux. A major component at the core of ROS is a distributed messaging system.

This enables system designers to de-couple the functionality of their robots into sep-

12

arate nodes connected together by the messaging system. This has the advantage

of increasing reliabilty as it helps to prevent single points of failure. Furthermore,

modularity is generally a preferable approach when architecting complex systems.

Encouraging robot software components to follow a modular design also enables code

re-use. Many common robotic capabilities are available already as open-source ROS

packages. This allows developers of ROS enabled robots to focus on the unique chal-

lenges of their own system rather than on reinventing the wheel. Perhaps the most

attractive quality of ROS is that it is free and open-source.

Despite the real-time limitations, ROS can still be used in a system with real-time

requirements. However, the software in such a system must be carefully designed

to ensure real-time responsiveness. The timing critical components of the software

stack must be isolated and contain high speed and direct access to sensor and effector

hardware. Furthermore, the control loop must be capable of sampling all sensor data,

potentially filtering it, computing state error, applying a control law, and writing out

effector commands in a fixed amount of time. Even with all of that accomplished,

real-time performance is still not possible without an operating system which is real-

time capable. For Linux, this can be obtained for free by modifying the kernel of the

operating system with the PREEMPT_RT kernel patch. Once this is achieved, the

ROS package ros_control can be used alongside a preemptive strict priority based

scheduler policy to implement the control law. This system will be real-time capable

so long as the controller task itself does not overrun its allotted time. More detail on

the approach is provided in section 4.1 of this work.

This chapter has provided background and explanatory information needed to un-

derstand the terminology and implementation approach taken with Bobble-Bot. In

13

summary, inverted pendulum systems are inherently unstable but can be controlled

reliably by standard linear controllers operating within a real-time system. Imple-

menting real-time systems comes with its own challenges and concerns that are often

overlooked in the academic literature. These problems must be addressed when imple-

menting real systems. This can be done by carefully reviewing and applying standard

best practices in real-time programming when designing the software architecture for

the real-time system. ROS is an attractive software achitecture for robots as it en-

ables re-use of many pre-existing open-source robotics software packages that solve

a wide variety of common problems in robotics for free. The downside with ROS is

that it provides extremely limited support for architecting real-time systems. The

rest of this work shows the design and implementation of a hardware and software

architecture for the real-time control of an unstable system that attempts to bridge

this gap.

14

2

THEORY

This chapter formulates the Bobble-Bot velocity and tilt control problem mathe-

matically utilizing a state space representation by linearizing the equations of motion

about the robot’s balance point. This is done not only as an excercise in understand-

ing the unstable and non-linear dynamics of a Bobble-Bot like system, but also to

serve as a basis for evaluating prototype simulations in an effort to select viable con-

trol system gains using control theory. Once these gains have been selected, a higher

fidelity simulation that takes into account the fully non-linear dynamics is used to

test a prototype of the control algorithm introduced in chapter three. The following

two references are a more complete derivation of the dynamics of mobile inverted

pendulum systems: Katariya (2010) and Saam Ostovari (2013). Please consult those

references for a more rigorous treatment of the theory.

2.1 Mathematical Formulation

In this section we derive equations of motion for a Bobble-Bot analogue. The

derivation can be conveniently split into two parts by the introduction of internal

forces. Px and Py capture the forces imparted on the pendulum body at the pendu-

lum/wheel joint. As will be seen as the derivation progresses, these forces are solved

for and used to combine the equations derived from the two separate pendulum and

wheel free-body diagrams. We end up with equations of motion that are in terms of

the torque applied by the motor, pendulum length, mass, inertia, and wheel diameter.

15

LIST OF SYMBOLS

î Unit vector x direction

ĵ Unit vector y direction

φ Wheel rotation angle

τ Torque imparted by motor on wheel

θ Pendulum tilt angle

F Horizontal wheel force

g Gravitational constant

Ir Inertia of robot about axis of tilt

Iw Inertia of wheel about axis of rotation

kt Motor torque constant

kv Motor back EMF constant

L Distance from wheel to mass center

mr Mass of robot

mw Mass of wheel

N Normal force acting on wheel

Px Wheel joint reaction force acting on body in x direction

Py Wheel joint reaction force acting on body in y direction

r Position of mass center

rw Radius of wheel

x Horizontal direction

y Vertical direction

16

2.1.1 Pendulum Dynamics

Starting with a free body diagram of the pendulum, the position of the center of

mass can be expressed as

r = xî− Lsin(θ)̂i+ Lcos(θ)ĵ

Figure 2.1: Pendulum Free Body Diagram

Differentiating the above twice gives the acceleration of the center of mass

r̈ = (ẍcosθ − θ̈L)(cosθî+ sinθĵ)− (ẍsinθ + θ̇2L)(cosθĵ − sinθî)

Summing forces in the x and y direction and combining the expression results in

the following second-order differential equation describing the translational motion of

Bobble-Bot’s mass center.

mr(ẍcosθ − θ̈L) = −mrgsinθ + Pysinθ + Pxcosθ

Likewise, we sum the torques about the center of mass in order to get another

second order differential equation this time describing the rotational motion about

17

the Bobble-Bot mass center.

Irθ̈ = −τ + PyLsinθ + PxLcosθ

Combining the linear and rotational equations of motion we get the following for

the pendulum dynamics

−(mrLcosθ)ẍ+ (Ir +mrL
2)θ̈ = mrgLsinθ − τ

2.1.2 Wheel Dynamics

Start with a free body diagram of one of the wheels.

Figure 2.2: Pendulum Free Body Diagram

Summing the forces in the x-direction gives

mwẍ = −Px − F

Likewise, summing the torques about the wheel center gives

Iwφ̈ = τ − Frw

18

Combining the above two equations and solving for Px we get

Px = −mwẍ+
Iwφ̈− τ

rw

The force in the x direction, F , is known from the previous derivation of the

pendulum dynamics. Substituting that force in and eliminating Px by combining the

linear and rotational wheel dynamics we get the following

mr(ẍ− θ̈Lcosθ + θ̇2Lsinθ) = −mwẍ+
Iwφ̈− τ

rw

Rearranging the above gives the following second order non-linear differential

equation describing the wheel dynamics

Iwφ̈− (mrrw +mwrw)ẍ+ (mrrwLcosθ)θ̈ = mrrwθ̇
2Lsinθ + τ

2.2 Linearization

In order to apply the theory of linear systems and controls, we would like to linearize

the equations derived in the previous section. This allows us to develop a useful linear

model which approximates the real Bobble-Bot system dynamics in the vicinity of

its balance point. The following assumptions and simplifications allow us to linearize

the equations of motion from the previous section.

Small angle approximation.

θ2 ≈ 0, sinθ ≈ θ, cosθ ≈ 1

No slip

ẍ = −rwφ̈

Ideal motor

τ =
2ktV

rm
− 2ktkvφ̇

rm

19

2.3 State Space Form

Representing our system as a set of differential equations is a bit cumbersome, and

it is not immediately useful for most simulation tools. The state space representation

of a system replaces an nth order differential equation with a single first order matrix

differential equation. The state space representation of a system is depicted below.

Figure 2.3: State Space Fricke (2012)

The first equation for ẋ is called the state equation. The second equation for y

is called the output equation. For an nth order system with r inputs and m outputs,

the size of each of the matrices is as follows:

• x is nx1 (n rows by 1 column). This is the state vector, a function of time.

• A is nxn and is called the state matrix. It is constant.

• B is nxr and is called the input matrix. It is constant

• u is rx1 and is called the control input. It is a function of time.

• C is mxn and is called the output matrix. It is constant

• D is mxr and is called the feedthrough matrix. It is constant.

20

• y is mx1 and is called the ouput. It is a function of time.

To use this form for Bobble-Bot, we first define the following system constants

α = rm(mrL
2 + Ir)

β = rm(Ir +mrr
2
w +mwr

2
w)

γ = mrLrm

Next, we apply the linearizing assumptions of section 4.3 to the equations of

motion derived in sections 4.1 and 4.2. This results in a system of second order linear

differential equations that can be encoded in state space form as follows:

θ̇

θ̈

φ̇

φ̈

=

0 1 0 0

βγg−r2wγ2
βα−γ2r2w

0 0 2ktkv(γrw+β)
βα−γ2r2w

0 0 0 1

γrwα−γ2rwg
βα−γ2r2w

0 0 2ktkv(−γrw−α)
βα−γ2r2w

θ

θ̇

φ

φ̇

+

0

2ktkv(−γrw−β)
βα−γ2r2w

0

2ktkv(γrw+α)
βα−γ2r2w

V

Now that we have the state-space form of our system, we are ready to use a variety of

simulation tools to perform a linear analysis. These tools all use numerical integration

in order to propagate the system state over time from a known set of initial conditions.

The linearized state-space model can be used to simulate a mobile inverted pendulum

system only when it is near its balance point. The non-linear dynamics must be used

to simulate the full mobile inverted pendulum motion. These simulators can be used

as a first-cut approximation of Bobble-Bot’s tilt and translational velocity dynamics.

The equations do not consider turning motion. The linearized system and the state-

space form is needed for controllability and observability analysis, and also for the

design of pole placement controllers. This is not the focus of this work, however, so

we will stop here with the theory. The full linear analysis has already been covered

in many other works. See Katariya (2010) and Castro (2012) and Kim and Kwon

21

(2015) for a more rigorous treatment of the theory. The remainder of this work will

focus on the design and implementation of a balance controller for the real system.

22

3

DESIGN

Figure 3.1: Bobble-Bot Physical Design

The equations of motion given in the previous chapter help to make our under-

standing of Bobble-Bot’s dynamics more concrete. They also serve as a simplified

test case that is useful during the development of higher fidelity simulations that

take into account the full non-linear dynamics. These higher fidelity simulations are

ultimately what is used for testing a prototype balance control algorithm. At this

point, we are ready to start considering the design of Bobble-Bot. This chapter will

discuss requirements and selection of the hardware and software components used to

implement Bobble-Bot and the Bobble-Bot simulator.

The complexity of the Bobble-Bot system grows quickly due to the number of

hardware and software modules needed for its implementation. In order to avoid

developing a monolithic, complicated, and difficult to maintain system, Bobble-Bot’s

design makes use of a modular approach on both the hardware and software side.

23

When necessary, custom hardware was designed when a commercial solution was not

easily available that could meet the Bobble-Bot requirements. The detailed design

of the custom hardware components is beyond the scope of this work. The two

custom components are the Power Distribution Unit (PDU) and the Brushless DC

Motor Controller (BLDC). On the software side, ROS was selected in order to provide

a unified software architecture for each of the necessary modules. This selection

drives the design of the software modules used in order to implement the control law.

Following ROS conventions, the Bobble-Bot software is written in a combination

of C++ and Python. C++ is used for sections of the software that are optimized

for speed and real-time execution. Python is used when ease of development and

flexibility are prefered at the expense of performance. The sections that follow will

elaborate further on the hardware components and software modules within Bobble-

Bot.

3.1 Hardware Components

Figure 3.2 provides a summary of the components that make up Bobble-Bot. This

diagram captures all of the hardware components, the communication channels, ef-

fector commands, state feedback, and a simplification of the operating system and

controller modules. It is a helpful reference for understanding Bobble-Bot at the

system level. In this diagram, the RTOS and software modules are all consolidated

and grouped in order to be contained within the dashed blue line boundary. This

is done to simplify the diagram and keep the focus on the major system interfaces.

The RTOS and design of the embedded controller software will be elaborated upon in

the sections to come. For now, we keep the focus on the hardware, communications

channels, and data flow between the system’s major components.

24

Figure 3.2: Bobble-Bot System Diagram

As seen in figure 3.2 the RTOS and controller software sits in the center of the

system’s feedback loop. A combination of three separate communications channels are

employed to close this loop. The Universal Serial Bus (USB) or Bluetooth channels

are used to deliver the desired Bobble-Bot states to the balance controller. These

channels are reserved for sending in commands related to the desired forward velocity,

turn rate, and control mode selection. They are a low bandwidth communication bus

that sends the desired state command data into the balance controller at 25 Hz. In

contrast, the Controller Area Network bus (CAN) is a high bandwidth channel used by

the motor drive loop. This bus facilitates real-time, two-way, communication between

the Raspberry Pi RPi and the BLDC motor drivers. The bus carries two motor effort

command packets and two state feedback status packets to and from the RPi and

BLDC motor drivers at 250 Hz. The position and velocity of the corresponding

left and right motors are contained within the status packet. A normalized voltage

command is contained within the left and right motor command packets. The third

25

and final communication channel used by Bobble-Bot is an Inter-Integrated Circuit

channel (I2C) for orientation state feedback. The ADXL-345 accelerometer and ITG-

3200 gyroscope use I2C to report their sensed values. These six independent readings

(3 axes per sensor) are fed into a state estimation routine called by the balance

controller at 250 Hz. The state estimation routine is a real-time software module

that receives the sensor readings, filters them, and fuses them together to produce an

estimate of the absolute orientation and orientation rate of change.

Table 3.1: Hardware Modules with Data Sheet Ref.

Component Description Ref

RPi Embedded controller Foundation (2016)

ADXL-345 Accelerometer ADXL-345 (2015)

ITG-3200 Gyroscope ITG-3200 (2011)

Li-Po Lithium polymer battery Turnigy (2014)

PDU Power distribution unit

BLDC Motor controller

TACON BLDC motor Tacon (2012)

MikroBus RPi CAN shield MikroBus (2014)

MCP-2515 CAN transceiver Microchip (2012)

AS5047D Absolute position sensor AS-5047D (2016)

Table 3.1 lists the hardware components used by Bobble-Bot and provides their

corresponding data sheet for reference. The RPi was selected primarily because it

was a cheap open-hardware Linux System on a Chip (SoC) that could easily run ROS.

Brushless DC motors were used because of their advantages in torque control, low

power consumption, and durability. CAN hardware was selected in order to facilitate

26

sending command and status packets to and from the motor controllers at a high rate

(1 Mbps) with limited need for additional hardware and wiring. A Lithium Polymer

(LiPo) battery and PDU was selected in order to supply enough power to the 12V and

5V channels off a single supply. The battery was sized to provide Bobble-Bot with

three hours of continuous operation. The ADXL-345 accelerometer and ITG-3200

gyroscope were selected to be used in combination as an orientation sensor solution.

When used in combination with a sensor fusion algorithm, the sensors are capable of

providing a sufficiently accurate orientation and orientation rate of change estimate.

These particular sensors require only a minimal level of driver software development

in order to integrate into the selected control system software architecture. The

AS5047D absolute position sensor was selected in order to provide an accurate motor

position and velocity reading. Figures 3.3 and 3.4 provide pictures of each of the

major components and a short description.

Figure 3.3: Primary Hardware Components (1/2)

27

Figure 3.4: Primary Hardware Components (2/2)

3.2 Assembly

Once all the hardware components were settled upon, the next major challenge was

producing a mechanical design that stayed true to the TWIP reference design. The

main goals for the design were as follows:

• Affordable construction

• Careful placement of the CG

• Mass less than 5 kg

• Approximate dimensions 30 cm x 25 cm x 15 cm

• Thoughtful component placement with respect to electrical wiring

• Facilitate repairs and component swapping

• Sufficiently rigid to reduce vibrations that may effect balance

• Inertial Measurement Unit IMU placement to reduce noise and coupling due to

motion

28

Figure 3.5: Bobble-Bot Assembly

Given the above goals, the use of 3D printing for manufacturing parts was a natu-

ral first choice. 3D printing the components keeps the system modular and makes it

easy to change the design as new things are learned during development and testing.

SolidWorks was used to design each component of the mechanical assembly. Figure

3.6 shows the actuator assembly design created in SolidWorks. Capturing the me-

chanical design in SolidWorks also helped track the overall system’s mass properties.

This ensured that the CG was kept in a desirable location. SolidWorks also has the

ability to export the 3D model into a format that is easily read into 3D simulation

environments. This allows the simulator to keep pace with changes made to the

mechanical design. Section 3.6 provides more details on the simulation.

One potential downside to 3D printing is that parts are prone to defects and the

materials used are not as rigid as other more expensive alternatives. This proved to

not be an issue for this particular system. Bobble-Bot is intended for tinkerers and

29

Figure 3.6: Actuator Assembly CAD

hobbyists interested in robotics development. As such, it does not have particularly

demanding structural and thermal requirements. This makes it a great candidate

for 3D printing. The selection of SolidWorks for Computer Aided Design (CAD)

software and 3D printing for part manufacturing was instrumental to keeping costs

down and the project on schedule. Furthermore, this approach encourages others

in the community to download the design and print their own Bobble-Bot. Figure

3.7 shows the components of the left actuator assembly and how one would put it

together.

Figure 3.7: Left Actuator Parts

30

3.3 User Interface

This section focuses on how different users will interact with the robot. This is

an important consideration before proceeding much further as it has an impact upon

the design of the software modules and their implementation. Bobble-Bot is intended

to be both a demonstration robot and an educational tool. To meet both use-cases,

it is important to consider two distinct types of users: normal users and developers.

Table 3.2 summarizes the important distinctions between the two classes of user.

Table 3.2: Bobble-Bot User Specific Features

Feature Normal Developer

Automatic balance mode X X

Manual drive mode X X

Emegency stop X X

Open loop mode X

Motor tuning mode X

Data logging X X

Real-time plots X X

State machine configuration X

State machine log X

Motor configuration X

Programmable control gains X

Extendable control logic X

As can be seen from table 3.2, developers are given a special set of extra features

over normal users. This effectively allows developers priviledged access to the core

software modules and the configuration files that define the Bobble-Bot balance con-

31

(a) User mode controls (b) Developer mode controls

Figure 3.8: User vs Developer Controls

troller state machine, drivers, control modes, and controller gains. Normal users are

restricted to a subset of the robot’s state machine and configuration files. This en-

sures that the robot’s core balance control module can operate safely with limited

risk to damaging the hardware. Generally speaking, user mode is for demonstrations

while developer mode opens the robot up to tinkering and simultaneously provides

the greatest risk and educational value. Developer mode is enabled by issuing a spe-

cial command during the robot’s boot sequence which instructs the robot to launch

the primary state machine using a developer mode ROS launch file.

Whether a developer or a normal user, Bobble-Bot requires a peripheral device to

capture user inputs and map them to particular commands that are sent into the

robot’s primary state machine. The software that peforms this mapping is designed

to be largely agnostic to the particular peripheral device used. This functionality is

implemented in a module known as the Bobble-Bot Input Device Manager (IDM).

The device manager provides an abstraction layer that allows developers to extend

the framework to whatever peripheral device they would like to use to control the

robot. At the time of this writing, USB and Bluetooth Xbox controllers are supported

along with standard keyboard input. Figure 3.8 shows the default mapping for an

Xbox controller for both user and developer mode.

32

Data logging and system status monitoring are an important feature available to

both normal users and developers. The capability allows users to log and plot the

robot’s internal state variables as the system is running. Needless to say, this feature

is of huge value to developers and users alike. It provides both a command line and

graphical user interface that can be used to generate data for analysis, debug issues

during run-time, tune control gains, among many other uses. Fortunately, the soft-

ware that implements these features is largely provided out of the box when building

a robot that utilizes the ROS software stack. In fact, the availabilty of this infrastruc-

ture was a primary motivator in the selection of ROS for Bobble-Bot. To enable this

feature, the balance controller simply needs to publish a ROS status message using

a real-time publisher. Once that is done, the ROS messaging infrastructure allows

these messages to be logged to a file during run-time or plotted using a graphical

user interface. Figure 3.9 shows a screenshot of these features in action during a run

of the Bobble-Bot simulator. It is important to note that the logging and real-time

plotting features are not restricted to simulation. The same can be accomplished

when running the real system as well. Thanks to the Open-Source Robotics Foun-

dation (OSRF) and PlotJuggler author, Davide Faconti, for building this great set

of tools for robot development and providing them to the community as open-source

software. The Bobble-Bot software simply uses these open-source packages in order

to meet two of its most important user interface requirements. See the GitHub pages

for more infomation Faconti (2018) OSRF (2018).

3.4 Software Components

The task of balancing Bobble-Bot is achieved by an algorithm that implements a

linear control law in the C++ programming language executed at 250 Hz. So long as

33

Figure 3.9: Real-Time System Monitoring

all the required input and output signals are supplied to and sent from the algorithm

at precise timing intervals, the implementation of the control logic is straight for-

ward. However, Bobble-Bot does not simply devote its entire focus to balance control

alone. In fact, the robot is executing many processes simultaneously. For example,

at any given period of time, Bobble-Bot is maintaining its balance, reading data

from input devices and sensors, writing to log files, publishing messages to real-time

monitoring applications, sending and receiving packets over WiFi, and running other

miscellaneous developer and operating system processes. Facilitating the execution

of all these processes while simultaneously guaranteeing real-time performance to the

balance controller is the single greatest challenge faced by the Bobble-Bot software.

This section is devoted to laying out a software architecture capable of rising to that

challenge.

34

Before getting into the design of the Bobble-Bot software we list some of the most

important motivating goals below:

• Real-time process for balance control at 250 Hz

• Provide open-source framework enabling extension of balance control algorithm

• Rely solely on open-source software libraries

• Network based robot Application Programming Interface API for command and

status messages

• Support real-time data monitoring

• Provide extendable framework for input device peripherals

• Support custom developer defined non-real time tasks scheduled to be executed

within the robot’s primary state machine.

Real-time is not possible using the default RPi Linux kernel. In order to satisfy

our most important requirement for balance control the robot’s Linux kernel must be

patched. Section 4.1 describes the details of how this is done. The proceeding design

assumes the kernel has been re-compiled with the PREEMPT_RT patch applied.

Futhermore, the RPi should then be benchmarked and shown to be capable of meeting

Bobble-Bot’s latency requirements.

To meet the goal of leveraging open-source software libraries, Bobble-Bot relies on

the ROS ecosystem. ROS is primarily used to orchestrate the various robot processes

(both non real-time and real-time). To accomplish inter-process communication, ROS

provides a distributed publish/subscribe messaging system. This system helps to sat-

isfy the goal of providing a network based API and real-time data monitoring. It

is important to note that, in general, ROS’s messaging framework is not real-time

35

capable. Care must be used when designing interfaces that need to interact directly

with the hardware. To date, Bobble-Bot’s non real-time processes are exclusively

written in the Python programming language. ROS’s messaging framework supports

communication between C++ and Python processes. For this reason, developer’s can

take their pick on which language to use to extend Bobble-Bot’s base capabilities.

In general, the flexibility of Python is preferred for processes without stringent tim-

ing requirements. C++ is used for processes that need performance, and C++ is

exclusively used for the balance control process.

Figure 3.10: Bobble-Bot Software Architecture

Figure 3.10 shows the Bobble-Bot software architecture. This diagram captures

some of the most important software modules and the data flow between them. At

the user interface layer, input device peripherals route serial data into an input device

manager module. The input device manager is an extendable framework that maps

peripheral input signals to commands that are published into the robot’s state registry.

The Bobble-Bot state registry is a region of shared memory that can be read from

and written to by non real-time processes using the ROS publish/subscribe messaging

36

system. The most important consumer and producer of state registry data is the

robot’s main execution process for non real-time tasks. This process is known as the

Bobble node. This particular ROS Python node executes an extendable finite state

machine at a base frequency of 100 Hz. The implementation of this state machine

relies upon a state machine design pattern implemented in object-oriented Python.

This pattern was selected in order to provide a framework capable of being extended

to support arbitrary non real-time control tasks scheduled at a developer defined

frequency. This framework is the preferred method for implementing autonomous

navigation routines and other robot autonomy algorithms that may change based

on the robot’s state. Section 4.1 covers the implementation details of Bobble-Bot’s

primary state machine.

The Bobble node also contains both a ROS publisher and subscriber. The publisher

is used to report robot status variables to any other applications that want to see the

data. This is the mechanism that enables real-time monitoring with PlotJuggler.

The subscriber listens for requests from external applications which desire to write

to the Bobble-Bot state registry. The input device manager is one such example,

but others are possible. The Bobble node has two mechanisms for communicating

with the BLDC motor driver. The first is used to route the desired state commands

into the controller through the real-time loop. The second route is through a Python

API. This is a non real-time API that is only intended to be used for powering on

the motors and loading the BLDC driver firmware with motor specific configuration

parameters.

The balance controller is the most critical piece of software running on the robot.

Details on the design of this controller will be left to a section of its own (see 3.5).

37

The controller software design leverages object oriented C++ in order to implement

an interface that is both real-time capable and hardware/simulation agnostic. The

controller also leverages a generic digital filter and PID controller module. These

generic modules are configurable by setting values within a YAML Ain’t Markup

Language (YAML) file. YAML is a standard configuration file format commonly

used by ROS packages for setting configuration values intended to be loaded in at

run-time. Once the developer sets these values, a Python task running in the Bobble-

Bot state machine can be invoked to reload the file at run-time. This is a very handy

feature that enables tuning the digital filters and control gains as the robot is running.

The typical workflow is to start the robot in the idle state and then command it to

the balance state. The developer then observes the control performance while the

robot is in the balance state utilitizing the real-time monitoring tools mentioned

in the previous section. After making these observations, the developer commands

the robot back to the idle state (motors off). Based on the observations made, the

developer can then adjust filter and controller gains within a YAML file stored on

the robot. This file is then reloaded by the Python state machine upon transitioning

from the idle state back into the balance state. This workflow enables developers to

quickly tune the balance control algorithm and easily monitor the effect of different

PID and filter gains on the system.

The last important consideration for the robot’s software design includes how to

manage the software configuration in such a way that facilitates ease of maintenance

through automated testing and adequate version control. To meet these design goals,

the Bobble-Bot software adopts build, version control, and automated testing tools

that are common across the ROS ecosystem. This is an often over-looked but im-

portant aspect of any set of software destined for the open-source community. The

38

tools selected to achieve these goals include: Catkin, Git, Google Test, ROSTest, and

Python’s unit-testing framework. The architecture depicted in figure 3.10 is managed

as ten different ROS packages each tracked as their own Git repository. All of these

packages include their own set of automated unit tests using the testing tool appro-

priate for their implementation. Packages that heavily rely on the ROS infrastructure

are tested using ROSTest. Table 3.3 lists these packages and describes their primary

function.
Table 3.3: List of Software Modules

Module Name Description Language

bldc_motor_control Motor controller firmware C++

bno055_ros IMU device driver C++

bobble_controllers Balance controller C++

bobble_description Simulation source and URDF XML

chupacabra_comm Motor communication driver C++

chupacabra_ros Motor driver ROS interface Python

configuration Hardware and software config files YAML

executive Robot primary state machine executive Python

generic_filter Generic digital filter implementation C++

launch Robot launch files XML

3.5 Controller

With the mechanical assembly, wiring, on-board computer, sensors, and effectors all

in place, the remainder of the Bobble-Bot capability comes from a carefully designed

control algorithm implemented in software and running on the RPi. The control

algorithm implements a mathematical equation that relates system state errors to

39

motor torque commands. The goal of the controller is to drive the state error to

zero by modulating the effort commands sent to the BLDC motor drivers. These

effort commands are approximately proportional to torque for Bobble-Bot’s nominal

operating conditions. The algorithm is executed at 250 Hz within a single real-time

process running on the RPi. This section will cover the key elements of the Bobble-

Bot controller design. To start with, we list the following assumptions that were

made:

• Motor controller firmware will accept torque commands at 250 Hz.

• Motor controller firmware will report motor position and velocity at 250 Hz.

• Control loop jitter will not exceed 1.5 milliseconds.

• Control loop will run no slower than 100 Hz.

• Control loop will accept translational and rotational velocity commands no

slower than 25 Hz.

• Controller commanded effort is assumed to be linear with the delivered motor

torque.

• Control software will support three modes: Idle, Balance, and Drive.

• Wheel radius assumed to be 5 cm.

• Robot velocity will be within the range of +- 1.5 m/s.

• Pendulum length assumed 30 cm.

• Mass properties assumptions on inertia and c.g. are given in 6.1

In addition to the assumptions above, the following design constraints arise from

the physical system and its assumed operating environment.

40

• Motor controller firmware imposes safety limits on torque command.

• CAN bus bandwidth for motor control is limited to 850 Kbps.

• Real-time loop is limited to 250 Hz due to motor controller communication bus

bandwidth.

• IMU tilt angle has a bias of approximately 6 degrees.

• Angular position and velocity estimates provided to the controller at 250 Hz.

• Angular velocity measurements noise remains within 0.4 deg/s rms.

One constraint worth elaborating on is related to the achievable motor communica-

tion bit rate. CAN 2.0 was the communication protocol selected for this application.

The CAN 2.0 specification states that 1 Mbps speeds are possible at network lengths of

less than 40m (which is certainly the case here). In reality, the Bobble-Bot controller’s

motor communication bus is limited to approximately 825 Kbps. This limitation is

due to the CAN transceiver selected for RPi compatability. The crystal osciallator

used on that particular circuit board limits the bus clock to 10 Mhz. This results in

limiting the controller to motor communications to 250 Hz. The control performance

analysis provided in section 4.4 shows why this particular limitation was deemed ac-

ceptable for this particular application. This constraint is worth noting, however, if

this particular hardware architecture is to be considered for control systems requiring

higher bandwidth.

3.5.1 Control Algorithm

The mathematics provided in the preceeding chapter captures the challenges im-

posed by the non-linear and unstable system dynamics. Despite the challenges im-

posed by the system dynamics, the system is controllable. The control algorithm

41

design proposed in this section outlines an approach to controlling the torque com-

manded from each motor in a manner that allows the system to adequately and

quickly reject disturbance forces and torques that would otherwise work to cause the

robot to topple over. In addition to controlling the robot tilt angle, it is also desirable

to control both the translational velocity and the turning rate. Figure 3.11 shows a

block diagram of a controller design that hopes to achieve these goals.

Figure 3.11: Controller Block Diagram

The above diagram shows that the proposed controller relies on a combination of

cascaded PID controllers working together to produce two torque commands that are

sent simultaneously to each motor. The control law is straight forward to implement

in software. The challenges of utilizing this control design on this robot are found in

the details of the implementation. Due to the unstable dynamics of this particular

system, the control law needs to execute at a high rate with a fixed time step between

each iteration. This particular design assumes that the maximum latency can be kept

below 15 milliseconds. This turns out to be a challenging problem in and of itself. It

42

requires the implementation of high performance and real-time software drivers for

all sensors and actuators used by the controller. It also requires modification of the

RPi stock Linux kernel, and the creation of a high priority real-time thread that the

control law is scheduled to execute within. The sensor and actuator drivers must also

be able to move their data into and out of this real-time thread in a way that does

not impose excessive latency and does not lead to undesirable race conditions. The

section on real-time Linux in the implementation chapter covers the details of these

particular challenges.

Another significant implementation challenge that was considered during the early

phases of the controller design was related to how to test and verify the controller

software implementation. It is desirable to achieve this verification in such a way that

minimizes the risk of damaging the hardware. Discovering the sources of unacceptable

hardware system latencies while simultaneously developing, testing, and tuning the

control law is a recipe for frustration, delay, and a costly set of integrated hardware

and software tests. It is much more desirable to keep the hardware and driver related

development and testing entirely separate from the software development and testing

of the control algorithm. This reduces the risk as it encourages the systems to be

independently verified before attempting closed loop control in an integrated hardware

and software testing environment. Figure 3.12 depicts a software architecture that

attempts to mitigate these risks.

The architecture shown in figure 3.12 assumes the availability of a high fidelity

Gazebo based simulation with the Gazebo ROS plugin loaded into the simulation en-

vironment. The development of this simulation was considered a critical milestone in

the design and verification of the control algorithm. The simulator enabled controller

43

Figure 3.12: Same Controller in HW and Sim

testing with a purely software based approach. This allowed for a test-driven ap-

proach to control algorithm development that resulted in a more robust set of control

software with a clearly defined interface. Furthermore, the simulator immediately

eliminates the risk of damaging hardware due to the inevitable bug or two introduced

during the early stages of writing the control algorithm. Additionally, it allows sepa-

rate developers to simultaneously implement and test their control algorithms using

their own instance of the Bobble-Bot simulator. This facilitates a great deal of exper-

imentation and flexibilty when designing and testing different control schemes. This

sort of flexibilty is not feasible with an approach that is reliant upon hardware testing

and verification alone. For all of the reasons above, the simulator was utilized early

in the design phase of the controller and it significantly reduced the development cost

and schedule for this particular project.

44

3.6 Simulation

Figure 3.13: Bobble-Bot Simulator

There are many simulation tools available to robotics and controls developers. This

particular project considered simulation tools found within Python, Matlab, and the

Unreal Engine before finally settling upon Gazebo and the ROS plugin. All of these

tools were used at different points during the Bobble-Bot controller and simulation

development cycle. Gazebo was settled upon as the simulation framework of choice

due to its support for ROS control (which was selected for the hardware). The

Bobble-Bot Gazebo simulation is capable of running alongside the identical real-time

control process used for the controller on the actual hardware. This makes it an

invaluable tool for testing out the controller in software and immediately deploying

it to hardware. It should be noted that Matlab Simulink is also capable of this, but

it is closed source and was deemed cost prohibitive for this project. Furthermore,

the reliance on embedded code generation was undesirable for this application. The

45

following sections will briefly discuss each of these tools and how they were employed

during the design of Bobble-Bot.

3.6.1 Python

Python is a general purpose, interpreted programming language with a wide variety

of applications. It is a great language for quick prototyping and experimentation.

NumPy and SciPy are widely used free Python libraries for engineering and scientific

computation. These libraries were useful for verifying the equations of motion derived

in the previous chapter. A NumPy and SciPy based simulation of a double pendulum

is provided in 6.3. This simulation serves as a good example of how to implement a

simple 2D simulation from state equations represented in state space form. Matplotlib

is used to animate the results. The system parameters are defined at the top of the

script and can be easily changed prior to running the simulation and inspecting the

results. While Python and its associated open-source libraries were not selected for

Bobble-Bot’s primary simulator, the tools are still heavily used to perform analysis

on results generated by the Gazebo simulation.

3.6.2 Matlab Simulink

Matlab and Simulink work together to combine textual and graphical programming

into an integrated simulation environment. Developers can immediately gain access

to thousands of libraries containing algorithms authored for Matlab. This allows the

developer to focus on their domain specific application. Users can combine Simulink

library blocks with their own custom created blocks that wrap their application spe-

cific Matlab code. This allows users to rapidly build up system simulators by dragging

46

and dropping blocks from reusable component libraries. The full power of Matlab is

also available to Simulink users to analyze the output of their simulations.

As an example of using Matlab Simulink to design a Bobble-Bot like system, refer

to the controller design in Yamamoto (2018). This simulation utilizes Simulink to

design and auto generate the controller code. The image below shows that it also

comes with a 2D visualization tool.

Figure 3.14: Simulink Based TWIP Simulation Yamamoto (2018)

3.6.3 Unreal Engine 4

Unreal Engine 4 is a suite of integrated tools for developers to design and build

games, simulations, and visualizations. The engine is open-source and free to down-

load, but developers should check the licensing agreement if they are using it to

develop a commercial product. Unreal Engine is still relatively new on the scene

for 3D simulation development. The engine relies on NVIDIA’s PhysX physics en-

gine. Microsoft’s research laboratory has recently used Unreal Engine to build a high

fidelity drone and self-driving car simulator Shah et al. (2018). AirSim is an open-

47

source, high-fidelity physics, and photo-realistic robot simulator. Microsoft built the

simulation framework on top of Unreal Engine in order to help verify control and

perception software for robot designers and developers. This effort shows that the

use of Unreal Engine 4 will likely increase in popularity over the years to come. An

Unreal Engine simulation of Bobble-Bot has been started but has yet to be completed

at the time of this writing. A screen shot of this simulation is shown in figure 3.15.

Figure 3.15: Bobble-Bot in Simulated Garage Environment

3.6.4 Gazebo

Gazebo is an open-source 3D dynamic simulator that is commonly used to simulate

robotic systems. While Gazebo’s development environment has the look and feel of

a 3D game engine, Gazebo offers physics simulation at a much higher fidelity than is

typical of most video games. In addition, Gazebo also contains a large library of open-

source robot, sensor, and effector models. Gazebo is the recommended simulation

framework for developing and testing control algorithms developed for ROS. The

following list highlights some key features.

48

• Library of robot models and environments

• 3D development environment

• Multiple physics engines

• Support for ROS controllers

• Understands URDF (ROS robot model description format)

• Library of sensor models

For the reasons above, Gazebo was selected as the simulation framework of choice

for developing a high-fidelity Bobble-Bot simulator. This simulation is used to tune

the Bobble-Bot controller gains and test out higher level control logic. Future appli-

cations include enabling the development and test of Simultaneous Localization and

Mapping SLAM related algorithms and sensor modeling. The Bobble-Bot Gazebo

simulator is also capable of running with hardware in the loop. The image below is

a screenshot of the Bobble-Bot Gazebo simulation environment.

Figure 3.16: Bobble-Bot Gazebo Simulation

49

ROS control is the controller architecture that was adopted for Bobble-Bot. One of

the key advantages of this architecture is that it provides carefully designed software

abstraction layers that enable running real-time controllers with either simulation or

hardware in the loop. The controller is agnostic about whether it is running with the

Gazebo simulator in the loop or the real system. This approach allows developers

to iron out any lingering bugs and tune their control algorithms using simulation.

In practice, simulation based testing reduces the risk of damaging property or injur-

ing people during controller development. The architecture depicted in figure 3.17

shows how to design a ROS controller capable of being tested in simulation and then

deployed to hardware.

Figure 3.17: Controller Architecture in Simulation Environment Chitta et al. (2017)

50

The Bobble-Bot simulator includes a model of the mass properties, wheel friction,

motor joints, gravity, and the IMU. When the simulator runs without the controller in

the loop, the Bobble-Bot model immediately topples over as expected. As in real life,

the Bobble-Bot model requires active control. It is only when the balance controller is

run alongside the simulator that the simulated Bobble-Bot can maintain its balance.

One of the nice advantages of the Gazebo simulator is that it can be executed within

the ROSTest automated testing framework. This feature was used heavily in order

to tune the controller by repeating many separate impulse force tests within the

simulated environment. These tests involve modeling a disturbance impulse force

applied to the Bobble-Bot model. This distubance force gives the simulated Bobble-

Bot a jolt that the controller must adequately recover from and dampen out. The

automated test is ran repeatedly as control gains are adjusted between each run. This

testing process is repeated in simulation until a desirable response is settled upon.

Controller data is logged during each of these runs. A sampling of the results from

this type of test are shown in figure 3.18. A much more detailed tuning analysis is

provided in section 4.4.

The simulator can also be used to test the controller performance under changes to

the Bobble-Bot mechanical design. During early testing and tuning of the controller,

it was useful to try out larger wheels. The simulator can easily accommodate test

runs with varying wheel sizes. Likewise, the simulation can be used to understand the

control stability under different mass properties. Figure 3.19 shows the tilt control

response as the CG is shifted to different locations along the X and Z axes. These

shifts represent moving the CG forward and backward (X axis), and up and down

(Z axis). This simulates the effect of adding mass to different parts of the robot’s

structure. For example, a set of vision sensors are being considered as additions to the

51

(a) Tilt Response (b) Velocity Response

Figure 3.18: Simulated Impulse Force Testing

top of Bobble-Bot. This will likely move the CG up along the Z axis slightly. It may

also result in small shifts along the X and Y axes as well. The analysis depicted in

figure 3.19 and figure 3.20 shows that the tilt and velocity controller should be capable

of accommodating these changes. As one would expect, moderate shifts along the Z

axis have a minimal impact to the tilt and velocity response. Shifts along the X

axis cause the steady state tilt angle to change, but otherwise the system can remain

balanced as long as the CG shift is not too severe.

3.7 Summary

This chapter was dedicated to detailing a hardware and software design that should

be capable of meeting Bobble-Bot’s requirements. The results obtained by the simu-

lator in the previous section help to establish early confidence in the controller design

outlined in section 3.5. The design of the controller assumes a particular set of state

52

(a) CGx Shift (b) CGz Shift

Figure 3.19: Tilt Control Stability With Varying CG

(a) CGx Shift (b) CGz Shift

Figure 3.20: Velocity Control Stability With Varying CG

feedback variables can be supplied to the balance algorithm at a rate of 250 Hz. Fur-

thermore, the controller design assumes it can transmit motor effort commands at

53

the same rate. The simulation results show that so long as the hardware can meet

these timing constraints, the Bobble-Bot reference design should be controllable us-

ing a set of cascaded PID controllers. A preliminary analysis of the control stability

under varying impulse disturbance forces and CG locations was carried out. The

results from this analysis show that the proposed controller design is robust to force

disturbances and uncertainties in the final CG location. In addition, the simulation

has also been used to adequately test the high level state machine and input device

manager. The input device manager, state machine, and controller software have

been architected in such a way that the implementation is hardware independent. At

this point, only the hardware device drivers for the orientation sensor and BLDC mo-

tors remain to be implemented and benchmarked. Additionally, the real-time Kernel

patch must be applied to the RPi and a timing analysis must be carried out. The

next chapter will cover these implementation details and will also revisit the control

software implementation in more detail as it is tested once again in simulation and

then finally on the hardware. To verify the implementation, hardware based tests

will be carried out and the results will be compared with predictions made by the

simulator.

54

4

IMPLEMENTATION

Figure 4.1: Bobble-Bot on Test Stand

The previous chapter provided a look at a potential controller design and software

architecture that could be employed to achieve our requirements for Bobble-Bot. This

chapter will focus on how this architecture can be implemented using hardware and

software. As has been stated before, a software loop exhibiting deterministic timing

with low latency is one of the most important pre-requisites for implementing the

robot’s balance controller. As such, it makes sense to begin with a description of how

this real-time software loop can be achieved on the RPi.

55

4.1 Achieving Real-Time

Out of the box the RPi runs the Raspbian Operating System (OS). Raspbian is

Debian based, and it is the officially supported OS for the RPi single board com-

puter. Raspbian comes pre-installed with useful and commonly used software pack-

ages for education, programming, and general use. For example, Raspbian comes

with Python, Scratch, Sonic Pi, Java and more. Additionally, there is a lot of doc-

umentation within the ROS community to install ROS for Raspbian. This allows

developers to quickly build the OS layer for their their own ROS powered robot.

Detailed instructions for how to setup ROS for Raspbian can be found in reference

Gutierrez (2018).

Installing Raspbian and ROS on the RPi is the very first step in the process of

building up the Bobble-Bot software stack. The stock RPi kernel used by Bobble-

Bot’s version of Raspbian is rpi-4.14.y. This particular kernel is a fork of the official

Linux 4.14 kernel that adds RPi specific device driver code. As stated in section 1.2,

the stock Linux kernel is not real-time capable. Section 3.5 of the design dictates

that Bobble-Bot’s control loop has a strict maximum latency requirement of 1.5 ms.

Benchmarks provided in section 4.1.1 show that Raspbian’s stock Linux kernel can-

not meet these requirements. There is no point in proceeding with the Bobble-Bot

software implementation on the RPi until the system can be proven to meet the max-

imum latency requirement. The steps outlined below will be followed throughout the

remainder of this section. These steps show how the RPi stock OS kernel can be

modified and a ROS real-time task created to help meet Bobble-Bot’s performance

needs.

• Build the PREEMPT_RT based Raspbian real-time kernel

• Install the kernel and configure the system for real-time

56

• Perform a preliminary benchmark test to assess performance margins

• Observe important considerations for programming real-time tasks

• Create the ROS real-time node that will execute the sensor/actuator drivers

and balance control algorithm

4.1.1 Building the Real-Time Kernel

To transform Bobble-Bot to a real-time capable system we start with building the

appropriate Linux kernel from source. The source code for the Raspbian real-time

Linux kernel that Bobble-Bot uses can be found in reference RPi-Foundation (2018).

Before proceeding, we note that modifying the RPi’s kernel is a risky endeavor. It is

highly advisable to proceed with caution and create appropriate data and software

back-ups. Bobble-Bot’s kernel swap took a handful of attempts before it was done

correctly. With that warning, we proceed by outlining the general process. The given

steps are specific to Bobble-Bot’s particular kernel version, but the general process

is adaptable for other real-time RPi based systems. Building the kernel on the RPi

is very slow and unreliable. For that reason, it is advisable to cross compile the

kernel on a more powerful host machine. The RPi uses the Advanced RISC (Reduced

Instruction Set) Machine architecture (ARM). We use the tool-chain appropriate

for that architecture to do the cross-compilation. The commands below capture the

process for cross-compiling the Raspbian real-time kernel on an Ubuntu host machine.

Listing 4.1: RT Kernel Build Steps

1 git clone https :// github.com/raspberrypi/linux.git

2 cd linux; git checkout rpi -4.14.y-rt

3 git clone https :// github.com/raspberrypi/tools

4 export PATH=$PATH :./ tools/arm -bcm2708/gcc -linaro\

57

5 -arm -linux -gnueabihf -raspbian -x64/bin

6 export KERNEL=kernel7

7 export ARCH=arm

8 export CROSS_COMPILE=arm -linux -gnueabihf -

9 export INSTALL_MOD_PATH =../rpi -kernel/rt-kernel/boot

10 export INSTALL_DTBS_PATH =../rpi -kernel/rt-kernel/boot

11 make -j4 bcm2709_defconfig; make -j4 zImage

12 make -j4 modules; make -j4 dtbs

13 make -j4 modules_install; make -j4 dtbs_install

14 mkdir -p $INSTALL_MOD_PATH/boot

15 ./ scripts/mkknlimg ./arch/arm/boot/zImage \

16 $INSTALL_MOD_PATH/boot/$KERNEL.img

The above steps will produce the kernel image, kernel modules, and device tree

binary needed for the install. All that remains is to zip up the build artifacts and

move them over to the RPi. Once the build artifacts are on the RPi the commands

below can be used to install the real-time kernel. Make backups before executing the

removal commands.

Listing 4.2: RT Kernel Install

1 sudo rm -r /lib/firmware/

2 sudo rm -r /boot/overlays/

3 cp arch/arm/boot/zImage /boot/kernel7.img

4 cp arch/arm/boot/dts/* /boot/

5 cp arch/arm/boot/dts/overlays /* /boot/overlays/

58

After successfully completing the above steps, the RPi will now contain a kernel

which is fully pre-emptible and capable of executing real-time processes. The final step

is to set security limits that will enable setting an appropriate real-time priority limit

of 99 and an unlimited maximum on locked memory size. The unlimited memlock

setting is needed to help avoid page-faults when loading new memory into Random

Access Memory (RAM) for a real-time process. This will help ensure our real-time

process does not encounter a page-fault during its execution. A page-fault would

cause unacceptable latency when the needed memory has to be fetched from disk.

The listing below contains the necessary additions to /etc/security/limits.conf

Listing 4.3: Real-Time Additions to /etc/security/limits.conf

1 @realtime soft cpu unlimited

2 @realtime - rtprio 99

3 @realtime - nice 40

4 @realtime - memlock unlimited

5 * soft core unlimited

6 * hard core unlimited

With those security configurations, the system is now ready for benchmark testing.

The following section covers one common procedure for confirming that the real-time

kernel and configuration are working correctly.

4.1.2 Benchmarking the System

Cyclictest is an open-source real-time Linux benchmarking tool. A download link

is provided in Balci (2017). Results from cyclictest are the most frequently cited

real-time Linux metric. As such, it serves as a great first check on Bobble-Bot’s

59

real-time performance. The fundamental concept of cyclictest is very simple. The

program attempts to measure the latency of response to a stimulus (external interrupt

trigger). However, the implementation details of the actual source code for cyclictest

and the interpretation of its results can get complicated. The pseudo code provided

below conveys the basic idea of cyclictest.

Listing 4.4: Cyclictest Pseudo-code Rowand (2013)

1 clock_gettime ((&now))

2 next = now + par ->interval

3 while (! shutdown) {

4 clock_nanosleep ((& next))

5 clock_gettime ((&now))

6 diff = calcdiff(now , next)

7 // update stat -> min , max , total latency , cycles

8 // update the histogram data

9 next += interval

10 }

The implementation details of cyclictest are beyond the scope of this work. The

pseudo code above conveys the main idea and is enough to get a basic understanding

of the benchmark results that were used to establish confidence in proceeding with

Bobble-Bot’s balance controller. The following references are provided to give the

reader a starting point for using cyclictest on their own systems and then interpreting

the results Balci (2017) Rowand (2013). Figure 4.2 shows the results of running

cyclictest on Bobble-Bot’s stock kernel and then the real-time kernel each for six

hours under a nominal OS load.

60

(a) Cyclic Test non-RT (b) Cyclic Test RT

Figure 4.2: Comparison of Cyclic Test Benchmark

As expected, the real-time kernel decreases the maximum latency of the system.

Generally, benchmarking a real-time system is not a straightforward task. The results

from purely software based tests like cyclictest are certainly open to interpretation.

This first result is mostly used to confirm that the real-time kernel is in fact improving

the system’s latency. The real confirmation comes when integrating the real-time

balance controller with the device drivers and hardware. The final confirmation on

performance is done by using an oscilliscope to verify proper timing on Bobble-Bot’s

sensor and actuator I/O.

4.1.3 Best Practices for Real-Time Programming

Now that we have a real-time capable system, it is wise to do some research on best

practices for real-time programming before attempting to write the balance controller.

In general, real-time programming is all about writing software that can guarantee a

61

response within a specified time constraint. In practice, this amounts to a real-time

capable scheduler that can wake up a task at a precise time. From there, it is up to

the task programmer to avoid a situation where the task can overrun its allotted time.

To do that, the task programmer must carefully manage the task’s memory and use

of peripheral I/O. Linux-Foundation (2017) and Kay (2018) provides some helpful

starting material to real-time programming in general. Kay and Tsouroukdissian

(2015) adds detail on the specifics for accomplishing this within a ROS based system.

The basic unit of execution in a real-time application running under PREEMPT_RT

is a POSIX thread (pthread). In general, a real-time application may make use of

many threads, some of which may be running concurrently. In order for these threads

to meet the application’s timing requirements, the programmer must consider the fun-

damental concepts of real-time programming including: scheduling, priority, memory

locking, and stack prefaulting.

Scheduling and priority go hand in hand. The programmer is responsbile for config-

uring this for all the real-time threads in their particular application. The scheduling

policy and priority is all about allowing the kernel to know which real-time threads

can and cannot be interrupted by the others. Selecting scheduling policies and defin-

ing the application’s thread priorities should be one of the first steps taken by the

real-time application programmer. Bobble-Bot uses just two real-time threads. One

for running the sensor/actuator I/O, and one for running the balance control algo-

rithm. The thread responsible for reading and writing to hardware is the highest

priority thread. These thread priorities were intentionally set in such a way so that

the sensor/actuator I/O is not interruptable by the balance controller. The balance

62

control law is still a high priority real-time thread though, and as such, it is not

interruptable by other OS tasks and non real-time programs.

The other important consideration for a programmer writing a real-time application

is proper memory management. This is a tricky and critical aspect for ensuring

real-time performance. The main goal here is to eliminate the possibiliy of a page

fault occuring within the real-time code path. Page faults cause the CPU to hault

execution on the task so that the missing memory page can be loaded from disk into

RAM. Loading data from disk is non-deterministic and slow. In normal computing,

these page faults are necessary because the RAM is a finite size and could become

exhausted during general use of the system. In these situations, page faults are

necessary in order to relieve memory pressure on the system.

The real-time application programmer should understand the memory size required

by their real-time threads preferably at compile time. In this way, the programmer can

set the appropriate stack size by using POSIX’s pthread_attr_setstacksize function

call. In addition to setstacksize, the programmer should use the Linux system call,

mlockall, in order to lock the process’s virtual address space into RAM. This prevents

the memory that will be used by the process from getting paged into swap space. It

is possible to do dynamic memory allocations in a real-time way but it requires even

more care. All of the required memory for Bobble-Bot’s real-time loop is statically

allocated, so this was not a concern for this application. Kay (2018) provides more

information on how to do dynamic memory allocations in a way that is safe for real-

time applications.

Another important consideration for real-time applications comes with the design

of real-time capable interface mechanisms with non real-time threads. Bobble-Bot’s

63

balance controller is designed to receive desired state commands from other non real-

time processes. Refer to the software architecture design in section 3.4 for details

on how the software design carefully separates the non real-time processes from the

real-time one. ROS’s standard publish/subscribe mechanism for process to process

communication is not real-time safe and cannot be used in the usual way within the

real-time code path. To solve this problem, the balance controller checks a statically

allocated section of memory containing an external commands structure that is pro-

tected via a mutex. The standard ROS subscriber callback mechanism is then used

to receive commands from non real-time processes asynchronously within a separate

non real-time thread. The callback function receives the external commands and then

waits to acquire the mutex before populating the section of memory that the real-time

process is using. In this way, the balance controller can safely and regularly check

for any new commands. In the worst case, it reads stale desired state data for a few

frames. This is acceptable because it does not cause the execution of the control law

to wait, and therefore it poses no risk to the robot becoming unstable.

In summary, real-time programming is possible only when the programmer takes

extra care over managing the priority, scheduling, memory access, and I/O for the

real-time process. As long as this is done, a real-time ROS node is possible. The

next section provides a bit more detail on the application of the principles covered in

this section in order to create a real-time ROS node dedicated to the execution of the

balance controller and sensor/actuator I/O. The list below contains a final summary

on best practices for real-time programming. A full list is found in Linux-Foundation

(2017) and Kay (2018).

• Avoid sources of non-determinism in real-time code (networking, file I/O, etc)

• Keep disk reads/writes outside of the real-time code path

64

• If logging is necessary, spin up non real-time threads to log the data of interest

• Pre-allocate resources for the real-time thread in the non real-time path

• Lock the process address space into RAM to avoid page faults

• Create real-time threads at the start of the real-time program

4.1.4 A Real-Time ROS Node

At the most basic level, a node in ROS is simply an executable process. Typically

ROS nodes also make use of some of the various ROS client libraries like the parameter

server and the publisher/subscriber infrastructure. Armed with the real-time kernel

built in section 4.1.1, this process can be made to run real-time just like any other

process that is programmed carefully. All that is left to do to start writing a real-time

ROS node is to observe the best practices outlined in the previous section. The code

snippet below shows the initialization steps of Bobble-Bot’s real-time node. Notice

the use of the POSIX scheduler API and Linux system call mlockall. This bit of

code comes straight from the references given in section 4.1.3. The other important

bits to note are the declaration of the BobbleBotHw and ControllerManager objects.

BobbleBotHw contains the hardware interface performing sensor/actuator I/O. The

controller manager is responsible for running the balance control law. More detail on

these two components will be provided in sections 4.2 and section 4.3.

Listing 4.5: Setup of Real-Time ROS Node

1 // Placed inside very start of main.cpp

2 struct sched_param param;

3 param.sched_priority=sched_get_priority_max(SCHED_FIFO);

4 if(sched_setscheduler (0,SCHED_FIFO ,¶m) == -1)

5 ROS_WARN("Failed to set real -time scheduler."); return -1;

65

6 if(mlockall(MCL_CURRENT|MCL_FUTURE) == -1)

7 ROS_WARN("Failed to lock memory."); return -1;

8 ros::init(argc , argv , "bobble_bot_control_node");

9 BobbleBotHw bobble_bot;

10 controller_manager :: ControllerManager cm(& bobble_bot);

11 ros:: AsyncSpinner spinner (1); spinner.start();

12 bobble_bot.init();

13 // ... on to the rest of the RT-loop

The code above handles setting the priority, locking the processes memory into

RAM, and statically allocating the needed components of the real-time process on

the stack. These are the first lines of Bobble-Bot’s real-time main function. After

initialization, all that remains is the code for the real-time loop. The code snippet

below shows that this loop is implemented as an infinite while loop. It is a simple

read, update, write loop.

Listing 4.6: ROS Real-Time Loop

1 ros:: NodeHandle pnh("~");

2 double loop_rate; pnh.param("LoopRate", loop_rate , 200.0);

3 ros::Rate rate(loop_rate);

4 ros::Time prev_time = ros::Time::now();

5 while (ros::ok()){

6 const ros::Time time_now = ros::Time::now();

7 const ros:: Duration period = time_now - prev_time;

8 prev_time = time_now;

9 bobble_bot.read();

10 cm.update(time_now , period);

11 bobble_bot.write();

66

12 float period_sec = period.toSec();

13 if(period_sec > (0.03/ loop_rate))

14 ROS_ERROR("SIGNIFICANT DELAY: %f", period_sec);

15 rate.sleep();

16 }

In the code above, the lines prior to the while loop are actually still part of the

initialization. A ROS node handle is constructed to allow for setting of the loop rate

via the ROS parameter server. The loop rate is defaulted to 200 Hz, but other loop

rates 250 Hz and below are possible. The read and write calls are methods defined

in the BobbleBotHw interface class. They are the hooks to call the sensor/actuator

drivers to read and write data to and from the hardware. The update call is a

method defined in the ros_control ControllerManager class. Section 4.3 will provide

more detail on the ControllerManager. Finally, note that the elapsed time between

iterations of the loop is monitored and stored within a delta-t variable. An error

message is written out if the delta-t becomes larger than three percent of the loop

rate. This is the source code implementation of the 0.15 ms latency requirement

dictated in section 3.5. It should not occur during proper real-time execution. Figure

4.3 shows a plot of this delta-t variable during the execution of a Bobble-Bot real-time

loop verification test. This plot shows the major result of this section. The Bobble-

Bot real-time loop has been implemented correctly on the RPi, and the maximum

latency has been verified to meet the 0.15 ms maximum latency requirement. The

loop serves as the real-time process that orchestrates the execution of the hardware

control aspects of the robot. The next sections will cover what exactly is happening

during the execution of this loop, and how it enables the robot to keep its balance

while also responding to desired state commands issued by the human driver.

67

Figure 4.3: Bobble-Bot Real-Time Verification

4.2 Device Drivers

Now that the timing of the real-time loop has been verified, the next step is to

start incorporating hardware components and device drivers. Proper implementation

of these drivers is critical for achieving robust balance control. In fact, the latency

shown in figure 4.3 is in part due to the time required to send and receive data over

the sensor and actuator communication channels. Keeping this time below 0.15 ms

helps to ensure that the balance controller has sufficient margin on control bandwidth.

The sensor and actuator I/O all happens within device driver functions called during

the read and the write part of the real-time loop. There are three drivers executed

within this loop. They are listed below.

• CAN bus communication driver.

• BLDC motor device driver.

• IMU driver using UART.

68

4.2.1 CAN Communications

Bobble-Bot uses a CAN bus to execute the motor drive loop. The communication

channel is two-way between the RPi and the BLDC motor drivers. In order to meet

the control loop requirements, the bus must carry two motor effort command packets

and two state feedback status packets to and from the RPi and BLDC motor drivers

at 250 Hz. In addition to these packets, the CAN bus is also used to transmit motor

configuration parameters. This motor configuration packet is only sent during the

tuning modes of Bobble-Bot’s operation. It is not sent during the execution of the

real-time loop. To facilitate ease of use, this configuration packet can be sent from

non real-time tasks. This is done using a Python interface to the CAN hardware.

Though the device driver supports both non real-time and real-time access to the

CAN bus, the motor torque commands should only be sent from within the real-time

loop. This is the only way to guarantee proper use of the motors for balance control.

It is, however, appropriate to use the non real-time interface via the Python driver

module for motor diagnostics.

Table 4.1: Bobble-Bot CAN Devices

Device Name Description ID

Left Motor Tx Left motor commands channel 0x101 (257)

Left Motor Rx Left motor status channel 0x201 (513)

Right Motor Tx Right motor commands channel 0x102 (258)

Right Motor Rx Right motor status channel 0x202 (514)

The MCP-2515 CAN transceiver was selected because of its compatibility with

the RPi and availability within an inexpensive, off the shelf, RPi extension module.

The MikroBUS click shield is a general purpose I/O extension board that can fit

69

directly on top of the RPi. It enables I/O peripheral expansion and has support

for the MCP-2515 CAN transceiver. A pair of wires, the MikroBUS click shield,

an MCP-2515, and two BLDC motor controllers make up the Bobble-Bot CAN bus

physical network implementation. Table 4.1 summarizes the CAN network including

device addresses. The software implementation is composed of the MCP-251x Linux

driver, an RPi specific MCP-2515 device tree overlay, SocketCAN, and a Bobble-

Bot specific real-time C++ and non real-time Python driver. Figure 4.4 depicts the

CAN driver implementation including hardware components. The relevant RPi CAN

configuration files are included in 6.4.

Figure 4.4: Bobble-Bot CAN Communications Architecture

As can be seen in figure 4.4, Bobble-Bot’s real-time loop makes function calls into

SocketCAN during the execution of its read and write functions. SocketCAN is a

collection of open-source packages used by the Bobble-Bot C++ and Python CAN

device drivers. The open-source libraries can be found in Hartkopp (2015) and Thorne

(2018). This open-source software is an implementation of CAN protocols for Linux.

SocketCAN uses the Berkeley socket API and the Linux network stack to implement

CAN device drivers as network interfaces. This is a useful architecture as it allows

the higher level, Bobble-Bot specific, CAN drivers to interact with its devices in a

70

way that is reminiscent of socket programming. Figure 4.5 depicts the different layers

that make up a system utilizing SocketCAN.

Figure 4.5: SocketCAN Architecture Linux-Foundation (2012)

All of these hardware and software components work together to stream motor

command and status packets at 250 Hz over the two Bobble-Bot CAN wires. Figure

4.6 shows a snapshot of these packets from the SocketCAN utility candump. This

utility allows users to sniff the packets being sent over the network. In the next

section, we verify that these CAN packets are able to perform their basic function of

commanding torque and reporting wheel status data from the BLDC motor driver.

Figure 4.6: Bobble-Bot CAN Messages

71

4.2.2 Motor Driver

Most of the motor control functionality is implemented as firmware on the Chu-

pacabra BLDC motor controller. This is a custom designed, general purpose, BLDC

and DC motor controller. Figure 4.7 shows the design of the Chupacabra circuit

board. The details of the design of this board and its firmware are beyond the scope

of this work. The Bobble-Bot balance controller treats its motor controllers as two

separate devices on its CAN bus. It sends each an effort command, and receives back

motor position and velocity. How exactly the effort command is translated into cur-

rent and torque is not of any concern to the balance controller as long as the torque

is approximately linear with effort and the motor feedback signals are reliable. As

such, the motor driver software implemented on the RPi turns out to be a light layer

built on top of SocketCAN. In the read portion of the real-time loop, this particular

software layer unpacks the received motor status into a structure that is made avail-

able to the balance controller. In the write portion it packs two effort commands into

the appropriate CAN message structure and sends it out over the network.

Figure 4.7: Chupacabra BLDC Motor Controller

The other function of the Bobble-Bot side of the motor driver interface is related to

motor configuration. This is a necessary and practical feature that limits the number

of hardcoded values placed inside an otherwise generic set of motor controller firmware

72

running on the Chupacabra. The Chupacabra CAN message exposes an interface for

setting all of its configuration parameters. The Bobble-Bot side of the interface

just needs to provide a convenient mechanism for setting these parameters. This

functionality is implemented by defining a motor configuration task that is scheduled

to be executed within a motor tuning state defined in Bobble-Bot’s non real-time state

machine executive. When a developer wants to change motor control constants they

set values defined within a YAML configuration file and press a button to command

the robot into the motor tuning state. Once in this state, Bobble-Bot’s state machine

executes the motor configuration task and the Python-CAN driver is then used to

send down the values to each Chupacabra. Table 4.2 provides a brief listing of some

of these configuration constants and their units.

Table 4.2: BLDC Motor Configuration

Parameter Name Description Units

Electrical Offset Angle between A phase and encoder north pole r

Electrical Direction Motor spin in relation to + counts –

EMF Constant Motor speed in relation to voltage r/Vs

Torque Constant Torque in relation to current Nm/A

Phase Resistance Captures motor resistance Ohms

Phase Inductance Captures motor inductance Henrys

Number of Poles Number of BLDC motor poles –

The real-time performance of each motor driver was verified on the test stand

shown in figure 4.8. This test stand was used to test the motor controllers out prior

to designing the Bobble-Bot assembly. A sample of the results from these early tests is

shown in figure 4.9. These results show that the motor drivers performed as expected.

73

These tests gave confidence in the use of the driver software and hardware for the full

Bobble-Bot assembly.

Figure 4.8: Motor Test Stand

Figure 4.9: Motor Driver Verification

74

4.2.3 IMU and State Estimation

The last device driver executed within the real-time loop is the IMU. The IMU

is actually composed of two separate sensors, the ADXL-345 (2015) accelerometer

and the ITG-3200 (2011) gyroscope. A summary of relevant sensor specifications

is provided in table 4.3. The readings from these two sensors are fused together

using an orientation filter to produce an absolute orientation and orientation rate

estimate. While the orientation filter produces a full orientation and orientation rate

estimate, only the tilt, tilt rate, and turning rate are needed. During each cycle of

the real-time loop, the IMU driver reads three accelerometer measurements and three

gyroscope measurements. These values are read off the I2C bus and then handed to

the orientation filter. The end result is tilt, tilt rate, and turning rate supplied in to

the balance controller at 250 Hz.
Table 4.3: IMU Sensor Summary

Parameter Name ITG-3200 ADXL-345

Voltage Range 2.1 - 3.6 V 2.0 - 3.6 V

Temperature Range -40 - 185 F -40 - 185 F

Size 4mm x 4mm x 0.9mm 3mm x 5mm x 1mm

Digital Output I2C I2C

Full Scale Range +- 2000 deg/s +- 16 g

Noise 0.4 deg/s rms 2.2 LSB rms

The orientation filter used by Bobble-Bot processes raw accelerometer and gyro-

scope readings using an analytically derived, optimized, gradient-descent algorithm.

This algorithm computes a quaternion derivative representing the direction of gy-

roscope measurement error and then removes it from the estimated orientation and

75

orientation rate. The filter algorithm was created by Sebastian O.H. Madgwick. The

details of the filter design, experimental results, and source code can be found in

Madgwick (2010). This filter was selected for Bobble-Bot’s IMU driver because it

provided the greatest performance while still maintaining a low computational load

at the 250 Hz target loop rate. The filter is considerably easier to implement and

tune over the more traditional Kalman and Extended Kalman filter options. This

filter does not require any least squares curve fitting or complex tuning processes.

In fact, for the Bobble-Bot application, the Madgwick filter has only one gain that

must be tuned experimentally. The general observation from tuning this filter is that

increasing the gain leads to faster gyroscope bias correction at the expense of higher

sensitivity to noise in lateral accelerations. A value of 0.20 was settled upon for this

application.

With the orientation filter tuned, all of the hardware device drivers needed by

the balance control loop’s read and write routines are ready for use by the balance

controller. The next section will detail the implementation of a control algorithm

that can compute a desired torque based on the state feedback estimates provided by

the Bobble-Bot device drivers.

4.3 Control Algorithm

Bobble-Bot’s balance control is implemented within a single class inheriting from

an EffortJointInterface. The control law is executed during the real-time loop with

a call to the ControllerManager update function. The EffortJointInterface and the

ControllerManager are C++ classes defined within the ROS control library. ROS

control is an open-source library found within the ROS ecosystem which is intended

76

for implementing real-time controllers capable of interacting with both hardware and

simulation Chitta et al. (2017). The architecture of a generic robot that utilizes ROS

control was outlined in section 3.5. The implementation of Bobble-Bot’s balance

control algorithm conforms to this architecture, and in doing so, it enables several

useful features found within ROS control that simplify the verification process. One

of the most useful of these features is provided by ROS control’s ControllerManager

class.

The ControllerManager follows the Singleton design pattern Gamma et al. (1995).

It encourages developers to inherit from known base class controller types, like the

EffortJointInterface. The developer can then implement their custom controller and

compile it as a C++ shared library. The ControllerManager is instantiated and ini-

tialized once during the pre-allocation stage of the real-time loop. Any controller

which implements one of the standard interfaces can then be registered at run-time

during this initialization stage. Once all potential controllers are registered, the up-

date function of the ControllerManager is then called once during each cycle of the

update loop.

The ControllerManager provides a convenient API which can be used to start, stop,

restart, and swap controllers in and out of the system at run-time. This abstraction

enables many useful features. For example, Bobble-Bot’s on-the-fly tuning feature is

accomplished by invoking methods within the ControllerManager API. To do this, the

non real-time state machine commands the robot to the idle state and invokes a Con-

trollerManager method to temporarily suspend the balance controller. It then uses

the ROS parameter server to reload the controller configuration file. After the file has

been loaded, the non real-time state machine once again uses the ControllerManager

77

API to restart the controller it had previously suspended. Once the controller has

been restarted, the non real-time state machine can command the robot back into the

balance state. The end result is a safe way to tune the controller without having to

manually restart the robot. All that a developer has to do to gain this sort of flexibil-

ity is have their particular controller implement a standard interface defined within

the ROS control library. The rest comes for free thanks to the ControllerManager.

Beyond ROS control, Bobble-Bot’s control algorithm also makes use of two other

open-source libraries that are worth briefly mentioning. The first is a generic PID con-

troller implementation called MiniPID. MiniPID is a self contained and efficient C++

PID controller implementation that is designed to be used on any embedded system

requiring PID control Sheadel (2015). In the case of cascaded PID controllers, like

Bobble-Bot’s balance controller, the developer simply creates and configures multiple

instances of the MiniPID class and feeds the output signal of one PID controller ob-

ject into the input signal of another. Bobble-Bot uses three instances of the MiniPID

controller class in order to implement the three cascaded PID controllers depicted in

the balance control block diagram shown in figure 3.11 from section 3.5. The second

open-source library used within Bobble-Bot’s balance controller is a generic digital

filter found in Moore (2017). This library contains a C++ implementation of the gen-

eralized 1D digital filter shown in figure 4.10. This library can be used to implement

simple low pass filters (LPF) or others like the rolling average, Butterworth, Bessel,

and Chebyshev filters.

The library works by statically allocating the internal input and output buffers

used by the digital filter. By default the maximum size of each buffer is twenty,

but this default value is easy to change if necessary. Bobble-Bot’s controller uses

78

Figure 4.10: General 1D Digital Filter

this library to implement a generic low pass filter on all state feedback variables fed

into the controller. This is done to cut out high frequency changes to the controller

input signals in order to reduce undesirable system vibrations. The low pass filter

implementation is given by the equation below, where x0 is the current sensed value,

y0 is the filtered output, y1 is the previous filter output, and α is the LPF gain.

y0 = x0(1.0− α) + y1α

MiniPID and the digital filter libraries work together to implement the underlying

mathematics captured in the balance controller block diagram. In the real system,

it is not enough for the controller to simply execute this math during every update

cycle. The controller also needs to operate in a few other states in order to facil-

itate debugging and keep the hardware safe. This is accomplished by having the

balance controller also manage a simple internal state machine. Figure 4.11 depicts

the different states the controller can be in.

As can be seen from figure 4.11, the balance controller’s internal state machine runs

in parallel with a higher level state machine operating within the non real-time Python

79

Figure 4.11: Controller States

executive. The non real-time state machine is implemented following a generalized

state pattern in object oriented Python Gamma et al. (1995). The balance controller’s

internal state machine is implemented as a simple C++ switch statement that runs

during the controller’s update function. The higher level state machine communicates

with the balance controller state machine by using ROS’s publish/subscribe pattern.

The best practices for real-time programming detailed in section 4.1.3 are employed

in order to ensure that this communication channel is real-time capable. These state

machines work together to manage the balance controller’s internal state to keep the

hardware and operator safe while promoting ease of use and maximizing flexibility.

Table 4.4 lists a summary of the most crucial states and provides a short description

for each.

80

Table 4.4: Controller States

State Description

Idle Motors powered on but inactive

Motors Get Ready Uses Python API to send motor configs

Diagnostic Enable manual controlling of motors

Start Up Start balance controller and activate it when safe

Balance Execute balance control law desired states = 0

Drive Execute balance control law using desired states

Defining these controller states has three primary advantages. The first is the abil-

ity to gracefully handle some safety concerns. Defining an idle state that the robot

can be commanded into from any other state allows for the operator to effectively

shut the motors down at any time. This can be used if the system begins to oper-

ate erratically and jeopardizes the safety of the robot or its environment. Likewise,

defining a transitionary start-up state allows the balance controller to be primed but

to remain within an inactive state until the robot reaches a tilt angle in which it

can be safely balanced. Secondly, the balance control state machine affords greater

flexibility when extending the robot’s basic capabilities. As an example, re-tuning

the controller on-the-fly would not be possible without a mechanism like this one.

Additionally, it is likely that these states will be reused during the implementation of

autonomous navigation algorithms. These algorithms are traditionally more compu-

tationally expensive, and they would likely be implemented within the non real-time

state machine. While these routines are running, however, the robot would still be

expected to perform its more critical function of maintaining its balance and tracking

desired state commands. The state machine provides an easy mechanism to develop,

81

test, and introduce these types of capabilities without posing extra risk. Finally, the

introduction of a diagnostic state simplifies the robot’s maintenance burden. The

diagnostic state can be used to test out new hardware and software features in an

easy and safe way. One common use of the diagnostic state is to check out motor,

controller, and filter performance while the robot is placed on a test stand. For these

reasons, and many more, the state machine implementation makes Bobble-Bot a safer,

more robust, and easily extended platform for robotics and controls development.

The last important aspect of the balance controller implementation involves tun-

ing several critical controller performance gains. Table 4.5 lists a few of the most

important parameters. All PID controllers must be tuned for the system that they

are controlling, and Bobble-Bot is no exception. Rise time, settling time, amount of

over/under-shoot, and steady state error are some of the most common control per-

formance metrics used to evaluate potential control gains Tay et al. (1997). Each PID

controller used within Bobble-Bot’s balance controller has different requirements on

each metric. Robust tilt control is clearly important in this application, but it needs

to be carefully weighed against the robot’s overall maneuverability. This trade-off is

accomplished by careful selection of the filter and control gains used by the balance

controller. Of course, Bobble-Bot’s inherent unstable dynamics further complicates

this tuning process. The next two sections are dedicated to determining suitable

control gains in a way that minimizes the risk to damaging the system.

82

Table 4.5: Select controller configuration parameters

Parameter Name Description

Madgwick Gain State estimation filter

Tilt LPF Tilt LPF gain

Tilt-dot LPF Tilt-dot LPF gain

Turn rate LPF Turn rate LPF gain

Wheel Velocity LPF L/R wheel velocity LPF gain

Velocity Control Kp Proportional gain, velocity

Velocity Control Ki Integral gain, velocity

Tilt Control Kp Proportional gain, tilt

Tilt Control Kd Derivative gain, tilt

Turning Control Kp Proportional gain, turning

Turning Control Ki Integral gain, turning

Turning Control Kd Derivative gain, turning

4.4 Control Tuning

The proceeding sections in this chapter have detailed an approach in which imple-

mentation and verification of the hardware systems has been done independently from

the software implementation of the control law. This was accomplished by way of a

modular software and hardware architecture that carefully considered the challenges

posed when integrating a prototype controller together with hardware devices on an

unstable platform. At the end of the controller design in section 3.5, a simulation

was proposed as a method of safely verifying the controller implementation entirely

in software. This was proposed with the goal of minimizing the risk of damaging the

83

hardware when the entire system is tested together for the first time. This section

covers the results from applying this approach with the Gazebo based Bobble-Bot

simulator discussed in section 3.6. The balance controller implementation covered in

the previous section is run alongside the simulator. Test data is collected from each

run of the simulation. An analysis is then carried out with the goal of evaluating

different control gain selections and their impact on tilt, velocity, and turning control

performance. The state machine architecture and real-time monitoring software are

used repeatedly throughout this process. These tools allow for controller gains to be

modified and analyzed as the simulation is running. A summary of the end results

from this exercise are provided in the sections that follow.

4.4.1 Simulated Tilt Control

(a) Tilt Response Kp Tuning (b) Tilt Response Kd Tuning

Figure 4.12: Tilt Control Tuning

84

Figure 4.12 summarizes the results from six different simulation runs. An impulse

force in the -X direction is applied a half a second into each simulation run. The

tilt controller takes over and does its job to reject the disturbance in order to keep

the robot balanced. Figure 4.12 shows how the selection of different TiltControlKp

and TiltControlKd values effects the performance. Smaller values of Kp lead to a

much longer settling time. This is undesirable. Kp values that are too high are not

likely achievable on the real robot, but the simulator predicts that they work well in

the simulation environment. Large values of TiltControlKp result in large and rapid

changes to the resulting torque command. This shows that the current motor model

in the simulator could benefit from an increase in model fidelity. For the final tuning

during real hardware tests, the safest approach is to start with smaller stable values

and ramp up the Kp value until the system approaches instability.

The second half of the tests were dedicated to tuning TiltControlKd in the sim-

ulation. As expected, the simulator shows that increasing Kd has the advantage of

reducing the settling time at the expense of additional overshoot. The end result of

this analysis is a prediction that a TiltControlKp value of 1.0 and a TiltControlKd

value of 0.05 will result in stable tilt control while also being achievable with the real

motors. These values will serve as our starting tilt control gains for the first hardware

tests.

Figure 4.13 shows the robot position and velocity response during one of the sim-

ulated tilt control tests. The velocity plot shows that the -X impulse force results

in a -0.4 m/s velocity in the X direction. The velocity controller gains were set to

zero for these tests, so this result is expected. The position plot shows the robot’s

trajectory in X, Y world co-ordinates when only the tilt controller is active. The

85

end result from this analysis is that the tilt controller is performing as expected. It

is able to keep the robot upright, but it is not sufficient to bring the robot back to

rest following an impulse force. To accomplish that goal, we must turn to tuning the

velocity controller. The next section shows the results from that effort.

(a) Backward Velocity (b) World Position X,Y

Figure 4.13: Tilt Control Without Velocity Control

4.4.2 Simulated Velocity Control

Following the same testing procedure discussed in the previous section, figure 4.14

shows the results from tuning the velocity controller in the simulator. This time,

we analyze the robot’s velocity in response to the same -X impulse force. In all

simulation runs we see the impulse force results in a velocity around -0.4 m/s in the

-X direction. However, unlike the results from the previous section, this resulting

velocity is controlled back to a resting state. This is the expected result as the job of

the velocity controller during balance mode is to try to control the robot to stay at

86

rest. This is accomplished by setting the VelocityControlKp and VelocityControlKi

values appropriately. Figure 4.14 shows the effect of selecting different values for these

gains. The end result of this analysis is a prediction that a VelocityControlKp value

of 0.15 and VelocityControlKi value of 0.001 are likely to be good starting values

during hardware testing.

(a) Velocity Response Kp Tuning (b) Velocity Response Ki Tuning

Figure 4.14: Velocity Control Tuning

The tilt response plot in figure 4.15 shows how the velocity controller achieves its

goal of keeping the robot at rest. In response to the impulse force, the controller

modulates the desired tilt command sent into the tilt controller. This has the effect

of initially tilting the robot forwards in response to the impulse in the -X direction.

The dynamics of the TWIP system show that this will cause an acceleration that will

fight against the -X impulse force and eventually bring the system back to rest. The

controller’s integral gain allows the robot to return close to its original position by

87

closing out the steady state error. This can be seen by examining the position plot

on the right side of figure 4.15. The robot travels about 15 cm in the -X direction

before returning back towards the origin.

(a) Tilt Response (b) World Position X,Y

Figure 4.15: Velocity Control

This analysis has used simulation to verify the performance of the proposed velocity

and tilt controller design given in section 3.5. The results show that this design works

to keep Bobble-Bot balancing in place even when perturbed by a disturbance force.

In much the same way, the controller is also capable of tracking a desired forward

and backward reference velocity command. However, the tilt and velocity controllers

are not sufficient to enable turning. The next section describes a simulation based

approach to tuning the final controller used by Bobble-Bot, the turning controller.

88

4.4.3 Simulated Turning Control

The last step in the simulation based validation of the balance controller is verifying

the turning controller depicted in the block diagram shown in figure 3.11. The turning

controller is a PID controller acting on the turn rate feedback signal provided by

the gyroscope. This controller outputs a positive and negative bias to the left and

right motor torques respectively. These two torque biases result in a motor velocity

differential that turns the robot left and right. The TurningControlKp, Ki, and

Kd gains were tuned experimentally in simulation. Figure 4.16 shows the resulting

performance after tuning all three of these gains.

(a) Turn Rate Control (b) Heading Control

Figure 4.16: Turning Controller Performance

The simulation run used to generate the data shown in figures 4.16 and 4.17 is

the result of commanding the robot to turn left and right a few times in succession.

The turn rate command and the resulting desired heading are shown in red in the

89

left and right plots in figure 4.16. The resulting turn rate and heading response

are shown in blue. For this simulation run, the robot’s desired velocity command

was continually set to zero. Despite this, figure 4.17 shows that the simulated robot

did pick up a little bit of velocity and tilt during the turning manuevers. A little

wobbling during a turn is expected. The tilt and velocity controllers remain active

during the turn, and the plots show that they successfully do their job to keep the

robot mostly still and balanced throughout the turn. The result of this analysis is

a prediction that the following turning controller gains should serve as the selected

values during initial hardware tests: TurningControlKp is 1.0, TurningControlKi is

0.01, TurningControlKd is 0.085.

(a) Tilt Response (b) Velocity Response

Figure 4.17: Tilt/Velocity While Turning

The turning control analysis described above concludes the initial verification of

the balance controller in its entirety. The simulator has helped to predict suitable

90

starting values to use for the most important control gains during hardware testing.

The simulator has also helped to give credibility to the balance control design given

in section 3.5. The final step is to compile the balance controller on the RPi and run

it alongside the rest of the hardware. The next section will summarize the results

from a preliminary integrated hardware and software test.

4.4.4 Validation with Hardware Testing

This chapter has been dedicated to the implementation of the design provided in

chapter two. The real test of the entire approach comes when finally bringing all of the

different hardware and software components together into their final configuration.

The first tests done on the real Bobbble-Bot exactly mimic the simulation based tests

performed in the previous section. In this way, we can analyze the results from the

hardware test and compare them with the simulator to make refinements to improve

both the hardware and the simulator simultaneously. The end goal is a working

Bobble-Bot whose performance is sufficiently approximated by the simulator in order

to enable continued reliance on simulation as the initial proving ground for any future

additions to Bobble-Bot’s control and navigation capabilities.

The first test done on the real Bobble-Bot mimics the -X impulse force test carried

out initially in simulation. This test will verify the control gains predicted by the

simulator. Those control gains are repeated here in table 4.6. Like in simulation, the

state machine is used once again during this test to load these configuration values

at run time. This allows for rapid tuning of the system in real time.

91

Table 4.6: Control Gains for HW Test

Control Gain Value

Tilt Control Kp 1.0

Tilt Control Kd 0.05

Velocity Control Kp 0.15

Velocity Control Ki 0.001

Turning Control Kp 1.0

Turning Control Ki 0.01

Turning Control Kd 0.085

As in simulation, the Xbox controller described in section 3.3 is used to issue the

necessary commands to prepare the robot for the impulse test. Unlike simulation,

however, there is a unique hardware only test procedure that is followed prior to

the impulse test that is used to verify the motors are operating as expected before

attempting to enter the balance state. As described in section 4.3, the robot begins in

the idle state. A controller button is then pressed to enter the Motors Get Ready state

and load a motor configuration file onto each BLDC motor controller. Once that step

is completed the robot automatically returns to the idle state. Bobble-Bot is then

placed on a test stand, and each motor is manually commanded using the controller’s

left and right joysticks. The test operator visually verifies that the motors produce the

expected torque response. Once they are satisfied, they issue a command to return

the robot back to the idle state. Bobble-Bot is now ready to safely enter the start-up

state. At first, the robot is assisted by holding the robot up-right. The operator then

issues the balance command to enter the balance state. In response to this command,

the real-time state machine modes the balance controller into the start-up state. The

92

balance controller remains in this state and keeps the motors inactive until it senses

that it is in an assisted up-right position. At the time of this writing, Bobble-Bot

has no ability to up-right itself within the start-up state, although that is a desirable

feature for future work. Once the robot detects that it is in a safe initial condition, it

activates the balance controller and begins sending torque commands to each motor.

If all goes well, the operator can stop assisting the robot as it will begin to balance on

its own. To initiate the -X impulse test, the test operator sends a command to ROS

to begin logging data, and then gently pushes the robot in the -X direction. Figure

4.18 shows the results of carrying out this test procedure using the control gains given

in table 4.6.

(a) Tilt Response (b) Velocity Response

Figure 4.18: Tilt/Velocity During HW Impulse Test

Figure 4.18 shows the tilt and velocity response from this test. At first glance, we

see that the simulation has done a very good job at predicting viable control gains.

93

The tilt and velocity response are qualitatively very similar to what was observed in

the previous section. Like in simulation, the -X impulse disturbance causes the robot

to reach a maximum tilt angle of about 5 degrees and a maximum velocity of around

-0.4 m/s. A more detailed comparison of the hardware versus the simulator will be

given in the conclusion of this work. However, the results shown here are encouraging.

Figure 4.19 shows the action of the turning controller during this test and also the

resulting position of the robot in world co-ordinates. This shows that the turning

controller is successfully doing its job despite the presence of considerably larger

noise within the real gyroscope’s turn rate measurement. This indicates that perhaps

greater filtering of this signal could lead to better performance. The world position

plot shows that the -X impulse force caused the real robot to travel about 10cm

farther than what was predicted by the simulation, although the final steady state

error magnitude in position is comparable. There are a variety of potential reasons

for this difference including differences in the applied impulse force magnitude and

surface friction. Despite these differences, the results still indicate that the simulator

has served its purpose.

The second hardware test, and final verification result presented in this chapter, is a

repeat of the turning test that was done in simulation in the previous section. Bobble-

Bot is commanded to turn left and right in place. Figure 4.20 shows the desired and

actual turn rate and heading. This result shows that the turning controller did not

perform as well as the simulator predicted it would. The reason for this can be seen

by inspecting the noise magnitude on the actual sensed turn rate in the left plot of

figure 4.20. This plot shows that the controller is causing the turn rate to achieve

the desired value on average. This results in a turn that the robot operator perceives

as smooth and responsive. However, for precision driving, the controller is actually

94

(a) Turn Rate Control (b) Position Control

Figure 4.19: Turn Rate/Position During HW Impulse Test

accumulating some steady state error when you look at the changes in the resulting

heading signal. It is important to keep in mind that the current implementation of

the turning controller is entirely based on turn rate. The controller does not have

any sensor or make any estimate of what the absolute heading might be. In fact, the

plot on the right side of figure 4.20 is generated entirely during post processing of the

turn rate command and response data that was logged during the test. The plot on

the right is the result of integrating the desired and actual signals shown in the plot

on the left. There’s a lot of noise in the turn rate signal, so this integration is likely

building up a certain amount of error. The result of this analysis is that investing

some time in additional filtering on the gyroscope turn rate signal would likely result

in an improved system capable of more precisely tracking turn rate. Adding absolute

position and heading sensors would also help solve this problem. In the end, this

95

result was deemed acceptable because Bobble-Bot does not have any need to control

absolute heading at this time.

(a) Turn Rate Control (b) Heading Control

Figure 4.20: Turn Rate/Heading Control During HW Turning Test

Figure 4.21 shows the tilt and world position during the turns. The simulation

predicted that the tilt controller would continue to control the robot’s tilt angle to

within +- 1.5 degrees during the turn. The hardware results show the tilt remained

between +- 2.5 degrees during all the turning. The robot was commanded to turn

in place so we do not expect to see much movement in the X,Y plane during the

turn. The right hand plot in figure 4.21 shows that the robot remained within an

approximately 20 x 20 cm grid during all of the turning. This is an indicator that

both the tilt and velocity controllers were doing their job of restricting the robot’s

motion to a mostly pure turn about the Z axis.

96

(a) Tilt While Turning (b) Position While Turning

Figure 4.21: Tilt and Position During HW Turning Test

The hardware turning test concludes the initial validation of the Bobble-Bot balance

controller. Taken all together, the simulation and hardware verification sections of

this chapter show that the balance controller is working as expected in both hardware

and simulation. These results help to establish a great deal of confidence in the

correctness of the balance control implementation that was provided in this chapter.

The final chapter will present a more direct comparison of simulation and hardware

before giving some concluding remarks and listing plans for future work.

97

5

CONCLUSION

This paper has focused on the theory, design, and implementation of a high band-

width, real-time, feedback controller for an unstable system. The sections progressed

linearly from theory to design to implementation and finally validation. The actual

development process was a constant cyclic iteration between these steps as the design

was continually refined based on results from simulation and hardware tests. The

design presented in chapter three captures the list of final assumptions, requirements,

component selection, and software modules that were converged upon as the problems

became better understood and ultimately solved. Real-time control played a critical

role in achieving a satisfactory level of control performance that enabled a robust

balance controller capable of maintaining balance while driving. As such, it was the

main focus of this work. Chapter four shows how achieving real-time performance

with the Linux OS is a delicate balancing act between software architecture, commu-

nication and message passing infrastructure, hardware component selection, device

driver implementation, and of course a real-time capable OS kernel with a prioritized

scheduler and memory locking mechanisms.

Perhaps the second most important element to achieving the final result was the

development of a simulator that could be used to directly test the actual source code

implementation of the balance controller. As shown in chapter four, this simulation

was instrumental in determining suitable control gains that keep the system stable

throughout the various driving conditions it may encounter. Without the simulation,

it would have been challenging to verify the control design and gain selection without

damaging hardware and slowing down the pressing development schedule. The next

section presents a final comparison between simulation and reality. The results further

98

demonstrate how reliable the simulator has become in its ability to track the real

performance of Bobble-Bot. The simulation was worth the effort it took to develop,

and it will continue to be used to develop and test future Bobble-Bot capabilities.

5.1 Hardware vs Simulation

Figure 5.1 shows the real system’s impulse response as compared with the the

result seen in the simulation. The comparison matches quite well considering that

the magnitude of the applied impulse was not measured during the hardware test.

(a) Velocity Response (b) Tilt Response

Figure 5.1: Simulation vs Hardware Impulse Response

The hardware versus simulation impulse response test above was done while Bobble-

Bot was placed in balance mode. The next analysis that was performed was a world

position comparison between hardware and simulation when the robot was placed in

drive mode. To do this test, a 1 m x 1 m square was marked in tape on a concrete

99

floor. Bobble-Bot was then manually driven slowly and carefully to attempt to follow

the perimeter of the square path as closely as possible. During this driving test, the

commands sent from the Xbox controller to the robot were logged to a data file.

The robot’s response during the driving tests were also logged to a data file. This

response data was then analyzed and the robot’s world position was plotted. Once

a satisfactory result was obtained, the commands from the hardware drive test were

played back into the simulation. The simulated robot’s response to these commands

was then logged to a data file. Figure 5.2 shows the resulting comparison from

performing this hardware and simulator test.

Figure 5.2: Simulation vs Hardware Square Drive Comparison

The simulation has an ideal model of the friction force between the wheels and the

floor. Furthermore, the simulation’s motor model has room for improvement. The

simulator also applies Gaussian noise to its simulated IMU measurements. For these

reasons, the controller performs a bit differently in simulation than it does in reality

100

despite being given the same commands. Despite these differences, the comparison

shows how well the simulation approximates reality. These tests show that both the

simulation and hardware is performing as designed. This hardware versus simulation

validation effort has established confidence in the simulator as a tool for future Bobble-

Bot controls development. The plan for future work is given in the next and final

section of this work.

5.2 Future Work

Without carefully considering and addressing all the challenges associated with

real-time programming, Bobble-Bot’s balance controller would never have worked

within the Linux OS. Running the balance controller in Linux and on the RPi allows

the robot to fully leverage the power and capability of the ROS infrastructure. The

author is forever grateful to the collection of developers, authors, and maintainers

that contribute to ROS. Please consult the references provided in the bibliography

for more information on this outstanding community. Follow on work will continue

with the primary goal of contributing Bobble-Bot’s simulation and source code back

to the community it benefited from. The following list provides some additional items

that are also planned as future work.

• Migrate Bobble-Bot to ROS2 and use it as a test bed to explore the advance-

ments in real-time control support promised by ROS2.

• Further hardware versus simulation analysis.

• Use ROS libraries to integrate a SLAM capability.

• Release the simulator to the ROS and Gazebo open source community.

• Increase simulation fidelity with the addition of a more detailed motor model

101

Control of unstable systems is a challenging problem that typically leads to higher

cost robotic systems. The ever growing need for high bandwidth, time-critical, control

loops will continue to drive innovation in real-time controls. Options that can bring

the cost down will lead to new innovations in robotics as it will reduce the cost of

experimentation and prototype development. It is the author’s sincere hope that the

example of Bobble-Bot may help others trying to solve similar technical challenges

on a limited budget. If nothing else, it was a fun problem with many ups and downs

along the way.

102

BIBLIOGRAPHY

ADXL-345. Analog Devices ADXL345 Data Sheet, 2015. URL https://www.analog.

com/media/en/technical-documentation/data-sheets/adxl345.pdf.

Wei An and Yangmin Li. Simulation and control of a two-wheeled self-balancing

robot, 12 2013.

AS-5047D. Datasheet for BobbleBot’s wheel position sensor, 2016. URL

http://ams.com/eng/Products/Magnetic-Position-Sensors/Angle-

Position-On-Axis/AS5047D.

Ahmad Azar, Hossam Hassan Ammar, Mohamed Hesham Barakat, Mahmood Ab-

dallah Saleh, and Mohamed Abdallah Abdelwahed. Self-balancing robot modeling

and control using two degree of freedom pid controller, 01 2019.

Mete Balci. Latency of Raspberry Pi 3 on Standard and RT Linux 4.9 Ker-

nel, 2017. URL https://metebalci.com/blog/latency-of-raspberry-pi-3-

on-standard-and-real-time-linux-4.9-kernel/.

Olfa Boubaker. The inverted pendulum: A fundamental benchmark in control theory

and robotics. International Conference on Education and e-Learning Innovations,

2012. doi: 10.1109/iceeli.2012.6360606.

Olfa Boubaker. The inverted pendulum: history and survey of open and current

problems in control theory and robotics, 12 2017.

Lukas Bulwahn. Real-Time Linux Continues Its Way to Mainline Development and

Beyond, 2018. URL https://www.linuxfoundation.org/blog/2018/09/real-

time-linux-continues-its-way-to-mainline-development-and-beyond.

103

https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf
http://ams.com/eng/Products/Magnetic-Position-Sensors/Angle-Position-On-Axis/AS5047D
http://ams.com/eng/Products/Magnetic-Position-Sensors/Angle-Position-On-Axis/AS5047D
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://www.linuxfoundation.org/blog/2018/09/real-time-linux-continues-its-way-to-mainline-development-and-beyond
https://www.linuxfoundation.org/blog/2018/09/real-time-linux-continues-its-way-to-mainline-development-and-beyond

John M. Carson, Behcet Acikmese, Lars Blackmore, and Aron A. Wolf. Capabilities

of convex Powered-Descent Guidance algorithms for pinpoint and precision landing.

2011 Aerospace Conference, 2011. doi: 10.1109/aero.2011.5747244.

Arnoldo Castro. Modeling and Dynamic Analysis of a Two-Wheeled Inverted-

Pendulum. Master’s thesis, Georgia Institute of Technology, 2012.

Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Ro-

dríguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gen-

naro Raiola, Mathias Lüdtke, and Enrique Fernández Perdomo. ros_control:

A generic and simple control framework for ros. The Journal of Open Source

Software, 2017. doi: 10.21105/joss.00456. URL http://www.theoj.org/joss-

papers/joss.00456/10.21105.joss.00456.pdf.

Barbara Faccini. Four Minutes, 23 Seconds : Flight AF447, 2013. URL http:

//understandingaf447.com/extras/18-4_minutes__23_seconds_EN.pdf.

Davide Faconti. PlotJuggler Timeseries Visualization in ROS., 2018. URL https:

//github.com/facontidavide/PlotJuggler.

RPi Foundation. Respberry Pi Model 3B Data Sheet, 2016. URL

https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-

Model-Bplus-Product-Brief.pdfD.

Tobin Fricke. State Space Intro Talk, 2012. URL https://github.com/tobin/

statespace-intro-talk.

Adrian Gambier. Real-time control systems: a tutorial, 08 2004.

104

http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://understandingaf447.com/extras/18-4_minutes__23_seconds_EN.pdf
http://understandingaf447.com/extras/18-4_minutes__23_seconds_EN.pdf
https://github.com/facontidavide/PlotJuggler
https://github.com/facontidavide/PlotJuggler
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdfD
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdfD
https://github.com/tobin/statespace-intro-talk
https://github.com/tobin/statespace-intro-talk

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

Da-Wei Gu, Petko Petkov, and M.M. Konstantinov. Robust control of self-balancing

two-wheeled robot, 01 2013.

Alexander Gutierrez. Installing ROS Kinetic on the Raspberry Pi, 2018.

URL http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%

20the%20Raspberry%20Pi.

Oliver Hartkopp. SocketCAN Library, 2015. URL https://github.com/linux-can.

Juang Hau-Shiue and Kai-Yew Lum. Design and control of a two-wheel self-balancing

robot using the arduino microcontroller board, 06 2013.

ITG-3200. InvenSense ITG-3200 Data Sheet, 2011. URL https://www.invensense.

com/wp-content/uploads/2015/02/ITG-3200-Datasheet.pdf.

A. S. Katariya. Optimal State-Feedback and Output-Feedback Controllers for the

Wheeled Inverted Pendulum System. Master’s thesis, Georgia Institute of Tech-

nology, 2010.

Jackie Kay. Proposal for Implementation of Real-time Systems in ROS 2, 2015. URL

https://design.ros2.org/articles/realtime_proposal.html.

Jackie Kay. Introduction to Real-Time Systems, 2018. URL https://design.ros2.

org/articles/realtime_background.html.

Jackie Kay and Adolfo Rodriguez Tsouroukdissian. Real-Time Control in ROS and

ROS 2.0. Open Source Robotics Foundation, 2015.

105

http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi
http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi
https://github.com/linux-can
https://www.invensense.com/wp-content/uploads/2015/02/ITG-3200-Datasheet.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ITG-3200-Datasheet.pdf
https://design.ros2.org/articles/realtime_proposal.html
https://design.ros2.org/articles/realtime_background.html
https://design.ros2.org/articles/realtime_background.html

Sangtae Kim and SangJoo Kwon. Dynamic modeling of a two-wheeled inverted pen-

dulum balancing mobile robot, 2015.

Phil Koopman. A Case Study of Toyota Unintended Acceleration and Software Safety,

2014. URL https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_

ua_slides.pdf.

Linux-Foundation. SocketCAN Documentation, 2012. URL https://www.kernel.

org/doc/Documentation/networking/can.txt.

Linux-Foundation. How To Build a Simple RT Application, 2017. URL

https://wiki.linuxfoundation.org/realtime/documentation/howto/

applications/application_base.

K. Lundberg and T. Barton. History of Inverted-Pendulum Systems. volume 42,

pages 131–135. IFAC Proceedings Volumes, 2010.

Sebastian O.H. Madgwick. An efficient orientation filter for inertial and inertial/-

magnetic sensor arrays, 2010. URL http://x-io.co.uk/res/doc/madgwick_

internal_report.pdf.

Micrium. What is an RTOS, 2015. URL https://www.micrium.com/rtos/what-

is-an-rtos/.

Microchip. Microchip MCP-2515 Data Sheet, 2012. URL http://ww1.microchip.

com/downloads/en/devicedoc/21801e.pdf.

MikroBus. MikroBus Click Shield Data Sheet, 2014. URL https://www.mikroe.

com/mikromedia-3-mikrobus-shield.

Mike Moore. GenericFilter, 2017. URL https://github.com/mike-moore/filter_

tools.

106

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base
http://x-io.co.uk/res/doc/madgwick_internal_report.pdf
http://x-io.co.uk/res/doc/madgwick_internal_report.pdf
https://www.micrium.com/rtos/what-is-an-rtos/
https://www.micrium.com/rtos/what-is-an-rtos/
http://ww1.microchip.com/downloads/en/devicedoc/21801e.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21801e.pdf
https://www.mikroe.com/mikromedia-3-mikrobus-shield
https://www.mikroe.com/mikromedia-3-mikrobus-shield
https://github.com/mike-moore/filter_tools
https://github.com/mike-moore/filter_tools

Dave Mosher. SpaceX Reusable Rocket Costs and Profits, 2017. URL

https://www.businessinsider.com/spacex-reusable-rocket-launch-

costs-profits-2017-6.

Marco Di Natale. An Introduction to Real-Time Operating Systems and Schedulabil-

ity Analysis, 2014. URL https://inst.eecs.berkeley.edu/~ee249/fa07/RTOS_

Sched.pdf.

Huseyin Oktay Erkol. Optimal pid controller design for two wheeled inverted pendu-

lum. IEEE Access, PP:1–1, 11 2018. doi: 10.1109/ACCESS.2018.2883504.

OSRF. Maintainers of ROS, 2018. URL https://github.com/osrf.

Manuel Perez-Polo, Manuel Perez Molina, Francisco gil chica, and José Angel

Berná Galiano. Stability and chaotic behavior of a pid controlled inverted pen-

dulum subjected to harmonic base excitations by using the normal form theory.

Applied Mathematics and Computation, 232, 04 2014. doi: 10.1016/j.amc.

Derry Pratama, Eko Binugroho, and Fernando Ardilla. Movement control of two

wheels balancing robot using cascaded pid controller, 09 2015.

Micho Radovnikovich. Teeterbot : A self-balancing robot simulation model for

ROS/Gazebo, 2017. URL https://github.com/robustify/teeterbot.

Desna Riattama, Eko Binugroho, R.s Dewanto, and Dadet Pramadihanto. Pens-wheel

(one-wheeled self balancing vehicle) balancing control using pid controller, 09 2016.

RoboSavvy. RoboSavvy Self-balancing robotic platform, 2017. URL http://wiki.

ros.org/Robots/RoboSavvy-Balance.

107

https://www.businessinsider.com/spacex-reusable-rocket-launch-costs-profits-2017-6
https://www.businessinsider.com/spacex-reusable-rocket-launch-costs-profits-2017-6
https://inst.eecs.berkeley.edu/~ee249/fa07/RTOS_Sched.pdf
https://inst.eecs.berkeley.edu/~ee249/fa07/RTOS_Sched.pdf
https://github.com/osrf
https://github.com/robustify/teeterbot
http://wiki.ros.org/Robots/RoboSavvy-Balance
http://wiki.ros.org/Robots/RoboSavvy-Balance

Frank Rowand. Using and Understanding the Real-Time Cyclictest Benchmark,

2013. URL https://events.static.linuxfound.org/sites/events/files/

slides/cyclictest.pdf.

RPi-Foundation. Bobble-Bot’s RT Kernel, 2018. URL https://github.com/

raspberrypi/linux/tree/rpi-4.14.y-rt.

Thomas Bewley Saam Ostovari, Nick Morozovsky. The Dynamics of a Mobile Inverted

Pendulum (MIP), 2013. URL http://renaissance.ucsd.edu/courses/mae143c/

MIPdynamics.pdf.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-

Fidelity Visual and Physical Simulation for Autonomous Vehicles, pages 621–635.

01 2018. ISBN 978-3-319-67360-8. doi: 10.1007/978-3-319-67361-5_40.

Dan Sheadel. MiniPID, 2015. URL https://github.com/tekdemo/MiniPID.

SpaceX. SpaceX Falcon Heavy Side Boosters Landing Simultaneously at Kennedy

Space Center. URL https://www.youtube.com/watch?v=u0-pfzKbh2k.

Tacon. Tacon 96M608 Data Sheet, 2012. URL https://www.hobbypartz.com/

96m608-bigfoot160-5335-245kv.html.

Bryant Tan and Tim Wheeler. Optimal Control for Landing Rockets,

2014. URL http://timallanwheeler.com/aboutme/writeups/TAN_WHEELER_

RocketLanding.pdf.

Teng-Tiow Tay, Iven Mareels, and John B. Moore. High Performance Con-

trol (Systems & Control: Foundations & Applications). Birkhäuser, 1997.

ISBN 9780817640040. URL https://www.researchgate.net/publication/

235683246_High_Performance_Control.

108

https://events.static.linuxfound.org/sites/events/files/slides/cyclictest.pdf
https://events.static.linuxfound.org/sites/events/files/slides/cyclictest.pdf
https://github.com/raspberrypi/linux/tree/rpi-4.14.y-rt
https://github.com/raspberrypi/linux/tree/rpi-4.14.y-rt
http://renaissance.ucsd.edu/courses/mae143c/MIPdynamics.pdf
http://renaissance.ucsd.edu/courses/mae143c/MIPdynamics.pdf
https://github.com/tekdemo/MiniPID
https://www.youtube.com/watch?v=u0-pfzKbh2k
https://www.hobbypartz.com/96m608-bigfoot160-5335-245kv.html
https://www.hobbypartz.com/96m608-bigfoot160-5335-245kv.html
http://timallanwheeler.com/aboutme/writeups/TAN_WHEELER_RocketLanding.pdf
http://timallanwheeler.com/aboutme/writeups/TAN_WHEELER_RocketLanding.pdf
https://www.researchgate.net/publication/235683246_High_Performance_Control
https://www.researchgate.net/publication/235683246_High_Performance_Control

Brian Thorne. Python-CAN Library, 2018. URL https://github.com/hardbyte/

python-can.

Turnigy. Turnigy 5000 mAh 14.8 V Li-Po Data Sheet, 2014. URL https:

//hobbyking.com/en_us/turnigy-5000mah-4s1p-14-8v-20c-hardcase-pack-

1.html.

Yorihisa Yamamoto. NSTway-GS Model Based Design, 2018. URL http:

//www.pages.drexel.edu/~dml46/Tutorials/BalancingBot/files/NXTway-

GS%20Model-Based_Design.pdf.

109

https://github.com/hardbyte/python-can
https://github.com/hardbyte/python-can
https://hobbyking.com/en_us/turnigy-5000mah-4s1p-14-8v-20c-hardcase-pack-1.html
https://hobbyking.com/en_us/turnigy-5000mah-4s1p-14-8v-20c-hardcase-pack-1.html
https://hobbyking.com/en_us/turnigy-5000mah-4s1p-14-8v-20c-hardcase-pack-1.html
http://www.pages.drexel.edu/~dml46/Tutorials/BalancingBot/files/NXTway-GS%20Model-Based_Design.pdf
http://www.pages.drexel.edu/~dml46/Tutorials/BalancingBot/files/NXTway-GS%20Model-Based_Design.pdf
http://www.pages.drexel.edu/~dml46/Tutorials/BalancingBot/files/NXTway-GS%20Model-Based_Design.pdf

GLOSSARY

API Application Programming Interface. 35, 37, 65, 70, 77, 78, 81, 109

ARM Advanced RISC Machine. 57, 109

BLDC Brushless DC Electric Motor. 24–26, 37, 40, 54, 69, 109

CAD Computer Aided Design. 30, 109

CAN Controller Area Network. viii, x, 25, 26, 41, 68–73, 109

CG Center of Gravity. x, 4, 5, 28, 29, 51–54, 109

CLI Command line interface. 109

CRC Cyclic Redundancy Check. 109

GUI Graphical user interface. 10, 109

I/O Input/Output. 10, 61, 62, 64, 65, 68–70, 109

I2C Inter-Integrated Circuit. 26, 75, 109

IDM Input Device Manager. 32, 109

IMU Inertial measurment unit. viii, 28, 39, 41, 51, 68, 75, 76, 100, 109

LiPo Lithium Polymer battery. 27, 109

LPF Low Pass Filter. 78, 83, 109

MBD Model Based Design. 11, 109

OS Operating System. 56, 60, 63, 98, 101, 109

OSRF Open-Source Robotics Foundation. 33, 109

110

PCB Printed Circuit Board. 109

PDU Power Distribution Unit. 24, 26, 27, 109

PID Proportional-Integral-Derivative. 7, 38, 42, 54, 109

POSIX Portable Operating System Interface. 8, 62, 63, 65, 109

PREEMPT_RT Linux Preemptive Real-Time kernel patch set. 10, 13, 35, 56, 62,

109

RAM Random Access Memory. 59, 63, 65, 66, 109

RISC Reduced Instruction Set Computer. 57, 109

ROS Robot Operating System. v, 1, 7, 11–14, 24, 26, 33, 35–39, 43, 45, 48–50, 56,

64, 65, 67, 76–78, 80, 93, 101, 109

ROS2 Robot Operating System v 2.0. v, 12, 109

RPi Raspberry Pi. Low-cost hobbyist embedded Linux computer.. 25, 26, 35, 39–41,

43, 54–59, 67, 69, 70, 72, 91, 101, 109

RPi Raspberry Pi. 109

RTOS Real-Time Operating System. 10, 12, 24, 109

SLAM Simultaneous Localization and Mapping. 49, 101, 109

SoC System on a chip. 26, 109

SSH Secure Shell. 109

TWIP Two Wheeled Inverted Pendulum. 1, 3–8, 11, 12, 28, 87, 109

URDF Universal Robot Description Format. 39, 109

USB Universal Serial Bus. 25, 109

111

YAML YAML Ain’t Markup Language. 38, 109

112

6

APPENDIX

6.1 Bobble-Bot Chassis Mass Properties

This next snippet describes the mass properties used for Bobble-Bot’s chassis in the

simulator.

Listing 6.1: BobbleBot Mass Properties from URDF

1 <link name="bobble_chassis_link">

2 <inertial >

3 <origin xyz="0.0 0.0 0.180" rpy="0.0 0.0 0.0"/>

4 <mass value="2.043"/>

5 <inertia ixx="0.03" ixy="0.0" ixz="0.0" iyy="0.03" iyz="0.0

" izz="0.03"/>

6 </inertial >

7 <collision >

8 <origin xyz="0.0 0.0 0.130" rpy="0.0 0.0 0.0"/>

9 <geometry >

10 <box size="0.1 0.11 0.185" />

11 </geometry >

12 <contact_coefficients kd="1.0" kp="1000.0" mu="0"/>

13 </collision >

14 </link>

113

6.2 Bobble-Bot Wheels Mass Properties

This next snippet describes the mass properties used for Bobble-Bot’s wheels in the

simulator.

Listing 6.2: BobbleBot Mass Properties from URDF

1 <link name="left_wheel_link">

2 <inertial >

3 <mass value="0.084"/>

4 <inertia ixx="0.00035" ixy="0.0" ixz="0.0" iyy="0.00035"

iyz="0.0" izz="0.00035"/>

5 </inertial >

6 <collision >

7 <origin xyz="0.0 0.0 0.0" rpy="0.0 1.5707 1.5707"/>

8 <geometry >

9 <cylinder radius="0.05" length="0.05" />

10 </geometry >

11 <contact_coefficients kd="1.0" kp="1000.0" mu="0"/>

12 </collision >

13 </link>

114

6.3 Python Double Pendulum

The code below provides an example of simulating a double pendulum using NumPy,

SciPy, and Matplotlib. It is a good starting point for simple dynamics models from

state space equations.

Listing 6.3: Python Double Pendulum Dynamics Example

1 # Double pendulum formula translated from the C code at

2 # http ://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.

c

3 from numpy import sin , cos

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import scipy.integrate as integrate

7 import matplotlib.animation as animation

8

9 def derivs(state , t):

10 dydx = np.zeros_like(state)

11 dydx [0] = state [1]

12 del_ = state [2] - state [0]

13 den1 = (M1 + M2)*L1 - M2*L1*cos(del_)*cos(del_)

14 dydx [1] = (M2*L1*state [1]* state [1]* sin(del_)*cos(del_) +

15 M2*G*sin(state [2])*cos(del_) +

16 M2*L2*state [3]* state [3]* sin(del_) -

17 (M1 + M2)*G*sin(state [0]))/den1

18 dydx [2] = state [3]

19 den2 = (L2/L1)*den1

20 dydx [3] = (-M2*L2*state [3]* state [3]* sin(del_)*cos(del_) +

21 (M1 + M2)*G*sin(state [0])*cos(del_) -

115

22 (M1 + M2)*L1*state [1]* state [1]* sin(del_) -

23 (M1 + M2)*G*sin(state [2]))/den2

24 return dydx

25

26 def init():

27 line.set_data ([], [])

28 time_text.set_text('')

29 return line , time_text

30

31 def animate(i):

32 thisx = [0, x1[i], x2[i]]

33 thisy = [0, y1[i], y2[i]]

34 line.set_data(thisx , thisy)

35 time_text.set_text(time_template % (i*dt))

36 return line , time_text

37

38 G = 9.8 # acceleration due to gravity , in m/s^2

39 L1 = 1.0 # length of pendulum 1 in m

40 L2 = 1.0 # length of pendulum 2 in m

41 M1 = 1.0 # mass of pendulum 1 in kg

42 M2 = 1.0 # mass of pendulum 2 in kg

43 # create a time array from 0..100 sampled at 0.05 second steps

44 dt = 0.05

45 t = np.arange (0.0, 20, dt)

46 # th1 and th2 are the initial angles (degrees)

47 # w10 and w20 are the initial angular velocities (degrees per

second)

48 th1 = 120.0

116

49 w1 = 0.0

50 th2 = -10.0

51 w2 = 0.0

52 # initial state

53 state = np.radians ([th1 , w1, th2 , w2])

54 # integrate your ODE using scipy.integrate.

55 y = integrate.odeint(derivs , state , t)

56 x1 = L1*sin(y[:, 0])

57 y1 = -L1*cos(y[:, 0])

58 x2 = L2*sin(y[:, 2]) + x1

59 y2 = -L2*cos(y[:, 2]) + y1

60 fig = plt.figure ()

61 ax = fig.add_subplot (111, autoscale_on=False , xlim=(-2, 2),

ylim=(-2, 2))

62 ax.grid()

63 line , = ax.plot([], [], 'o-', lw=2)

64 time_template = 'time = %.1fs'

65 time_text = ax.text (0.05, 0.9, '', transform=ax.transAxes)

66 ani = animation.FuncAnimation(fig , animate , np.arange(1, len(y)

),

67 interval =25, blit=True , init_func=init)

68 # ani.save('double_pendulum.mp4 ', fps =15)

69 plt.show()

117

6.4 RasPi CAN Driver Configuration Files

Listing 6.4: Additions to /boot/config.txt

1 dtparam=spi=on

2 dtoverlay=mcp2515 -can0 ,oscillator =10000000 , interrupt =6

Listing 6.5: Additions to /etc/network/interfaces

1 auto can0

2 iface can0 inet manual

3 pre -up /sbin/ip link set $IFACE type can bitrate 833333

triple -sampling on

4 up /sbin/ifconfig $IFACE up

5 down /sbin/ifconfig $IFACE down

118

	Introduction
	Inverted Pendulum Systems
	Real-Time Systems
	ROS

	Theory
	Mathematical Formulation
	Pendulum Dynamics
	Wheel Dynamics

	Linearization
	State Space Form

	Design
	Hardware Components
	Assembly
	User Interface
	Software Components
	Controller
	Control Algorithm

	Simulation
	Python
	Matlab Simulink
	Unreal Engine 4
	Gazebo

	Summary

	Implementation
	Achieving Real-Time
	Building the Real-Time Kernel
	Benchmarking the System
	Best Practices for Real-Time Programming
	A Real-Time ROS Node

	Device Drivers
	CAN Communications
	Motor Driver
	IMU and State Estimation

	Control Algorithm
	Control Tuning
	Simulated Tilt Control
	Simulated Velocity Control
	Simulated Turning Control
	Validation with Hardware Testing

	Conclusion
	Hardware vs Simulation
	Future Work

	Glossary
	Appendix
	Bobble-Bot Chassis Mass Properties
	Bobble-Bot Wheels Mass Properties
	Python Double Pendulum
	RasPi CAN Driver Configuration Files

