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ABSTRACT 

EXPLOITING AREA-SPEED-POWER TRADEOFF OF FPGA DESIGNS ON 

MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK 

 

 

April Lora Reed 

University of Houston-Clear Lake, 2020 

 

 

 

Thesis Chair: Xiaojun Yang, PhD 

 

 

This dissertation presents four Field Programmable Gate Array (FPGA) design 

architectures for handwritten digit recognition, in order to improve hardware efficiency in 

terms of resources, power, and speed of the neuromorphic processor. Multipliers are used 

as the basis for each of the processor designs. Additional methods are explored to 

compare hardware efficiency with implementing floating point adders and multipliers in 

register-transfer level (RTL) designs. These implementations are then instantiated into 

each of the processor designs and the results are compared to the IPs-based 

demonstrations using Xilinx Vivado. Experimental results show that the 196-MUL 

design architecture achieves the highest speed but consumes a large amount of power and 

FPGA resource including look-up Tables (LUTs), flip-flops (FFs), and digital signal 

processing elements (DSPs). In contrast, the 28-MUL design architecture spends the 

minimum LUTs, FFs, DSPs, and power dissipation, however, the latency is greater than 

3× compared with the hardware cost of the 196-muliplier structure. The conclusion of the 
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dissertation is that the proposed works offer different levels of hardware efficiency 

corresponding to different design specifications. The proposed designs allows for the user 

to choose which aspect is important to them in regards to area, power, and speed and then 

specialize the system to their needs.  
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CHAPTER I:  

INTRODUCTION 

1.1 Background 

Handwritten digit recognition is one of the emerging problems in the applications 

of image processing and computer vision [1]. Many prior works have shown high 

accuracy by demonstrating various digit classification platforms [2–4]. As results showed 

in [3], up to 99.21% recognition accuracy can be achieved by the designs on 

convolutional neural networks (CNN), through obtaining more diverse features from each 

handwritten digit image. Similarly, in [2] authors proposed a combination of learning 

parameters to the design on CNN, including number of layers, stride size, receptive field, 

kernel size, padding and dilution for CNN-based handwritten digit classification, which 

achieved a very high recognition accuracy of 99.87%.  

From the hardware design perspective, the inherent tolerance to the imprecise 

digit classification has a potential to improve hardware computation efficiency in terms 

of gate/slice count, speed, and power dissipation [5–7]. Under this context, an FPGA-

based neuromorphic processor and several parallel architectures were proposed in [6]. By 

using the approximate multipliers in the baseline processor design, up to 20% reduction 

in energy consumption was achieved while slightly reducing the recognition performance 

for handwritten digit recognition. Another example proposed by [7] demonstrated that 

using residue number system (RNS) arithmetic in the convolutional layer of CNN can 

reduce hardware costs by 32% compared with the traditional approach based on the 

binary number system. Likewise, computation speed can be improved by FPGA 

acceleration [8] and application-specific designs such as employing a novel digit 

extraction method to reach up to 2.47× speedup in comparison to software solutions [9].  
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To find the optimal balance of area-latency-power consumption on the design 

with a FPGA, this dissertation proposes a dynamic design architecture on multi-layer 

perceptron (MLP) neural networks. By configuring different design specifications to the 

slice cost, speed, and power dissipation, my proposed work is able to minimize the 

latency while maintaining a digit recognition accuracy up to 95.82%. Specifically, the 

contributions are below. 

This dissertation first presents a single-hidden-layer MLP neural network to 

classify handwritten digits with an accuracy up to 95.82%. Further, many different design 

architectures on FPGA containing floating-point multiplication, addition, subtraction, 

accumulation, exponential, and reciprocal are proposed to provide hardware acceleration 

corresponding to different FPGA resource costs.  

Second, the floating-point adders and multipliers are implemented by register-

transfer level (RTL) designs, in order to compare area-latency-power cost on the MLP 

network, as well as evaluate the differences compared to the Xilinx Vivado IP-based 

implementations.  

Finally, the area-latency-power consumption on a FPGA is evaluated and 

compared with the performance of the prior works.  

The organization of this dissertation is as follows: we first review the relevant 

related papers. Our approach is discussed in more detail in Section 3. In Section 4, the 

hardware implementations using floating-point adders and multipliers are discussed. In 

Section 5 the implementation of those floating-point adders and multipliers are combined 

with a previous architecture design and the RTL designs are compared to the Xilinx IP 

designs. In Section 6 the corresponding results in terms of slice count, speed, and power 

consumption are estimated and compared. Finally, in the last section we present our 

conclusion.  
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1.2 Related Works 

Research in the FPGA design of handwritten digit classification has focused on 

two subjects: the implementation and evaluation, mostly with regard to the FPGA 

acceleration, and the performance comparison between different designs and platforms. 

Previous works to the hardware acceleration have experienced significant 

technological breakthroughs in recent years [10–16]. For instance, in [13] authors 

presented a 5-layer accelerator for MNIST digit recognition enabling it to spend 25.4 

microseconds to process one frame of image. In [14] a CNN network using a 

reconfigurable IP core was implemented, showing a time consumption of 17.6 us to 

recognize a handwritten digital picture. Additionally as a result of [15] the 

implementation using Xilinx XC7Z045 can reach 14.2 us per image recognition. To the 

best of our knowledge, the latest work proposed in [16] achieved the highest speed of 

1.55 microseconds per image to the application of digit classification.  

Other researches focused on comparing and evaluating performance of designs 

using different platforms, for example, to speed up the system computation by using a 

programmable artificial neural network coprocessor [17], to employ high-level synthesis 

(HLS) tools and software-hardware co-design platforms [18, 19], and to implement the 

network in IP-level and RT-level [20, 21] in order to reduce the design cost.  

In this dissertation, a dynamic design architecture of MLP neural network is 

proposed in order to minimize FPGA area-latency-power cost by slightly decreasing the 

classification rate. The database of Modified National Institute of Standards and 

Technology (MNIST) is used to build the MLP network and evaluate the accuracy of the 

neural network models [22]. 
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CHAPTER II:  

PROPOSED DESIGN 

2.1 Neural Network 

Recently neural networks (NNs) are becoming one of the most populer machine 

learning algorithms widely used in multiple applications such as speech/music 

recognition [23, 24], language recognition [25-27], image classification and video 

segmentation [28-30]. In general NNs attempt to emulate how a human brain works. NNs 

learn, identify, and decipher complex tasks in science and engineering [31].  In a human 

brain, each neuron has dendrites entering and axons exiting. The axons then connect to 

other dendrites by synapses [32]. In NNs the neurons are referred to as nodes, the 

dendrites are inputs into the nodes, the axons are outputs from the nodes, and the 

synapses are the interconnections between the nodes. Each interconnection has a weight 

associated with it. Each neuron then sums all those adjusted weights and it checks if a 

certain threshold is reached. If the threshold is reached then an output is generated [32]. 

NNs are made up of layers of nodes. There are usually multiple layers: input layer, output 

layer, and at least one hidden layer [33]. The NNs learn by adjusting those weights and 

biases until they have the same output that is expected during training. For example, we 

can have hundreds of labeled images of ice cream cones and hot dogs. The weights and 

biases in the NN will be adjusted until it is correctly predicting the labeled images of ice 

cream cones and hot dogs.  
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FPGAs, as well as application-specific integrated circuits (ASICs), have a great 

advantage over traditional software based designs and implemenations [34-36]. The 

hardware acceleration will be most noted in the resource costs and latency. For FPGAs 

the advantages lie in its highly parallel architecture, flexible design architectures, real-

time data processing, and low power consumption [37-40]. Further, the approximate 

design on FPGAs can improve the energy-efficiency with the corresponding quality 

constraints [41-43]. 

2.1.1 Multilayer Perceptron 

The most utilized class of NNs is the MLP version [31]. Briefly, I want to cover 

single layer perceptron NN. Both single layer perceptron neural networks (SLPNN) and 

the multilayer perceptron neural network (MLPNN) are feedforward networks. A SLPNN 

will take in associated weights and inputs. The input is a vector of numbers. The weights 

are adjusted in training to help produce the correct output. Then the weighted sum of all 

inputs is adjusted by a bias and the final result is computed. A general single layer NN 

architecture will have one input and one output layer of processing units. Single layer 

perceptrons can only solve linearly separable problems [44]. Below you can find the 

formula for a SLPNN.  

 

𝑆𝐿𝑃𝑁𝑁 =  ∑ (𝑤𝑖

𝑚

𝑖
𝑥𝑖) + 𝑏 

 

In the SLPNN formula, w equals weights, x equals inputs, and b equals bias. 

MLPNN consists of at least three layers: one input layer, at least one hidden layer, and 

one output layer [45]. Every layer except for the input layer will have a node that uses a 

nonlinear activation function. An activation function then takes that weighted sum of all 

inputs with the adjusted bias and conforms those results to some desired range to help 
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produce the final output. A general MLPNN architecture will have one input and one 

output layer of processing units as well as one or more hidden layers of processing units 

[46]. MLPNN can solve nonlinearly separable problems. 

MLPNN uses a variety of learning techniques, but one of the most popular 

supervised learning techniques is back-propagation. The outputs are compared to 

provided answers for the problem that is trying to be solve. An error rate is then 

calculated and sent back through the network. Weights and biases are adjusted and fine-

tuned with each iteration during training.  

2.1.2 Sigmoid Neurons 

Activation functions, sometimes referred to as threshold functions, are very 

important to MLPNNs [47]. The difference between linear and nonlinear activation 

functions, is that a linear activation functions produces an output that is proportional to 

the input, while non linear activation functions produces complex outputs that are not 

linearly related to the input. Most NNs will have non linear activation function in order to 

solve complex problems. There are many activation functions, some of the most 

referenced are sigmoid, relu, tanh, and activation. The most popular nonlinear activation 

function is the sigmoid function. Below is the sigmoid function.  

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
1

1 +  𝑒−𝑥
 

 

Sigmoid functions produce outputs between 0 and 1. They have a smooth 

gradient, since they are able to make small changes instead of changes in large steps, 

therefore helping to fine tune the weights and biases needed for the NN [16]. An example 

of a MLPNN is shown in Figure 2.1.2. 
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A sigmoid neuron employees the information we know about the SLPNN formula 

and the sigmoid function. Below is the formula for a sigmoid neuron. An example of a 

MLPNN fully connected three layer design then follows.  

 

𝑆𝐿𝑃𝑁𝑁 = 𝑥 =  ∑ (𝑤𝑖

𝑚

𝑖
𝑥𝑖) + 𝑏 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
1

1 + 𝑒−𝑥
 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑛𝑒𝑢𝑟𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 =  
1

1 +  𝑒− ∑ (𝑤𝑖
𝑚
𝑖 𝑥𝑖)+𝑏𝑖𝑎𝑠

 

 

 
Figure 2.1.2 

A general MLPNN fully connected three layer design.  
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2.4 Floating Point Single Precision 

In an attempt to further reduce the area-latency-power for each of the MLPNN 

architecture designs, the floating point components were examined. The Institute of 

Electrical and Electronic Engineers (IEEE) 754 Standard was established in 1985 and it 

standardized floating-point arithmetic [48]. The current version is a revision of the IEEE 

Standard 754-2008, the IEEE Standard 754-2019 [49]. Floating point numbers can 

represent a larger range and higher precision of real numbers versus fixed point numbers 

[50]. There is a tradeoff between range and precision in floating point numbers [51]. The 

range is determined by the size of the exponent and the precision is determined by the 

size of the fraction.  

The IEEE Standard 754 standardized the formats for floating point numbers. The 

format is specified by a radix, precision, and an exponent range [49]. The format 

comprises of three parts: the sign, the exponent, and the significand. The IEEE binary 

basic format describes three types of precision: 32-bit single precision, 64-bit double 

precision, and 128-bit quadruple precision. For this project, single precision was used and 

will be referenced as the precision used in the rest of this paper. 

 

 
Figure 2.4.1 

IEEE 754 Standard's Single Precision Format 
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In Figure 2.4.1, the distribution of the 32-bits can be seen. The most significant bit 

(MSB) represents the sign bit. The sign bit denotes whether the number is positive or 

negative, with ‘0’ representing a positive number and ‘1’ representing a negative number 

[52]. The next 8-bits represent the biased exponential. The bias is calculated as follows: 

 

𝐵 = 2𝑛−1 − 1 

 

Where B represents the bias and n represents the number of bits that represent the 

biased exponent. For single precision, n = 8, therefore B = 127.  The exponent is biased 

by a constant in order for the exponent to represent positive and negative numbers [52].  

The last 23-bits represent the significand. The significand represents the precision. 

It is comprised of the significant digits of the number, led by an implicit non-zero digit. 

To normalize a number in scientific notation the leading bit is required to be a non-zero 

digit. In binary digits normalizing the number helps maximize the amount of 

representable numbers that can be stored and the leading bit will always be ‘1’. The 

significand is represented as follows: 

 

𝑆 = 1. 𝑠22𝑠21𝑠20𝑠19𝑠18𝑠17𝑠16𝑠15𝑠14𝑠13𝑠12𝑠11𝑠10𝑠9𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1𝑠0 

 

𝑠22𝑠21𝑠20𝑠19𝑠18𝑠17𝑠16𝑠15𝑠14𝑠13𝑠12𝑠11𝑠10𝑠9𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1𝑠0  represents the 

significant digits for single precision, the digit 1 is the implied 1, and S represents the 

significand.  

The IEEE 754 Standard also covers exceptions that may occur. Some of the 

exceptions that can occur are an an invalid operation, a divid by zero, and an inexact. The 
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output for floating points arithmetic numbers can be normal, subnormal, infinity, zero, 

and Not a Number (NaN) [53]. 

There are five rounding rules in the IEEE 754 Standard. They are as follows: 

Round towards zero, round towards positive infinity, round towards negative infinity, 

round to nearest, ties to even, and round to nearest, ties away from zero. Round to 

nearest, ties to even is the default for rounding for binary point. Round to nearest, tie to 

even is the rounding rule that will be implemented in the adder and multiplier 

components used in the designs.  

 

2.5 Adder 

The IEEE 754 Standard also specifies addition. In arithmetic logic units (ALUs), 

adders are the main processing component [54]. There are three main stages for 

performing floating point addition: Pre-normalizing before addition, addition, and post-

normalizing after addition [55]. When traversing through these three main stages there 

are several components that are necessary to properly complete the order of operations 

and they help to ensure that the floating point addition holds up to the IEEE 754 

Standard. These main components are exponential comparison, significand addition, 

normalization, rounding, and exceptions [51, 56].  

Exponential Comparison 

This component will compare two inputs’ exponential bias to see which is larger. 

The smaller exponential bias is replaced with the larger exponential bias. Before this 

occurs, the difference between the two exponential biases is found and stored.  

Significand Addition 

Once the exponent biases match and the smaller number has been shifted 

accordingly, addition occurs.  
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Normalization 

This component needs to count the leading zeroes and shift accordingly so that 

the first implicit digit is a one [57]. The amount that is shifted will also be used to either 

increment or decrement the exponent. We may need to use this component again after 

rounding has occurred. 

Rounding 

After normalization we are left with the outputs’ significand plus additional bits. 

These bits help with rounding. As mentioned above, there are five rounding rules in the 

IEEE 754 Standard, though by default rounding to nearest, ties to even is used.  

Exceptions 

Exceptions are checked to shorten the process if one of the inputs is zero or to 

produce specific outputs for special cases. 

 

2.6 Multiplier 

The IEEE 754 Standard specifies multiplication. Multipliers are some of the most 

frequently used components in digital signal processing (DSP), graphics processing, 

image processing, and robotics [58, 59]. Multipliers are used because with those 

applications computational taxing matrix multiplication is involved [60]. There are three 

main stages for performing floating point multiplication: exponential addition, 

significand multiplication, and normalization. Although those are the three main stages 

there are several components that are necessary to properly complete the order of 

operations and they help to ensure that the floating point multiplication holds up to the 

IEEE 754 Standard. These main components are exponential addition, significand 

multiplication, normalization, rounding, and exceptions [61,62]. Normalization, 
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rounding, and exceptions components were described in the Adder subsection, therefore I 

will only go over the exponential addition and significand multiplication below. 

Exponential Addition 

The component will add the exponential bias from each input. This will introduce 

an extra bias, since not only were we adding the exponents, but also the biases. 

Subtracting a bias from the added exponential biases together will result in the correct 

exponential bias addition.  

Significand Multiplication 

This component will multiply the significands from each input. With decimal 

point multiplication we need to keep track of each input’s digit placement. Since the 

significands are normalized, the sum of the significands length will give us the decimal 

placement for the result. With single precision there are 23 bits allocated for the 

significand. From this we can deduce that the decimal will fall right before the 46th bit in 

the result.    
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CHAPTER III:  

DESIGN ARCHITECTURES 

This dissertation is an extended work to reference [63] presented by Isaac 

Westby. Therefore, in this chapter the prior work – a design on 98-MUL (98MUL) 

architecture is firstly introduced. Then what follows are three different architectures, 28 

multiplier architecure design (28-MUL), 49 multiplier architecure design (49-MUL), and 

196 multiplier architecure design (196-MUL). These designs are mainly proposed to 

compare and evaluate the design performance in terms of latency, slice count, and power 

consumption.    

 

3.1 Previous Design 

Earlier work [64] presented the algorithm of a typical MLPNN, and further in [63] 

the hardware design on the MLPNN was implemented and estimated to classify 

handwritten digits. In general, it consists of 784 input nodes, 12 neurons in the hidden 

layer, and 10 output neurons. The goal of reference [63] was to create a low-latency and 

highly-accurate digit recognition NN. They achieved this with a significant speedup for 

digit recognition compared to other related works. Below is their final network design. 
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Figure 3.1.1 

Final network design for a digit recognition MLPNN. 

The final network design is also the basis for my work. I will now explain the 

different parts for this specific MLPNN. The image that is going to be processed will be 

resized to a 28 pixel by 28 pixel image, therefore there needs to be 784 input nodes for 

each pixel in the image. It was determined in Westby’s work that only one hidden layer 

would suffice, since there was not a difference in accuracy between one hidden layer and 

two hidden layers [16]. Westby also examined the different accuracies between the 

amount of neurons in one and two hidden layers. He found in his research that 12 neurons 

would give an accuracy of 92.96%, given the accuracy versus resource cost, it was 

determined that 12 neurons in one hidden layer would be used in the network design [16]. 
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The outputs represent the digits 0 through 9, therefore there are 10 neurons in the final 

layer.  

When Westby trained the network, he was able to produce the weights and biases 

for the hidden layer and for the outer layer. For the hidden layer, there are 9,408 single 

precision weights. The 9,408 single precision weights are distributed in 12 rows and 784 

columns [16]. There are 12 biases’ values in vector form for the hidden layer, one for 

each neuron [16]. For the outer layer, there are 120 single precision weights. The 120 

single precision weights are distributed in 10 rows and 12 columns. There are 10 biases’ 

values in vector form for the outer layer, again, one for each neuron [16]. For the hidden 

layer neuron, the input contains 784 pixels that are distributed in 28 rows and 28 

columns. Also to note, the outer layer input will be received as the output from the hidden 

layer.  

Now that we have the information for the inputs, weights (hidden), bias (hidden), 

weights (hidden), and bias (outer), we can see how this information fits into the hidden 

neuron output equation and outer neuron output equation. 

 

ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝑍 =
1

1 + exp (− ∑ (𝑤(𝑥)𝑖 ∗ 𝑝𝑖)
𝑚=784
𝑖=1 −  𝑏(𝑥))

 

 

For the hidden neuron output equation, w(x) stands for the weights associated 

with the hidden layer, p stands for the input, and b(x) stands for the biases associated with 

the hidden layer. 

 

𝑜𝑢𝑡𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (− ∑ (𝑤(𝑥)𝑖 ∗ 𝑍𝑖)𝑚=12
𝑖=1 − 𝑏(𝑥))
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For the outer neuron output equation, w(x) stands for the weights associated with 

the outer layer, Z stands for the input, which is also the output for the hidden layer, and 

b(x) stands for the biases associated with the outer layer. 

 Using this information, Westby compared a non-pipelined design, a pipelined 

784-multiplier design, and a multiple pipelined 98-MUL design [16]. When comparing 

latency and resources, it was noted that even though the 98-MUL design had the highest 

lantency between the three, it would be a fast enough execution time for real-world 

applications, while using the least amount of resources in comparison with the other two 

designs [16]. Therefore, Westby designed and created a 98-MUL architecture design 

[16]. Below are the figures for the 98-MUL power summary and utilization summary.  

 

 
Figure 3.1.2 

Power summary for 98-MUL 
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Figure 3.1.3 

Utilization summary for 98-MUL 

 

3.2 28-MUL 

One part of my contributions for this project was to create three different 

architecture designs with the multiplers as the baseline. Therefore, there is a 28 multiplier 

architecture design, a 49 multiplier architecture design, and a 196 multiplier architecture 

design. There was one more architecture design that was created, a 392 multiplier 

architecture design, but there were not enough resources on the FPGA, specificly the 

DSP resources, therefore the 392 multiplier architecture design was dropped.  

Since the outer neuron output equation, has its own associated weights and biases, 

and its input always depends on the hidden neuron output, the outer neuron output design 

will be the same for each multiplier based architecture design. Therefore, we only need to 

consider the hidden neuron output equation for each of these designs. Below is the outer 

neuron output’s design that is used for all multiplier based architecture designs. 
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Figure 3.2.1 

Outer layer output design used for all multiplier based designs. 
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When deciding the multiplier base architecture designs, the information that was 

known was that there are 784 inputs and that the previous work contributed a 98-MUL 

design. The goal was to compare the differences in area, power, and speed between 

different designs. Therefore, the first step was to look at the divisors of 784. Those 

divisors are listed as follows: 1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, and 784. 

My goal from here was to choose a design that could still be used in real-world 

application as well as be varied enough from the other designs, so that area-power-speed 

comparisons would be notable. I decided that the lowest design that I was going to create 

was with 49-MUL architecture design. Therefore that leaves: 56, 112, 196, and 392. 

Since, 112-multipliers are close enough to the 98-MUL design and similarly with the 56-

multipliers being too close to a 49-MUL design, I was worried there would not be a 

notable difference.  Therefore, I removed those possibilities and I was left with a 196-

MUL design, and a 392-multiplier design. I then exceuted the 49, 196, and 392 designs. 

As noted before I was not able to execute the 392-multiplier architecture design. I then 

went back to the list of divisors and choose the highest, most varied number, which was 

28.  

The 28-MUL architecture design, is unique in that the number of inputs into the 

input layer also equals the number of times the design needs to be iterated. Below, in 

Figure 3.2.2 and Figure 3.2.3 you can see the design for the 28-MUL hidden layer output 

design and Figure 3.2.4 is the timing diagram for the same design. The timing diagram is 

very intricate therefore, I included in Figure 3.2.5 the hidden layer timing and in Figure 

3.2.6 I included the very first iteration for the outer layer timing. Figure 3.2.7 is the 

power dissipation for the 28-MUL design and Figure 3.2.8 indicated the overall resources 

used. 
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Figure 3.2.2 

First half of the hidden layer output design used in the 28-MUL architecture design. 
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Figure 3.2.3 

Second half of the hidden layer output design used in the 28-MUL architecture design. 
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Figure 3.2.4 

Partial timing diagram for the 28-MUL architecture design, emphasizing the first 

iteration of the hidden layer timing. 
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Figure 3.2.5 

Partial timing diagram for the 28-MUL architecture design, emphasizing the outer layer timing. 
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Figure 3.2.6 

Power Summary for 28-MUL 

 

Figure 3.2.7 

Utilization Summary for 28-MUL 
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3.3 Architecture Design 49 

The 49-MUL architecture design, has 49 multipliers and needs to be iterated 16 

times to process all 784 inputs. Similarly done with the 28-MUL architecture design I 

will include the figures below. The first figures in this section are Figure 3.3.1 and Figure 

3.3.2. Those figures contains the design for the 49-MUL hidden layer output design. 

Figure 3.3.3 is the timing diagram for the same design. The design is also very intricate 

therefore, Figure 3.3.4 is included to show in greater detail the hidden layer timing and 

Figure 3.3.5 is included to show the outpur layer timing. Figure 3.3.6 is the power 

dissipation for the 49-MUL design and Figure 3.3.7 indicated the overall resources used.
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Figure 3.3.1 

First half of the hidden layer output design used the 49-MUL  

architecture design. Make note that there are hidden  

rows in order to show overall design.
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Figure 3.3.2 

Second half of the hidden layer output design used the 28-MUL architecture design. 

 

 

 

 

 
Figure 3.3.3 

Timing diagram to show overall structure for the 49-MUL architecture design. 
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Figure 3.3.4 

Partial timing diagram for the 49-MUL architecture design, emphasizing the outer layer timing. 
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Figure 3.3.5 

Partial timing diagram for the 49-MUL architecture design,  

emphasizing the first iteration of the hidden layer timing. Counters can also be viewed.  
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Figure 3.3.6 

Power Summary for 49-MUL 

 

 

Figure 3.3.7 

Utilization Summary for 49-MUL  
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3.4 Architecture Design 196 

The 196-MUL architecture design, has 196 multipliers and needs to be iterated 4 

times to process all 784 inputs. Similarly done with the 28 and 49 multiplier architecture 

designs I will include the figures below. The first figure in this section is Figure 3.4.1. It 

contains the first part of the design for the 196-MUL hidden layer output design. Figure 

3.4.2 shows the second half of the hidden later output design. Figure 3.4.3 is the timing 

diagram for the same design. The design is also very intricate, therefore Figure 3.4.4 

includes the very first iteration of the hidden layer timing and Figure 3.4.5 includes the 

output layer timing. Although the timing diagram is intricate, the 196-MUL timing 

diagram does not have as many iterations, therefore it may be easier to view than the 

previous designs. Lastly, included is Figure 3.4.6 that discloses the power dissipation for 

the 196-MUL design and Figure 3.4.7 which indicates the overall resources used. 
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Figure 3.4.1 

First half of the hidden layer output design used in the 196-MUL architecture design. 

Make note that there are hidden rows.
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Figure 3.4.2 

Second half of the hidden layer output design used in the 196-MUL architecture design. 

 

 

 

 
Figure 3.4.3 

Timing diagram to show structure for the 196-MUL architecture design. 
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Figure 3.4.4 

Partial timing diagram for the 196-MUL architecture design, emphasizing the first 

iteration of the hidden layer timing. Counters can also be partially viewed.  
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Figure 3.4.5 

Partial timing diagram for the 196-MUL architecture design, emphasizing the outer layer 

timing. The counters are partially visible in the green-blue gradient colors. 
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Figure 3.4.6 

Power Summary for 196-MUL 

 

Figure 3.4.7 

Utilization Summary for 196-MUL  
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CHAPTER IV:  

FLOATING POINT COMPONENTS 

In this chapter, the designs on floating point adders and multipliers are mainly 

discussed. Further, the simulation and synthesis results are shown by using Xilinx Vivado 

and the FPGA design flow [65, 66].  

 

4.1 Floating Point Adder Design 

First, data is extracted from the two inputs and the data is then distributed to the 

three main parts (sign, exponential bias, and significand) for each input. Next, it is 

determined if any exceptions are present. For example, if we have a Not a number (NaN) 

added to a normal number the result would be NaN (32’hFFFFFFFF).  Another example 

would be with a positive infinity added to a normal number. That would result in the 

answer to be positive infinity (32’h7F800000). If an exception is found, then the 

predetermined results are sent to the output. Otherwise, concatenation to each of the 

inputs’ significands occur followed by the exponential comparison. During the 

exponential comparison the signs will be determined. If the inputs’ exponential biases are 

equal, then move onto the next step which is significand addition. If the inputs’ 

exponential biases are not equal, then the next step is finding the smaller exponential 

bias. The smaller exponential bias is subtracted from the larger and that difference 

determines how much the small exponential bias’s input’s significand needs to be shifted. 

The smaller exponential bias then takes on the same exponential bias of the larger 

exponential bias. Now significand addition can occur. A leading zero counter is 

implemented to see if the results from the significand addition need to be normalized. If 

yes, then normalization occurs and move onto the step of special cases. If no, then move 

onto the next step, special cases. If a special case is valid then the results are sent to the 
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output, otherwise rounding will occur. The result of the normalized significand addition 

needs to be rounded. For rounding, we will have four bits that will help determine 

whether rounding up or rounding down should occur. The check bit which is the least 

significant bit. The next three bits are to the right of the check bit, in the subsequent 

order: guard bit, round bit, and sticky bit. The sticky bit is a reduction or of all the rest of 

the bits that are to the right of the round bit. The guard bit, round bit, and sticky bit are 

concatinated together and they form grs. If grs = 100, then the check bit will be checked 

if it contains a one or a zero. If a zero is present then we round down, by not doing 

anything to the significand. If a one is present then we round up. Rounding up calls for 

the significand to be incremented by one. Rounding up also occurs when the gbs equals 

101, 110, or 111. Rounding down occurs when the guard bit equals 0 or when the gbs 

equals 0XX. Once rounded, the result is then checked to see if it is still normalized. If 

normalization needs to occur then the normalization step will be repeated. If the result is 

still normalized then send the significand and exponent to the final output.  

These were the steps that I followed in order to build a floating point adder 

adhereing to the IEEE 754 Standard. Below you can find a flow chart for this adder.  
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Figure 4.1.1 

Adder flow chart 
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4.1.2 Adder Simulation Results 

The adder was constructed using the Hardware Description Language, Verilog 

HDL. The design was created, simulated, and synthesized in Xilinx Vivado. The results 

were verified with handwritten computation and an online IEEE 754 Standard floating 

point calculator, IEEE 754 Calculator. At the bottom of the webpage I selected binary32, 

inputted the two inputs in hexadecimal format, and selected the addition symbol. The 

online calculator can be found at: http://weitz.de/ieee/. For the test bench, I tested with 20 

different test cases. The simulation results matched my expected results for all test cases.  

Below, you can see in Figure 4.1.2 nine test cases are displayed in the waveform. 

For the sixth test case my input for A was 0xDFF236E1 and my input for B was 

0x5FCFC469. My output for F was 0xDE89C9E0. For the eighth test case my input for A 

was 0x510D36B7my input for B was 0x510D58B5. My output for F was 0x518D47B6. 

The other signals that are displayed represent some of the component stages that were 

described in my adder design and flow chart. For example, “ExAB” the larger exponent 

that will be sent forward and evaluated when normalization occurs. .  

In Figure 4.1.3, we can analyze the power implementation estimate. The total on-

chip power estimation is 10.471 W. The on-chip power distribution for static power is 6% 

while the dynamic power is the remaining 94%. 

In Figure 4.1.4, we can analyze the adder’s resource utilization. The Look up tables 

(LUT) utilizes 880 out of the 203,128 available. The flip flops (FF) utilizes 333 out of 

406,256 available. The inputs/output ports utilizes 97 out of 368 available. The LUTs and 

FFs utilize less than 1% of the board’s corresponding resources while the IOs utilize a 

little over one-fifth of the board’s IO resources. 

http://weitz.de/ieee/
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Figure 4.1.2 

Adder component showing the test bench simulation results. A and B are inputs and F is the output.
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Figure 4.1.3 

Adder summarization for estimate power implementation.  

 

 
Figure 4.1.4 

Adder summarization for resource utilization. 
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4.2 Floating Point Multiplier Design 

Some of the steps that are needed for the multiplier will replicate some of the 

steps we used for the adder. First, data is extracted from the two inputs and the data is 

then distributed to the three main parts (sign, exponential bias, and significand) for each 

input. Next, it is determined if any exceptions are present. If this is the case, then the 

exception is determined and the results are sent to the output. If no exceptions are present 

then we XOR the signs from each input and send that result to the sign bit in the final 

output.  

The next step involves calculating the exponential bias. First, we add the 

exponential biases from each of the inputs. Then we subtract out the bias associated each 

precision. Since we are using single precision in our project, we will subtract 127 from 

the summed exponential biases.  

Multiplication of the significands follows exponential addition. As mentioned 

before, we can find the placement of the multiplication result by summing the 

significand’s length for each input. This will let us know where our decimal placement 

will be in our result. Therefore in our result significand, if our leftmost bit is 0 then our 

decimal lies between the 45th and 46th bit.  

Normalization step occurs next. We need to find the leading one and count the 

zeroes before that leading one. This is done to know how much to shift the resultant 

significand. This information is also used to adjust the exponent bias value. Once 

normalization is complete or if normalization is not needed then move to the step of 

special cases. If the special case is valid then the results are sent to the output, otherwise 

rounding will occur. 

Once normalization is complete, the result of the normalized significand 

multiplication needs to be rounded. For rounding, we followed the round to nearest even. 
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If the grs was 0XX or 100 with a checkbit equal to zero then we would leave the result. 

Otherwise we would increment the signficand by one. After the result is rounded, the 

rounded result is then checked to see if it is still normalized. If it is not normalized, 

normalization needs to occur again. Once the result is normalized, send the significand 

and exponent information to the final output. Multiplication of the significands is now 

complete.  

This concludes the steps that I followed in order to build a floating point 

multiplier. On the following page is the flow chart for this multiplier. 
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Figure 4.2.1 

Multiplier flowchart  
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4.2.2 Multiplier Simulation Results 

The multiplier was constructed using the Hardware Description Language, 

Verilog HDL. The design was created, simulated, and synthesized in Xilinx Vivado. The 

results were verified the same way that the adder results were verified, with handwritten 

computation and an online IEEE 754 Standard floating point calculator, IEEE 754 

Calculator that was mentioned before during the Addition Simulation Results. For the test 

bench, I tested with 20 different test cases. The simulation results matched my expected 

results for all test cases.  

Below, you can see in Figure 4.2.2 two test cases are displayed in the waveform. 

For the first test case my input for A was 0xf0000001 and my input for B was 

0xb000000f. My output for F was 0x60800010. For the second test case my input for A 

was 0x254fc469 and my input for B was 0xc7f236e1. My output for F was 0xadc49435. 

The other signals that are displayed represent some of the component stages that were 

described in my multiplier design and flow chart. For example, “E” represents the step in 

which two exponential biases are summed together, then the bias is subtracted from the 

sum.  

In Figure 4.2.3, we can analyze the power implementation estimate. The total on-

chip power estimation is 32.451 W. The on-chip power distribution for static power is 6% 

while the dynamic power is the remaining 94%. 

In Figure 4.2.4, we can analyze the multiplier’s resource utilization. The Look up 

tables (LUT) utilizes 452 out of the 203,128 available. The flip flops (FF) utilizes 32 out 

of 406,256 available. The inputs/output ports utilizes 97 out of 468 available. The LUTs 

and FFs utilize less than 1% of the board’s corresponding resources while the IOs utilize 

almost one-third of the board’s IO resources. 
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Figure 4.1.2 

Multiplier component showing the test bench simulation results 
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Figure 4.2.3 

Multiplier summarization for estimate power implementation. 

 

 
Figure 4.2.4 

Multiplier summarization for resource utilization. 
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CHAPTER V:  

ADDER AND MULTIPLIER RTL VERSUS IP 

The goal of creating the RTL adder and multiplier was to be able to instantiate 

them into our 28-MUL, 49-MUL, 98-MUL, and 196-MUL designs, instead of using the 

Xilinx IP adder and multiplier. Instantiating these designs creates our 28-MUL-AM, 49-

MUL-AM, 98-MUL-AM, and 196-MUL-AM designs. The latency should be the same 

between the same numbered MUL and MUL-AM designs, but there should be a 

significant difference between the designs in regards to power and area. After running the 

28-MUL-AM design and comparing the results with the 28-MUL design, it became 

apparent that the Xilinx IP adders and multipliers were superior in resource and power 

consumption. Therefore, instead of detailing the differences between all of the MUL and 

MUL-AM designs, in this section, I will only go over the 28-MUL and 28-MUL-AM 

design, as well as compare the RTL and Xilinx IP adder and multiplier. 

Now that the floating point multiplier and adder have been made we can 

instantiate those files into our 28-MUL design and not use the Xilinx IP floating point 

multiplier and adder. This creates our 28-MUL-AM design. Although the RTL adder and 

multiplier did not have lower resources and power costs than the IP versions, this still 

allows for user flexibility in the future, in regards to accuracy in digit detection. Custom 

design implementations can be made with the main goal of power costs and/or utilization 

costs for the user. The custom floating point designs was slightly more accurately in 

testing for the digit one, but the cost in resources and power have increased tremendously 

in comparison to the designs using the Xilinx IPs. The 28-MUL-AM strongly detected 

the digit one with a decimal result of 0.999954, while the 28-MUL strongly predicted the 

digit one with a decimal result of 0.9997094 precision. Even though the prediction was 

slightly higher on the 28-MUL-AM design for the digit one, there was a digit that the 28-
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MUL-AM also tried to predict; a prediction of the digit six with a decimal result of 

0.4561733.  

Figure 5.1.1 displays the power cost for the 28-MUL-AM design. Figure 5.1.2 

displays the utilization cost for the 28-MUL-AM design. Figure 5.2.1 shows the 28-MUL 

simulation results for digit one. Figure 5.2.1 shows the 28-MUL simulation results for 

digit one. Table 5.2.1 examines the previous two simulation results for digit recognition 

between the 28-MUL and 28-MUL-AM designs and shows the digit predictions. Lastly, 

we will examine the power and utilization figures for the RTL and Xilinx IP adder and 

multiplier.  
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5.1 Design 28-MUL-AM 

 
Figure 5.1.1 

Power Utilization Summary for 28-MUL-AM  

 
Figure 5.1.2 

Utilization Summary for 28-MUL-AM 
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5.2 Simulation Results Comparison 

 

 
Figure 5.2.1 

28-MUL Simulation Results for digit #1 

 

 
Figure 5.2.2 

28-MUL-AM Simulation Results for digit #1 

 

 
Table 5.2.1 

A comparison of the simulation results for digit recognition between 28-MUL and 28-MUL-AM for digit #1 

Comparing Simulation Results for Digit Recognition of Digit #1

0 0x2f5bc018 2.00E-10 0x307cfd02 9.20E-10 0.00000007%

1 0x3f7fecf5 0.9997094 0x3f7ffcfc 0.999954 0.02446000%

2 0x315e33a1 3.23E-09 0x31a72c80 4.87E-09 0.00000016%

3 0x35536466 7.87E-07 0x343d8974 1.77E-07 -0.00006110%

4 0x33a3fa45 7.64E-08 0x37ad99b5 2.07E-05 0.00206184%

5 0x39f31170 4.64E-04 0x3a998e92 1.17E-03 0.07079307%

6 0x3c6b6c34 1.44E-02 0x3ee98f8c 4.56E-01 44.18042410%

7 0x3a8ec39e 1.09E-03 0x38113828 3.46E-05 -0.10545809%

8 0x2e71543b 5.49E-11 0x30856a7f 9.71E-10 0.00000009%

9 0x384e6d0f 4.92E-05 0x39544c70 2.02E-04 0.01532479%

Probability of Digit Probability of Digit
Percent DifferencePossible Digit

28_MUX 28_MUX_AM
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5.3 Simulation Results Comparison 

Figure 5.3.1 is the Xilinx IP adder Power Summary. Figure 5.3.2 is the Xilinx IP 

adder Utilization Summary. Figure 5.3.3 is the Xilinx IP multiplier Power Summary. 

Figure 5.3.4 is the Xilinx IP multiplier Utilization Summary. Lastly, Table 5.3.5 is the 

table that compares the previous four figure’s results with the RTL figures that were 

mentioned earlier. 

 

 
Figure 5.3.1 

Xilinx IP Adder summarization for estimate power cost. 
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Figure 5.3.2 

Xilinx IP Adder summarization for estimate utilization cost. 

 

 
Figure 5.3.3 

Xilinx IP Multiplier summarization for estimate power cost. 
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Figure 5.3.4 

Xilinx IP Multiplier summarization for estimate utilization cost. 

 

 
Figure 5.3.5 

Comparison between the Xilinx IP and RTL designs for the adders and Multipliers 

 

  

IP and RTL Adder and Multiplier Comparison

Xilinx IP RTL design Xilinx IP RTL design

LUT 250 880 74 452

FF 82 333 33 32

DSP 2 N/A 3 2

Power 1.806 W 10.471 W 1.28 W 32.451 W

Adder Multiplier



56 

 

CHAPTER VI:  

EXPERIMENTAL RESULTS 

After the implementation of the MLPNN, this chapter discusses the hardware 

performance in terms of execution time, slice count, and power dissipation. Finally the 

comparison between the existing works and my proposed design is discussed.   

 

6.1 Execution Time 

The designs that had the lowest latency between the multiplier architecture 

designs was the 196 multiplier architecture design. The 196 multiplier architecture design 

executed in 126 clock cycles. The 98 multiplier architecture design executed in 129 clock 

cycles. The 49 multiplier architecture design executed in 246 clock cycles. The 28 

multiplier architecture design executed in 390 clock cycles. In the tables below, we can 

see the different designs with their latency followed by another table that emphasizes the 

percentage change in latency compared to the 196 multiplier design. 

 

 
Table 6.1.1 

Latency comparison displayed in clock cycles for all designs  

 

Latency Comparison

Clock Cycles 390 246 129 126

Designs 28-MUL 49-MUL 98-MUL 196-MUL
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Table 6.1.2 

Percent difference calculations for latency compared to the 196-MUL design.  

 

6.2 Resource Cost 

The design that had the lowest resource cost between the multiplier architecture 

designs was the 28-MUL architecture design. The 28-MUL architecture design utilized 

294 DSPs, 7865 FFs, and 24,662 LUTs. The 49-MUL architecture design utilized 380 

DSPs, 9,348 FFs, and 30,024 LUTs. The 98-MUL architecture design utilized 604 DSPs, 

14,274 FFs, and 44,668 LUTs. The 196-MUL architecture design utilized 1,086 DSPs, 

25,217 FFs, and 79,931 LUTs. The 28-MUL-AM architecture design utilized 178 DSPs, 

17,363 FFs, and 66,519 LUTs. The LUTs and FFs were overall much lower in the IP 

designs (MUL designs), while the DSP count was overall lower in the MUL-AM designs. 

In the table below, we can see the resources utilization for the LUTs, FFs, and DSPs for 

our designs. In the following table, the percentage difference is displayed for resource 

costs compared to the 28-MUL design. 

 

 

 

Latency Percent Difference

Clock Cycles 390 246 129 126

% difference in  

comparison to the 

196-MUL design

210% 95% 2% 0%

Designs 49-MUL 196-MUL98-MUL28-MUL
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Table 6.2.1 

Resource cost comparison for LUT, FF, and DSP for all designs 

 

 
Table 6.2.2 

Percent difference calculations for resource cost compared to the 28-MUL design. 

 

6.3 Power Cost 

The design that had the lowest power cost between the multiplier architecture 

designs while instantiating the adder and multiplier components was the 28-MUL 

architecture design. The 28-MUL design power implementation cost is 207.996 W, 

versus 519.052 W for the 28-MUL-AM design. The 49-MUL design power 

implementation cost is 342.177 W. The 98-MUL design power implementation cost is 

569.749 W. The 196-MUL design power implementation cost is 572.464 W. In the table 

below, we can see the power cost comparison between all MUL designs. The next table 

displays the percentage change in power cost between the MUL designs, using the 28-

MUL design as the initial design since it had the lowest power cost. 

 

  

Resources Comparison

Design 28-MUL 49-MUL 98-MUL 196-MUL

LUT 24,662 30,024 44,668 79,931

FF 7,865 9,348 14,274 25,217

DSP 294 380 604 1,086

Resources Percent Difference

Design 28-MUL 49-MUL 98-MUL 196-MUL

LUT 0% 22% 81% 224%

FF 0% 19% 81% 2%

DSP 0% 29% 105% 96%
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Table 6.3.1 

Power cost comparison in Watts between all designs 

 

 
Table 6.3.2 

Percent difference calculations for power cost compared to the 28-MUL design. 

 

6.4 Comparison of Related Work 

As mentioned in the beginning, there has been many breakthroughs in hardware 

acceleration in recent years. Some of the work that has been published focuses on image 

recognition latency. A 5-layer accelerator for MNIST digit recognition executed 

processing one image correctly in 25.4 microseconds [13]. Another author was able to 

processing an image in 17.6 microseconds [14]. Another related work was able to use the 

same hardware as our design and they were able to processing an image in 14.2 

microseconds. The work that this thesis is built upon was able to process an image in 1.55 

microseconds [16]. The design with the 196-MUL was able to process an image in 1.52 

microseconds. There is room for improvement and there are ways to improve the latency 

for our system.  

With latency, our designs can be competitive, but much work needs to be done to 

lower our utilization of resources. According to [19] they were able to execute image 

recognition in 3.2 milliseconds with only 18,426 LUTs and 8,264 FF. [15] has excellent 

latency with 14.2 microseconds. Their [15] numbers for their resource cost are 213,593 

LUTs and 136,677 FFs. The 196-MUL-AM design had the lowest latency and therefore 

had the highest utilization of resources. The 196-MUL-AM resource cost was 297,302 

Power Comparison

Designs 28-MUL 49-MUL 98-MUL 196-MUL

Watts 207.996 342.177 569.749 572.464

Power Percent Difference

Designs 28-MUL 49-MUL 98-MUL 196-MUL

Watts 0% 65% 174% 175%
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LUTs and 76,715 FFs. The 28-MUL design has the highest latency and therefore its 

resource cost is lower with 24,662 LUTs and 7,865 FFs.   

Lastly, the power consumption on all my designs were high. The 28-MUL design 

had the lowest power cost of 208 W. The highest power cost design was the 196-MUL-

AM design. Below you can find a table that summarizes the comparison of related work 

with our 28-MUL design. 

 

  

Comparison with Existing Work

Designs [12] [10] [19] [11] [13] [14] [15] [16]
Proposed 

Work

Accuracy 0.9862 0.9864 0.96 0.9467 0.968 0.9757 - 0.9325 0.9582

Latency (us) 26000 3580 3200 637 25.4 17.6 14.2 1.55 3.9

LUTs 14832 32589 18426 38899 80175 12588 213593 44668 24662

FFs 54075 33585 8264 40534 40140 48765 136677 14274 7865

Energy (mJ) - - 4.83 - - - - 0.88 0.81
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CHAPTER VII:  

CONCLUSION 

7.1 Conclusion 

In conclusion, this dissertation is summarized. Firstly, the paper started with the 

goals of what should be accomplished, as well as mention the related work to this project. 

The next section explained a neural network, a single layer perceptron neutral network, a 

multilayer perceptron neural network, the sigmoid function, and the sigmoid neutron. The 

next part covered the explanation of the IEEE 754 Standard. 

The following section, described the previous work that was done regarding this 

project and explained how the network was determined. I then went over the three 

designs that were completed: 28-MUL, 49-MUL, and 196-MUL architecture designs. 

The next section covered the design aspects of the adder and multiplier. Then all the 

results were covered.  

Overall, this dissertation presented several parallel architectures for handwritten 

digit recognition in order to improve hardware efficiency in terms of resources, power, 

and speed in a Field Programmable Gate Array (FPGA) neuromorphic processor. The 

conclusion of the project is that the proposed designs offered different levels of hardware 

efficiency depending on what is needed. The proposed designs allow for the user to 

choose what they deem important, whether they value area, speed, or power. There are 

many improvements and customization that can be made.  

 

7.2 Future Work 

Implementation of custom modules should bring the resource costs lower. With 

custom modules for adders and multipliers, there is much room to improve. Depending 

on the desired output regarding area, power, and speed, there are many algorithms that 
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are geared towards just lowering latency, resources, and power for adders and multipliers. 

If the goal is low power or low utilization of resources then the entire system can be 

custom tailored to reach that desired outcome.  

In order to demonstrate the FPGA application of classifying handwritten digits, a 

data path design on image or video processing should be instantiated [67]. By capturing 

frames of image through a camera the dissertation enables a platform to recognize 

handwritten digits in real time.    
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