
PARAMETERIZABLE DESIGN ON CONVOLUTIONAL NEURAL NETWORKS

WITH CHISEL HARDWARE CONSTRUCTION LANGUAGE

by

Mukesh Chowdary Madineni, B.E.

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2023

PARAMETERIZABLE DESIGN ON CONVOLUTIONAL NEURAL NETWORKS

WITH CHISEL HARDWARE CONSTRUCTION LANGUAGE

by

Mukesh Chowdary Madineni

APPROVED BY

Xiaokun Yang, PhD, Chair

Hakduran Koc, PhD, Committee Member

Ishaq Unwala, PhD, Committee Member

APPROVED/RECEIVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Associate Dean

Miguel A. Gonzalez, PhD, Dean

Dedication

I dedicate this dissertation to my friends and my parents. Without their encour-

age, understanding, and most of all love, the completion of this work would not have

been possible.

Acknowledgments

I would like to acknowledge the faculty and staff in the Computer Engineering

department at the University of Houston – Clear Lake. I would like to acknowledge

my thesis committee members for inspiring and helping me. I would like to thank Dr.

Xiaokun Yang for his support and knowledge. Without his insight my thesis work

would have been a very difficult journey. I also would like to thank Dr. Hakduran

Koc for mentoring me throughout my computer engineering academic career and by

helping me prioritize my thesis work. I would like to specially thank Mario Vega

who was my research lab mate for providing his research work related to floating-

point implementation and sharing his knowledge. I feel very lucky that I am at a

school that has outstanding professors who have helped me grow academically and

professionally. Finally, I would like to acknowledge my computer engineering friends

who have helped me with my thesis related and academic work.

iv

ABSTRACT

PARAMETERIZABLE DESIGN ON CONVOLUTIONAL NEURAL NETWORKS

WITH CHISEL HARDWARE CONSTRUCTION LANGUAGE

Mukesh Chowdary Madineni

University of Houston-Clear Lake, 2023

Thesis Chair: Xiaokun Yang, PhD

This thesis presents a parameterizable design generator on convolutional neural

networks (CNNs) using Chisel hardware construction language (HCL). Chisel HCL

is an open-source embedded domain-specific language (created and maintained by

University of California, Berkeley) that inherits the object-oriented feature of Scala

for constructing hardware. By parameterizing structural designs such as the stream-

ing width, pooling layer type, and floating-point precision, multiple register-transfer

level (RTL) implementations can be created to meet various accuracy and hardware

cost requirements. The HCL design can generate the RTL implementations with

Verilog, which is synthesizable and implementable on FPGAs (field-programmable

gate arrays). The evaluation is based on generated RTL designs including 16-bit, 32-

bit, 64-bit, and 128-bit implementations on FPGAs. The experimental results show

v

that the 32-bit design achieves optimal hardware performance when setting the same

weights for estimating the quality of results, FPGA slice count, and power dissipa-

tion. Although the focus is on CNNs, the approach can be extended to other neural

network models for efficient RTL designs.

vi

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . 1
1.1 Background . 1
1.2 Structure Of The Thesis . 3
1.3 Related Works . 4

2. FUNDAMENTAL THEOREM OF CNN 7
2.1 CNN Structure . 7
2.2 Convolutional Layer . 7
2.3 Pooling Layer . 10
2.4 Fully Connected Layer . 11
2.5 Soft-max Layer . 12

3. CHISEL HARDWARE CONSTRUCTION LANGUAGE 13
3.1 Introduction to Chisel HCL . 13
3.2 Development Environment and Chisel HCL set up 13
3.3 Chisel Design Flow . 15
3.4 Design Approach . 16

4. FIXED POINT COMPONENTS . 18
4.1 Full-adder module design . 18
4.2 Full-subtractor module design . 18
4.3 Multiplier module design . 19
4.4 Shifter module design . 20
4.5 Two’s complement module design . 21
4.6 Leading one detector module design . 21

5. FLOATING POINT COMPONENTS . 23
5.1 Floating Point Adder Design . 24
5.2 Floating Point Multiply Design . 25
5.3 Floating Point Multiply and Sum Design 26
5.4 Floating Point Accumulator . 27

6. DESIGN OF NETWORK . 29
6.1 Design on Parameterizable CNNs . 29
6.2 Convolution Module Design . 29
6.3 Pooling Module . 34
6.4 Fully Connected Module and Soft Max Module 39
6.5 System Construction and Static Analysis 39
6.6 System Design Construction . 40
6.7 Static Analysis of Hardware Cost . 42

vii

7. EXPERIMENTAL RESULTS . 44
7.1 Experiment Design . 44
7.2 Resource cost on FPGA . 44
7.3 Energy Consumption on FPGA . 45
7.4 Hardware Cost Analysis . 46
7.5 Comparison of related work . 48

8. CONCLUSIONS AND FUTURE WORK 50
8.1 Summary . 50
8.2 Future Work . 50

VITA . 57

viii

LIST OF TABLES

Table Page

6.1 Static Analysis of Different Design Structures 43

7.1 Resource Utilization of Different Precision Designs 45

7.2 Energy Consumption of Different Precision Designs 46

7.3 Comparision with Prior Works . 49

ix

LIST OF FIGURES

Figure Page

2.1 CNN Structure. 7

2.2 Local Receptive Field in the Top-left Corner to Connect to First Hidden
Neuron. 8

2.3 Local Receptive Field is Slid Over by One Pixel to the Right (i.e., by One
Neuron), to Connect to a Second Hidden Neuron. 9

2.4 Max Pooling of 2×2 on the Output Feature Map. 11

2.5 Fully−Connected Layer Operation. 12

3.1 Chisel Libraries. 14

3.2 Build file to include Chisel Libraries. 14

3.3 A Design Example between Chisel HCL to Verilog HDL Design Flow. . 15

4.1 16-bit full-adder synthesis result. 18

4.2 16-bit full-subtractor synthesis result. 19

4.3 16-bit multiplier synthesis result. 20

4.4 16-bit shifter synthesis result. 20

4.5 16-bit two’s compliment synthesis result. 21

4.6 11-bit Leading one detector synthesis result. 22

5.1 Single Precision IEEE 754 Floating-Point Standard. 24

5.2 16-bit floating point adder synthesis result. 24

5.3 16-bit floating point adder power analysis. 25

5.4 16-bit floating point multiplier synthesis result. 26

5.5 16-bit Floating Point Multiplier Power Analysis. 26

5.6 General structure of N-FP Multiply-Add. 27

5.7 General structure of N-FP Accumulator. 28

6.1 Streaming Design Structure of a Convolutional Layer Neuron. 31

6.2 Timing Diagram of Streaming Design of a Convolutional Layer Neuron. 32

x

6.3 Iterative Design Structure of a Convolutional Layer Neuron. 33

6.4 Timing Diagram of Iterative Design of a Convolutional Layer Neuron . . 34

6.5 Visual Representation of the Max Pooling using FP Comparators. . . . 35

6.6 Visual Representation of the Mean Pooling using FP Adders and Divider. 37

6.7 Visual Representation of the Soft-Max Layer using FP Comparators. . . 39

6.8 System Construction on CNNs. 42

7.1 Normalized Accuracy-Area-Energy Consumption. 47

xi

CHAPTER I

INTRODUCTION

1.1 Background

Neural networks (NNs) have become an extensively used technique for image clas-

sification, speech processing, digit recognition, and many more [29, 36, 35]. In the era

of high-performance computing, leveraging the design complexity, power dissipation,

and quality of results is one of the big challenges for the hardware implementation

of complex NNs. Field-programmable gate arrays (FPGAs) are a popular choice for

hardware acceleration due to their parallelism and power efficiency, but their limited

extensibility between projects and design specifications is a challenge.

Additionally, most existing FPGA implementations are based on software-hardware

co-design platforms, where the processors and FPGAs are on the same chip for the

execution of controllers and data processing [8, 9, 10, 38]. With a wide range of

applications of CNNs in image classification and detection, they can be implemented

on an Electronic Control Unit (ECU) for autonomous driving assistance in an auto-

mobile application [31, 37, 32, 33, 34]. For instance, the authors in [32] discuss the

application of 3D image detection for an autonomous vehicle. This 3D image analysis

can be handled through CNNs by applying multiple filters on the same frame for

different feature extraction. The survey in [34] highlights the acceptable accuracy

and detailed spatial point extraction of CNNs for a distributed automation system.

In order to provide a configurable hardware core to complex NNs, a parameterizable

register-transfer level (RTL) design, which can be compatible with reference EDA

tool flows and work across both FPGA and ASIC implementations, is necessary.

Another research direction for implementing NNs on FPGAs is based on generat-

ing Verilog Hardware Description Language (HDL) with HDL generators, particularly

1

for reusable intellectual properties (IPs) such as arithmetic operators and standard

design modules including wrappers and interfaces [11]. These generators are often

created using script languages like Perl/tcl or high-level synthesis tools. However,

a major drawback of this approach is the lack of robust libraries supporting the

generators, which can make the generator design more challenging than coding in

Verilog. Additionally, using such generators without considering hardware-related

descriptions like timing and performance constraints can result in timing violations

and performance issues in the generated HDL code.

To leverage programming productivity and high-performance hardware implemen-

tations, using Hardware Construction Languages (HCL), such as Chisel, is one of the

RTL design options. Chisel HCL is an open-source, embedded domain-specific lan-

guage that uses object-oriented features from Scala to construct hardware at a higher

abstraction level, including hardware information like signal width and timing. Chisel

can generate RTL implementations with Verilog, which is synthesizable and can be

implemented on both ASICs and FPGAs. However, previous works on HCL-related

designs were limited to complex mathematical algorithms[15], lacking the scalability

feature necessary for designing parameterizable NNs.

Under this context, this thesis investigates the use of Chisel HCL for designing

parameterizable convolutional neural networks (CNNs), building on prior work on the

HCL-HDL design flow [4]. A case study is presented, demonstrating the design of a

configurable binary design library that includes fundamental arithmetic circuits like

full-adders, full-subtractors, binary multipliers, shifters, and many more. Experimen-

tal results show that the proposed design methodology achieves the same accuracy

as Verilog HDL implementations, while also estimating the hardware cost in terms

of slice count, power consumption, and maximum clock frequency. Using the design

2

library a parameterizable CNN which is open to both ASIC and FPGA-based design

tools is constructed. Specifically, below are the main contributions of this thesis:

� This thesis presents a Verilog RTL generator for CNNs that can be easily cus-

tomized by parameterizing the precision of submodules and the structural de-

signs of layers, such as the streaming width of convolution and fully-connected

layers, as well as the max/mean pooling layers.

� This thesis conducts a design flow from a Chisel HCL description to a Verilog

HDL design, and lastly to the final hardware cost, implementation, and eval-

uation. Experimental results show that the 32-bit design achieves the optimal

normalized performance when considering error percentage, FPGA slice count,

and energy dissipation with equal weights.

� Our proposed streaming design achieves an accuracy of 98.39% with lower re-

source cost and latency compared to prior works. By employing an iterative

design structure, it can further reduce resource cost in terms of look-up tables

(LUTs) and registers at the expense of more clock cycles. The case study can

be extended to the design of other complex NNs as well as multi-layer CNN

designs.

1.2 Structure Of The Thesis

The remainder of this thesis is organized as follows: we first review the relevant

related works to the application of implementing CNNs on FPGAs, and Chapter 2

presents the background on CNN. In Chapter 3, Chisel HCL is introduced along with

the design flow of the implementation methodology. Later the thesis goes on to ex-

plain modules fixed-point and floating-point submodules used in the implementation

of CNN in Chapters 4 & 5. The proposed parameterizable design of the CNN and

3

implementation are discussed in Chapter 6. In Chapter 7, the FPGA design perfor-

mance is evaluated in terms of slice count and power dissipation. Finally, Chapter 8

concludes this thesis.

1.3 Related Works

Numerous works have focused on the hardware design of CNNs, primarily address-

ing challenges such as reducing computational complexity and energy dissipation[16,

18]. For example, real-world applications that involve complex computation require a

hardware accelerator with floating-point (FP) operations. In order to reduce the hard-

ware cost, the accuracy can be traded off by employing fixed-point implementations

for calculation [16, 39]. As an example in [18], an 8-bit and 16-bit fixed-point design

is carried out to demonstrate a lower accuracy implementation with less hardware

resource cost compared with the FP implementations. Another immediate option for

low-cost design is to simplify the design structures of the CNN models. For example,

in reference [14] authors implemented a Super Skinny CNN (SS-CNN) with 39,541

parameters and three layers in addition to the input and output layer. The overall

latency of the design on a Cyclone IVE FPGA is about 2.2 seconds. Additionally,

hardware design engines have been widely employed as accelerators for complex com-

putations of neural networks. For example, a latency of 3.58 ms and 3.2 ms with

an accuracy of 98.64% and 96% were achieved in two high-level synthesis designs on

LeNet-5 CNN, presented in [12] and [13], respectively.

The arithmetic logic units are the fundamental building blocks of system-level

circuits and design applications. A modern real-time application requires very pow-

erful and complex arithmetic operators in its design, from a basic microprocessor to

image/video processing unit to complex neural networks [30].

4

To balance the quality of the CNN results with hardware resource utilization, the

RTL designs are based on the FP operators provided by the FPGA tools. For exam-

ple, the FP adders and multipliers from AMD Vivado are used to construct multi-layer

perceptron (MLP) NNs in references [26, 25, 40]. By offering different levels of par-

allelism in the design engine, five MLP NNs were presented as case studies. The

implementations are based on the provided Vivado IPs and not the RTL program-

ming, therefore, the implementations are not synthesizable to be an ASIC. Second,

all five design structures are based on single-precision modules due to the limited

configurations provided by AMD Vivado. Another example of a configurable design

was demonstrated in [23]. The RTL design on a CNN has reconfigurable convolution,

pooling, and fully connected modules. The system was built using reconfigurable IP

cores and deployed on the Intel Cyclone10 FPGA platform. Experimental results

showed that the implementation achieved a latency of 17.6 us with an accuracy of

97.57%.

From the hardware designer’s perspective, the fundamental design neurons in each

layer can be constructed with multiple FP operators such as adders and multipliers.

Furthermore, the CNN can be integrated with multiple neurons and network layers.

In the preliminary results in [4], the binary design library was proposed as a case study

of the design flow from Chisel HCL to Verilog HDL to the final FPGA development

and evaluation.

Further, the comparative study on designing with Chisel HCL against Verilog

HDL was carried out in [28]. A N-bit fixed priority arbiter was designed in Chisel

HCL and Verilog to compare the timing, power, and area of the designed module. The

Chisel implementation required 250 lines of Chisel source code whereas the Verilog

implementation required 400 lines. This article also showed that the Chisel imple-

mented design used less hardware resources compared to the Verilog design. Using

5

the Chisel platform, additionally it is able to make the design library open to ASIC

simulators and synthesis tools like Synopsis VCS and Design Compiler, and Cadence

NC and Genus Synthesis Solution.

In this thesis, the extended work focuses on the parameterizable design of CNNs

with the binary and FP design library. The proposed approach supports a series

of pipelined CNN engine designs that can be applied to a wide variety of problems.

Highly parameterized digital circuit generators allow developers to re-use and cus-

tomize their implementations for different design specifications, thus cutting design

cycles and complexity.

6

CHAPTER II

FUNDAMENTAL THEOREM OF CNN

This section discusses the fundamental theorem of CNNs, including the number

of hidden layers and activation functions used for constructing the network.

2.1 CNN Structure

The mathematical model for a basic CNN typically includes a multi-layer convolu-

tion layer, a pooling layer, a fully-connected layer, and a soft-max layer, as illustrated

in Fig. 2.1. The output of each layer is referred to as the output feature map, which

serves as the input feature map for the subsequent layer, creating inter-operational

characteristics. The number of convolutional and pooling layers can be adjusted and

arranged in the network depending on the implementation algorithms and application

requirements.

Figure 2.1: CNN Structure.

2.2 Convolutional Layer

The convolutional layer performs feature extraction from the input matrices. The

calculation of the convolution result involves the idea of both local receptive field and

shared weights and bias.

7

2.2.0.1 Local Receptive Fields

The convolution layer input is considered a 10 × 10 pixel intensity, which is fed

in as input matrices. Instead of entering all the input pixels, the connections are

made in small, partial regions of the input matrix. For example, a 3 × 3 region;

corresponding to 9-input pixels is connected to a small region of the input neurons.

So, for a particular neuron, the connections are shown in Fig. 2.2. On the right-hand

side of the image, the highlighted element is the output neuron corresponding to the

selected partial region on the left-hand side of the image.

Figure 2.2: Local Receptive Field in the Top-left Corner to Connect to First Hidden
Neuron.

The region in the input pixel image to which the neuron is connected is called the

local receptive field. The neuron learns an overall bias of the field. The local receptive

field is slid across the entire input image, corresponding to having a different neuron

in the hidden layer. Fig. 2.3 shows that the local receptive field is moved along the

input image by one pixel at a time. Stride length decides the shift amount of the

local receptive field in the input image pixel matrix.

8

Figure 2.3: Local Receptive Field is Slid Over by One Pixel to the Right (i.e., by
One Neuron), to Connect to a Second Hidden Neuron.

If the input is 10 × 10 and the local receptive field is 3 × 3, then 8 × 8 neurons

will be generated in the hidden layer. This is because the local receptive field can

be moved seven neurons across (or downwards) before reaching the edge of the input

image. More generally, for an input of size A × A and a local receptive field of size

B ×B, the output matrix size can be calculated using an equation

output = rounddown

(
A−B

stride

)
+ 1 (2.1)

where the round-down function is used to round the result to the nearest lowest

integer. For example, the above input matrix A is 10 × 10, B is 3 × 3, and stride

length is one. So, the output matrix size will be 8×8.

2.2.0.2 Shared weights and biases

The shared weights and biases determine the value of the output neuron in the

convolution layer. The exact weights and biases will be used by the entire matrices

to obtain 8 × 8 hidden neurons. In other words, the output for the jth, kth hidden

neuron can be expressed as:

9

outputj,k = σ(bj,k +
2∑

l=0

2∑
m=0

wl,maj+l,k+m). (2.2)

where σ represents the neural activation function, such as the Rectified Linear

Unit (ReLU) activation function [23]. The indexes j and k range from 0 to 2 for a

3 × 3 local receptive field. bj,k represents the shared value for the bias, wl,m denotes

a 3 × 3 array of shared weights, and ax,y denotes the input activation at position

x,y. The equation indicates that all the neurons in the hidden layer detect the same

feature. It is generally called the feature map from the input layer to the hidden

layer.

2.3 Pooling Layer

The pooling operation can be carried out after the convolution layer, which pre-

pares a condensed feature map. Each unit in the pooling layer may summarize a

region of 2 × 2 neurons from its previous layer. The operation used in summarizing

the output is max-pooling or mean-pooling.

In the max-pooling, the pooling region outputs the maximum activation in the

2×2 input region, as illustrated in Fig. 2.4. On the left-hand side, it shows the output

neurons of the previous layer. The maximum value in the selected region is processed

as an output of the max-pooling operation. In contrast, in mean-pooling, the region

outputs the average of the four neurons in the selected region. The selection of max

or mean pool operation is parameterizable in our proposed work. Practically, the

max pool operation extracts the brightest pixel in the regions, whereas the mean

pool operation spreads the brightness of pixels in the given area.

10

Figure 2.4: Max Pooling of 2×2 on the Output Feature Map.

As shown in this example, the input to the pooling layer is 8× 8 neurons and the

stride is two, therefore, using Equation 2.1 the size of the output matrix is 4× 4.

2.4 Fully Connected Layer

After the convolutional and pooling layers, the input matrix is converted into a

suitable form for CNN. In what follows, the matrix is further flattened into a column

vector. The linear output is fed into a feed-forward neural network. In fully connected

layers, every input is connected to every output by a learnable weight. Fig. 2.5 shows

the operation of a fully connected layer after flattening the output from the pooling

layer. In the fully-connected layer, each neuron performs a multiplication-addition

operation with the kernel weights and bias values, which is similar to the execution

in the convolution operation.

11

Figure 2.5: Fully−Connected Layer Operation.

2.5 Soft-max Layer

In the soft-max layer, the output corresponds to the highest value in the output

neurons from the fully connected layer. In the application of digit recognition, as an

example, this layer is used to find the highest percentage of the classified results. This

method of distinguishing between dominating and low-level features in an image is

called the soft-max classification technique.

12

CHAPTER III

CHISEL HARDWARE CONSTRUCTION LANGUAGE

3.1 Introduction to Chisel HCL

Chisel HCL is a hardware design language/generator created by University of

California, Berkeley that supports advanced hardware design by using highly param-

eterized generators [27]. It provides circuit generation and reuse of design components

for both ASIC and FPGA-based digital circuit designs. Chisel adds hardware con-

struction primitives to Scala embedded programming language, allowing designers to

construct parameterizable circuit generators that produce synthesizable Verilog HDL.

The use of Chisel HCL in designing modules has been restricted to complex mathe-

matical algorithms leaving behind the scalability feature to design a parameterizable

module.

First, the Chisel HCL is employed to build the parameterizable design libraries

including fundamental FP operations and fixed point operations [4] like adders, mul-

tipliers, dividers, reciprocals, square roots, exponential functions, etc. By parame-

terizing the precisions and latency over clock cycles, the FP submodules needed for

constructing the CNN will be generated with Verilog HDL.

3.2 Development Environment and Chisel HCL set up

The Chisel HCL is based on the Scala language, which itself is based on the

Java language. For this project, I will be using the IntelliJ IDE from JetBrains. The

IntelliJ IDE was designed primarily for Java coding, but we can install a Scala plug-in

to be able to make Scala projects and import the Chisel HCL libraries.

To install Chisel libraries, go to the settings menu and go to the plugins tab.

Search for the Scala plugin and install as shown in Fig. 3.2.

13

Figure 3.1: Chisel Libraries.

After installing the Scala plugin, create a new Scala Project. In the directory

you will find a build.sbt file. Open the file and add the following lines to get all the

libraries for Chisel.

Figure 3.2: Build file to include Chisel Libraries.

14

3.3 Chisel Design Flow

In this section, it presents a configurable and reusable binary design library that is

developed with Chisel HCL. The IntelliJ software from JetBrains is employed as the

developing environment with Scala plugins and Chisel HCL libraries. For example,

Fig. 3.3 shows the design flow using the proposed Chisel library, from the Chisel

design and verification, then the generated Verilog HDL. After the HDL generation,

the traditional FPGA design procedure including the synthesis, layout, and final

implementation and evaluation can be conducted.

Figure 3.3: A Design Example between Chisel HCL to Verilog HDL Design Flow.

Specifically, Fig. 3.3(a) shows the example of a Chisel HCL design on a full adder.

In what follows, the binary design library is imported to a Scala project. After

15

importing the library, a Scala object file is used to run the design module that is

present in the main package. Fig. 3.3(b) shows the simulation result of the Chisel

HCL design after running the test script file by passing the input data. This result

proves the functionality of the design.

After declaring the Chisel design module, we then use Scala to call the Chisel

compiler to translate Chisel designed module into Verilog HDL. This elaboration

process requires passing bit width as a parameter to generate a synthesizable Verilog

for the design module. The generated Verilog HDL is written into a new Verilog file

which is added into a Vivado project as shown in Fig. 3.3(c).

In Vivado, the FPGA design flow can be carried out including synthesis and

implementation. The synthesis circuit can be shown in Fig. 3.3(d). After Synthesis,

the final performance estimation is conducted. Fig. 3.3(e) shows the results of FPGA

slice count and power analysis after the implementation is successfully completed.

3.4 Design Approach

The neural network design which is discussed in this thesis is not intended to

perform the training procedure. The training will be done through existing software

models which will generate the lists of optimized inputs, weights, and biases. Through

the Scala/Chisel language, we can take the list of weights and biases and turn them

into ROMs which can be accessed by the hardware model. However, when it comes

to testing the neural network design, we don’t need to have optimized weights and

biases because we can just generate random sets of inputs, weights, and biases, and

compare the results from the hardware model with a software golden model.

For the design of the parameterizable neural network, we also need access to

Floating-Point arithmetic circuit designs that allows us to compute all the compu-

16

tations involved with the convolution calculations. Since the Chisel language allows

scalability, Fixed-Point, and Floating-Point arithmetic modules were designed for an

adjustable precision level of the IEEE-754 numbers, where precision of the design can

be selected.

17

CHAPTER IV

FIXED POINT COMPONENTS

This section presents the implementations of six fundamental designs of binary

arithmetic circuits, including full-adder, full-subtractor, multiplier, shifter, 2’s com-

plement operator, and leading bit detector modules.

4.1 Full-adder module design

Full-adder is a basic arithmetic module used in mathematical computation. This

module is built on the logic of binary addition. Based on the requirement, the bit

width for input numbers and the output sum is selected and the Verilog code is

generated. It takes a single clock cycle to compute output sum and carry for the

selected bit width. The Fig. 4.1 shows the synthesis schematic with the RTL analysis

for a 16-bit full-adder. The maximum clock frequency that can be achieved for a

16-bit module is 604.96 MHz and the total on-chip power is 510 mW.

Figure 4.1: 16-bit full-adder synthesis result.

4.2 Full-subtractor module design

Similar to the full-adder module, the full subtractor is developed on the logic

of binary subtraction. This module takes two numbers as input and computes the

borrow out and difference as the output. This module takes a single clock cycle to

18

compute the output. The bit width for the module can be selected based on the

requirement. The Fig. 4.2 shows the synthesis schematic with the RTL analysis for a

16-bit full-subtractor. The maximum clock frequency that can be obtained from the

16-bit module is 868.8 MHz and the total on-chip power is 510 mW.

Figure 4.2: 16-bit full-subtractor synthesis result.

4.3 Multiplier module design

Similar to the multiplication of two decimal numbers, the binary multiplier follows

the same method for computing a product result of the two binary numbers. The bit

width for the product result is double the size of the input numbers. The product

of two binary numbers is computed in a single clock cycle. The advantage of using

a fixed-point multiplier is that it can be built using look-up-tables, saving DSPs

resources on the FPGA. The Fig. 4.3 shows the synthesis schematic with the RTL

analysis for a 16-bit binary multiplier. The maximum clock frequency that can be

obtained from the 16-bit module is 148.65 MHz and the total on-chip power is 514

mW.

19

Figure 4.3: 16-bit multiplier synthesis result.

4.4 Shifter module design

The shifter module shifts the input number by a specified number of bit positions

to the right or left. The input to this module is the number to be shifted, the number

of bit positions, and, the shift left or right. The output bit width is considered to

have the same bit width of the input number that is being shifted.The Fig. 4.4 shows

the synthesis schematic with the RTL analysis for a 16-bit shifter. The maximum

clock frequency that can be obtained from the 16-bit module is 393.54 MHz and the

total on-chip power is 508 mW.

Figure 4.4: 16-bit shifter synthesis result.

20

4.5 Two’s complement module design

Two’s complement of a number is used to store the negative value of a number.

This module involves functions such as bit flipping and bit-wise addition. The Fig. 4.5

shows the synthesis schematic with the RTL analysis for a 16-bit two’s compliment

design module.The maximum clock frequency that can be obtained from a 16-bit

module is 708.71 MHz and the total on-chip power is 510 mW.

Figure 4.5: 16-bit two’s compliment synthesis result.

4.6 Leading one detector module design

The leading one bit detector is designed to return the bit position of the most

significant bit in the number. It is designed to use in a floating-point arithmetic

operation. The specified bit widths are 11, 24, 53, and, 113. The Fig. 4.6 shows the

synthesis schematic with the RTL analysis for a 11-bit leading one detector module.

The maximum clock frequency that can be obtained from the 11-bit module is 896.86

MHz and the total on-chip power is 505 mW.

21

Figure 4.6: 11-bit Leading one detector synthesis result.

22

CHAPTER V

FLOATING POINT COMPONENTS

This chapter presents the implementations of fundamental designs of floating point

arithmetic circuits, including adder, multiplier, multiply and accumulate (MAC),

and accumulator modules. The floating-point arithmetic modules are designed using

parameterizable binary arithmetic modules discussed in the previous chapter. Most

arithmetic operation involves a fixed-point operation to compute the floating-point

result.

The IEEE 754 format consists of three main parts: sign, exponent, and mantissa

as shown in Fig. 5.1 for a 32-bit floating point number. The sign indicates if the

number is positive or negative and it is always represented by the msb. The exponent

part of the number indicates the number of left shifts or right shifts that were used

to normalize the binary representation of the floating-point number, but this is also

includes the bias associated with the IEEE 754 precision level. The mantissa of the

number is simply the fractional part of the normalized floating-point number. An

important thing to mention is that the bit width for the exponent, bias, and mantissa

will vary for different precision levels, but the concept will remain the same. For

32-bit IEEE 754 format, the exponent is 8 bits, mantissa is 23 bits, and bias is 127.

The IEEE floating-point number has the value as shown in equation 5.1.

num = −1sign ∗ 1.mantissa ∗ 2(exponent−bias) (5.1)

23

Figure 5.1: Single Precision IEEE 754 Floating-Point Standard.

5.1 Floating Point Adder Design

This circuit is designed to perform the addition of two IEEE 754 floating-point

numbers. Since the IEEE 754 format has different precision representations, we have

designed the FP adder module to have adjustable precision levels, which is specified

through a parameter. Currently, the design supports 16,32,64, and 128-bit precision.

The input to this module should be a number represented in IEEE 754 format, and the

output sum is calculated. The Fig. 5.2 shows the schematic view of the floating-point

adder after synthesizing the generated RTL code.

Figure 5.2: 16-bit floating point adder synthesis result.

24

Figure 5.3: 16-bit floating point adder power analysis.

After implementation, the power analysis is conducted as the static and dynamic

on-chip power consumption on the FPGA board. The power implementation estimate

of the FP adder is shown in Fig. 5.3. The total on-chip power estimation is 0.511 W.

The on-chip power desitricution for static power is 1% while the dynamic power is

the remaining 99%.

5.2 Floating Point Multiply Design

Similar to the multiplication of two decimal numbers, the floating point multiplier

follows the same method for computing a product result of the two floating point

numbers. This circuit has been designed to perform the multiplication operation on

IEEE 754 floating-point numbers. Like the FP-adder described previously, this design

also comes with adjustable precision. The circuit of floating point multiplier involves

fulladder, full-subtractor, and two’s compliement. The Fig. 5.4 shows the schematic

of 16-bit floating-point multiplier

25

Figure 5.4: 16-bit floating point multiplier synthesis result.

Figure 5.5: 16-bit Floating Point Multiplier Power Analysis.

In Fig. 5.5, we can analyze the power implementation estimate. The total onchip

power estimation is 0.583 W. The on-chip power distribution for static power is 2%

while the dynamic power is the remaining 98%.

5.3 Floating Point Multiply and Sum Design

This circuit was designed to multiply and sum up a large series of multiplica-

tion results. It is parameterizable in the sense that we can specify the number of

multiplications that the circuit can perform and sum up.

26

Suppose we want a circuit that performs N multiplications and sums up all the

results. This means we will need to instantiate N FP-multipliers and N-1 FP-adders.

The general structure of a N-FP multiply and add is similar to diagram shown in

Fig. 5.6

When we have to sum up an odd number of results, the summation is a little

tricky since the FP adders have two inputs, so we have to hold off on one addition

until the end of the computation.

Figure 5.6: General structure of N-FP Multiply-Add.

5.4 Floating Point Accumulator

This circuit was designed to accumulate a sequence of inputs within a certain

amount of clock cycles. The number, N, of accumulations that the circuit will perform

must be specified through a parameter. The N accumulations will be performed

within N clock cycles using N FP-adders and N registers. The circuit itself only

has one input, so the input value will have to change every clock cycle in order to

accumulate different values together. The structure of the circuit is shown in the

Fig. 5.7.

27

Figure 5.7: General structure of N-FP Accumulator.

28

CHAPTER VI

DESIGN OF NETWORK

6.1 Design on Parameterizable CNNs

This section discusses the idea of designing a parameterizable CNN with Chisel

HCL. The IntelliJ software from JetBrains is employed as the developing tool using

Scala plugins and Chisel HCL libraries. By parameterizing the proposed generator,

the RTL design on the CNNs can be constructed. The design functionality is verified

by a direct test from Chisel HCL, and the corner test cases are tested through RTL

verification using Siemens ModelSim. After verification, the experimental results

including the slice count, latency, and power cost are estimated with AMD Vivado.

6.2 Convolution Module Design

The convolution layer is the most computationally complex part of the CNN, which

is used to extract features of the input matrices using kernel filters or convolution

kernels. The specific goal is to convolve the input matrices with a kernel filter, weigh

the summation of the convolution results, and then obtain the output feature map of

this layer after processing it through an activation function.

To implement Equation 2.2 with code, four layers of embedded “for loop” are

needed. Here, pseudo-codes as algorithm 1 are adopted to output 64 neurons from

the convolution layer. An element-wise product between each element of the kernel

and the input matrix is calculated at each location of the matrix and summed to

obtain the final value in the corresponding position of the feature map. The con-

volution operation involves two-dimensional multiplication-addition calculations. An

element-wise product between each element of the kernel filter and the input matrix

29

is calculated at each location of the matrix and summed to obtain the final value in

the corresponding position of the output feature map.

Algorithm 1 Convolution layer computation

Input: MatA − Input data of image pixel;
Input: MatB − Kernel map array
Output: Conv out − Output feature map array
1: procedure #1 - Periodically traverse the rows of input:
2: for (i = 0; i ≤ MatARowSize− 2; i = i+ 1) do
3: count = 0
4: procedure #2 - Periodically traverse the columns of input:
5: for (j = 0; j ≤ MatARowSize− 2; j = j + 1) do
6: procedure #3 - Periodically traverse the rows of ker-

nel map:
7: for (n = 0;n ≤ MatBRowSize;n = n+ 1) do
8: procedure #4 - Periodically traverse the columns

of kernel map:
9: for (m = 0;m ≤ MatBRowSize;m = m+ 1) do
10: output = MatA[i ∗ stridelength+ j] ∗ MatB[n+m]
11: conv out = (output < 0)? 0 : output

6.2.0.1 Streaming Design on Convolution Module

For the hardware implementation of the convolution layer, various methods have

been proposed. As an example, [23] presented a conventional method by implementing

convolution hardware with a 3× 3 kernel circuit. The implementation made full use

of parallelism for computing convolution results. The convolution window sliding was

realized, and a convolution computation circuit of efficient parallel pipeline operation

was formed. The downside of such implementations is that the design structures have

to employ a fixed length of convolution.

In this thesis, therefore, a pipelined structure and reconfigurable convolution mod-

ule is presented. By parameterizing the streaming width of the design, different con-

volution modules with Verilog HDL can be generated. As a case study, Fig. 6.1 shows

30

Figure 6.1: Streaming Design Structure of a Convolutional Layer Neuron.

the design module which takes a stream of nine inputs (3×3) for every clock cycle and

calculates the convolution result within seven clock cycles, during which the following

stream of inputs is taken. Specifically, the nine input data (denoted as “a0-a8”) and

weights (denoted as “w0-w8”) are fed into the design engine in parallel, and then each

FP operator including the FP multiplier and FP adder takes one clock cycle for the

computation. As a result, the design structure utilizes nine FP multipliers and nine

FP adders.

As the timing diagram shown in Fig. 6.2, in the first and second clock cycles two

consecutive groups of inputs (denoted as “A0” and “A1”) are fed into the engine,

which is specified by an asserted “ready” signal to indicate the valid data input.

Notice that “A0” and “A1” are two groups of inputs, and each of them includes all

the nine inputs “a0” to “a8” in parallel. Their corresponding weights (denoted as

31

Figure 6.2: Timing Diagram of Streaming Design of a Convolutional Layer Neuron.

“W0” and “W1”) are read out from a ROM and the multiplications (A0 × W0 or

A1×W1) are performed in the same clock cycles. In the following clock cycles two to

six, the products will be pushed out and then cascading summed up together. Adding

the bias takes one more clock cycle to push out the final groups of output (denoted

as “O0” and “O1”), which are indicated by the asserted “vld” signal in the seventh

and eighth clock cycles.

6.2.0.2 Parameterizable Streaming Width on Convolution Module

As mentioned earlier, the proposed work allows for the parameterization of the

streaming width N , enabling the generation of Verilog designs with different resource

costs and latencies. Generally, the latency of the streaming design structure can be

calculated as follows:

Latency Streaming = 1 + 1 + roundup(log2N) + 1 (6.1)

where one cycle is needed for valid data fed into the engine, followed by an addi-

tional one cycle for the multiplications in parallel, followed by the logarithm result

for the clock cycles needed by the cascading additions, and finally one clock cycle for

the addition with the bias. The roundup(x) functions round the x up to the integer

if log2N is a fraction. For example, N = 9 so that roundup(log2 9) = 4 and the final

32

Figure 6.3: Iterative Design Structure of a Convolutional Layer Neuron.

estimated result is seven clock cycles. Similarly, the number of FP operators can be

approximately estimated as N FP multipliers and N FP adders for the streaming

design.

In order to reduce the number of FP operator utilization, the iterative design can

be extended with less streaming width compared to the number of input data. For

example, the number of data inputs is nine and the streaming width of the design is

three. So one group of data should be divided into three data frames and then fed

into the engine over three clock cycles. The design structure is shown in Fig. 6.3,

including a register to delay one more clock cycle on the first data frame and two FP

adders for accumulating the three summations from the three data frames. Finally,

an FP adder is needed to add the bias to push out the final result. Notice that for the

multiplication-addition design, it only takes three FP multipliers and two FP adders

that can be reused by three data frames over multiple clock cycles. The latency of

the iterative design can be calculated as

Latency Iterative = SW + roundup(log2 SW) + SW + 1 (6.2)

where SW represents the parameter of the streaming width. The first SW in-

dicates the clock cycles for feeding in the entire data group, the second SW shows

33

Figure 6.4: Timing Diagram of Iterative Design of a Convolutional Layer Neuron

the latency for accumulating the results from all the data frames, a final clock cy-

cle is needed for the bias addition, and the roundup(log2 SW) function is used for

calculating the clock cycles for the cascading summation.

A specific example is shown in Fig. 6.4 including two groups of data. The first

group is divided into three data frames denoted as “A00, A01, and A02” and the

second group is composed of three data frames denoted as “A10, A11, and A12”.

Likewise, the corresponding weights are denoted as “W00, W01, W02” for the first

group data, and “W10, W11, and W12” are for the second group data. For this

example, SW = 3 so that the latency can be calculated as 3+roundup(log2 3)+3+1 =

9 clock cycles to push out the final output, where three cycles are needed for valid

data fed into the engine, two cycles for each multiplication-addition result, additional

three cycles for accumulation of the three multiplication-addition results, and the

final clock cycle for the bias value addition. Notice that the output can be pushed

out over every three clock cycles in the pipeline since fewer resources are utilized for

the convolution module.

6.3 Pooling Module

A pooling module provides a down-sampling operation that reduces the in-plane

dimensions of the feature map. Unlike the convolutional layer, the pooling layers

34

Figure 6.5: Visual Representation of the Max Pooling using FP Comparators.

do not have any learnable parameters; instead, filter size, stride, and padding are

hyperparameters in the pooling operations. The construction of the pooling layer can

be parameterized using either max pool or mean pool modules, which are implemented

in this subsection.

6.3.0.1 Max Pool Module

The most popular form of the pooling operation is the max pool, which fetches

patches from the feature maps, outputs the maximum value in the filter size in each

patch, and discards the rest of the values in the patch. The general filter size used in

a CNN is 2× 2 with a stride of two.

Fig. 6.5 shows the structure of the max-pooling computation for a 2 × 2 pool-

ing kernel. Using the FP operators, the final maximum value can be obtained by

comparing all four elements. In the design of the pooling operation, the pseudo-codes

adopted are shown as algorithm. 2. Implementing the max-pooling operation requires

four layers of embedded “for loops”. In this example, pseudo-codes are adopted to

output 16 neurons from the pooling layer.

35

Algorithm 2 Max pooling computation

Input: pool in buff [size A][size B] : Input feature map array
Output: Max out : max out buff [size out] Output feature map array
1: procedure #1 - Periodically traverse the rows of input:
2: initialize : s(0) = p(0);
3: for (i = 0; i ≤ MatARowSize/2; i = i+ 1) do
4: count = 0
5: procedure #2 - Periodically traverse the columns of input:
6: for (j = 0; j ≤ MatARowSize/2; j = j + 1) do
7: procedure #3 - Periodically traverse the rows of ker-

nel map:
8: for (n = 0;n ≤2;n = n+ 1) do
9: procedure #4 - Periodically traverse the columns

of kernel map:
10: for (m = 0;m ≤2;m = m+ 1) do
11: tmp1=pool in buff[i*stride + n];
12: tmp2=pool in buff[j*stride + m];
13: tmp3=pool in buff[i*stride + 1 + n];
14: tmp4=pool in buff[j*stride + 1 + m];
15: max1=(tmp1¿tmp2)?tmp1:tmp2;
16: max2=(tmp3¿tmp4)?tmp3:tmp4;
17: max=(max1¿max2)?max1:max2;
18: index = i*stride+j*stride+m+8*(in matA size/2+8);
19: max out buff[index]=max;

36

Figure 6.6: Visual Representation of the Mean Pooling using FP Adders and Di-
vider.

6.3.0.2 Mean Pool Module

The mean pool technique is similar to the max pooling, where data elements are

fetched from feature maps, and the output is the mean of all the elements in the

fetched patch. The general filter size used in mean pooling is 2 × 2 with a stride of

two. Fig. 6.6 shows the implementation of the mean pooling operation using three

FP adders and one FP divider for a 2× 2 patch.

In the design of the pooling operation, the pseudo-code adopted is shown as algo-

rithm. 3. Implementing the mean pooling operation requires four layers of embedded

“for loops”. Similar to the algorithm shown in the design of the max pool module,

pseudo-codes are adopted to output 16 neurons from the pooling layer.

From the computational design perspective, the key difference between the max

pool layer and the mean pool layer is that the mean pooling operation requires an

additional FP divider in the calculation of the patch mean. The downside of using

mean pooling is that the pixel intensity is averaged across the region, whereas in max

pooling, only the maximum intensity value is retained. Both max pool and mean pool

layers can be parameterized and generated by our proposed work, providing flexibility

for constructing complex neural networks.

37

Algorithm 3 Mean pooling computation

Input: pool in buff [size A][size B] : Input feature map array
Output: Mean out : mean out buff [size out] Output feature map array
1: procedure #1 - Periodically traverse the rows of input:
2: initialize : s(0) = p(0);
3: for (i = 0; i ≤ MatARowSize/2; i = i+ 1) do
4: count = 0
5: procedure #2 - Periodically traverse the columns of input:
6: for (j = 0; j ≤ MatARowSize/2; j = j + 1) do
7: procedure #3 - Periodically traverse the rows of ker-

nel map:
8: for (n = 0;n ≤2;n = n+ 1) do
9: procedure #4 - Periodically traverse the columns

of kernel map:
10: for (m = 0;m ≤2;m = m+ 1) do
11: tmp1=pool in buff[i*stride + n];
12: tmp2=pool in buff[j*stride + m];
13: tmp3=pool in buff[i*stride + 1 + n];
14: tmp4=pool in buff[j*stride + 1 + m];
15: avg=(tmp1+tmp2+tmp3+tmp4)/4;
16: index = i*stride+j*stride+m+8*(in matA size+8);
17: mean out buff[index]=avg;

38

Figure 6.7: Visual Representation of the Soft-Max Layer using FP Comparators.

6.4 Fully Connected Module and Soft Max Module

After the final pooling operation, the outputs from the feature maps are flattened

into a one-dimensional array of numbers and connected to one or more fully connected

layers, each of which has learnable weights that enable multiplication-addition oper-

ations between every input and output. The clock cycle operations for these layers

are similar to those shown in Fig. 6.1. The implementation algorithm for the fully

connected layer is similar that shown in algorithm. 1, but with different weight and

bias values.

The softmax module uses FP comparators to determine the maximum value

among the ten output neurons. The design circuit shown in Fig. 6.7 is then used

to identify the position of the neuron with the highest value.

6.5 System Construction and Static Analysis

In this section, the system-level integration and construction are further discussed.

This project demonstrates the validation of the proposed parameterizable designs on

39

Algorithm 4 Soft max layer computation

Input: soft in buff [10] : Input feature map array
Output: Digit : Digit buff : Output feature map array
1: procedure #1 - Periodically traverse the rows of input:
2: initialize : s(0) = p(0);
3: for (i = 0; i ≤10; i = i+ 1) do
4: if soft in buff [i] ≤ max then
5: max = soft in buff [i]
6: Digit = i

CNNs. The methodology can be extended into different complex neural networks

by constructing neurons with parameterizable submodules such as FP adders and

multipliers, and further integrating the neurons into multi-layer networks.

6.6 System Design Construction

In order to construct different networks with different precision, a configurable de-

sign on the CNN is demonstrated in this section. Specifically, the network architecture

can be parameterized and generated to provide different design precision including

half-word, word, double-word, and quad-word. Additionally, this thesis presents a

parameterizable pooling design for choosing max-pool or min-pool operation in the

generated CNN architecture. Finally, the streaming structure and iterative design of

the convolution and fully-connected layers are further presented. Based on the size of

the local receptive field, the input parameter to the convolution is decided. Similarly,

the parameters for the size of the register map are calculated upon the local receptive

field and the number of computational outputs.

We follow a layered-based design style, generating Verilog HDL code for individual

layers based on the number of hidden layers required for a particular application.

As a case study, we employ the FP design library to build the CNN [4]. After

parameterizing the precision of each FP operator and finding the design structure of

40

each layer, the network can be constructed into a sequential system including register

maps between different layers of data streams or feature maps. Fig. 6.8 shows the

register maps generated for various data widths during the generation of RTL designs.

Specifically, the proposed network takes 10× 10 as input to the convolution layer,

which generates 64 neurons as the first result of the convolution operation using a

3×3 kernel filter. The convolution layer uses the ReLU activation function, defined

as y = max(x, 0), and the window slide step is one. Using our proposed work,

the streaming width of the convolutional layer is parameterizable so that convolution

operation may take multiple clock cycles to calculate the results of the output neuron.

As an example shown in this figure, the streaming design of nine inputs is configured

to the implementation on the convolution layer and the results are stored in the

register map before being fed into the subsequent pooling layer.

In what follows, the 64 neurons are further downsized through the pooling opera-

tion, resulting in 16 neurons using a 2×2 region map for performing the max pooling

operation. The pooling layer is configurable depending on the design specifications

and by default, uses max pooling with a window slide step of two. The 16-output neu-

rons from the pooling layer are connected to the inputs of the fully connected layer.

A minimum of 10-output neurons are required for the final data classification. Hence,

we take 16 × 10 = 160 weights and ten bias values for calculating a fully-connected

layer. The final classification result is the corresponding number of neurons with the

highest value output.

41

Figure 6.8: System Construction on CNNs.

6.7 Static Analysis of Hardware Cost

This subsection analyzes the hardware cost of different parameterizable designs

presented in this thesis, as shown in Table 6.1. In the second row, the convolu-

tional layer design is parameterized with a streaming width of nine, and the max

pooling module is selected when generating the Verilog code. The implementation

with a streaming width of nine requires 45 FP multipliers (FP MUL), 45 FP adders

(FP ADD), and 57 FP comparators (FP COMP), and the simulation takes 100 clock

cycles to classify the 10×10 inputs. Using the streaming width of three, the design in

the third row shows a reduction in the utilization of FP modules but takes 2× clock

cycles for data classification.

Compared with the max pool operation, the mean pool operation only utilizes

nine FP comparators but much more FP adders. Similar to the difference between

streaming widths of nine and three for the max pool operation, the mean pool mod-

ule with a streaming width of nine takes much more resource cost in terms of FP

multipliers and FP adders but spends fewer clock cycles compared with that of a

streaming width of three.

Between the max and mean pool design, the mean pool operation requires FP

dividers (FP DIV) to calculate the average of the selected region, as well as more FP

adders to sum the inputs. Since the resource cost of the FP adders and dividers is

42

Layer FP MUL FP ADD FP DIV FP COMP Latency
SW=9, Max 45 45 0 57 100
SW=3, Max 39 41 0 57 200
SW=9, Mean 45 93 16 9 103
SW=3, Mean 39 89 16 9 203

Table 6.1: Static Analysis of Different Design Structures

much higher than that of the FP compactors, the mean pool design will spend more

LUTs and registers than the design of the max pool structure. Therefore, the default

configuration is the max pool for our proposed work. The latency difference of the

additional three clock cycles between the max and mean pool operation-based design

is due to the additional three FP adder modules in the mean pool-based design.

43

CHAPTER VII

EXPERIMENTAL RESULTS

The static analysis in the previous section shows the difference between design

structures. In this section, the practical hardware performance is further estimated

with AMD Vivado in terms of quality of results, slice count, and energy cost. Vivado

2019.2 is applied as the synthesis tool with the FPGA target device Zynq UltraScale+

MPSoCs xczu19eg-ffvb1517-3-e.

7.1 Experiment Design

The experimental setup is based on random FP input numbers fed as input to

the convolutional layer. These random inputs are generated by scala built-in random

functions during the generation of RTL code. The hardware results after the layer

are displayed on the IntelliJ IDE. In our case study, we have considered our test

matrix size to be 10 × 10 which generated a 100 random pixel intensity, and a 3×3

local receptive field which is hard coded onto the circuit. The outputs of each layer

are captured and compared to the golden results generated by software implemented

CNN using Scala language. For accuracy, multiple test results were captured for

different inputs and compared with the software results.

7.2 Resource cost on FPGA

After synthesis with Vivado, the hardware utilization for different designs with

different precision is shown in Table 7.1. It can be observed that the higher resource

utilization comes from the network with a higher bit width. Specifically, the 128-bit

design uses more than four million LUTs and about 27 thousand registers. However,

the 16-bit design only takes 9,808 LUTs and 3,250 registers, which is much less than

higher precision implementations. The design with less precision usually obtains less

44

Precision CLB LUTs CLB Registers CARRY8 DSPs Accuracy
16-bit 9,808 3,250 228 57 97.07
32-bit 25,848 2,677 816 114 98.39
64-bit 86,802 5,436 2,943 513 99.25
128-bit 4,24,723 26,955 42,369 1,959 99.76

Table 7.1: Resource Utilization of Different Precision Designs

accuracy when classifying images or videos. As an example shown in the last column,

the 128-bit design can achieve the highest accuracy and the 16-bit design obtains an

accuracy with about a two percent reduction.

It concludes that a large number of resources can be saved by using low-precision

designs with a slight reduction in the quality of the results. Notice that the com-

parison in this case study is to feed in the random matrix and monitor the output

between different designs. For estimating the accuracy in real applications such as

digit recognition, more error percentages would be involved by using low-precision

implementations.

The number of clock cycles required for computation remains constant in spite

of the increase in precision due to parallelism. The generated RTL uses a significant

number of hardware resources to achieve high parallelism. The circuit consists of mul-

tiple instantiations of modules which also increases energy consumption as discussed

in the next section.

7.3 Energy Consumption on FPGA

In what follows, the energy dissipation is summarized in Table. 7.2. As a result,

the total on-chip energy for the 16-bit design is 0.30 mJ, including 0.28 mJ dynamic

energy and 0.02 mJ static energy. As with the analysis of resource utilization, the

energy dissipation for higher precision designs is significantly higher than the im-

45

16-bit 32-bit 64-bit 128-bit
Energy (mJ) 0.28 1.044 2.462 7.867

Table 7.2: Energy Consumption of Different Precision Designs

plementations with lower precision. The highest energy cost is 7.867 mJ which is

obtained by the 128-bit design.

7.4 Hardware Cost Analysis

Our proposed work can be used to evaluate the FPGA cost in combined error

percent-area-energy with a simple equation

cost = (P × x) + (S × y) + E × (1− x− y). (7.1)

, where P , S, and E represent the normalized values of error percentage, slice count,

and energy consumption, respectively. Additionally, x, y, and (1 − x − y) represent

the weights of the three design specifications. Specifically, x and y are between 0 and

1.0, thus the summation of all three weights would be 1.0. By configuring the three

design specifications x, y, and 1− x− y, the parameterizable design can regulate the

design features and target one of the design performances. For example, setting x

and y as 1/3 will lead to equal weighting, and y = 0 would target a design constraint

with a low slice count. In Fig. 7.1, the normalized error-area-energy design cost is

summarized. When setting y = 1.0 depicted in Fig. 7.1(a), it can be observed that

the 16-bit design uses the lowest hardware resource compared to other designs with

higher precision. The normalized hardware cost for 16-bit and 32-bit designs are

similar, and the 128-bit design spends around 26× FPGA resources when compared

to the 32-bit implementation.

46

Figure 7.1: Normalized Accuracy-Area-Energy Consumption.

47

7.5 Comparison of related work

As an implementation with minimum error-slice-energy cost within all the gen-

erated designs, the 32-bit design is applied to compare with other prior works in

this section. As shown in Table 7.3, the hardware cost is summarized in terms of

LUTs, FFs, and DSPs. In the last column, the accuracy is further compared between

different works.

The number of LUTs and DSPs used in our case study is less than a half compared

to [18] and [19] because of the pipelined structure and three hidden layers used to

build the network architecture. The number of convolutional layers and hidden layers

used for implementing CNNs in articles [18] and [19] are much larger compared to

our proposed work. This addition of layers in the network increases the accuracy

but utilizes more hardware resources. In contrast, the register count of our design

is slightly more than [18] because of the use of a register map to store the values of

hidden neurons, which increases the parallelism to execute the computation.

In [20], the design uses a block floating point method of implementation, which

consumes higher hardware costs. In paper [21], the authors have designed the CNN

structure based on the sigmoid activation function, whereas, in this thesis, the design

is based on the ReLU activation function which is computationally less complex and

hence uses fewer hardware resources.

While the LUTs in [22] and [23] are less than half when compared to our proposed

work, [22] uses resource multiplexing, wherein the modules are reused for different

operations cycles, which tends to higher latency. In [22], as an example, digit recog-

nition takes 68,139 clock cycles. In reference [23], the implementation does not follow

resource multiplexing, however, it takes much more registers to buffer data between

different layers, and more DSPs are needed for the arithmetic operations.

48

Comparison LUTs FFs DSPs Accuracy(%) Quantization Strategy
[18] 55,466 2,493 1645 99.17 32-bit floating
[19] 186,251 205,704 2240 - 32-bit floating
[20] 231,761 14,091 1,027 - 8-bit Block floating point
[21] 34K - - 89 8-bit fixed
[22] 10,208 8,204 17 97.3 16-bit fixed
[23] 12,588 48,765 274 97.57 18-bit fixed
Our case study 25,848 2,677 114 98.39 32-bit floating

Table 7.3: Comparision with Prior Works

The accuracy shown in the fifth column demonstrates that our proposed 32-bit

design achieves higher accuracy than that of the implementations with lower precision,

including the 8-bit fixed number implementation in [20], 16-bit fixed design in [22],

and the 18-bit design in [23]. The design with more resource cost in [18] achieves

higher accuracy compared with that of our proposed architecture, which obtains an

overall accuracy of 98.39%.

49

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions presented in this thesis. We then

discuss the possible directions for our future research work.

8.1 Summary

This thesis presents a parameterizable design for CNNs that can accommodate

various design structures and precision levels. Our proposed approach is scalable, al-

lowing for the creation of RTL designs that meet different design specifications. The

resulting Verilog code is both synthesizable and implemented in an FPGA demonstra-

tion. As a case study, a three-hidden-layer design structure is ultimately implemented

and evaluated on an FPGA, achieving an overall accuracy of 98.39% for 32-bit FP

precision. Experimental results demonstrate that our design has lower hardware costs

than many existing approaches while still achieving reliable accuracy.

8.2 Future Work

Parameterizablity is one of the main advantages and motivations of using the

Chisel-based design. In this thesis, a CNN network is implemented with designs on

the floating-point fundamental arithmetic modules to show the validity of the re-

search work. New ways of performing a variety of computing functions were expected

to advance to the next generation of computer architectures and approaches. Future

works will be focusing on parameterizing the network for handwritten digit recogni-

tion on FPGA. FPGAs offer a means to produce customized accelerators that can

be reprogrammed in the field as needed for diverse applications. Chisel can also be

developed to for verification purpose replacing Verilog HDL and SystemVerilog.

50

BIBLIOGRAPHY

[1] O. Choudhari, M. Chopade, S. Chopde, S. Dabhadkar, and V. Ingale, Hardware

Accelerator: Implementation of CNN on FPGA for Digit Recognition. 2020 24th

International Symposium on VLSI Design and Test (VDAT), 2020, PP.1-6.

[2] F. U. D. Farrukh, T. Xie, C. Zhang, and Z. Wang, Optimization for Efficient

Hardware Implementation of CNN on FPGA. 2018 IEEE International Confer-

ence on Integrated Circuits, Technologies and Applications (ICTA), 2018, PP.

88-89.

[3] W. Xie, C. Zhang, Y. Zhang, C. Hu, H. Jiang, and Z. Wang, An Energy-Efficient

FPGA-Based Embedded System for CNN Application. Proceedings of the 14th

IEEE International Conference on Electron Devices and Solid State Circuits

(EDSSC), 2018, PP. 1-2.

[4] V. Mario, M. C. Madineni, B. Garrett, X. Yang and H. Xu, Case Studies of

Configurable Binary Design Library on FPGA. 2022 International Symposium

on Measurement and Control in Robotics (ISMCR), Houston, TX, USA, 2022,

pp. 1-5, doi: 10.1109/ISMCR56534.2022.9950580.

[5] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, Importance Estima-

tion for Neural Network Pruning. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2019, PP. 11264–11272.

[6] C. Son, S. Park, J. Lee, and J. Paik, Deep Learning-based Number Detection

and Recognition for Gas Meter Reading.IEIE Trans Smart Process Comput.,

2019, Vol. 8, No. 5, PP. 367–372.

51

[7] K. Guo, S. Zeng, J. Yu, Y. Wang, and Huazhong Yang, A Survey of FPGA-

Based Neural Network Inference Accelerator. ACM Trans. Recon¿g. Technol.

Syst., 2017, Vol. 9, No. 4, Article 11.

[8] D. Gschwend, ZynqNet: An FPGA-accelerated Embedded Convolutional Neu-

ral Network, 2020, arXiv:2005.06892.

[9] C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S. Liu, Real-time

Speech Recognition for IoT Purpose using a Delta Recurrent Neural Network

accelerator. IEEE International Symposium on Circuits and Systems (ISCAS),

2019, PP. 1–5.

[10] K. Vaca, A. Gajjar, and X. Yang, Real-time Automatic Music Transcription

(AMT) with Zync FPGA. IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2019, PP. 378–384.

[11] Q. Li, X. Zhang, J. Xiong, W. Hwu, and D. Chen, Implementing neural ma-

chine translation with bidirectional GRU and attention mechanism on FPGAs

using HLS. Proceedings of the 24th Asia and South Pacific Design Automation

Conference, 2019, PP. 693–698.

[12] M. Cho and Y. Kim, Implementation of Data-optimized FPGA-based Accelera-

tor for Convolutional Neural Network. International Conference on Electronics,

Information, and Communication (ICEIC), 2020, PP. 1–2

[13] H. Madadum and Y. Becerikli, FPGA-based Optimized Convolutional Neu-

ral Network Framework for Handwritten Digit Recognition. 1st International

Informatics and Software Engineering Conference (UBMYK), 2019, PP. 1–6

52

[14] J. Si, E. Yfantis, and S. L. Harris, A SS-CNN on an FPGA for Handwritten

Digit Recognition. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics

& Mobile Communication Conference (UEMCON), 2019, PP. 0088-0093.

[15] V. M. Milovanović and M. L. Petrović, A Highly Parametrizable Chisel HCL

Generator of Single-Path Delay Feedback FFT Processors. 2019 IEEE 31st

International Conference on Microelectronics (MIEL), 2019, PP. 247-250.

[16] M. Imani, D. Peroni and T. Rosing, CFPU: Configurable Floating Point Mul-

tiplier for Energy-efficient Computing. 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2017, PP. 1-6.

[17] J. Bachrach, et al., Chisel: Constructing Hardware in a Scala Embedded Lan-

guage. 49th ACM/IEEE Design Automation Conference (DAC), 2012, PP.

1212-1221.

[18] Z. Li et al., Laius: An 8-Bit Fixed-Point CNN Hardware Inference Engine. 2017

IEEE International Symposium on Parallel and Distributed Processing with Ap-

plications and 2017 IEEE International Conference on Ubiquitous Computing

and Communications (ISPA/IUCC), 2017, PP. 143-150.

[19] C. Zhang et al., Optimizing FPGA-based Accelerator Design for Deep Convo-

lutional Neural Networks, Proc. ACM/SIGDA Int. Symp. Field-Programmable

Gate Arrays, 2015, PP. 161-170.

[20] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou and X. Ji, High-Performance FPGA-

Based CNN Accelerator With Block-Floating-Point Arithmetic. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 27(8), 2019, PP.

1874–1885.

53

[21] J. Si and S. L. Harris, Handwritten Digit Recognition System on an FPGA. 2018

IEEE 8th Annual Computing and Communication Workshop and Conference

(CCWC), 2018, PP. 402-407.

[22] Yan, F., Zhang, Z., Liu, Y., and Liu, J. Design of Convolutional Neural Network

Processor Based on FPGA Resource Multiplexing Architecture. Sensors 2022,

2019, No. 22, PP. 59-67.

[23] R. Xiao, J. Shi and C. Zhang, FPGA Implementation of CNN for Handwritten

Digit Recognition. 2020 IEEE 4th Information Technology, Networking, Elec-

tronic and Automation Control Conference (ITNEC), 2020; PP. 1128-1133.

[24] L. Hui, Convolutional Neural Network Research and FPGA Implementation for

Handwritten Digit Recognition. Xi’an Shiyou University: Xi’an, China, 2021

[25] A. L. Reed, X. Yang and S. Sha, Lightweight Neural Network Architectures

for Resource-Limited Devices. 2022 23rd International Symposium on Quality

Electronic Design (ISQED), 2022, PP. 1-7.

[26] I. Westby, X. Yang , T. Liu, and H. Xu, Exploring FPGA Acceleration on a

Multi-Layer Perceptron Neural Network for Digit Recognition. The Journal of

Supercomputing (JSC), 2021, PP. 1-18.

[27] Chisel/FIRRTL Hardware Compiler Framework, [Online]. Available:

https://www.chisel-lang.org/

[28] P. Lennon and R. Gahan, “A Comparative Study of Chisel for FPGA Design,”

2018 29th Irish Signals and Systems Conference (ISSC 2018), PP. 1-6, 2018.

doi: 10.1109/ISSC.2018.8585292.

54

[29] H. He, X. Yang , L. Wu, and Y. Feng, Iterated Dilated Convolutional Neural

Networks for Word Segmentation. Neural Network World (NNW), 2020, Vol.

30, No. 5, PP. 333-346.

[30] L. Di Tucci, D. Conficconi, A. Comodi, S. Hofmeyr, D. Donofrio, and M. D.

Santambrogio, A Parallel, Energy Efficient Hardware Architecture for the mer-

Aligner on FPGA Using Chisel HCL. 2018 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2018, PP. 214-217.

[31] K. Abdollah, M. Dabbaghjamanesh, T. Jin, W. Su, and M. Roustaei. An evo-

lutionary deep learning-based anomaly detection model for securing vehicles.

IEEE Transactions on Intelligent Transportation Systems, 2020, Vol. 22, No. 7

PP. 4478-4486.

[32] S. Ramin, A. Sahba, and F. Sahba. Using a combination of LiDAR, RADAR,

and image data for 3D object detection in autonomous vehicles. In 2020 11th

IEEE Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON), 2020, PP. 0427-0431.

[33] D. Morteza, A. Moeini, and A. Kavousi-Fard. Reinforcement learning-based

load forecasting of electric vehicle charging station using Q-learning technique.

IEEE Transactions on Industrial Informatics, 2020, Vol. 17, No. 6, PP. 4229-

4237.

[34] J., Mina, A. Kavousi-Fard, M. Dabbaghjamanesh, and M. Karimi. A Survey on

Deep Learning Role in Distribution Automation System: A New Collaborative

Learning-to-Learning (L2L) Concept., IEEE Access, 2022.

55

[35] F. Vasta, et. al. Reproductive Outcomes and Fertility Preservation Strategies

in Women with Malignant Ovarian Germ Cell Tumors after Fertility Sparing

Surgery. Biomedicines, 2020, Vol. 8, Issue 12.

[36] A. Vimercati, et. al. Ultrasonic assessment of cesarean section scar to vesicov-

aginal fold distance: an instrument to estimate pre-labor uterine rupture risk.

The Journal of Maternal-Fetal & Neonatal Medicine, 2020, Vol. 35, Issue 22,

PP. 4370-4374.

[37] S. Amin, R. Sahba, P. Rad, and M. Jamshidi. Optimized IoT based deci-

sion making for autonomous vehicles in intersections. In 2019 IEEE 10th An-

nual Ubiquitous Computing, Electronics & Mobile Communication Conference

(UEMCON), 2019, PP. 0203-0206.

[38] K. Vaca and et al. An Open Real-Time Audio Processing Platform on Zync

FPGA. Intl. Symposium on Measurement and Control in Robotics (ISMCR

2019), 2019, PP. D1-2-1-D1-2-6.

[39] Y. Zhang and et al. A Case Study On Approximate FPGA Design With an

Open-Source Image Processing Platform. 2019 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI 2019), 2019, PP. 372-377.

[40] I. Westby and et al. A Design on Multilayer Perceptron (MLP) Neural Network

for Digit Recognition. Advances in Artificial Intelligence and Applied Cognitive

Computing. Transactions on Computational Science and Computational Intel-

ligence, 2020.

56

VITA

Mukesh Chowdary Madineni

2019 B.E., Electronics and Communication Engineering
People’s Education Society Institute of Technology
Bengaluru, India

2023 M.S., Computer Engineering
University of Houston-Clear Lake
Houston, TX

PUBLICATIONS

M. C. Madineni, V. Mario and X. Yang. 2023. “Parameterizable Design on Con-

volutional Neural Networks Using Chisel Hardware Construction Language,” Micro-

machines 14, no. 3: 531. https://doi.org/10.3390/mi14030531.

V. Mario, M. C. Madineni, B. Garrett, X. Yang and H. Xu, “Case Studies of

Configurable Binary Design Library on FPGA,” 2022 International Symposium on

Measurement and Control in Robotics (ISMCR), Houston, TX, USA, 2022, pp. 1-5,

doi: 10.1109/ISMCR56534.2022.9950580.

57

