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ABSTRACT 

REVIEWTAG: TAGGING AMAZON NEGATIVE PRODUCT  

REVIEW WITH DEEP LEARNING 

 

 

 

Priyanka Kumari 

University of Houston-Clear Lake, 2023 

 

 

 

Thesis Chair: Dr. Kewei Sha  

 

 

The success of Amazon sellers hinges on high ratings and meeting customer needs 

with exceptional products and services. However, the large scale of negative reviews pose 

significant challenges that require careful analysis to identify underlying reasons of buyers 

concerns. We aim to develop an automated tagging system named ReviewTag to address 

this challenge. The system uses deep learning models and Natural Language Processing 

(NLP) techniques to swiftly categorize negative reviews into two broader categories i.e., 

product issues and seller issues. 

The system provides further insight into customers' specific issues using subtopic 

tagging, allowing Amazon sellers to identify areas for improvement and make data-driven 

decisions to meet evolving customer expectations.  

We employ five deep learning models to perform topic and subtopic tagging. These 

models include Bidirectional Encoder Representations from Transformers (BERT), 

Distilled Bidirectional Encoder Representations from Transformers (DistilBERT), 

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Recurrent 

Neural Network (RNN). Based on the evaluation with a prototype implementation of 
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ReviewTag, the BERT model demonstrates high precision, recall, and F1-scores of 0.97, 

0.96, and 0.96, respectively, for topic tagging. Additionally, the BERT and CNN models 

show impressive precision, recall, and F1-scores of about 0.92, for subtopic tagging. These 

results demonstrate the effectiveness of deep learning models for automatically tagging 

negative product reviews on Amazon. It helps Amazon sellers take action to improve their 

product ratings. 
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CHAPTER I: 

INTRODUCTION 

1.1 Background and Significance 

Amazon is a technology and online retail company that has succeeded in the e-

commerce industry through advanced technology and innovative practices. The 

e-commerce industry encompasses the buying and selling of products and services 

using online platforms. This industry has seen substantial growth in recent years, with 

many businesses and consumers opting in for e-commerce as a convenient and efficient 

shopping method [1]. Amazon platform's customer feedback system enables 

shoppers to leave ratings and reviews, which offer valuable insights into the quality of 

products and services available on the platform. Amazon sellers can derive various 

advantages from customer feedback, whether it is positive or negative. Positive feedback 

can provide social proof of the quality of the sellers products or services, which can 

help build trust with potential customers and increase sales. It helps to increase a 

sellers visibility on the Amazon platform. 

On the other hand, negative feedback not only helps other customers 

make informed buying decisions, but it also benefits the sellers by identifying 

areas for improvement and addressing any issues with their products or services. It 

helps sellers effectively to tackle the issues and elevate their product ranking on 

Amazon.  The e-commerce platforms, such as Amazon, rely on customer ratings and 

reviews to assess the quality of products and services offered by sellers. Higher-rated 

products are more likely to the top of search results, resulting in increased sales and 

revenue for sellers. This creates a strong incentive for sellers to continuously improve 

their offerings to meet the needs of customers and maintain a high rating. To stay 

competitive in the e-commerce industry, 
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sellers must prioritize providing exceptional products and services that attract and retain 

customers, ultimately leading to revenue growth [2]. 

1.2 Motivation and Research Challenges 

Amazon sellers are individuals or businesses that use Amazon's platform to sell 

their products and services to customers. They can operate independently or as a part of 

Amazon's Fulfillment by Amazon (FBA) program, where their products are stored in 

Amazon's warehouses, and Amazon handles the fulfillment and shipping process [3]. 

Amazon sellers offer various products and services, including clothing, shoes, and jewelry, 

playing a significant role in the e-commerce industry, and contributing to Amazon's 

success as a leading online marketplace. However, maintaining their product rankings can 

be difficult due to factors like analyzing vast amounts of customer feedback, particularly 

negative reviews. 

Especially for high-volume sellers, analyzing customer feedback, particularly 

negative reviews, can be time-consuming and energy-intensive, requiring careful attention 

to maintain product rankings. Amazon sellers must meticulously read and analyze each 

customer's feedback to identify areas for improvement or issues that require attention to 

improving product descriptions, addressing complaints, and providing prompt and reliable 

customer service.  

Negative customer reviews can significantly impact Amazon sellers businesses, 

affecting their reputation and revenue as it can give potential customers the impression that 

the seller's products or services are unsatisfactory, ultimately leading to lost sales. In 

addition, negative reviews can adversely affect a seller's search rankings, making it harder 

for them to be discovered by new customers [4]. Amazon sellers must prioritize offering 

excellent products and services while actively managing customer feedback to maintain a 

positive reputation and attract more customers. 
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The primary objective of this thesis is to develop a system called ReviewTag, which 

will briefly categorize negative reviews into categories and sub-categories, enabling sellers 

to identify areas of concern quickly. Implementing this approach can save sellers time 

while improving their understanding of customer needs, resulting in higher product ratings 

and tremendous success on the Amazon platform. The method for categorizing reviews is 

called "topic tagging". It involves tagging reviews into two primary categories: product 

issues and seller issues. Product issues relate to problems with the product itself, while 

seller issues relate to problems with the seller. The system will use "subtopic tagging" to 

provide further insight into the issues to break down each category into sub-categories. For 

product issues, subtopics will include design issues, quality issues, and product description 

issues. For seller issues, subtopics consist of product authentication issues and delivery and 

return issues. 

1.3 Research Design and Results 

1.3.1 Research Design 

The automated system, ReviewTag based on deep learning algorithms is designed 

to assist sellers by classifying customer reviews into predetermined tags using NLP 

techniques. This system uses text tagging, a fundamental task in NLP, to provide insights 

into the reasons behind negative ratings. The system utilizes four automated techniques: 

Topic Tagging (TT), SubTopic Tagging with Known Topics (STWKT), SubTopic Tagging 

without Topic (STWOT), and SubTopic Tagging with Predicted Topics (STWPT). The 

techniques use deep learning models like Bidirectional Encoder Representations from 

Transformers (BERT), Distilled Bidirectional Encoder Representations from Transformers 

(DistilBERT), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), 

and Recurrent Neural Network (RNN) to ensure accuracy and efficiency.  
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"Topic Tagging (TT)" is a technique of classifying reviews into broad categories, 

such as product issues and seller issues, to help sellers identify areas for improvement. 

Product issues relate to problems with the product itself, while seller issues relate to 

problems with the sellers service. Using topic tagging, sellers can easily understand what 

customers say about their products and services, enabling them to make better decisions 

and improve their business.  

"SubTopic Tagging" is a technique used to classify reviews into specific subtopics 

within the broad categories of product issues and seller issues. This approach involves three 

different ways to tag subtopics: subtopic tagging with known topic, subtopic tagging 

without topic, and subtopic tagging with predicted topics. By usng known subtopics, sellers 

can get more in-depth insights into specific areas that need improvement and act 

accoordingly.  

SubTopic Tagging with Known Topics (STWKT) is a technique of classifying 

reviews using predetermined subtopics within the broad categories of product issues and 

seller issues. This approach involves tagging the reviews with the known subtopics within 

each category, such as design issues, quality issues, and product description issues for 

product issues and product authentication issues, delivery and return issues for seller issues. 

SubTopic Tagging without Topic (STWOT) is an alternative technique to subtopic 

tagging that uses machine learning algorithms to identify and classify subtopics without 

predetermined topic knowledge because topic information may not be available. This 

technique involves analyzing the text data of reviews and tagging them into subtopics.  

SubTopic Tagging with Predicted Topics (STWPT) technique aims to improve the 

accuracy of subtopic tagging when topic information is not available. It uses the "Topic 

Tagging" method to predict the topic, then, the subsequent "SubTopic Tagging" process 

further categorizes the review, allowing sellers to pinpoint specific areas for improvement. 
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ReviewTag classifies customer reviews into predetermined tags and provide 

insights into the reasons of negative ratings. It includes topic tagging and subtopic tagging. 

These techniques help sellers identify areas for improvement, discover new areas, and 

make informed decisions to improve their products and services based on customer 

reviews. 

1.3.2 Research Result  

We evaluated the performance of the deep learning system using precision, recall, 

and F1 score. They compared the predicted categories with the actual categories assigned 

to the reviews by topic tagging. The findings showed that BERT had the highest F1 score 

of 0.96, with a precision of 0.97 and a recall of 0.96. DistilBERT, CNN, and LSTM 

achieved a similar F1 score of 0.95, with precision and recall scores ranging from 0.95 to 

0.96. RNN had the lowest F1 score of 0.83, with a precision of 0.87 and a recall of 0.80. 

The results show that BERT achieved the highest precision, recall, and F1 score for 

all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT and CNN also achieved 

high scores, ranging from 0.85 to 0.92. However, LSTM and RNN models achieved lower 

scores, with RNN performing the worst. The research findings demonstrate the 

effectiveness of the deep learning models for automated tagging of negative product 

reviews on Amazon. Based on customer feedback, the system can provide valuable insights 

for sellers to improve their products and services. 

1.4 Organization of Thesis 

The thesis is divided into six chapters. Chapter I introduces the research topic, its 

background, and significance. It also outlines the motivation and challenges, design, and 

results. Chapter II reviews the relevant literature. Chapter III describes the process of 

acquiring the Amazon review dataset, creating the Amazon review tagged dataset, and 

tokenizing the dataset. Chapter IV presents the architecture of ReviewTag. Chapter V 
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describes the approaches to identify topics and subtopics. Finally, Chapter VI summarizes 

the research findings, limitation, and recommendations for future research studies. 
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CHAPTER II:

RELATED WORK 

ReviewTag is an automated tagging system that uses deep learning models 

and Natural Language Processing (NLP) techniques to categorize negative reviews on 

Amazon into product and seller issues and subtopic tagging to provide more specific 

insight into customer concerns. Several related works share similarities with 

ReviewTag regarding using NLP and deep learning techniques to extract insights from 

online content. 

One such related work is Topic modeling, a powerful technique to uncover hidden 

structures in large document collections [5,6]. It can help differentiate the usage of words 

with different meanings and link words with similar contexts. Topic modeling 

methods include Vector Space Model (VSM) [7], Latent Semantic Indexing (LSI) [8], 

Probabilistic Latent Semantic Analysis (PLSA) [9], and Latent Dirichlet Allocation 

(LDA). These methods have applications in text categorization, tag recommendation, 

keyword extraction, and similarity search in text mining and information retrieval, much 

like topic and subtopic tagging. 

Another related work is blog mining, which involves extracting valuable 

information from blog data, such as tags and multidimensional data [10]. A tag-topic model 

for blog mining is introduced in one paper based on the Author-Topic model [11] 

and Latent Dirichlet Allocation [12]. This model determines the most likely tags and 

words for a given topic in a collection of blog posts, like how ReviewTag categorizes 

reviews into product and seller issues and subtopics. 

The study on identifying and evaluating documented serious illness 

communication (SIC) relates to ReviewTag's use of NLP techniques to analyze text 

data [13]. However, this study focuses on identifying and characterizing 

documented serious illness 
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communication with oncology patients to measure healthcare quality, whereas ReviewTag 

categorizes negative reviews on Amazon. 

Finally, a related work used the Sentence-Level Topic Model (SLTM) method to 

extract product features from smartphone reviews on Amazon [14, 15]. The SLTM method 

has been used previously to extract features from online reviews and can extract both 

explicit and implicit features from reviews. The SLTM method uses NLP and machine 

learning techniques to extract features from online reviews, like ReviewTag's use to 

categorize reviews into product and seller issues and subtopics. 

In summary, these related works demonstrate the potential of NLP and machine 

learning techniques to extract insights from online content, much like ReviewTag. 

However, each related work has its unique focus, such as topic modeling, blog mining, 

SIC, and feature extraction. At the same time, ReviewTag specifically targets negative 

reviews on Amazon to help sellers make data-driven decisions. 
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CHAPTER III:

DESCRIPTION OF DATASET AND PROBLEM MODELING 

Amazon reviews are essential to an Amazon seller. They offer valuable 

insights into how customers view their products, with negative reviews incredibly 

significant. Negative reviews can help sellers identify areas of improvement, maintain 

a favorable product ranking on Amazon, and address any issues or concerns that 

customers may have. By addressing negative feedback, sellers can improve their products 

and customer service, increasing sales and higher customer satisfaction. 

3.1 Amazon Review Acquisition 

The dataset used for this thesis, obtained from the University of California 

San Diego (UCSD), includes a vast collection of 142.8 million product reviews and 

metadata from Amazon [16, 17, 18]. These reviews were written by customers between 

May 1996 and Oct 2018, spanning a considerable duration and offering a diverse range 

of opinions and preferences. Notably, the dataset comprises various product categories, 

with Clothing, Shoes, and Jewelry being the most prevalent. 

The thesis required a dataset with an overall rating and review text to train 

ReviewTag for sellers to analyze the products on Amazon. The UCSD-provided Amazon 

dataset was considered suitable for analysis due to its extensive attribute, overall 

rating, and review text. 

3.2 Amazon Review Tagged Dataset 

Amazon sellers must analyze many negative reviews to understand why their 

products receive poor ratings. Developing ReviewTag involves selecting reviews with 

one or two-star ratings, which indicates Negative Product Reviews, and then 

manually analyzing it. Manual tagging is preferred over automated tagging 

techniques because automated tagging relies on algorithms that may need to fully 

understand the context and 
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nuances of natural language, which can lead to incorrect or incomplete tagging. On the 

other hand, manual tagging allows human analysts to read and comprehend each review 

carefully, considering the overall sentiment, the issues raised, and any relevant subtopics. 

Although manual tagging may take longer than automated tagging, it tags reviews with 

specific criteria, such as product or service issues.  

ReviewTag categorizes negative reviews into two primary categories: product 

issues and seller issues. The tags for product issues relate to problems with the product 

itself, while the tags for seller issues relate to problems with the seller. Each category is 

further broken-down using subtopics to provide a deeper understanding of the issues. For 

example, the tags for product issues may include design issues, quality issues, and product 

description issues, while those for seller issues may include product authentication issues, 

and delivery and return issues. Quality issues refer to problems with the material used, such 

as unpleasant odors in clothes or shoes. Design issues pertain to size or fit issues and may 

also encompass jewelry. Product description issues involve errors or inaccuracies in the 

product's details, such as incorrect sizing information. Meanwhile, the seller issues 

category is also divided into subtopics. These subtopics include product authentication and 

delivery and return issues. Product authentication issues denote the sale of counterfeit 

products, which can be a significant problem for both sellers and customers. Delivery and 

return issues refer to problems with the shipping process, such as delays in delivery or 

difficulties in returning products. 

The system can identify patterns and themes that help sellers improve their products 

and services by analyzing thousands of reviews and using the tagging process. Figure 3.1 

summarizes the hierarchy of tags in this work. 
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Figure 3.1: Categories of topics and subtopics 

 

The UCSD Amazon dataset presents a challenge in obtaining an adequate number 

of negative reviews due to an imbalance between positive and negative datasets, which 

results in a lower percentage of negative reviews than positive ones. Specifically, the 

positive dataset has 26 million entries, while the negative dataset only has 4 million. 

Additionally, manual tagging of negative reviews can be difficult and time-consuming, 

further adding to the challenge of collecting adequate negative reviews. 

Despite these difficulties, the entire negative review dataset within the UCSD 

Amazon dataset contains 12053 entries. For each entry, it will have a tag of a topic and a 

tag of SubTopics. The table 2.1 shows the count of reviews that have been tagged with two 

topics: Product Issue and Seller Issue. There are 7932 reviews tagged as Product Issue and 

4121 reviews tagged as Seller Issue. 
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Table 2.1: Count of Topics 

 

Topic Count 

Product Issue 7932 

Seller Issue 4121 

 

Table 2.2 presents a detailed breakdown of the count of tags for subtopics. The 

Product Issue topic has three subtopics: Quality Issue with 2012 reviews tagged, Design 

Issues with 2785 reviews tagged, and Product Description Issue with 3135 reviews tagged. 

However, collecting high-quality data for Seller Issues presents a challenge because issues 

related to product authenticity may require customers to possess specific knowledge about 

the product, such as its manufacturing process or the source of materials used. Similarly, 

delivery and return issues may require customers to have experienced certain situations, 

such as receiving damaged goods or undergoing extended wait times for delivery. The 

Seller Issue topic has two subtopics: Product Authenticity Issue with 2399 reviews tagged, 

and Delivery and Return Issue with 1722 reviews tagged. 

 

Table 2.2: Count of SubTopics 

 

 

Topic SubTopic Count 

Product Issue Quality Issues 2012 

Product Issue Design Issues 2785 

Product Issue Product Description Issues 3135 

Seller Issue Product Authenticity Issues 2399 

Seller Issue Delivery and Return Issues 1722 
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3.3 Amazon Review Data Transformation 

The Amazon Negative Product Review-Manual Tagging has two columns: 

reviewText and tags, where reviewText includes the textual content of Amazon product 

reviews. However, deep learning algorithms require numerical inputs, so we must convert 

the reviewText data into a numerical format through tokenization. Tokenization breaks 

down the text data into individual tokens or words and assigns each token a numerical 

value that can be used as input for deep learning models. 

NLP tasks, such as topic tagging on Amazon product reviews, often rely on popular 

tokenizer libraries. There are two commonly used tokenizer libraries for natural language 

processing: NLTK Word Tokenizer [20] for Vocab Tokenization and Hugging Face 

Tokenizer [21, 22] for Ids and Masks Tokenization. Both tokenizers are designed to capture 

as much information as possible from the input review text. However, Vocab Tokenization 

is typically used for LSTM, RNN, and CNN models, while Ids and Masks Tokenizers are 

used for BERT and DistilBERT models. 

3.3.1 Vocab Tokenization: 

   The NLTK Word Tokenizer is a Python module in the Natural Language Toolkit 

(NLTK) library that provides functionality for tokenizing text into individual words [19]. 

The NLTK Word Tokenizer is a natural language processing tool that leverages "basic 

English" to break down raw text data into individual words, phrases, and sentences [20]. 

The primary objective of a tokenizer is to convert unstructured text data into structured 

data that can be readily analyzed and processed by machine learning models. The tokenizer 

typically removes punctuation marks and special characters and segments the text into 

individual words. This process helps to organize the text data and make it more manageable 

and structured for efficient analysis by machine learning models. In the upcoming section, 

we will perform text tokenization. 
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Figure 3.2: Text Tokenization 

 

The process of tokenizing text involves several steps, as shown in Figure 3.2. The 

four main steps involved in creating a tokenized text are reviewText, tokenizer, vocab, and 

ids. First, to analyze text data, we need to use a tokenizer to break it down into smaller 

units of meaning, such as words or parts of words. Tokenization involves taking the text 

and dividing it into individual tokens. Figure 3.2 depicts the tokenization process, where 

the sentence "The gloves are of very poor quality." is transformed into individual tokens, 

['The', 'gloves', 'are', 'of', 'very', 'poor', 'quality', '.']. The figure also shows reviewText1, 

reviewText2, ... reviewText9642, passed through a tokenizer to generate tokenizer1, 

tokenizer2...tokenizer9642. 

Once we have broken down the text into individual tokens, we can generate a 

vocabulary or vocab comprising all the unique tokens. Figure 3.2 shows an example vocab 

that consists of eleven words, including two special reserved words. The first reserved 

word, "<unk>", is a placeholder for unknown words that the tokenizer cannot include in 

the vocab. The second reserved word, "<pad>", is used to pad token sequences to a fixed 
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length. The remaining nine words represent the actual tokens in the text. Our task is to 

tokenize the reviewText, which contains 9642 instances, likely to have repeated words, 

making the overall vocab smaller than the total number of tokens. In this example, the 

vocab has 4773 words, with the first few reserved for special purposes, such as unknown 

and padding words. These special reserved words have specific identifiers that enable us 

to represent the text as a sequence of integers. 

 Finally, each token is assigned a unique identifier or id to represent the text as a 

sequence of integers. In this figure 3.2, we have assigned the Ids [2, 3, 4, 5, 6, 7, 8] to the 

tokens in our vocab, starting from the third word, "The", which has an id of 2, and ending 

with the token "fake", which has an id of 10. These ids represent the reviewText data, such 

as reviewText1, reviewText2, ... reviewText9642, which is converted into a sequence of 

ids1, ids2... ids9642. 

We focus is on padding input ids and creating batches, as shown in Figure 3.3, 

which illustrates the flow from input ids to batches. Deep learning models require inputs 

to be of equal length, while naturally, input ids can have varying lengths as different texts 

may have different lengths. To address this, we will pad the input ids with zeros to make 

them uniform, with a maximum length of 256. If an id is shorter than 256, we add zeros; if 

it is longer, we truncate it. This process is called padding, and we will apply it to all 9642 

input ids, resulting in a padded dataset. 
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Figure 3.3: Padding Ids and batch  

 

In the previous section, we discussed the importance of padding input ids and 

creating batches for deep learning models. In Figure 3.3, we divide the padded ids into 150 

batches, with each batch consisting of 64 padded ids. Batches offer several advantages: 

• It efficiently uses memory during training by avoiding loading the entire dataset 

simultaneously. 

• It speeds up the learning process by enabling the model to update parameters more 

frequently by simultaneously processing smaller subsets of data. 

• It helps to avoid overfitting by exposing the model to a more diverse set of 

examples in each iteration. 

3.3.2 Ids and Masks Tokenizers 

Tokenization is critical in preparing text data for machine learning models in NLP. 

It involves breaking down a text into its constituent words or sub words to enable the model 

to analyze it. The Hugging Face Tokenizer is a Python package for natural language 

processing that provides tokenization functionality for various state-of-the-art transformer 
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models, including BERT and DistilBERT [21, 22]. The library that offers state-of-the-art 

tokenization techniques based on transformer models. One of its critical features is the 

ability to fine-tune the techniques to perform topic tagging, a crucial capability for deep 

learning models. We can explore customer issues and preferences by applying Tokenizers 

to Amazon's Negative Product Reviews and identify recurring patterns or concerns. 

Ids and Masks is dedicated to discussing input ids and masks for transformer 

models, such as BERT and DistilBERT batches. Figure 3.4 illustrates the primary 

components involved, which include reviewText, ids, and masks. 

 

 

Figure 3.4: Ids and Masks 

The mask tokenizer adds a special "mask" token to the input sequence, instructing 

the model to ignore specific input tokens during training. Transformer models require 

inputs to have equal length, thus we use a tokenizer such as Roberta-base or DistilBERT-

base-uncased to convert reviewText into ids and masks. The total number of reviewText is 

9642, resulting in 9642 ids and masks. 
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Figure 3.5: Ids Batches(left) and Masks Batches(right) 

Figure 3.5, the left-hand side, illustrates the input ID batches, an ID matrix, and ID 

batches. The tokenizer assigns each token in the input text a unique ID, enabling the model 

to comprehend the text. The right-hand side displays the Masks batches, which consist of 

input masks, a mask matrix, and mask batches. A unique mask token is appended to the 

input sequence during tokenization, indicating the model ignores specific input tokens 

during training.  

The 9642 input IDs and masks into 150 batches, each comprising 64 masks. Batch 

processing offers several advantages, such as efficient memory utilization, faster learning, 

and a reduced risk of overfitting. We can train our deep learning models effectively and 

achieve more accurate results by utilizing batch processing. 
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CHAPTER IV: 

THEORETICAL FOUNDATIONS OF DEEP LEARNING 

The thesis proposes developing ReviewTag that can aid sellers in 

managing customer reviews efficiently. The last chapter involved the preparation of 

the Amazon Review Tagged Dataset Chapter 3.2, which was then pre-processed using 

a tokenizer in the Amazon Review Data Transformation Chapter 3.3. In this chapter, we 

will introduce the concepts of NLP, such as hyperparameters, model architecture, and 

deep learning models, along with overview of the Automated Tagging System. 

4.1 Automated Tagging System 

We are developing an automated tagging system for negative reviews of 

Amazon products, utilizing state-of-the-art deep learning techniques such as BERT, 

DistilBERT, LSTM, RNN, and CNN. This system aims to enhance the visibility of 

Amazon sellers by effectively identifying and tagging negative reviews based on their 

topics. The system offers topic tagging and three distinct subtopic tagging methods: 

subtopic tagging without topic, subtopic tagging with topic, and subtopic tagging with 

predicted topics. 

4.1.1 Topic Tagging (TT) 

Topic tagging helps sellers categorize reviews into broader categories like product 

issues and seller issues, which assists them in identifying areas that need 

improvement. Product issues usually stem from problems with the product, while seller 

issues arise from problems with the seller's service. Figure 4.1 depicts implementing TT 

system using a deep learning model called the topic classifier. The system takes 

Amazon's negative reviews as input, and the topic classifier analyzes the text of each 

review and predicts the related product or seller issue based on the words and phrases 

used in the review. 
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Figure 4.1: Topic Tagging (TT) 

 

4.1.2 SubTopic Tagging without Known Topic (STWOT) 

SubTopic Tagging without a Topic can classify subtopics such as design issues, 

quality issues, and product description issues for product issues and product authentication 

issues, delivery and return issues for seller issues without predetermined topic knowledge. 

 

 
 

Figure 4.2: SubTopic Tagging without Topic (STWOT) 
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The implementation of STWKT system using a deep learning model called a 

subtopic classifier is depicted in Figure 4.2. After taking in Amazon product reviews as 

input, the subtopic classifier analyzes the text of each review. It predicts the related 

subtopic issues based on the words and phrases used in the review. 

 

4.1.3 SubTopic Tagging with Known Topic (STWKT)  

STWKT involves further categorizing reviews into predetermined subtopics under 

the broader categories of product and seller issues. This method entails labeling the reviews 

with specific subtopics within each category, such as design issues, quality issues, and 

product description issues for product issues, product authentication issues, delivery and 

return issues for seller issues. 

 

 
 

Figure 4.3: SubTopic Tagging with Known Topic (STWKT) 
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In Figure 4.3, the implementation of the STWOT system employs a deep learning 

model called the SubTopic product and SubTopic seller classifiers for analyzing product 

issues and seller issues reviews, respectively. Amazon negative reviews are separated into 

two categories: Amazon negative product reviews and Amazon negative seller reviews. 

The system takes Amazon's negative product review as input, and the SubTopic product 

classifiers analyze the text of each review to predict the related subtopics of product issues. 

Similarly, the system takes Amazon's negative seller review as input, and the SubTopic 

seller classifiers analyze the text of each review to predict the related subtopics of seller 

issues. 

 

4.1.4 SubTopic Tagging with Predicted Topics (STWPT) 

 

The "SubTopic Tagging with Predicted Topics" technique can be an effective tool 

for Amazon sellers without labeled datasets for negative reviews of their products. This 

technique predicts the negative review's topic and the subtopic based on the predicted topic 

and the negative review.  

 

 
 

Figure 4.4: SubTopic Tagging with Predicted Topic (STWPT) 
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In Figure 4.4, Amazon negative review is first passed to a topic classifier. The topic 

classifier predicts the topic of the review. The predicted topic and the Amazon negative 

review are concerted and passed to a subtopic classifier. The subtopic classifier uses the 

predicted topic to predict the review's subtopic accurately. 

 

4.2 Introduction of Neural Network  

Neural Networks are a powerful machine learning techniques used extensively in 

Natural Language Processing NLP to perform various tasks, such as topic tagging. One 

key aspect of neural networks is using hyperparameters, which are model parameters the 

user sets before training the model. These hyperparameters, including the loss function and 

optimizer, significantly impact the model's performance during training and can affect its 

final performance [23]. In this context, understanding the role of hyperparameters in NLP 

is crucial for achieving optimal results in various NLP tasks. 

4.2.1 Loss Function 

A loss function is a mathematical function that measures the difference between the 

predicted output of a model and the actual output. The goal of a deep learning model is to 

minimize this difference, also known as the "loss" so that the predicted output is as close 

to the actual output as possible. In natural language processing, many tasks aim to predict 

a given input text's correct label or category. For example, in topic tagging for Amazon 

reviews, the task is to predict which topics the review is about, such as "quality", "design", 

"delivery service", etc. 

We need a loss function to train a model for this task, which measures the difference 

between the predicted and actual labels. The loss function guides the model to learn the 

correct parameters during training by minimizing the difference between the predicted and 

actual labels. For Transformer models such as BERT and DistilBERT, a cross-entropy loss 
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is the most used loss function for topic tagging [24]. This loss function penalizes the model 

for making incorrect predictions by computing the negative log-likelihood of the actual 

label, given the predicted probability distribution over all possible labels. For CNN, LSTM, 

and RNNs models, the same cross-entropy loss function can also be used for topic tagging. 

However, different architectures may require different loss function modifications or 

additional regularization techniques to prevent overfitting. 

4.2.2 Optimizer 

An optimizer is an algorithm used during the training of machine learning models 

to minimize the loss function by updating the model parameters based on the loss gradients 

for those parameters. The goal of an optimizer is to find the set of model parameters that 

will result in the lowest possible value of the loss function.   

In the deep learning models such as BERT, DistilBERT, CNN, LSTM, and RNN 

related to Amazon review topic tagging, the optimizer is typically chosen as Adam, which 

is an adaptive optimization algorithm that adjusts the learning rate of each weight during 

training based on the previous gradients for that weight. Adam (Adaptive Moment 

Estimation) is a popular optimizer used in deep learning that is well-suited for large 

datasets and complex models like Amazon Review [25]. Adam is widely used in natural 

language processing tasks due to its ability to handle sparse gradients and noisy data, which 

are common in text data. 

During the training process, the optimizer iteratively updates the model parameters 

to minimize the loss function by computing the loss gradients for each parameter and 

updating the parameter values in the direction that decreases the loss. Adam optimizer 

utilizes exponentially decaying averages of past gradients and squared gradients to update 

the model weights. 
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4.2.3 Learning Rate 

The learning rate is the size of the "steps" taken by the optimization algorithm 

during training toward the steepest descent of the loss function. If the learning rate is too 

high, the optimizer can overshoot the minimum of the loss function and prevent the model 

from converging [26]. Conversely, a learning rate that is too low can result in slow 

convergence or the optimizer getting stuck in local minima. In this thesis, we choose 

different learning rates to achieve optimal results in the deep learning model. 

For the BERT and DistilBERT models used in this thesis, we have set the learning 

rate of 2 to the power of -5. This is a relatively low learning rate, which helps to prevent 

the models from overfitting the training data. However, it also means that the models will 

take longer to learn. 

In contrast, for our CNN, LSTM, and RNN models, we have chosen a learning rate 

5e-4, 5e-4 = 5 x 10 ^ (-4) = 5 / (10^4), which is equal to 0.0005. It is relatively low and 

suitable for models with a large number of parameters or for datasets that have high levels 

of noise. 

4.2.4 Dropout 

Neural network models often employ regularization techniques to prevent 

overfitting, and one popular method is dropout [27]. This approach involves randomly 

disabling a percentage of neurons during training to encourage the network to learn more 

robust features that are not dependent on individual neurons. Dropout has proven to be 

effective in mitigating overfitting in neural network models. 

It is worth noting that the dropout rate determines the proportion of neurons that 

are randomly dropped out during training. A higher dropout rate can lead to more 

substantial regularization effects, which can help to avoid overfitting. However, a higher 
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dropout rate can also increase the difficulty of training the network and reduce its accuracy 

on the training data. Experts typically suggest starting with a dropout rate of 0.3 and then 

experimenting with various values to determine the most effective dropout rate for the 

trained network. 

This thesis used dropout in a range of models, including BERT, and DistilBERT, 

CNN, LSTM, and RNN. The CNN, LSTM, and RNN models were trained using a dropout 

rate of 0.5, while the BERT and DistilBERT models utilized a dropout rate of 0.3. 

4.3 Embedded Layer 

In NLP, a neural network uses an embedding layer to convert text data into a 

numerical format it can process. The network learns dense embeddings and vector 

representations of text with a fixed length and are continuous-valued. These embeddings 

can capture complex relationships between words and be used for various NLP tasks, such 

as sentiment analysis and named entity recognition [28]. 

4.3.1 Input-Output Embedded Layer 

The embedding layer is an essential component of many deep learning models, 

including CNN, LSTM, and RNN, and its primary function is to convert word tokens into 

dense vector representations. The input to the embedding layer is typically a sequence of 

integer-encoded word tokens mapped to high-dimensional vectors. In Chapter 3.3.1.2, if 

we consider a reviewText1 like "The gloves are very poor quality" and tokenize each word 

into an integer, we could generate the input token sequence [2, 3, 4, 5, 6, 7, 8]. These tokens 

would then be passed as input to the embedding layer.  
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Figure 4.5: Embedded Layer  

The output of the embedding layer is a sequence of dense vector representations, 

with each vector corresponding to a specific word in the input sequence. Each vector has a 

fixed length, and the dimensionality of the vectors is typically a hyperparameter that can 

be tuned during model training. The embedding layer aims to learn a set of vector 

representations that capture the semantic relationships between words in the input 

sequence. In Figure 4.5, the embedding layer is configured with a batch size of 64 and a 

maximum input length of 256 [29]. Each input consists of a 1x300 vector, where the 

dimensions represent related words. For instance, the word "gloves" is associated with 300 

related words, including hand, leather, finger, mittens, winter, sports, fashion, latex, 

motorcycle, and work. These words are assigned a vector representation at position 2 with 

a shape of 1x300. 
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4.3.2 fastText  

fastText is an open-source library developed by Facebook AI Research, designed 

to process and classify text data efficiently, particularly in natural language processing 

(NLP) [30]. It uses a neural network-based approach to learn the embeddings of words or 

short phrases, called n-grams, in a continuous vector space. The embeddings represent 

words semantic and syntactic meanings and can be used as input features for various 

downstream NLP tasks, such as topic tagging. fastText can handle out-of-vocabulary words 

by breaking them down into smaller sub word units or character n-grams, which are then 

represented with their embeddings, enabling the model to generalize better to unseen words 

and improve overall classification accuracy. 

 

 

 

Figure 4.6: fastText (FT) 

The fastText model is a pre-trained word embedding model that learns embeddings 

of words or n-grams in a continuous vector space. It is trained on a massive dataset of text, 

Common Crawl, consisting of over 600 billion tokens from various sources, including web 

pages, news articles, and social media posts [31]. The model outputs 2 million word 

vectors, each with a dimensionality of 300, because of this pre-training process. These pre-

trained word vectors can be used as an embedding layer in neural networks for various 
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NLP tasks, such as topic tagging. They are a great starting point for training deep learning 

models on other tasks, as they allow for improved performance with less training data and 

time. Figure 4.6 illustrates the output of the fastText model, which consists of 2 million 

word vectors with a dimensionality of 300, called fastText embedding. The word is 

represented by FTWord1, and its corresponding vector is represented by FT vector1, FT 

vector2, FT vector3, ... FT vector300. The original website represented " FastText " as 

"fastText".  

The vector comprises 300 dimensions, each representing a unique aspect of a 

word's meaning. The first dimension may indicate the word's part of speech, the second its 

semantic representation, and the third its sentiment. The values assigned to each dimension 

are real numbers, representing the degree of the word's association with that particular 

aspect of meaning. For instance, the value in the first dimension might be -0.038194, 

indicating that "fastText" is slightly more likely to be a noun than a verb based on the 

vector's analysis. 

 

4.3.3 fastText Embeddings Layer 

Figure 4.7 provides an overview of the three primary components of the system: 

Vocab, fastText, and embedding. The vocabulary was created using a text tokenizer, 

resulting in a size of 4773 for the training dataset, as explained in Chapter 3.3.1.1. 

Additionally, Chapter 4.3.2 presents fastText as a 2 million by 300 word vector. 

To initialize the embedding matrix, a random matrix of size (4777, 300) is created, 

matching the vocabulary size and fastText dimensionality. The matrix is initialized with 

all zeros. Next, the fastText embedding is read line by line, extracting each word from FT 

Word and FT Vector representation. The function checks if the word is present in Vocab 

and updates its FT vector in the initialized embedding matrix. The resulting embedding 



 

 

30 

matrix has each row representing the embedding vector for the corresponding word in 

fastText, producing an output like Chapter 4.3.3 

 

  
 

Figure 4.7: Vocab and Fast Text to Embedding 

4.5 Fully Connected Layer 

Topic tagging is a popular natural language processing task involving assigning one 

or more topic labels to a text document. Neural networks such as LSTM, RNN, and CNN 

have been used for topic tagging successfully [32,33]. In this context, a fully connected 

layer is typically added to the end of the neural network architecture to perform the final 

classification task. Chapter 4.6 will discuss how a deep learning model can use topic 

tagging to predict two topics. The size of the fully connected layer generating the model's 

predicted layers may vary depending on the number of layers in the model.  
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4.6 Introduction to Deep Learning Models 

The thesis proposes developing ReviewTag system, which assists sellers in 

effectively managing customer reviews. The system leverages various Natural Language 

Processing (NLP) models, including BERT, Distiller, CNN, LSTM, and RNN [34]. 

ReviewTag enables sellers to efficiently manage customer reviews and enhance their 

products' ranking on Amazon. 

4.6.1 BERT 

Google developed BERT (Bidirectional Encoder Representations from 

Transformers) in 2018 as a powerful natural language processing model. It is a deep neural 

network that uses self-supervised learning to pre-train on a large corpus of text data, 

allowing it to learn contextual relations between words in a text [35, 36]. The transformer 

architecture is the foundation of BERT, which is designed to handle sequential data, such 

as text. It has multiple layers of self-attention mechanisms that enable it to capture long-

range dependencies between words in a text. BERT is a bidirectional model that can 

consider both left and right context when making predictions. This helps BERT understand 

the context and meaning of words in a sentence. BERT can be fine-tuned on specific 

downstream NLP tasks, such as sentiment analysis or named entity recognition, by training 

on a smaller, labeled dataset. Fine-tuning allows BERT to achieve state-of-the-art 

performance on a wide range of NLP tasks, even when training data is limited. 
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Figure 4.8: BERT  

In Figure 4.8 BERT model is pre-trained on a large corpus of Amazon Negative 

Product Review data and can be fine-tuned for various NLP tasks [37]. The BERT Model 

consists of several layers: 

• Input Layer: The BERT Model takes inputs: ids, and mask. These inputs are 

encoded representations of the input text obtained using a tokenizer from the 

Chapter 3.3.2. 

• pre-trained Layer: The pre-trained layer refers to a neural network pre-trained on 

large amounts of text data. When input text is fed into the Roberta model, the pre-

trained layer processes it and produces a sequence of hidden states for each input 

token. The RoBERTa model has a deep architecture comprising multiple self-

attention layers and feed-forward neural networks. 

• Fully connected Layer: The fully connected layer is a linear layer that takes the 

output of the pre-trained Layer and maps it to the desired output dimensionality. 
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During the forward pass, the input ids, and mask are passed through the pre-trained 

layer, generating a hidden state sequence. Finally, the output of the dropout layer 

is passed through the linear output layer to produce the final output of the model, 

which is a vector of size two representing the probabilities of the two classes in the 

topic tagging task. 

4.6.2 DistilBERT 

Hugging Face introduced DistilBERT in 2019 as a smaller and faster alternative to 

BERT, a powerful natural language processing model developed by Google. DistilBERT 

uses a distillation technique to train a smaller model to replicate BERT's behavior, resulting 

in a model with fewer parameters while maintaining high accuracy and performance [38, 

39, 40]. DistilBERT still uses the transformer architecture and is pre-trained using self-

supervised learning on a large corpus of text data, making it a bidirectional model that 

considers both the left and right context of each word in a sentence when making 

predictions. 

DistilBERT performs well on various NLP tasks such as text classification, 

question answering, and named entity recognition. Many researchers and practitioners in 

the NLP community have adopted DistilBERT due to its smaller size and faster training 

and inference times, without sacrificing much accuracy or performance. 
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Figure 4.9: DistilBERT  

 

Figure 4.9 DistilBERT model is pre-trained on a large corpus of Amazon Negative 

Product Review data and can be fine-tuned for various NLP tasks. DistilBERT Model 

consists of several layers: 

• Input Layer: The DistilBERT Model takes inputs: ids, and mask. These inputs are 

encoded representations of the input text obtained using a tokenizer from the 

Chapter 3.3.2. 

• pre-trained Layer: The pre-trained "distilbert-base-uncased" weights are used to 

initialize the DistilBERT model. It processes the input tensors to obtain the hidden 

state output. The first token of the sequence is used to obtain a pooled representation 

of the input sequence from the hidden_state tensor. 

• Linear Layer pre-classifier: Linear layer pre-classifier is responsible for 

extracting features from data by taking the output of the pre-trained layer and 

passing it to a fully connected layer.  
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• Fully connected Layer: The fully connected layer is a linear layer that takes the 

output of linear layer pre-classifier and maps it to the desired output dimensionality. 

In this case, the output dimensionality is two, corresponding to topic tagging. 

During the forward pass, the input ids, and mask are passed through the pre-trained 

layer, generating a hidden state sequence. Finally, the output of the dropout layer is passed 

through the linear output layer to produce the final output of the model, which is a vector 

of size two representing the probabilities of the two classes in the topic tagging task. 

4.6.3 CNN 

CNN for Sentence Classification is a NLP technique that uses convolutional neural 

networks to classify sentences into different categories or labels. The technique involves 

training a CNN on a large dataset of sentences, where each sentence is assigned a label or 

category [41, 42]. 

 

 

 

Figure 4.10: CNN  

Figure 4.10 shows the architecture of the CNN model [43], which is composed of 

multiple layers:  
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• Input layer: The input layer receives the input data through token IDs and their 

lengths. The token IDs represent the index of the words in the vocabulary, and their 

lengths indicate how many tokens are in each sequence in Chapter 3.3.1. 

• Embedding layer: The embedding layer converts the token IDs into dense vectors 

of fixed size (embedding dimension) that capture the semantic meaning of the 

words in the input sequence of each sequence (batch_size, max_len, 

embedding_dim) of (64, 256,300). The embeddings are learned during training in 

Chapter 4.3.3. The input sequence is reshaped to have dimensions (batch_size, 

embedding_dim, max_len) of (64, 300, 256) and then fed into the convolutional 

layers. 

• Convolutional Layers: The next layer consists of multiple parallel convolutional 

layers with different filter sizes (filter_sizes) and the number of filters 

(num_filters). Each convolutional layer applies a set of filters with the same kernel 

size to the input embeddings, producing a feature map for each filter. The output 

shape of each feature map is (batch_size, num_filters[i], L_out), where L_out is the 

output length after applying the convolution operation. 

• Max Pooling: Max pooling is applied to each feature map over the time dimension 

(L_out) to obtain a fixed-length representation of the most important features. This 

operation reduces the feature maps' dimensionality and helps extract the most 

relevant features in the data. The output shape of each pooled feature map is 

(batch_size, num_filters[i], 1). 

• Flatten Layer: A flatten layer (nn.Flatten) is added to convert the 3D tensor output 

of the pooling layers into a 2D tensor that can be fed into the fully connected layer. 
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• Fully Connected Layer: The fully connected layer is a linear layer that takes the 

output of the pre-trained layer and maps it to the desired output dimensionality. In 

this case, the output dimensionality is two, corresponding to topic tagging. 

4.6.4 LSTM 

LSTM is a type of RNN type that overcomes the vanishing gradient problem in 

traditional RNNs [38, 39]. The vanishing gradient problem arises when the gradients used 

to update the network's weights become very small during backpropagation, making it 

difficult for the network to learn long-term dependencies. A set of gates that control the 

flow of information through the network is introduced by LSTMs to solve this issue. These 

gates, including an input gate, an output gate, and a forget gate, enable the network to 

selectively update, output, or forget information at each time step. 

At each time step, the input gate determines which information from the current 

input should be used to update the memory state. Meanwhile, the forget gate decides which 

information from the previous memory state should be forgotten. The output gate then 

determines which information from the updated memory state should be outputted to the 

next layer or as the final prediction. The cell state is the memory state in an LSTM, which 

can retain information for extended periods. The input and forget gates enable the network 

to selectively update or forget information in the cell state. LSTMs have been shown to be 

effective at modeling sequential data and have achieved state-of-the-art results on many 

tasks in natural language processing, speech recognition, machine translation, and image 

captioning.  
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Figure 4.11: LSTM  

Figure 4.11 illustrates the architecture of the LSTM model [40], which is composed 

of multiple layers:  

• Input layer: The input layer receives the input data through token IDs and their 

lengths. The token IDs represent the index of the words in the vocabulary, and their 

lengths indicate how many tokens are in each sequence in Chapter 3.3.1. 

• Embedding layer: The embedding layer converts the token IDs into dense vectors 

of fixed size (embedding dimension) that capture the semantic meaning of the 

words in the input sequence. The embeddings are learned during training in Chapter 

4.3.3. 

• LSTM layer: The LSTM layer processes the embedded input sequences using the 

LSTM algorithm. The LSTM layer has a certain number of hidden units 

(hidden_dim) and can be stacked in multiple layers (n_layers) to increase the 

model's capacity. 
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• Fully Connected Layer: The fully connected layer is a linear layer that takes the 

output of the pre-trained layer and maps it to the desired output dimensionality. In 

this case, the output dimensionality is two, corresponding to topic tagging. 

4.6.5 RNN 

 RNN is a type of neural network designed for handling sequential data, such as 

time series or natural language. RNNs can process sequences of inputs by maintaining an 

internal state that depends on the previous inputs, and they can share weights across 

different time steps. This allows them to learn and model temporal dependencies in the 

data using recurrent connections [47, 48]. The LSTM network is the most common type of 

RNN that addresses the problem of vanishing gradients in traditional RNNs. 

 

 

 

Figure 4.12: RNN  

Figure 4.12 illustrates the architecture of the RNN model [37], which is composed 

of multiple layers:  
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• Input layer: The input layer receives the input data through token IDs and their 

lengths. The token IDs represent the index of the words in the vocabulary, and their 

lengths indicate how many tokens are in each sequence Chapter 3.3.1. 

• Embedding layer: The embedding layer converts the token IDs into dense vectors 

of fixed size (embedding dimension) that capture the semantic meaning of the 

words in the input sequence. The embeddings are learned during training in Chapter 

4.3.3. 

• RNN layer: RNN layer takes the embedded sequences as input and produces a 

sequence of hidden states. The RNN layer used in this implementation is an 

instance of the nn.RNN class. The layer can be configured to have multiple layers 

and be bidirectional. 

• Fully Connected Layer: The fully connected layer is a linear layer that takes the 

output of the pre-trained layer and maps it to the desired output dimensionality. In 

this case, the output dimensionality is two, corresponding to topic tagging. 
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CHAPTER V:

PERFORMANCE EVALUATION 

The thesis proposes developing ReviewTag, which can assist sellers in efficiently 

managing customer reviews by tagging negative product reviews on Amazon. Chapter 

3 explains the process of creating the Amazon Review Tagged Dataset through 

manual tagging and further pre-processing the data using tokenizer in the Amazon 

Review Data Transformation. Chapter 4 introduces the concepts of NLP, such as 

hyperparameters, model architecture, and deep learning models, along with an overview 

of the Automated Tagging System. This chapter evaluates the performance of the 

automated tagging system using advanced deep learning for topic tagging (TT) system, 

and three different subtopics tagging (ST): STWOT, STWKT, and STWPT. 

Using Amazon Review Tagged Dataset contains 12,053 entries with 7,932 

reviews tagged as Product Issues and 4,121 reviews tagged as Seller Issues. The 

Product Issue category has three subtopics: Design Issues, Quality Issues, and 

Product Description Issues, while the Seller Issue category has two subtopics: Product 

Authenticity Issues and Delivery and Return Issues.  

The training and test datasets are prepared for different systems, including 

TT, STWPT, STWOT, and STWKT, with an 80:20 ratio. For TT, STWPT, and STWOT, 

the dataset is divided into 9637 entries for training and 2,416 entries for testing. 

Meanwhile, the STWKT system uses two sets of data: Amazon's negative product 

reviews and negative seller reviews. The datasets are divided into training and test sets, 

with the first dataset containing 7,932 entries of Amazon negative product reviews, with 

6,346 for training and 1,586 for testing. The second dataset comprises 4,121 entries of 

Amazon negative seller reviews, with 3,297 for training and 824 for testing.  
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After preparing the training dataset, we use advanced deep learning techniques such 

as BERT, DistilBERT, LSTM, RNN, and CNN models for training purposes. Following 

that, we will assess the performance of our trained model by utilizing the test dataset. The 

evaluation related to the test dataset is shown below. 

5.1 TT Performance Evaluation 

Topic Tagging (TT) performance evaluation is a crucial step in assessing the 

effectiveness of topic tagging techniques in categorizing reviews into specific categories. 

The evaluation process typically involves comparing the predicted categories with the 

actual categories assigned to the reviews by manual tagging. Precision, recall, and F1 score 

are metrics used to evaluate the performance of the topic classifier. 

 

Table 5.1: TT Performance Evaluation 

 

Model Precision Recall F1- Score 

BERT 0.97 0.96  0.96  

DistilBERT 0.95 0.95 0.95 

CNN 0.96 0.95 0.95 

LSTM 0.96 0.95 0.95 

RNN 0.87 0.80 0.83 

 

Table 5.1 shows the topic tagging evaluation results for various models, including 

BERT, DistilBERT, CNN, LSTM, and RNN, based on their precision, recall, and F1 score.  

BERT and DistilBERT are both transformer-based language models that have been 

pre-trained on a massive dataset of text and code. BERT is a larger model than DistilBERT, 

which means that it has more parameters and requires more training data and computation 
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time. In the experiment, BERT achieved the highest precision score of 0.97, along with a 

recall and F1 score of 0.96. DistilBERT is a smaller model that has been distilled from 

BERT to be more efficient while maintaining its accuracy. Despite its smaller size, 

DistilBERT still performed well in the experiment, achieving precision, recall, and an F1 

score of 0.95. 

CNN, LSTM, and RNN are types of deep networks commonly used for text 

classification. CNN sentence classifiers can learn local patterns in text, while LSTMs can 

learn long-range dependencies between words. In this experiment, LSTM and CNN models 

achieved a precision of 0.96, along with a recall and F1 score of 0.95 Compared to LSTMs 

and CNNs, RNN models may be less efficient due to their limited ability to capture long-

range dependencies in text data. In this experiment, RNN models achieved precision, 

recall, and an F1 score of 0.87, 0.80, and 0.83, respectively. 

Based on our experiment, BERT, achieved the highest precision score of 0.97 and 

a recall and F1 score of 0.96. DistilBERT, CNN, and LSTM achieved a similar F1 score 

of 0.95, with precision and recall scores ranging from 0.95 to 0.96. On the other hand, RNN 

achieved a precision of 0.87, a recall of 0.80, and an F1 score of 0.83. 

5.2 ST Performance Evaluation 

Our automated tagging system for Amazon negative product reviews employs deep 

learning models to identify and tag negative reviews based on their topics accurately. The 

system employs three different types of subtopics tagging: SubTopic Tagging without a 

Topic, SubTopic Tagging with Known Topics, and subtopic tagging with predicted topics. 

Our system's comprehensive analysis of negative reviews, utilizing three different 

types of subtopics tagging, enables sellers to make informed decisions and improve their 

businesses by addressing specific issues highlighted in the reviews. For subtopic tagging, 
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we evaluated the precision, recall, and F1 scores of various models, including BERT, 

DistilBERT, CNN, LSTM, and RNN. 

5.2.1 STWOT Performance Evaluation 

SubTopic Tagging without Known Topics (STWOT) is an approach that utilizes 

predetermined subtopics within the broad categories of product and seller issues to classify 

reviews further. The method involves tagging reviews with known subtopics within each 

category, such as product design issues, quality issues, and description issues for product 

issues and product authentication issues, delivery and return issues for seller issues. This 

approach provides more detailed insights into specific areas that require improvement.  

Table 5.2, BERT achieved the highest precision, recall, and F1 score of 0.90, while 

DistilBERT, despite its smaller size, performed well with a precision and F1 score of 0.85 

and a recall of 0.86. The CNN models achieved a precision of 0.89, with a recall and F1 

score of 0.88. The LSTM models obtained a precision, recall, and F1 score of 0.87. 

However, the RNN models had a precision score of 0.75 and a recall and F1 score of 0.73, 

indicating lower performance than the experiment's other models. 

 

Table 5.2: STWOT Performance Evaluation 

 

Model Precision Recall F1- Score 

BERT 0.90 0.90 0.90 

DistilBERT 0.85 0.86 0.85 

CNN 0.89 0.88 0.88 

LSTM 0.87 0.87 0.87 

RNN 0.75 0.73 0.73 
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While STWOT allows for identifying emerging subtopics without pre-defined 

labels, it may lower precision, recall, and F1 scores. In contrast, STWKT, with 

predetermined topic tagging help to improve precision, recall, and F1 scores for subtopic 

tagging. 

5.2.2 STWKT Performance Evaluation 

SubTopic Tagging with Known Topic (STWKT) method is a powerful approach to 

classify reviews further using predetermined subtopics within the broad categories of 

product and seller issues. This method involves tagging reviews with the known subtopics 

within each category, such as design issues, quality issues, and product description issues 

for product issues and product authentication issues, delivery and return issues for seller 

issues. 

Table 5.3, BERT achieved the highest precision, recall, and F1 score of 0.91, while 

DistilBERT, despite its smaller size, performed well with precision, recall, and F1 score of 

0.89. The CNN models achieved a precision of 0.91, with a recall and F1 score of 0.90. 

The LSTM models obtained a precision, recall, and F1 score of 0.90. However, the RNN 

models had a precision, recall, and F1 score of 0.86, indicating lower performance than the 

experiment's other models. 

 

Table 5.3: STWKT Performance Evaluation 

 

Model Precision Recall F1- Score 

BERT 0.91 0.91 0.91 

DistilBERT 0.89 0.89 0.89 

CNN 0.91 0.90 0.90 

LSTM 0.90 0.90 0.90 
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RNN 0.86 0.86 0.86 

 

5.2.3 STWPT Performance Evaluation 

SubTopic Tagging with Predicted Topics (STWPT) technique can be an effective 

tool for Amazon sellers who lack labeled datasets for negative reviews of their products. 

This technique predicts the negative review's topic and subtopic based on the predicted 

topic and the negative review itself. 

Table 5.4, BERT achieved the highest precision score and F1 score of 0.92 and a 

recall of 0.91, while DistilBERT, despite its smaller size, performed well with a precision 

score and F1 score of 0.90 and a recall of 0.89. The CNN models achieved a precision of 

0.89, with a recall and F1 score of 0.92. The LSTM models obtained a precision, recall, 

and F1 score of 0.91. However, the RNN models had a precision score of 0.85 and a recall 

and F1 score of 0.84, indicating lower performance than the experiment's other models. 

 

Table 5.4: STWPT Performance Evaluation 

 

Model Precision Recall F1- Score 

BERT 0.92 0.91 0.92 

DistilBERT 0.90 0.89 0.90 

CNN 0.92 0.92 0.92 

LSTM 0.91 0.91 0.91 

RNN 0.85 0.84 0.84 
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5.2.4 ST Performance Evaluation 

Our automated tagging system for negative Amazon product reviews utilizes deep 

learning models. It employs three different type of subtopic tagging to identify and tag 

negative reviews based on their topics accurately. The performance evaluation of our 

subtopic tagging system is presented in Figure 5.1, 5.2, and 5.3. Precision, recall, and F1-

score metrics are used to evaluate the performance of subtopic tagging without topic, 

subtopic tagging with known topic, and subtopic tagging with the predicted topic for 

BERT, DistilBERT, CNN, LSTM, and RNN models. 

 

 

 

Figure 5.1: Precision of SubTopic Tagging 

Figure 5.1 shows the precision of subtopic tagging for each model. BERT achieves 

the highest precision score for all subtopic tagging levels, ranging from 0.90 to 0.92. 
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DistilBERT and CNN also achieve high precision scores, ranging from 0.85 to 0.92. LSTM 

and RNN models achieve lower precision scores, with RNN achieving the lowest. 

 

 

 
 

Figure 5.2: Recall of SubTopic Tagging 

Figure 5.2 shows the recall of subtopic tagging for each model. BERT achieves the 

highest recall score for all subtopic tagging levels, ranging from 0.90 to 0.91. DistilBERT 

and CNN also achieve high recall scores, ranging from 0.86 to 0.92. LSTM and RNN 

models achieve lower recall scores, with RNN achieving the lowest. 
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Figure 5.3: F1 Score of SubTopic Tagging 

 

Figure 5.3 shows the F1 score of subtopics tagging for each model. BERT achieves 

the highest F1 score for all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT 

and CNN also achieve high F1 scores, ranging from 0.85 to 0.92. LSTM and RNN models 

achieve lower F1 scores, with RNN achieving the lowest.  

Based on our experiment, BERT achieved the highest precision, recall, and F1 

scores across all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT and CNN 

also achieved high scores, ranging from 0.85 to 0.92. On the other hand, LSTM and RNN 

models obtained lower scores, with RNN achieving the lowest precision, recall, and F1 

scores. The results suggest that transformer-based models such as BERT and DistilBERT 

outperform traditional neural networks such as LSTM and RNN in subtopic tagging tasks. 
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CHAPTER VI:

CONCLUSION AND FUTURE WORK 

Amazon sellers face a significant hurdle in maintaining high ratings for success 

when they receive negative customer reviews. To help sellers quickly identify the 

root cause of negative reviews, ReviewTag using deep learning models such as 

BERT, DistilBERT, LSTM, RNN, and CNN to categorize negative reviews into 

broader topics, such as product issues and seller issues. ReviewTag provides subtopic 

tagging, which offers more insight into customers' specific concerns.  

We categorized negative Amazon product reviews using topic and subtopic 

tagging to evaluate the system's effectiveness. Our findings showed that BERT, a 

transformer-based architecture and pre-trained on vast amounts of text data, is an 

exceptional deep learning model for automated tagging in terms of topic tagging. 

BERT achieved a precision, recall, and F1-score of 0.97, 0.96, and 0.96, 

respectively. Moreover, when predicting the subtopic, BERT also displayed high 

precision, recall, and F1-score of 0.92, 0.91, and 0.92, respectively. On the other hand, 

the CNN sentence classifier model, which extracts features from sentences, such as 

word usage, order, and relationships, showed similar precision, recall, and F1-score of 

0.92, 0.92, and 0.92. 

One limitation of ReviewTag is the availability of limited datasets for each class, 

which can affect the reliability of the model's tagging for specific topics and 

subtopics. Additionally, the manual labeling of reviews for training the model can take 

time, hindering its scalability in handling a large volume of reviews. 

While the proposed Tagging Amazon Product Negative Review with 

Deep Learning System offers significant value to Amazon sellers, there is potential for 

further development and expansion. The system could incorporate sentiment analysis to 

provide an overall sentiment score for customer reviews, enabling sellers to quickly 

identify 
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positive and negative feedback. The system could also integrate with Amazon's product 

ranking algorithm to provide insights into how customer reviews impact product ranking 

and sales. Additionally, the system could expand to analyze positive reviews, providing 

sellers with a comprehensive understanding of customer feedback.  
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