
Copyright

by

Priyanka Kumari

2023

REVIEWTAG: TAGGING AMAZON NEGATIVE PRODUCT

REVIEW WITH DEEP LEARNING

by

Priyanka Kumari, MSCS

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Science

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2023

REVIEWTAG: TAGGING AMAZON NEGATIVE PRODUCT

REVIEW WITH DEEP LEARNING

by

Priyanka Kumari

APPROVED BY

__

Kewei Sha, PhD, Chair

__

Yalong Wu , PhD, Committee Member

__

Wei Wei, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Associate Dean

__

Miguel A. Gonzalez, PhD, Dean

Dedication

 I dedicate this thesis to my family. Their unwavering love and support have been

a constant source of inspiration throughout my academic journey. I am grateful for their

encouragement and belief in me, even during the most challenging times. Their

sacrifices and understanding have allowed me to pursue my passions and reach this

point. This thesis is a testament to their love and a small token of my appreciation for all

that they have done for me.

v

Acknowledgements

My academic journey has been enriched by the unwavering guidance and support

of my thesis advisor, Dr. Kewei Sha, to whom I am immensely grateful. Dr. Sha invested

a significant amount of time and effort into reviewing my thesis, providing invaluable

suggestions that greatly improved my work, and sharing his vast wisdom and expertise. I

cannot express enough gratitude for his contributions.

I also extend my gratitude to Dr. Yalong Wu, Committee Member, for his valuable

time, constructive discussions, insightful comments, and support. Additionally, I would

like to thank Dr. Wei Wei for serving as a committee member and providing constructive

feedback and guidance. Her suggestions significantly enhanced my understanding of the

field and improved the quality of my work.

These professors and their expertise and dedication have been instrumental in

helping me to complete this work. Their unwavering support and encouragement have

inspired me to reach my full potential, and I am truly grateful for their patience and

understanding throughout this exciting but challenging journey.

I also want to acknowledge the contributions of all those who have supported me

in this journey, including my colleagues, friends, and family. Their assistance and

motivation were essential in bringing this project to a successful conclusion.

Finally, I would like to thank the institution for its support and resources, including

the library and computer facilities, which were critical for my research and the preparation

of this thesis.

vi

ABSTRACT

REVIEWTAG: TAGGING AMAZON NEGATIVE PRODUCT

REVIEW WITH DEEP LEARNING

Priyanka Kumari

University of Houston-Clear Lake, 2023

Thesis Chair: Dr. Kewei Sha

The success of Amazon sellers hinges on high ratings and meeting customer needs

with exceptional products and services. However, the large scale of negative reviews pose

significant challenges that require careful analysis to identify underlying reasons of buyers

concerns. We aim to develop an automated tagging system named ReviewTag to address

this challenge. The system uses deep learning models and Natural Language Processing

(NLP) techniques to swiftly categorize negative reviews into two broader categories i.e.,

product issues and seller issues.

The system provides further insight into customers' specific issues using subtopic

tagging, allowing Amazon sellers to identify areas for improvement and make data-driven

decisions to meet evolving customer expectations.

We employ five deep learning models to perform topic and subtopic tagging. These

models include Bidirectional Encoder Representations from Transformers (BERT),

Distilled Bidirectional Encoder Representations from Transformers (DistilBERT),

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Recurrent

Neural Network (RNN). Based on the evaluation with a prototype implementation of

vii

ReviewTag, the BERT model demonstrates high precision, recall, and F1-scores of 0.97,

0.96, and 0.96, respectively, for topic tagging. Additionally, the BERT and CNN models

show impressive precision, recall, and F1-scores of about 0.92, for subtopic tagging. These

results demonstrate the effectiveness of deep learning models for automatically tagging

negative product reviews on Amazon. It helps Amazon sellers take action to improve their

product ratings.

viii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

CHAPTER I: INTRODUCTION .. 1

1.1 Background and Significance ... 1
1.2 Motivation and Research Challenges.. 2
1.3 Research Design and Results .. 3

1.3.1 Research Design... 3
1.3.2 Research Result .. 5

1.4 Organization of Thesis .. 5

CHAPTER II: RELATED WORK ... 7

CHAPTER III: DESCRIPTION OF DATASET AND PROBLEM MODELING 9

3.1 Amazon Review Acquisition .. 9
3.2 Amazon Review Tagged Dataset .. 9
3.3 Amazon Review Data Transformation ... 13

3.3.1 Vocab Tokenization: .. 13
3.3.2 Ids and Masks Tokenizers .. 16

CHAPTER IV: THEORETICAL FOUNDATIONS OF DEEP LEARNING 19

4.1 Automated Tagging System .. 19
4.1.1 Topic Tagging (TT) ... 19
4.1.2 SubTopic Tagging without Known Topic (STWOT) 20
4.1.3 SubTopic Tagging with Known Topic (STWKT) 21
4.1.4 SubTopic Tagging with Predicted Topics (STWPT) 22

4.2 Introduction of Neural Network.. 23
4.2.1 Loss Function ... 23
4.2.2 Optimizer ... 24
4.2.3 Learning Rate ... 25
4.2.4 Dropout .. 25

4.3 Embedded Layer ... 26
4.3.1 Input-Output Embedded Layer .. 26
4.3.2 fastText .. 28
4.3.3 fastText Embeddings Layer ... 29

4.5 Fully Connected Layer .. 30
4.6 Introduction to Deep Learning Models ... 31

4.6.1 BERT ... 31
4.6.2 DistilBERT .. 33

ix

4.6.3 CNN ... 35
4.6.4 LSTM ... 37
4.6.5 RNN ... 39

CHAPTER V: PERFORMANCE EVALUATION .. 41

5.1 TT Performance Evaluation .. 42
5.2 ST Performance Evaluation .. 43

5.2.1 STWOT Performance Evaluation .. 44
5.2.2 STWKT Performance Evaluation .. 45
5.2.3 STWPT Performance Evaluation ... 46
5.2.4 ST Performance Evaluation ... 47

CHAPTER VI: CONCLUSION AND FUTURE WORK .. 50

REFERENCES ... 52

x

LIST OF TABLES

Table 2.1: Count of Topics ... 12

Table 2.2: Count of SubTopics ... 12

Table 5.1: TT Performance Evaluation ... 42

Table 5.2: STWOT Performance Evaluation .. 44

Table 5.3: STWKT Performance Evaluation .. 45

Table 5.4: STWPT Performance Evaluation .. 46

xi

LIST OF FIGURES

Figure 3.1: Categories of topics and subtopics ... 11

Figure 3.2: Text Tokenization... 14

Figure 3.3: Padding Ids and batch... 16

Figure 3.4: Ids and Masks ... 17

Figure 3.5: Ids Batches(left) and Masks Batches(right) ... 18

Figure 4.1: Topic Tagging (TT) .. 20

Figure 4.2: SubTopic Tagging without Topic (STWOT) ... 20

Figure 4.3: SubTopic Tagging with Known Topic (STWKT) ... 21

Figure 4.4: SubTopic Tagging with Predicted Topic (STWPT) 22

Figure 4.5: Embedded Layer... 27

Figure 4.6: fastText (FT)... 28

Figure 4.7: Vocab and Fast Text to Embedding ... 30

Figure 4.8: BERT .. 32

Figure 4.9: DistilBERT ... 34

Figure 4.10: CNN.. 35

Figure 4.11: LSTM ... 38

Figure 4.12: RNN.. 39

Figure 5.1: Precision of SubTopic Tagging .. 47

Figure 5.2: Recall of SubTopic Tagging... 48

Figure 5.3: F1 Score of SubTopic Tagging .. 49

1

CHAPTER I:

INTRODUCTION

1.1 Background and Significance

Amazon is a technology and online retail company that has succeeded in the e-

commerce industry through advanced technology and innovative practices. The

e-commerce industry encompasses the buying and selling of products and services

using online platforms. This industry has seen substantial growth in recent years, with

many businesses and consumers opting in for e-commerce as a convenient and efficient

shopping method [1]. Amazon platform's customer feedback system enables

shoppers to leave ratings and reviews, which offer valuable insights into the quality of

products and services available on the platform. Amazon sellers can derive various

advantages from customer feedback, whether it is positive or negative. Positive feedback

can provide social proof of the quality of the sellers products or services, which can

help build trust with potential customers and increase sales. It helps to increase a

sellers visibility on the Amazon platform.

On the other hand, negative feedback not only helps other customers

make informed buying decisions, but it also benefits the sellers by identifying

areas for improvement and addressing any issues with their products or services. It

helps sellers effectively to tackle the issues and elevate their product ranking on

Amazon. The e-commerce platforms, such as Amazon, rely on customer ratings and

reviews to assess the quality of products and services offered by sellers. Higher-rated

products are more likely to the top of search results, resulting in increased sales and

revenue for sellers. This creates a strong incentive for sellers to continuously improve

their offerings to meet the needs of customers and maintain a high rating. To stay

competitive in the e-commerce industry,

2

sellers must prioritize providing exceptional products and services that attract and retain

customers, ultimately leading to revenue growth [2].

1.2 Motivation and Research Challenges

Amazon sellers are individuals or businesses that use Amazon's platform to sell

their products and services to customers. They can operate independently or as a part of

Amazon's Fulfillment by Amazon (FBA) program, where their products are stored in

Amazon's warehouses, and Amazon handles the fulfillment and shipping process [3].

Amazon sellers offer various products and services, including clothing, shoes, and jewelry,

playing a significant role in the e-commerce industry, and contributing to Amazon's

success as a leading online marketplace. However, maintaining their product rankings can

be difficult due to factors like analyzing vast amounts of customer feedback, particularly

negative reviews.

Especially for high-volume sellers, analyzing customer feedback, particularly

negative reviews, can be time-consuming and energy-intensive, requiring careful attention

to maintain product rankings. Amazon sellers must meticulously read and analyze each

customer's feedback to identify areas for improvement or issues that require attention to

improving product descriptions, addressing complaints, and providing prompt and reliable

customer service.

Negative customer reviews can significantly impact Amazon sellers businesses,

affecting their reputation and revenue as it can give potential customers the impression that

the seller's products or services are unsatisfactory, ultimately leading to lost sales. In

addition, negative reviews can adversely affect a seller's search rankings, making it harder

for them to be discovered by new customers [4]. Amazon sellers must prioritize offering

excellent products and services while actively managing customer feedback to maintain a

positive reputation and attract more customers.

3

The primary objective of this thesis is to develop a system called ReviewTag, which

will briefly categorize negative reviews into categories and sub-categories, enabling sellers

to identify areas of concern quickly. Implementing this approach can save sellers time

while improving their understanding of customer needs, resulting in higher product ratings

and tremendous success on the Amazon platform. The method for categorizing reviews is

called "topic tagging". It involves tagging reviews into two primary categories: product

issues and seller issues. Product issues relate to problems with the product itself, while

seller issues relate to problems with the seller. The system will use "subtopic tagging" to

provide further insight into the issues to break down each category into sub-categories. For

product issues, subtopics will include design issues, quality issues, and product description

issues. For seller issues, subtopics consist of product authentication issues and delivery and

return issues.

1.3 Research Design and Results

1.3.1 Research Design

The automated system, ReviewTag based on deep learning algorithms is designed

to assist sellers by classifying customer reviews into predetermined tags using NLP

techniques. This system uses text tagging, a fundamental task in NLP, to provide insights

into the reasons behind negative ratings. The system utilizes four automated techniques:

Topic Tagging (TT), SubTopic Tagging with Known Topics (STWKT), SubTopic Tagging

without Topic (STWOT), and SubTopic Tagging with Predicted Topics (STWPT). The

techniques use deep learning models like Bidirectional Encoder Representations from

Transformers (BERT), Distilled Bidirectional Encoder Representations from Transformers

(DistilBERT), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),

and Recurrent Neural Network (RNN) to ensure accuracy and efficiency.

4

"Topic Tagging (TT)" is a technique of classifying reviews into broad categories,

such as product issues and seller issues, to help sellers identify areas for improvement.

Product issues relate to problems with the product itself, while seller issues relate to

problems with the sellers service. Using topic tagging, sellers can easily understand what

customers say about their products and services, enabling them to make better decisions

and improve their business.

"SubTopic Tagging" is a technique used to classify reviews into specific subtopics

within the broad categories of product issues and seller issues. This approach involves three

different ways to tag subtopics: subtopic tagging with known topic, subtopic tagging

without topic, and subtopic tagging with predicted topics. By usng known subtopics, sellers

can get more in-depth insights into specific areas that need improvement and act

accoordingly.

SubTopic Tagging with Known Topics (STWKT) is a technique of classifying

reviews using predetermined subtopics within the broad categories of product issues and

seller issues. This approach involves tagging the reviews with the known subtopics within

each category, such as design issues, quality issues, and product description issues for

product issues and product authentication issues, delivery and return issues for seller issues.

SubTopic Tagging without Topic (STWOT) is an alternative technique to subtopic

tagging that uses machine learning algorithms to identify and classify subtopics without

predetermined topic knowledge because topic information may not be available. This

technique involves analyzing the text data of reviews and tagging them into subtopics.

SubTopic Tagging with Predicted Topics (STWPT) technique aims to improve the

accuracy of subtopic tagging when topic information is not available. It uses the "Topic

Tagging" method to predict the topic, then, the subsequent "SubTopic Tagging" process

further categorizes the review, allowing sellers to pinpoint specific areas for improvement.

5

ReviewTag classifies customer reviews into predetermined tags and provide

insights into the reasons of negative ratings. It includes topic tagging and subtopic tagging.

These techniques help sellers identify areas for improvement, discover new areas, and

make informed decisions to improve their products and services based on customer

reviews.

1.3.2 Research Result

We evaluated the performance of the deep learning system using precision, recall,

and F1 score. They compared the predicted categories with the actual categories assigned

to the reviews by topic tagging. The findings showed that BERT had the highest F1 score

of 0.96, with a precision of 0.97 and a recall of 0.96. DistilBERT, CNN, and LSTM

achieved a similar F1 score of 0.95, with precision and recall scores ranging from 0.95 to

0.96. RNN had the lowest F1 score of 0.83, with a precision of 0.87 and a recall of 0.80.

The results show that BERT achieved the highest precision, recall, and F1 score for

all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT and CNN also achieved

high scores, ranging from 0.85 to 0.92. However, LSTM and RNN models achieved lower

scores, with RNN performing the worst. The research findings demonstrate the

effectiveness of the deep learning models for automated tagging of negative product

reviews on Amazon. Based on customer feedback, the system can provide valuable insights

for sellers to improve their products and services.

1.4 Organization of Thesis

The thesis is divided into six chapters. Chapter I introduces the research topic, its

background, and significance. It also outlines the motivation and challenges, design, and

results. Chapter II reviews the relevant literature. Chapter III describes the process of

acquiring the Amazon review dataset, creating the Amazon review tagged dataset, and

tokenizing the dataset. Chapter IV presents the architecture of ReviewTag. Chapter V

6

describes the approaches to identify topics and subtopics. Finally, Chapter VI summarizes

the research findings, limitation, and recommendations for future research studies.

7

CHAPTER II:

RELATED WORK

ReviewTag is an automated tagging system that uses deep learning models

and Natural Language Processing (NLP) techniques to categorize negative reviews on

Amazon into product and seller issues and subtopic tagging to provide more specific

insight into customer concerns. Several related works share similarities with

ReviewTag regarding using NLP and deep learning techniques to extract insights from

online content.

One such related work is Topic modeling, a powerful technique to uncover hidden

structures in large document collections [5,6]. It can help differentiate the usage of words

with different meanings and link words with similar contexts. Topic modeling

methods include Vector Space Model (VSM) [7], Latent Semantic Indexing (LSI) [8],

Probabilistic Latent Semantic Analysis (PLSA) [9], and Latent Dirichlet Allocation

(LDA). These methods have applications in text categorization, tag recommendation,

keyword extraction, and similarity search in text mining and information retrieval, much

like topic and subtopic tagging.

Another related work is blog mining, which involves extracting valuable

information from blog data, such as tags and multidimensional data [10]. A tag-topic model

for blog mining is introduced in one paper based on the Author-Topic model [11]

and Latent Dirichlet Allocation [12]. This model determines the most likely tags and

words for a given topic in a collection of blog posts, like how ReviewTag categorizes

reviews into product and seller issues and subtopics.

The study on identifying and evaluating documented serious illness

communication (SIC) relates to ReviewTag's use of NLP techniques to analyze text

data [13]. However, this study focuses on identifying and characterizing

documented serious illness

8

communication with oncology patients to measure healthcare quality, whereas ReviewTag

categorizes negative reviews on Amazon.

Finally, a related work used the Sentence-Level Topic Model (SLTM) method to

extract product features from smartphone reviews on Amazon [14, 15]. The SLTM method

has been used previously to extract features from online reviews and can extract both

explicit and implicit features from reviews. The SLTM method uses NLP and machine

learning techniques to extract features from online reviews, like ReviewTag's use to

categorize reviews into product and seller issues and subtopics.

In summary, these related works demonstrate the potential of NLP and machine

learning techniques to extract insights from online content, much like ReviewTag.

However, each related work has its unique focus, such as topic modeling, blog mining,

SIC, and feature extraction. At the same time, ReviewTag specifically targets negative

reviews on Amazon to help sellers make data-driven decisions.

9

CHAPTER III:

DESCRIPTION OF DATASET AND PROBLEM MODELING

Amazon reviews are essential to an Amazon seller. They offer valuable

insights into how customers view their products, with negative reviews incredibly

significant. Negative reviews can help sellers identify areas of improvement, maintain

a favorable product ranking on Amazon, and address any issues or concerns that

customers may have. By addressing negative feedback, sellers can improve their products

and customer service, increasing sales and higher customer satisfaction.

3.1 Amazon Review Acquisition

The dataset used for this thesis, obtained from the University of California

San Diego (UCSD), includes a vast collection of 142.8 million product reviews and

metadata from Amazon [16, 17, 18]. These reviews were written by customers between

May 1996 and Oct 2018, spanning a considerable duration and offering a diverse range

of opinions and preferences. Notably, the dataset comprises various product categories,

with Clothing, Shoes, and Jewelry being the most prevalent.

The thesis required a dataset with an overall rating and review text to train

ReviewTag for sellers to analyze the products on Amazon. The UCSD-provided Amazon

dataset was considered suitable for analysis due to its extensive attribute, overall

rating, and review text.

3.2 Amazon Review Tagged Dataset

Amazon sellers must analyze many negative reviews to understand why their

products receive poor ratings. Developing ReviewTag involves selecting reviews with

one or two-star ratings, which indicates Negative Product Reviews, and then

manually analyzing it. Manual tagging is preferred over automated tagging

techniques because automated tagging relies on algorithms that may need to fully

understand the context and

10

nuances of natural language, which can lead to incorrect or incomplete tagging. On the

other hand, manual tagging allows human analysts to read and comprehend each review

carefully, considering the overall sentiment, the issues raised, and any relevant subtopics.

Although manual tagging may take longer than automated tagging, it tags reviews with

specific criteria, such as product or service issues.

ReviewTag categorizes negative reviews into two primary categories: product

issues and seller issues. The tags for product issues relate to problems with the product

itself, while the tags for seller issues relate to problems with the seller. Each category is

further broken-down using subtopics to provide a deeper understanding of the issues. For

example, the tags for product issues may include design issues, quality issues, and product

description issues, while those for seller issues may include product authentication issues,

and delivery and return issues. Quality issues refer to problems with the material used, such

as unpleasant odors in clothes or shoes. Design issues pertain to size or fit issues and may

also encompass jewelry. Product description issues involve errors or inaccuracies in the

product's details, such as incorrect sizing information. Meanwhile, the seller issues

category is also divided into subtopics. These subtopics include product authentication and

delivery and return issues. Product authentication issues denote the sale of counterfeit

products, which can be a significant problem for both sellers and customers. Delivery and

return issues refer to problems with the shipping process, such as delays in delivery or

difficulties in returning products.

The system can identify patterns and themes that help sellers improve their products

and services by analyzing thousands of reviews and using the tagging process. Figure 3.1

summarizes the hierarchy of tags in this work.

11

Figure 3.1: Categories of topics and subtopics

The UCSD Amazon dataset presents a challenge in obtaining an adequate number

of negative reviews due to an imbalance between positive and negative datasets, which

results in a lower percentage of negative reviews than positive ones. Specifically, the

positive dataset has 26 million entries, while the negative dataset only has 4 million.

Additionally, manual tagging of negative reviews can be difficult and time-consuming,

further adding to the challenge of collecting adequate negative reviews.

Despite these difficulties, the entire negative review dataset within the UCSD

Amazon dataset contains 12053 entries. For each entry, it will have a tag of a topic and a

tag of SubTopics. The table 2.1 shows the count of reviews that have been tagged with two

topics: Product Issue and Seller Issue. There are 7932 reviews tagged as Product Issue and

4121 reviews tagged as Seller Issue.

12

Table 2.1: Count of Topics

Topic Count

Product Issue 7932

Seller Issue 4121

Table 2.2 presents a detailed breakdown of the count of tags for subtopics. The

Product Issue topic has three subtopics: Quality Issue with 2012 reviews tagged, Design

Issues with 2785 reviews tagged, and Product Description Issue with 3135 reviews tagged.

However, collecting high-quality data for Seller Issues presents a challenge because issues

related to product authenticity may require customers to possess specific knowledge about

the product, such as its manufacturing process or the source of materials used. Similarly,

delivery and return issues may require customers to have experienced certain situations,

such as receiving damaged goods or undergoing extended wait times for delivery. The

Seller Issue topic has two subtopics: Product Authenticity Issue with 2399 reviews tagged,

and Delivery and Return Issue with 1722 reviews tagged.

Table 2.2: Count of SubTopics

Topic SubTopic Count

Product Issue Quality Issues 2012

Product Issue Design Issues 2785

Product Issue Product Description Issues 3135

Seller Issue Product Authenticity Issues 2399

Seller Issue Delivery and Return Issues 1722

13

3.3 Amazon Review Data Transformation

The Amazon Negative Product Review-Manual Tagging has two columns:

reviewText and tags, where reviewText includes the textual content of Amazon product

reviews. However, deep learning algorithms require numerical inputs, so we must convert

the reviewText data into a numerical format through tokenization. Tokenization breaks

down the text data into individual tokens or words and assigns each token a numerical

value that can be used as input for deep learning models.

NLP tasks, such as topic tagging on Amazon product reviews, often rely on popular

tokenizer libraries. There are two commonly used tokenizer libraries for natural language

processing: NLTK Word Tokenizer [20] for Vocab Tokenization and Hugging Face

Tokenizer [21, 22] for Ids and Masks Tokenization. Both tokenizers are designed to capture

as much information as possible from the input review text. However, Vocab Tokenization

is typically used for LSTM, RNN, and CNN models, while Ids and Masks Tokenizers are

used for BERT and DistilBERT models.

3.3.1 Vocab Tokenization:

 The NLTK Word Tokenizer is a Python module in the Natural Language Toolkit

(NLTK) library that provides functionality for tokenizing text into individual words [19].

The NLTK Word Tokenizer is a natural language processing tool that leverages "basic

English" to break down raw text data into individual words, phrases, and sentences [20].

The primary objective of a tokenizer is to convert unstructured text data into structured

data that can be readily analyzed and processed by machine learning models. The tokenizer

typically removes punctuation marks and special characters and segments the text into

individual words. This process helps to organize the text data and make it more manageable

and structured for efficient analysis by machine learning models. In the upcoming section,

we will perform text tokenization.

14

Figure 3.2: Text Tokenization

The process of tokenizing text involves several steps, as shown in Figure 3.2. The

four main steps involved in creating a tokenized text are reviewText, tokenizer, vocab, and

ids. First, to analyze text data, we need to use a tokenizer to break it down into smaller

units of meaning, such as words or parts of words. Tokenization involves taking the text

and dividing it into individual tokens. Figure 3.2 depicts the tokenization process, where

the sentence "The gloves are of very poor quality." is transformed into individual tokens,

['The', 'gloves', 'are', 'of', 'very', 'poor', 'quality', '.']. The figure also shows reviewText1,

reviewText2, ... reviewText9642, passed through a tokenizer to generate tokenizer1,

tokenizer2...tokenizer9642.

Once we have broken down the text into individual tokens, we can generate a

vocabulary or vocab comprising all the unique tokens. Figure 3.2 shows an example vocab

that consists of eleven words, including two special reserved words. The first reserved

word, "<unk>", is a placeholder for unknown words that the tokenizer cannot include in

the vocab. The second reserved word, "<pad>", is used to pad token sequences to a fixed

15

length. The remaining nine words represent the actual tokens in the text. Our task is to

tokenize the reviewText, which contains 9642 instances, likely to have repeated words,

making the overall vocab smaller than the total number of tokens. In this example, the

vocab has 4773 words, with the first few reserved for special purposes, such as unknown

and padding words. These special reserved words have specific identifiers that enable us

to represent the text as a sequence of integers.

 Finally, each token is assigned a unique identifier or id to represent the text as a

sequence of integers. In this figure 3.2, we have assigned the Ids [2, 3, 4, 5, 6, 7, 8] to the

tokens in our vocab, starting from the third word, "The", which has an id of 2, and ending

with the token "fake", which has an id of 10. These ids represent the reviewText data, such

as reviewText1, reviewText2, ... reviewText9642, which is converted into a sequence of

ids1, ids2... ids9642.

We focus is on padding input ids and creating batches, as shown in Figure 3.3,

which illustrates the flow from input ids to batches. Deep learning models require inputs

to be of equal length, while naturally, input ids can have varying lengths as different texts

may have different lengths. To address this, we will pad the input ids with zeros to make

them uniform, with a maximum length of 256. If an id is shorter than 256, we add zeros; if

it is longer, we truncate it. This process is called padding, and we will apply it to all 9642

input ids, resulting in a padded dataset.

16

Figure 3.3: Padding Ids and batch

In the previous section, we discussed the importance of padding input ids and

creating batches for deep learning models. In Figure 3.3, we divide the padded ids into 150

batches, with each batch consisting of 64 padded ids. Batches offer several advantages:

• It efficiently uses memory during training by avoiding loading the entire dataset

simultaneously.

• It speeds up the learning process by enabling the model to update parameters more

frequently by simultaneously processing smaller subsets of data.

• It helps to avoid overfitting by exposing the model to a more diverse set of

examples in each iteration.

3.3.2 Ids and Masks Tokenizers

Tokenization is critical in preparing text data for machine learning models in NLP.

It involves breaking down a text into its constituent words or sub words to enable the model

to analyze it. The Hugging Face Tokenizer is a Python package for natural language

processing that provides tokenization functionality for various state-of-the-art transformer

17

models, including BERT and DistilBERT [21, 22]. The library that offers state-of-the-art

tokenization techniques based on transformer models. One of its critical features is the

ability to fine-tune the techniques to perform topic tagging, a crucial capability for deep

learning models. We can explore customer issues and preferences by applying Tokenizers

to Amazon's Negative Product Reviews and identify recurring patterns or concerns.

Ids and Masks is dedicated to discussing input ids and masks for transformer

models, such as BERT and DistilBERT batches. Figure 3.4 illustrates the primary

components involved, which include reviewText, ids, and masks.

Figure 3.4: Ids and Masks

The mask tokenizer adds a special "mask" token to the input sequence, instructing

the model to ignore specific input tokens during training. Transformer models require

inputs to have equal length, thus we use a tokenizer such as Roberta-base or DistilBERT-

base-uncased to convert reviewText into ids and masks. The total number of reviewText is

9642, resulting in 9642 ids and masks.

18

Figure 3.5: Ids Batches(left) and Masks Batches(right)

Figure 3.5, the left-hand side, illustrates the input ID batches, an ID matrix, and ID

batches. The tokenizer assigns each token in the input text a unique ID, enabling the model

to comprehend the text. The right-hand side displays the Masks batches, which consist of

input masks, a mask matrix, and mask batches. A unique mask token is appended to the

input sequence during tokenization, indicating the model ignores specific input tokens

during training.

The 9642 input IDs and masks into 150 batches, each comprising 64 masks. Batch

processing offers several advantages, such as efficient memory utilization, faster learning,

and a reduced risk of overfitting. We can train our deep learning models effectively and

achieve more accurate results by utilizing batch processing.

19

CHAPTER IV:

THEORETICAL FOUNDATIONS OF DEEP LEARNING

The thesis proposes developing ReviewTag that can aid sellers in

managing customer reviews efficiently. The last chapter involved the preparation of

the Amazon Review Tagged Dataset Chapter 3.2, which was then pre-processed using

a tokenizer in the Amazon Review Data Transformation Chapter 3.3. In this chapter, we

will introduce the concepts of NLP, such as hyperparameters, model architecture, and

deep learning models, along with overview of the Automated Tagging System.

4.1 Automated Tagging System

We are developing an automated tagging system for negative reviews of

Amazon products, utilizing state-of-the-art deep learning techniques such as BERT,

DistilBERT, LSTM, RNN, and CNN. This system aims to enhance the visibility of

Amazon sellers by effectively identifying and tagging negative reviews based on their

topics. The system offers topic tagging and three distinct subtopic tagging methods:

subtopic tagging without topic, subtopic tagging with topic, and subtopic tagging with

predicted topics.

4.1.1 Topic Tagging (TT)

Topic tagging helps sellers categorize reviews into broader categories like product

issues and seller issues, which assists them in identifying areas that need

improvement. Product issues usually stem from problems with the product, while seller

issues arise from problems with the seller's service. Figure 4.1 depicts implementing TT

system using a deep learning model called the topic classifier. The system takes

Amazon's negative reviews as input, and the topic classifier analyzes the text of each

review and predicts the related product or seller issue based on the words and phrases

used in the review.

20

Figure 4.1: Topic Tagging (TT)

4.1.2 SubTopic Tagging without Known Topic (STWOT)

SubTopic Tagging without a Topic can classify subtopics such as design issues,

quality issues, and product description issues for product issues and product authentication

issues, delivery and return issues for seller issues without predetermined topic knowledge.

Figure 4.2: SubTopic Tagging without Topic (STWOT)

21

The implementation of STWKT system using a deep learning model called a

subtopic classifier is depicted in Figure 4.2. After taking in Amazon product reviews as

input, the subtopic classifier analyzes the text of each review. It predicts the related

subtopic issues based on the words and phrases used in the review.

4.1.3 SubTopic Tagging with Known Topic (STWKT)

STWKT involves further categorizing reviews into predetermined subtopics under

the broader categories of product and seller issues. This method entails labeling the reviews

with specific subtopics within each category, such as design issues, quality issues, and

product description issues for product issues, product authentication issues, delivery and

return issues for seller issues.

Figure 4.3: SubTopic Tagging with Known Topic (STWKT)

22

In Figure 4.3, the implementation of the STWOT system employs a deep learning

model called the SubTopic product and SubTopic seller classifiers for analyzing product

issues and seller issues reviews, respectively. Amazon negative reviews are separated into

two categories: Amazon negative product reviews and Amazon negative seller reviews.

The system takes Amazon's negative product review as input, and the SubTopic product

classifiers analyze the text of each review to predict the related subtopics of product issues.

Similarly, the system takes Amazon's negative seller review as input, and the SubTopic

seller classifiers analyze the text of each review to predict the related subtopics of seller

issues.

4.1.4 SubTopic Tagging with Predicted Topics (STWPT)

The "SubTopic Tagging with Predicted Topics" technique can be an effective tool

for Amazon sellers without labeled datasets for negative reviews of their products. This

technique predicts the negative review's topic and the subtopic based on the predicted topic

and the negative review.

Figure 4.4: SubTopic Tagging with Predicted Topic (STWPT)

23

In Figure 4.4, Amazon negative review is first passed to a topic classifier. The topic

classifier predicts the topic of the review. The predicted topic and the Amazon negative

review are concerted and passed to a subtopic classifier. The subtopic classifier uses the

predicted topic to predict the review's subtopic accurately.

4.2 Introduction of Neural Network

Neural Networks are a powerful machine learning techniques used extensively in

Natural Language Processing NLP to perform various tasks, such as topic tagging. One

key aspect of neural networks is using hyperparameters, which are model parameters the

user sets before training the model. These hyperparameters, including the loss function and

optimizer, significantly impact the model's performance during training and can affect its

final performance [23]. In this context, understanding the role of hyperparameters in NLP

is crucial for achieving optimal results in various NLP tasks.

4.2.1 Loss Function

A loss function is a mathematical function that measures the difference between the

predicted output of a model and the actual output. The goal of a deep learning model is to

minimize this difference, also known as the "loss" so that the predicted output is as close

to the actual output as possible. In natural language processing, many tasks aim to predict

a given input text's correct label or category. For example, in topic tagging for Amazon

reviews, the task is to predict which topics the review is about, such as "quality", "design",

"delivery service", etc.

We need a loss function to train a model for this task, which measures the difference

between the predicted and actual labels. The loss function guides the model to learn the

correct parameters during training by minimizing the difference between the predicted and

actual labels. For Transformer models such as BERT and DistilBERT, a cross-entropy loss

24

is the most used loss function for topic tagging [24]. This loss function penalizes the model

for making incorrect predictions by computing the negative log-likelihood of the actual

label, given the predicted probability distribution over all possible labels. For CNN, LSTM,

and RNNs models, the same cross-entropy loss function can also be used for topic tagging.

However, different architectures may require different loss function modifications or

additional regularization techniques to prevent overfitting.

4.2.2 Optimizer

An optimizer is an algorithm used during the training of machine learning models

to minimize the loss function by updating the model parameters based on the loss gradients

for those parameters. The goal of an optimizer is to find the set of model parameters that

will result in the lowest possible value of the loss function.

In the deep learning models such as BERT, DistilBERT, CNN, LSTM, and RNN

related to Amazon review topic tagging, the optimizer is typically chosen as Adam, which

is an adaptive optimization algorithm that adjusts the learning rate of each weight during

training based on the previous gradients for that weight. Adam (Adaptive Moment

Estimation) is a popular optimizer used in deep learning that is well-suited for large

datasets and complex models like Amazon Review [25]. Adam is widely used in natural

language processing tasks due to its ability to handle sparse gradients and noisy data, which

are common in text data.

During the training process, the optimizer iteratively updates the model parameters

to minimize the loss function by computing the loss gradients for each parameter and

updating the parameter values in the direction that decreases the loss. Adam optimizer

utilizes exponentially decaying averages of past gradients and squared gradients to update

the model weights.

25

4.2.3 Learning Rate

The learning rate is the size of the "steps" taken by the optimization algorithm

during training toward the steepest descent of the loss function. If the learning rate is too

high, the optimizer can overshoot the minimum of the loss function and prevent the model

from converging [26]. Conversely, a learning rate that is too low can result in slow

convergence or the optimizer getting stuck in local minima. In this thesis, we choose

different learning rates to achieve optimal results in the deep learning model.

For the BERT and DistilBERT models used in this thesis, we have set the learning

rate of 2 to the power of -5. This is a relatively low learning rate, which helps to prevent

the models from overfitting the training data. However, it also means that the models will

take longer to learn.

In contrast, for our CNN, LSTM, and RNN models, we have chosen a learning rate

5e-4, 5e-4 = 5 x 10 ^ (-4) = 5 / (10^4), which is equal to 0.0005. It is relatively low and

suitable for models with a large number of parameters or for datasets that have high levels

of noise.

4.2.4 Dropout

Neural network models often employ regularization techniques to prevent

overfitting, and one popular method is dropout [27]. This approach involves randomly

disabling a percentage of neurons during training to encourage the network to learn more

robust features that are not dependent on individual neurons. Dropout has proven to be

effective in mitigating overfitting in neural network models.

It is worth noting that the dropout rate determines the proportion of neurons that

are randomly dropped out during training. A higher dropout rate can lead to more

substantial regularization effects, which can help to avoid overfitting. However, a higher

26

dropout rate can also increase the difficulty of training the network and reduce its accuracy

on the training data. Experts typically suggest starting with a dropout rate of 0.3 and then

experimenting with various values to determine the most effective dropout rate for the

trained network.

This thesis used dropout in a range of models, including BERT, and DistilBERT,

CNN, LSTM, and RNN. The CNN, LSTM, and RNN models were trained using a dropout

rate of 0.5, while the BERT and DistilBERT models utilized a dropout rate of 0.3.

4.3 Embedded Layer

In NLP, a neural network uses an embedding layer to convert text data into a

numerical format it can process. The network learns dense embeddings and vector

representations of text with a fixed length and are continuous-valued. These embeddings

can capture complex relationships between words and be used for various NLP tasks, such

as sentiment analysis and named entity recognition [28].

4.3.1 Input-Output Embedded Layer

The embedding layer is an essential component of many deep learning models,

including CNN, LSTM, and RNN, and its primary function is to convert word tokens into

dense vector representations. The input to the embedding layer is typically a sequence of

integer-encoded word tokens mapped to high-dimensional vectors. In Chapter 3.3.1.2, if

we consider a reviewText1 like "The gloves are very poor quality" and tokenize each word

into an integer, we could generate the input token sequence [2, 3, 4, 5, 6, 7, 8]. These tokens

would then be passed as input to the embedding layer.

27

Figure 4.5: Embedded Layer

The output of the embedding layer is a sequence of dense vector representations,

with each vector corresponding to a specific word in the input sequence. Each vector has a

fixed length, and the dimensionality of the vectors is typically a hyperparameter that can

be tuned during model training. The embedding layer aims to learn a set of vector

representations that capture the semantic relationships between words in the input

sequence. In Figure 4.5, the embedding layer is configured with a batch size of 64 and a

maximum input length of 256 [29]. Each input consists of a 1x300 vector, where the

dimensions represent related words. For instance, the word "gloves" is associated with 300

related words, including hand, leather, finger, mittens, winter, sports, fashion, latex,

motorcycle, and work. These words are assigned a vector representation at position 2 with

a shape of 1x300.

28

4.3.2 fastText

fastText is an open-source library developed by Facebook AI Research, designed

to process and classify text data efficiently, particularly in natural language processing

(NLP) [30]. It uses a neural network-based approach to learn the embeddings of words or

short phrases, called n-grams, in a continuous vector space. The embeddings represent

words semantic and syntactic meanings and can be used as input features for various

downstream NLP tasks, such as topic tagging. fastText can handle out-of-vocabulary words

by breaking them down into smaller sub word units or character n-grams, which are then

represented with their embeddings, enabling the model to generalize better to unseen words

and improve overall classification accuracy.

Figure 4.6: fastText (FT)

The fastText model is a pre-trained word embedding model that learns embeddings

of words or n-grams in a continuous vector space. It is trained on a massive dataset of text,

Common Crawl, consisting of over 600 billion tokens from various sources, including web

pages, news articles, and social media posts [31]. The model outputs 2 million word

vectors, each with a dimensionality of 300, because of this pre-training process. These pre-

trained word vectors can be used as an embedding layer in neural networks for various

29

NLP tasks, such as topic tagging. They are a great starting point for training deep learning

models on other tasks, as they allow for improved performance with less training data and

time. Figure 4.6 illustrates the output of the fastText model, which consists of 2 million

word vectors with a dimensionality of 300, called fastText embedding. The word is

represented by FTWord1, and its corresponding vector is represented by FT vector1, FT

vector2, FT vector3, ... FT vector300. The original website represented " FastText " as

"fastText".

The vector comprises 300 dimensions, each representing a unique aspect of a

word's meaning. The first dimension may indicate the word's part of speech, the second its

semantic representation, and the third its sentiment. The values assigned to each dimension

are real numbers, representing the degree of the word's association with that particular

aspect of meaning. For instance, the value in the first dimension might be -0.038194,

indicating that "fastText" is slightly more likely to be a noun than a verb based on the

vector's analysis.

4.3.3 fastText Embeddings Layer

Figure 4.7 provides an overview of the three primary components of the system:

Vocab, fastText, and embedding. The vocabulary was created using a text tokenizer,

resulting in a size of 4773 for the training dataset, as explained in Chapter 3.3.1.1.

Additionally, Chapter 4.3.2 presents fastText as a 2 million by 300 word vector.

To initialize the embedding matrix, a random matrix of size (4777, 300) is created,

matching the vocabulary size and fastText dimensionality. The matrix is initialized with

all zeros. Next, the fastText embedding is read line by line, extracting each word from FT

Word and FT Vector representation. The function checks if the word is present in Vocab

and updates its FT vector in the initialized embedding matrix. The resulting embedding

30

matrix has each row representing the embedding vector for the corresponding word in

fastText, producing an output like Chapter 4.3.3

Figure 4.7: Vocab and Fast Text to Embedding

4.5 Fully Connected Layer

Topic tagging is a popular natural language processing task involving assigning one

or more topic labels to a text document. Neural networks such as LSTM, RNN, and CNN

have been used for topic tagging successfully [32,33]. In this context, a fully connected

layer is typically added to the end of the neural network architecture to perform the final

classification task. Chapter 4.6 will discuss how a deep learning model can use topic

tagging to predict two topics. The size of the fully connected layer generating the model's

predicted layers may vary depending on the number of layers in the model.

31

4.6 Introduction to Deep Learning Models

The thesis proposes developing ReviewTag system, which assists sellers in

effectively managing customer reviews. The system leverages various Natural Language

Processing (NLP) models, including BERT, Distiller, CNN, LSTM, and RNN [34].

ReviewTag enables sellers to efficiently manage customer reviews and enhance their

products' ranking on Amazon.

4.6.1 BERT

Google developed BERT (Bidirectional Encoder Representations from

Transformers) in 2018 as a powerful natural language processing model. It is a deep neural

network that uses self-supervised learning to pre-train on a large corpus of text data,

allowing it to learn contextual relations between words in a text [35, 36]. The transformer

architecture is the foundation of BERT, which is designed to handle sequential data, such

as text. It has multiple layers of self-attention mechanisms that enable it to capture long-

range dependencies between words in a text. BERT is a bidirectional model that can

consider both left and right context when making predictions. This helps BERT understand

the context and meaning of words in a sentence. BERT can be fine-tuned on specific

downstream NLP tasks, such as sentiment analysis or named entity recognition, by training

on a smaller, labeled dataset. Fine-tuning allows BERT to achieve state-of-the-art

performance on a wide range of NLP tasks, even when training data is limited.

32

Figure 4.8: BERT

In Figure 4.8 BERT model is pre-trained on a large corpus of Amazon Negative

Product Review data and can be fine-tuned for various NLP tasks [37]. The BERT Model

consists of several layers:

• Input Layer: The BERT Model takes inputs: ids, and mask. These inputs are

encoded representations of the input text obtained using a tokenizer from the

Chapter 3.3.2.

• pre-trained Layer: The pre-trained layer refers to a neural network pre-trained on

large amounts of text data. When input text is fed into the Roberta model, the pre-

trained layer processes it and produces a sequence of hidden states for each input

token. The RoBERTa model has a deep architecture comprising multiple self-

attention layers and feed-forward neural networks.

• Fully connected Layer: The fully connected layer is a linear layer that takes the

output of the pre-trained Layer and maps it to the desired output dimensionality.

33

During the forward pass, the input ids, and mask are passed through the pre-trained

layer, generating a hidden state sequence. Finally, the output of the dropout layer

is passed through the linear output layer to produce the final output of the model,

which is a vector of size two representing the probabilities of the two classes in the

topic tagging task.

4.6.2 DistilBERT

Hugging Face introduced DistilBERT in 2019 as a smaller and faster alternative to

BERT, a powerful natural language processing model developed by Google. DistilBERT

uses a distillation technique to train a smaller model to replicate BERT's behavior, resulting

in a model with fewer parameters while maintaining high accuracy and performance [38,

39, 40]. DistilBERT still uses the transformer architecture and is pre-trained using self-

supervised learning on a large corpus of text data, making it a bidirectional model that

considers both the left and right context of each word in a sentence when making

predictions.

DistilBERT performs well on various NLP tasks such as text classification,

question answering, and named entity recognition. Many researchers and practitioners in

the NLP community have adopted DistilBERT due to its smaller size and faster training

and inference times, without sacrificing much accuracy or performance.

34

Figure 4.9: DistilBERT

Figure 4.9 DistilBERT model is pre-trained on a large corpus of Amazon Negative

Product Review data and can be fine-tuned for various NLP tasks. DistilBERT Model

consists of several layers:

• Input Layer: The DistilBERT Model takes inputs: ids, and mask. These inputs are

encoded representations of the input text obtained using a tokenizer from the

Chapter 3.3.2.

• pre-trained Layer: The pre-trained "distilbert-base-uncased" weights are used to

initialize the DistilBERT model. It processes the input tensors to obtain the hidden

state output. The first token of the sequence is used to obtain a pooled representation

of the input sequence from the hidden_state tensor.

• Linear Layer pre-classifier: Linear layer pre-classifier is responsible for

extracting features from data by taking the output of the pre-trained layer and

passing it to a fully connected layer.

35

• Fully connected Layer: The fully connected layer is a linear layer that takes the

output of linear layer pre-classifier and maps it to the desired output dimensionality.

In this case, the output dimensionality is two, corresponding to topic tagging.

During the forward pass, the input ids, and mask are passed through the pre-trained

layer, generating a hidden state sequence. Finally, the output of the dropout layer is passed

through the linear output layer to produce the final output of the model, which is a vector

of size two representing the probabilities of the two classes in the topic tagging task.

4.6.3 CNN

CNN for Sentence Classification is a NLP technique that uses convolutional neural

networks to classify sentences into different categories or labels. The technique involves

training a CNN on a large dataset of sentences, where each sentence is assigned a label or

category [41, 42].

Figure 4.10: CNN

Figure 4.10 shows the architecture of the CNN model [43], which is composed of

multiple layers:

36

• Input layer: The input layer receives the input data through token IDs and their

lengths. The token IDs represent the index of the words in the vocabulary, and their

lengths indicate how many tokens are in each sequence in Chapter 3.3.1.

• Embedding layer: The embedding layer converts the token IDs into dense vectors

of fixed size (embedding dimension) that capture the semantic meaning of the

words in the input sequence of each sequence (batch_size, max_len,

embedding_dim) of (64, 256,300). The embeddings are learned during training in

Chapter 4.3.3. The input sequence is reshaped to have dimensions (batch_size,

embedding_dim, max_len) of (64, 300, 256) and then fed into the convolutional

layers.

• Convolutional Layers: The next layer consists of multiple parallel convolutional

layers with different filter sizes (filter_sizes) and the number of filters

(num_filters). Each convolutional layer applies a set of filters with the same kernel

size to the input embeddings, producing a feature map for each filter. The output

shape of each feature map is (batch_size, num_filters[i], L_out), where L_out is the

output length after applying the convolution operation.

• Max Pooling: Max pooling is applied to each feature map over the time dimension

(L_out) to obtain a fixed-length representation of the most important features. This

operation reduces the feature maps' dimensionality and helps extract the most

relevant features in the data. The output shape of each pooled feature map is

(batch_size, num_filters[i], 1).

• Flatten Layer: A flatten layer (nn.Flatten) is added to convert the 3D tensor output

of the pooling layers into a 2D tensor that can be fed into the fully connected layer.

37

• Fully Connected Layer: The fully connected layer is a linear layer that takes the

output of the pre-trained layer and maps it to the desired output dimensionality. In

this case, the output dimensionality is two, corresponding to topic tagging.

4.6.4 LSTM

LSTM is a type of RNN type that overcomes the vanishing gradient problem in

traditional RNNs [38, 39]. The vanishing gradient problem arises when the gradients used

to update the network's weights become very small during backpropagation, making it

difficult for the network to learn long-term dependencies. A set of gates that control the

flow of information through the network is introduced by LSTMs to solve this issue. These

gates, including an input gate, an output gate, and a forget gate, enable the network to

selectively update, output, or forget information at each time step.

At each time step, the input gate determines which information from the current

input should be used to update the memory state. Meanwhile, the forget gate decides which

information from the previous memory state should be forgotten. The output gate then

determines which information from the updated memory state should be outputted to the

next layer or as the final prediction. The cell state is the memory state in an LSTM, which

can retain information for extended periods. The input and forget gates enable the network

to selectively update or forget information in the cell state. LSTMs have been shown to be

effective at modeling sequential data and have achieved state-of-the-art results on many

tasks in natural language processing, speech recognition, machine translation, and image

captioning.

38

Figure 4.11: LSTM

Figure 4.11 illustrates the architecture of the LSTM model [40], which is composed

of multiple layers:

• Input layer: The input layer receives the input data through token IDs and their

lengths. The token IDs represent the index of the words in the vocabulary, and their

lengths indicate how many tokens are in each sequence in Chapter 3.3.1.

• Embedding layer: The embedding layer converts the token IDs into dense vectors

of fixed size (embedding dimension) that capture the semantic meaning of the

words in the input sequence. The embeddings are learned during training in Chapter

4.3.3.

• LSTM layer: The LSTM layer processes the embedded input sequences using the

LSTM algorithm. The LSTM layer has a certain number of hidden units

(hidden_dim) and can be stacked in multiple layers (n_layers) to increase the

model's capacity.

39

• Fully Connected Layer: The fully connected layer is a linear layer that takes the

output of the pre-trained layer and maps it to the desired output dimensionality. In

this case, the output dimensionality is two, corresponding to topic tagging.

4.6.5 RNN

 RNN is a type of neural network designed for handling sequential data, such as

time series or natural language. RNNs can process sequences of inputs by maintaining an

internal state that depends on the previous inputs, and they can share weights across

different time steps. This allows them to learn and model temporal dependencies in the

data using recurrent connections [47, 48]. The LSTM network is the most common type of

RNN that addresses the problem of vanishing gradients in traditional RNNs.

Figure 4.12: RNN

Figure 4.12 illustrates the architecture of the RNN model [37], which is composed

of multiple layers:

40

• Input layer: The input layer receives the input data through token IDs and their

lengths. The token IDs represent the index of the words in the vocabulary, and their

lengths indicate how many tokens are in each sequence Chapter 3.3.1.

• Embedding layer: The embedding layer converts the token IDs into dense vectors

of fixed size (embedding dimension) that capture the semantic meaning of the

words in the input sequence. The embeddings are learned during training in Chapter

4.3.3.

• RNN layer: RNN layer takes the embedded sequences as input and produces a

sequence of hidden states. The RNN layer used in this implementation is an

instance of the nn.RNN class. The layer can be configured to have multiple layers

and be bidirectional.

• Fully Connected Layer: The fully connected layer is a linear layer that takes the

output of the pre-trained layer and maps it to the desired output dimensionality. In

this case, the output dimensionality is two, corresponding to topic tagging.

41

CHAPTER V:

PERFORMANCE EVALUATION

The thesis proposes developing ReviewTag, which can assist sellers in efficiently

managing customer reviews by tagging negative product reviews on Amazon. Chapter

3 explains the process of creating the Amazon Review Tagged Dataset through

manual tagging and further pre-processing the data using tokenizer in the Amazon

Review Data Transformation. Chapter 4 introduces the concepts of NLP, such as

hyperparameters, model architecture, and deep learning models, along with an overview

of the Automated Tagging System. This chapter evaluates the performance of the

automated tagging system using advanced deep learning for topic tagging (TT) system,

and three different subtopics tagging (ST): STWOT, STWKT, and STWPT.

Using Amazon Review Tagged Dataset contains 12,053 entries with 7,932

reviews tagged as Product Issues and 4,121 reviews tagged as Seller Issues. The

Product Issue category has three subtopics: Design Issues, Quality Issues, and

Product Description Issues, while the Seller Issue category has two subtopics: Product

Authenticity Issues and Delivery and Return Issues.

The training and test datasets are prepared for different systems, including

TT, STWPT, STWOT, and STWKT, with an 80:20 ratio. For TT, STWPT, and STWOT,

the dataset is divided into 9637 entries for training and 2,416 entries for testing.

Meanwhile, the STWKT system uses two sets of data: Amazon's negative product

reviews and negative seller reviews. The datasets are divided into training and test sets,

with the first dataset containing 7,932 entries of Amazon negative product reviews, with

6,346 for training and 1,586 for testing. The second dataset comprises 4,121 entries of

Amazon negative seller reviews, with 3,297 for training and 824 for testing.

42

After preparing the training dataset, we use advanced deep learning techniques such

as BERT, DistilBERT, LSTM, RNN, and CNN models for training purposes. Following

that, we will assess the performance of our trained model by utilizing the test dataset. The

evaluation related to the test dataset is shown below.

5.1 TT Performance Evaluation

Topic Tagging (TT) performance evaluation is a crucial step in assessing the

effectiveness of topic tagging techniques in categorizing reviews into specific categories.

The evaluation process typically involves comparing the predicted categories with the

actual categories assigned to the reviews by manual tagging. Precision, recall, and F1 score

are metrics used to evaluate the performance of the topic classifier.

Table 5.1: TT Performance Evaluation

Model Precision Recall F1- Score

BERT 0.97 0.96 0.96

DistilBERT 0.95 0.95 0.95

CNN 0.96 0.95 0.95

LSTM 0.96 0.95 0.95

RNN 0.87 0.80 0.83

Table 5.1 shows the topic tagging evaluation results for various models, including

BERT, DistilBERT, CNN, LSTM, and RNN, based on their precision, recall, and F1 score.

BERT and DistilBERT are both transformer-based language models that have been

pre-trained on a massive dataset of text and code. BERT is a larger model than DistilBERT,

which means that it has more parameters and requires more training data and computation

43

time. In the experiment, BERT achieved the highest precision score of 0.97, along with a

recall and F1 score of 0.96. DistilBERT is a smaller model that has been distilled from

BERT to be more efficient while maintaining its accuracy. Despite its smaller size,

DistilBERT still performed well in the experiment, achieving precision, recall, and an F1

score of 0.95.

CNN, LSTM, and RNN are types of deep networks commonly used for text

classification. CNN sentence classifiers can learn local patterns in text, while LSTMs can

learn long-range dependencies between words. In this experiment, LSTM and CNN models

achieved a precision of 0.96, along with a recall and F1 score of 0.95 Compared to LSTMs

and CNNs, RNN models may be less efficient due to their limited ability to capture long-

range dependencies in text data. In this experiment, RNN models achieved precision,

recall, and an F1 score of 0.87, 0.80, and 0.83, respectively.

Based on our experiment, BERT, achieved the highest precision score of 0.97 and

a recall and F1 score of 0.96. DistilBERT, CNN, and LSTM achieved a similar F1 score

of 0.95, with precision and recall scores ranging from 0.95 to 0.96. On the other hand, RNN

achieved a precision of 0.87, a recall of 0.80, and an F1 score of 0.83.

5.2 ST Performance Evaluation

Our automated tagging system for Amazon negative product reviews employs deep

learning models to identify and tag negative reviews based on their topics accurately. The

system employs three different types of subtopics tagging: SubTopic Tagging without a

Topic, SubTopic Tagging with Known Topics, and subtopic tagging with predicted topics.

Our system's comprehensive analysis of negative reviews, utilizing three different

types of subtopics tagging, enables sellers to make informed decisions and improve their

businesses by addressing specific issues highlighted in the reviews. For subtopic tagging,

44

we evaluated the precision, recall, and F1 scores of various models, including BERT,

DistilBERT, CNN, LSTM, and RNN.

5.2.1 STWOT Performance Evaluation

SubTopic Tagging without Known Topics (STWOT) is an approach that utilizes

predetermined subtopics within the broad categories of product and seller issues to classify

reviews further. The method involves tagging reviews with known subtopics within each

category, such as product design issues, quality issues, and description issues for product

issues and product authentication issues, delivery and return issues for seller issues. This

approach provides more detailed insights into specific areas that require improvement.

Table 5.2, BERT achieved the highest precision, recall, and F1 score of 0.90, while

DistilBERT, despite its smaller size, performed well with a precision and F1 score of 0.85

and a recall of 0.86. The CNN models achieved a precision of 0.89, with a recall and F1

score of 0.88. The LSTM models obtained a precision, recall, and F1 score of 0.87.

However, the RNN models had a precision score of 0.75 and a recall and F1 score of 0.73,

indicating lower performance than the experiment's other models.

Table 5.2: STWOT Performance Evaluation

Model Precision Recall F1- Score

BERT 0.90 0.90 0.90

DistilBERT 0.85 0.86 0.85

CNN 0.89 0.88 0.88

LSTM 0.87 0.87 0.87

RNN 0.75 0.73 0.73

45

While STWOT allows for identifying emerging subtopics without pre-defined

labels, it may lower precision, recall, and F1 scores. In contrast, STWKT, with

predetermined topic tagging help to improve precision, recall, and F1 scores for subtopic

tagging.

5.2.2 STWKT Performance Evaluation

SubTopic Tagging with Known Topic (STWKT) method is a powerful approach to

classify reviews further using predetermined subtopics within the broad categories of

product and seller issues. This method involves tagging reviews with the known subtopics

within each category, such as design issues, quality issues, and product description issues

for product issues and product authentication issues, delivery and return issues for seller

issues.

Table 5.3, BERT achieved the highest precision, recall, and F1 score of 0.91, while

DistilBERT, despite its smaller size, performed well with precision, recall, and F1 score of

0.89. The CNN models achieved a precision of 0.91, with a recall and F1 score of 0.90.

The LSTM models obtained a precision, recall, and F1 score of 0.90. However, the RNN

models had a precision, recall, and F1 score of 0.86, indicating lower performance than the

experiment's other models.

Table 5.3: STWKT Performance Evaluation

Model Precision Recall F1- Score

BERT 0.91 0.91 0.91

DistilBERT 0.89 0.89 0.89

CNN 0.91 0.90 0.90

LSTM 0.90 0.90 0.90

46

RNN 0.86 0.86 0.86

5.2.3 STWPT Performance Evaluation

SubTopic Tagging with Predicted Topics (STWPT) technique can be an effective

tool for Amazon sellers who lack labeled datasets for negative reviews of their products.

This technique predicts the negative review's topic and subtopic based on the predicted

topic and the negative review itself.

Table 5.4, BERT achieved the highest precision score and F1 score of 0.92 and a

recall of 0.91, while DistilBERT, despite its smaller size, performed well with a precision

score and F1 score of 0.90 and a recall of 0.89. The CNN models achieved a precision of

0.89, with a recall and F1 score of 0.92. The LSTM models obtained a precision, recall,

and F1 score of 0.91. However, the RNN models had a precision score of 0.85 and a recall

and F1 score of 0.84, indicating lower performance than the experiment's other models.

Table 5.4: STWPT Performance Evaluation

Model Precision Recall F1- Score

BERT 0.92 0.91 0.92

DistilBERT 0.90 0.89 0.90

CNN 0.92 0.92 0.92

LSTM 0.91 0.91 0.91

RNN 0.85 0.84 0.84

47

5.2.4 ST Performance Evaluation

Our automated tagging system for negative Amazon product reviews utilizes deep

learning models. It employs three different type of subtopic tagging to identify and tag

negative reviews based on their topics accurately. The performance evaluation of our

subtopic tagging system is presented in Figure 5.1, 5.2, and 5.3. Precision, recall, and F1-

score metrics are used to evaluate the performance of subtopic tagging without topic,

subtopic tagging with known topic, and subtopic tagging with the predicted topic for

BERT, DistilBERT, CNN, LSTM, and RNN models.

Figure 5.1: Precision of SubTopic Tagging

Figure 5.1 shows the precision of subtopic tagging for each model. BERT achieves

the highest precision score for all subtopic tagging levels, ranging from 0.90 to 0.92.

48

DistilBERT and CNN also achieve high precision scores, ranging from 0.85 to 0.92. LSTM

and RNN models achieve lower precision scores, with RNN achieving the lowest.

Figure 5.2: Recall of SubTopic Tagging

Figure 5.2 shows the recall of subtopic tagging for each model. BERT achieves the

highest recall score for all subtopic tagging levels, ranging from 0.90 to 0.91. DistilBERT

and CNN also achieve high recall scores, ranging from 0.86 to 0.92. LSTM and RNN

models achieve lower recall scores, with RNN achieving the lowest.

49

Figure 5.3: F1 Score of SubTopic Tagging

Figure 5.3 shows the F1 score of subtopics tagging for each model. BERT achieves

the highest F1 score for all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT

and CNN also achieve high F1 scores, ranging from 0.85 to 0.92. LSTM and RNN models

achieve lower F1 scores, with RNN achieving the lowest.

Based on our experiment, BERT achieved the highest precision, recall, and F1

scores across all subtopic tagging levels, ranging from 0.90 to 0.92. DistilBERT and CNN

also achieved high scores, ranging from 0.85 to 0.92. On the other hand, LSTM and RNN

models obtained lower scores, with RNN achieving the lowest precision, recall, and F1

scores. The results suggest that transformer-based models such as BERT and DistilBERT

outperform traditional neural networks such as LSTM and RNN in subtopic tagging tasks.

50

CHAPTER VI:

CONCLUSION AND FUTURE WORK

Amazon sellers face a significant hurdle in maintaining high ratings for success

when they receive negative customer reviews. To help sellers quickly identify the

root cause of negative reviews, ReviewTag using deep learning models such as

BERT, DistilBERT, LSTM, RNN, and CNN to categorize negative reviews into

broader topics, such as product issues and seller issues. ReviewTag provides subtopic

tagging, which offers more insight into customers' specific concerns.

We categorized negative Amazon product reviews using topic and subtopic

tagging to evaluate the system's effectiveness. Our findings showed that BERT, a

transformer-based architecture and pre-trained on vast amounts of text data, is an

exceptional deep learning model for automated tagging in terms of topic tagging.

BERT achieved a precision, recall, and F1-score of 0.97, 0.96, and 0.96,

respectively. Moreover, when predicting the subtopic, BERT also displayed high

precision, recall, and F1-score of 0.92, 0.91, and 0.92, respectively. On the other hand,

the CNN sentence classifier model, which extracts features from sentences, such as

word usage, order, and relationships, showed similar precision, recall, and F1-score of

0.92, 0.92, and 0.92.

One limitation of ReviewTag is the availability of limited datasets for each class,

which can affect the reliability of the model's tagging for specific topics and

subtopics. Additionally, the manual labeling of reviews for training the model can take

time, hindering its scalability in handling a large volume of reviews.

While the proposed Tagging Amazon Product Negative Review with

Deep Learning System offers significant value to Amazon sellers, there is potential for

further development and expansion. The system could incorporate sentiment analysis to

provide an overall sentiment score for customer reviews, enabling sellers to quickly

identify

51

positive and negative feedback. The system could also integrate with Amazon's product

ranking algorithm to provide insights into how customer reviews impact product ranking

and sales. Additionally, the system could expand to analyze positive reviews, providing

sellers with a comprehensive understanding of customer feedback.

52

REFERENCES

[1] "About Amazon - Our Company." Amazon. Accessed September 9, 2021-

https:/www.aboutamazon.com

[2] Rosário, A., & Raimundo, R. (2021). Consumer marketing strategy and E-

commerce in the last decade: a literature review. Journal of theoretical and applied

electronic commerce research, 16(7), 3003-3024.

[3] Amazon's Fulfillment by Amazon (FBA): Fulfillment services for your

ecommerce business

[4] Wan, M., & McAuley, J. (2016, December). Modeling ambiguity, subjectivity,

and diverging viewpoints in opinion question answering systems. In 2016 IEEE 16th

international conference on data mining (ICDM) (pp. 489-498). IEEE.

[5] B. V. Barde and A. M. Bainwad, "An overview of topic modeling methods and

tools," 2017 International Conference on Intelligent Computing and Control Systems

(ICICCS), Madurai, India, 2017, pp. 745-750, doi: 10.1109/ICCONS.2017.8250563.

[6] Rubayyi Alghamdi and Khalid Alfalqi, "A Survey of Topic Modeling in Text

Mining", International Journal of Advanced Computer Science and Applications, vol. 6,

no. 1, 2015.

[7] Jorg Becker and Dominik Kuropka, "Topic-based Vector Space

Model", Business Information Systems Proceedings of BIS 2003.

[8] Deerwester Scott, Susan T. Dumis, George W. Furnas, Thomas K. Landaur and

Richard Harshman, "Indexing by Latent Semantic Analysis", Journal of the American

Society for Information Science 1986–1998.

[9] N. Bassiou and C. Kotropoulos, "RPLSA: A novel updating scheme for

Probabilistic Latent Semantic Analysis", Department of Informatics Aristotle University

of Thessaloniki Box 451 Thessaloniki 541 24 Greece, April 2010.

53

[10] Tsai, F. S. (2011). A tag-topic model for blog mining. Expert Systems with

Applications, 38(5), 5330-5335.

[11] Wen, Q., Qiang, M., Xia, B., & An, N. (2019). Discovering regulatory

concerns on bridge management: An author-topic model based approach. Transport

Policy, 75, 161-170.

[12] Yoon, Y. S., Lee, J., & Park, K. (2019, October). Extracting Promising Topics

on Smart Manufacturing Based on Latent Dirichlet Allocation (LDA). In 2019

International Conference on Information and Communication Technology Convergence

(ICTC) (pp. 1237-1242). IEEE.

[13] Davoudi, A., Tissot, H., Doucette, A., Gabriel, P. E., Parikh, R., Mowery, D.

L., & Miranda, S. P. (2022). Using natural language processing to classify serious illness

communication with oncology patients. In AMIA Annual Symposium Proceedings (Vol.

2022, p. 168). American Medical Informatics Association.

[14] Huda, A. F., & Baizal, Z. A. (2021, October). Feature Extraction Amazon

Customer Review to Determine Topic on Smartphone Domain. In 2021 13th International

Conference on Information & Communication Technology and System (ICTS) (pp. 342-

347). IEEE.

[15] Yuhan Zhang and Haiping Xu. SLTM: A Sentence Level Topic Model for

Analysis of Online Reviews. (Seke):449-453, 2016.

[16] J. McAuley, "Amazon product data," University of California San Diego

(UCSD).

[17] McAuley, J., Shi, Q., Targett, C., & van den Hengel, A. (2015). Image-based

recommendations on styles and substitutes. In Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval (pp. 43-52).

54

[18] He, R., & McAuley, J. (2016). Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. In Proceedings of the 25th

International Conference on World Wide Web (pp. 507-517).

[19] Loper, E., & Bird, S. (2002). Nltk: The natural language toolkit. arXiv preprint

cs/0205028

[20] NLTK 3.6.3 documentation. (2021). Tokenization. Retrieved from

https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.

[21] Transformer Tokenizer, Hugging Face, 2019:

https://huggingface.co/tokenizers/

[22] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... &

Brew, J. (2019). HuggingFace's transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771.

[23] S. Kim, J. Do and M. Kim, "Pseudo-Supervised Learning for Semantic Multi-

Style Transfer," in IEEE Access, vol. 9, pp. 7930-7942, 2021, doi:

10.1109/ACCESS.2021.3049637.

[24] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016).

Rethinking the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 2818-2826).

[25] D. P. Kingma and J. L. Ba, "ADAM: A Method for Stochastic Optimization,"

arXiv preprint arXiv:1412.6980, 2014

[26] M. Zhang, Y. Sun, and R. Jin, "Optimizing Learning Rates for Deep Neural

Networks," in Proceedings of the 2019 International Conference on Artificial Intelligence

and Computer Engineering, 2019, pp. 111-115.

[27] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks

from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.

https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize
https://huggingface.co/tokenizers/

55

[28] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of

word representations in vector space. Proceedings of the International Conference on

Learning Representations (ICLR).

[29] E. Tighe, O. Aran, and C. Cheng, "Exploring Neural Network Approaches in

Automatic Personality Recognition of Filipino Twitter Users," De La Salle University

Manila, 2023.

[30] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word

vectors with subword information. Transactions of the association for computational

linguistics, 5, 135-146.

[31] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances in

Pre-Training Distributed Word Representations. Facebook AI Research, 2018.

[32] Dieng, A. B., Ruiz, F. J., & Blei, D. M. (2020). Topic modeling in embedding

spaces. Transactions of the Association for Computational Linguistics, 8, 439-453.

[33] Ma, W., & Lu, J. (2017). An equivalence of fully connected layer and

convolutional layer. arXiv preprint arXiv:1712.01252.

[34] Tang, Y., Chen, M., & He, X. (2019). Multi-label classification of customer

reviews based on deep learning. IEEE Access, 7, 114454-114465. doi:

10.1109/access.2019.2939636.

[35] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems, 30.

[36] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

56

[37] "BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding" by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

In Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages

4171–4186, 2019.

[38] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled

version of BERT: smaller, faster, cheaper, and lighter. arXiv preprint arXiv:1910.01108.

Link: https://arxiv.org/abs/1910.01108

[39] Sun, Y., Wang, S., Li, Z., Feng, Y., Chen, X., & Zhang, H. (2021). DistilBERT

for Question Answering. In Proceedings of the 2021 International Conference on

Education Technology Management (ICETM 2021) (pp. 420-424). Atlantis Press.

Link: https://www.atlantis-press.com/proceedings/icetm-21/125957688

[40] Tariq, U., Naseem, I., & Razzak, I. (2021). A Comparative Study of BERT

and DistilBERT on Text Classification. Journal of Data Science and Applications, 4(2),

79-88. Link: http://www.jdsap.org/jdsap/article/view/123

[41] Kim, Y. (2014). Convolutional neural networks for sentence classification. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP) (pp. 1746-1751).

[42] Chen, Y. (2015). Convolutional neural network for sentence

classification (Master's thesis, University of Waterloo).

[43] Zhang, Y., & Wallace, B. (2016). A Sensitivity Analysis of (and Practitioners'

Guide to) Convolutional Neural Networks for Sentence Classification. arXiv preprint

arXiv:1510.03820.

https://arxiv.org/abs/1910.01108
https://www.atlantis-press.com/proceedings/icetm-21/125957688
http://www.jdsap.org/jdsap/article/view/123

57

[44] S. Hu, G. Zou, S. Lin, L. Wu, C. Zhou, B. Zhang, and Y. Chen, "Recurrent

Transformer for Dynamic Graph Representation Learning with Edge Temporal States”,

Washington University in St. Louis, 2023

[45] [Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and Ju ̈rgen

Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[46] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional

networks for text classification. In Advances in neural information processing systems (pp.

649-657).

[47] Dieng, A. B., Ruiz, F. J., & Blei, D. M. (2020). Topic modeling in embedding

spaces. Transactions of the Association for Computational Linguistics, 8, 439-453.

[48] Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text

classification with multi-task learning. arXiv preprint arXiv:1605.05101.

[49] Zulqarnain, M., Ghazali, R., Hassim, Y. M. M., & Rehan, M. (2020). A

comparative review on deep learning models for text classification. Indones. J. Electr. Eng.

Comput. Sci, 19(1), 325-335.

