

Copyright

by

April Reed

2020

EXPLOITING AREA-SPEED-POWER TRADEOFF OF FPGA DESIGNS ON

MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK

by

April Lora Reed, MS

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

DECEMBER, 2020

EXPLOITING AREA-SPEED-POWER TRADEOFF OF FPGA DESIGNS ON

MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK

by

April Lora Reed

APPROVED BY

 __

 Xiaokun Yang, PhD, Chair

 __

 Hakduran Koc, PhD, Committee Member

 __

 Ishaq Unwala, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Interim Associate Dean

__

Miguel A Gonzalez, PhD, Dean

Dedication

I would like to dedicate my thesis to my husband, my Mom, my Dad, my late

Sister, my Derkinator, and my two best friends. Without their love, support, motivation,

and help I would be at a very different place in life.

v

Acknowledgements

I would like to acknowledge the faculty and staff in the Computer Engineering

department at the University of Houston – Clear Lake. I would like to acknowledge my

thesis committee members for inspiring and helping me. I would like to thank Dr.

Xiaokun Yang for his support and knowledge. Without his insight my thesis work would

have been a very difficult journey. I also would like to thank Dr. Hakduran Koc for

mentoring me throughout my computer engineering academic career and by helping me

prioritize my thesis work. I feel very lucky that I am at a school that has outstanding

professors who have helped me grow academically and professionally.

I would like to acknowledge my computer engineering friends who have helped

me with my thesis related and academic work.

Finally, I would like to acknowledge my husband and parents for their love and

support.

vi

ABSTRACT

EXPLOITING AREA-SPEED-POWER TRADEOFF OF FPGA DESIGNS ON

MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK

April Lora Reed

University of Houston-Clear Lake, 2020

Thesis Chair: Xiaojun Yang, PhD

This dissertation presents four Field Programmable Gate Array (FPGA) design

architectures for handwritten digit recognition, in order to improve hardware efficiency in

terms of resources, power, and speed of the neuromorphic processor. Multipliers are used

as the basis for each of the processor designs. Additional methods are explored to

compare hardware efficiency with implementing floating point adders and multipliers in

register-transfer level (RTL) designs. These implementations are then instantiated into

each of the processor designs and the results are compared to the IPs-based

demonstrations using Xilinx Vivado. Experimental results show that the 196-MUL

design architecture achieves the highest speed but consumes a large amount of power and

FPGA resource including look-up Tables (LUTs), flip-flops (FFs), and digital signal

processing elements (DSPs). In contrast, the 28-MUL design architecture spends the

minimum LUTs, FFs, DSPs, and power dissipation, however, the latency is greater than

3× compared with the hardware cost of the 196-muliplier structure. The conclusion of the

vii

dissertation is that the proposed works offer different levels of hardware efficiency

corresponding to different design specifications. The proposed designs allows for the user

to choose which aspect is important to them in regards to area, power, and speed and then

specialize the system to their needs.

viii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

CHAPTER I: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Related Works ... 3

CHAPTER II: PROPOSED DESIGN ... 4

2.1 Neural Network ... 4
2.1.1 Multilayer Perceptron .. 5

2.1.2 Sigmoid Neurons .. 6
2.4 Floating Point Single Precision ... 8

2.5 Adder... 10
Exponential Comparison .. 10
Significand Addition.. 10

Normalization ... 11

Rounding ... 11
Exceptions ... 11

2.6 Multiplier .. 11

Exponential Addition .. 12
Significand Multiplication .. 12

CHAPTER III: DESIGN ARCHITECTURES .. 13

3.1 Previous Design .. 13
3.2 28-MUL .. 17

3.3 Architecture Design 49 ... 25

3.4 Architecture Design 196 ... 31

CHAPTER IV: FLOATING POINT COMPONENTS ... 37

4.1 Floating Point Adder Design .. 37
4.1.2 Adder Simulation Results ... 40

4.2 Floating Point Multiplier Design .. 43

4.2.2 Multiplier Simulation Results .. 46

CHAPTER V: ADDER AND MULTIPLIER RTL VERSUS IP 49

5.1 Design 28-MUL-AM .. 51
5.2 Simulation Results Comparison .. 52
5.3 Simulation Results Comparison .. 53

ix

CHAPTER VI: EXPERIMENTAL RESULTS ... 56

6.1 Execution Time ... 56
6.2 Resource Cost ... 57
6.3 Power Cost .. 58

6.4 Comparison of Related Work ... 59

CHAPTER VII: CONCLUSION ... 61

7.1 Conclusion .. 61
7.2 Future Work .. 61

REFERENCES ... 63

x

LIST OF TABLES

Table 5.2.1 A comparison of the simulation results for digit recognition between

28-MUL and 28-MUL-AM for digit #1.. 52

Table 6.1.1 Latency comparison displayed in clock cycles for all designs 56

Table 6.1.2 Percent difference calculations for latency compared to the 196-MUL

design. ... 57

Table 6.2.1 Resource cost comparison for LUT, FF, and DSP for all designs 58

Table 6.2.2 Percent difference calculations for resource cost compared to the 28-

MUL design. ... 58

Table 6.3.1 Power cost comparison in Watts between all designs 59

Table 6.3.2 Percent difference calculations for power cost compared to the 28-

MUL design. ... 59

xi

LIST OF FIGURES

Figure 2.1.2 A general MLPNN fully connected three layer design. 7

Figure 2.4.1 IEEE 754 Standard's Single Precision Format ... 8

Figure 3.1.1 Final network design for a digit recognition MLPNN. 14

Figure 3.1.2 Power summary for 98-MUL ... 16

Figure 3.1.3 Utilization summary for 98-MUL .. 17

Figure 3.2.1 Outer layer output design used for all multiplier based designs. 18

Figure 3.2.2 First half of the hidden layer output design used in the 28-MUL

architecture design. ... 20

Figure 3.2.3 Second half of the hidden layer output design used in the 28-MUL

architecture design. ... 21

Figure 3.2.4 Partial timing diagram for the 28-MUL architecture design,

emphasizing the first iteration of the hidden layer timing. ... 22

Figure 3.2.5 Partial timing diagram for the 28-MUL architecture design,

emphasizing the outer layer timing. .. 23

Figure 3.2.6 Power Summary for 28-MUL .. 24

Figure 3.2.7 Utilization Summary for 28-MUL .. 24

Figure 3.3.1 First half of the hidden layer output design used the 49-MUL

architecture design. Make note that there are hidden rows in order to show

overall design. ... 26

Figure 3.3.2 Second half of the hidden layer output design used the 28-MUL

architecture design. ... 27

Figure 3.3.3 Timing diagram to show overall structure for the 49-MUL

architecture design. ... 27

Figure 3.3.4 Partial timing diagram for the 49-MUL architecture design,

emphasizing the outer layer timing. .. 28

Figure 3.3.5 Partial timing diagram for the 49-MUL architecture design,

emphasizing the first iteration of the hidden layer timing. Counters can also be

viewed. .. 29

Figure 3.3.6 Power Summary for 49-MUL .. 30

Figure 3.3.7 Utilization Summary for 49-MUL .. 30

Figure 3.4.1 First half of the hidden layer output design used in the 196-MUL

architecture design. Make note that there are hidden rows. .. 32

xii

Figure 3.4.2 Second half of the hidden layer output design used in the 196-MUL

architecture design. ... 33

Figure 3.4.3 Timing diagram to show structure for the 196-MUL architecture

design. ... 33

Figure 3.4.4 Partial timing diagram for the 196-MUL architecture design,

emphasizing the first iteration of the hidden layer timing. Counters can also be

partially viewed. .. 34

Figure 3.4.5 Partial timing diagram for the 196-MUL architecture design,

emphasizing the outer layer timing. The counters are partially visible in the green-

blue gradient colors. .. 35

Figure 3.4.6 Power Summary for 196-MUL .. 36

Figure 3.4.7 Utilization Summary for 196-MUL .. 36

Figure 4.1.1 Adder flow chart ... 39

Figure 4.1.2 Adder component showing the test bench simulation results. A and B

are inputs and F is the output. ... 41

Figure 4.1.3 Adder summarization for estimate power implementation. 42

Figure 4.1.4 Adder summarization for resource utilization. ... 42

Figure 4.2.1 Multiplier flowchart.. 45

Figure 4.1.2 Multiplier component showing the test bench simulation results 47

Figure 4.2.3 Multiplier summarization for estimate power implementation. 48

Figure 4.2.4 Multiplier summarization for resource utilization. 48

Figure 5.1.1 Power Utilization Summary for 28-MUL-AM... 51

Figure 5.1.2 Utilization Summary for 28-MUL-AM .. 51

Figure 5.2.1 28-MUL Simulation Results for digit #1.. 52

Figure 5.2.2 28-MUL-AM Simulation Results for digit #1 .. 52

Figure 5.3.1 Xilinx IP Adder summarization for estimate power cost. 53

Figure 5.3.2 Xilinx IP Adder summarization for estimate utilization cost. 54

Figure 5.3.3 Xilinx IP Multiplier summarization for estimate power cost. 54

Figure 5.3.4 Xilinx IP Multiplier summarization for estimate utilization cost. 55

Figure 5.3.5 Comparison between the Xilinx IP and RTL designs for the adders

and Multipliers .. 55

1

CHAPTER I:

INTRODUCTION

1.1 Background

Handwritten digit recognition is one of the emerging problems in the applications

of image processing and computer vision [1]. Many prior works have shown high

accuracy by demonstrating various digit classification platforms [2–4]. As results showed

in [3], up to 99.21% recognition accuracy can be achieved by the designs on

convolutional neural networks (CNN), through obtaining more diverse features from each

handwritten digit image. Similarly, in [2] authors proposed a combination of learning

parameters to the design on CNN, including number of layers, stride size, receptive field,

kernel size, padding and dilution for CNN-based handwritten digit classification, which

achieved a very high recognition accuracy of 99.87%.

From the hardware design perspective, the inherent tolerance to the imprecise

digit classification has a potential to improve hardware computation efficiency in terms

of gate/slice count, speed, and power dissipation [5–7]. Under this context, an FPGA-

based neuromorphic processor and several parallel architectures were proposed in [6]. By

using the approximate multipliers in the baseline processor design, up to 20% reduction

in energy consumption was achieved while slightly reducing the recognition performance

for handwritten digit recognition. Another example proposed by [7] demonstrated that

using residue number system (RNS) arithmetic in the convolutional layer of CNN can

reduce hardware costs by 32% compared with the traditional approach based on the

binary number system. Likewise, computation speed can be improved by FPGA

acceleration [8] and application-specific designs such as employing a novel digit

extraction method to reach up to 2.47× speedup in comparison to software solutions [9].

2

To find the optimal balance of area-latency-power consumption on the design

with a FPGA, this dissertation proposes a dynamic design architecture on multi-layer

perceptron (MLP) neural networks. By configuring different design specifications to the

slice cost, speed, and power dissipation, my proposed work is able to minimize the

latency while maintaining a digit recognition accuracy up to 95.82%. Specifically, the

contributions are below.

This dissertation first presents a single-hidden-layer MLP neural network to

classify handwritten digits with an accuracy up to 95.82%. Further, many different design

architectures on FPGA containing floating-point multiplication, addition, subtraction,

accumulation, exponential, and reciprocal are proposed to provide hardware acceleration

corresponding to different FPGA resource costs.

Second, the floating-point adders and multipliers are implemented by register-

transfer level (RTL) designs, in order to compare area-latency-power cost on the MLP

network, as well as evaluate the differences compared to the Xilinx Vivado IP-based

implementations.

Finally, the area-latency-power consumption on a FPGA is evaluated and

compared with the performance of the prior works.

The organization of this dissertation is as follows: we first review the relevant

related papers. Our approach is discussed in more detail in Section 3. In Section 4, the

hardware implementations using floating-point adders and multipliers are discussed. In

Section 5 the implementation of those floating-point adders and multipliers are combined

with a previous architecture design and the RTL designs are compared to the Xilinx IP

designs. In Section 6 the corresponding results in terms of slice count, speed, and power

consumption are estimated and compared. Finally, in the last section we present our

conclusion.

3

1.2 Related Works

Research in the FPGA design of handwritten digit classification has focused on

two subjects: the implementation and evaluation, mostly with regard to the FPGA

acceleration, and the performance comparison between different designs and platforms.

Previous works to the hardware acceleration have experienced significant

technological breakthroughs in recent years [10–16]. For instance, in [13] authors

presented a 5-layer accelerator for MNIST digit recognition enabling it to spend 25.4

microseconds to process one frame of image. In [14] a CNN network using a

reconfigurable IP core was implemented, showing a time consumption of 17.6 us to

recognize a handwritten digital picture. Additionally as a result of [15] the

implementation using Xilinx XC7Z045 can reach 14.2 us per image recognition. To the

best of our knowledge, the latest work proposed in [16] achieved the highest speed of

1.55 microseconds per image to the application of digit classification.

Other researches focused on comparing and evaluating performance of designs

using different platforms, for example, to speed up the system computation by using a

programmable artificial neural network coprocessor [17], to employ high-level synthesis

(HLS) tools and software-hardware co-design platforms [18, 19], and to implement the

network in IP-level and RT-level [20, 21] in order to reduce the design cost.

In this dissertation, a dynamic design architecture of MLP neural network is

proposed in order to minimize FPGA area-latency-power cost by slightly decreasing the

classification rate. The database of Modified National Institute of Standards and

Technology (MNIST) is used to build the MLP network and evaluate the accuracy of the

neural network models [22].

4

CHAPTER II:

PROPOSED DESIGN

2.1 Neural Network

Recently neural networks (NNs) are becoming one of the most populer machine

learning algorithms widely used in multiple applications such as speech/music

recognition [23, 24], language recognition [25-27], image classification and video

segmentation [28-30]. In general NNs attempt to emulate how a human brain works. NNs

learn, identify, and decipher complex tasks in science and engineering [31]. In a human

brain, each neuron has dendrites entering and axons exiting. The axons then connect to

other dendrites by synapses [32]. In NNs the neurons are referred to as nodes, the

dendrites are inputs into the nodes, the axons are outputs from the nodes, and the

synapses are the interconnections between the nodes. Each interconnection has a weight

associated with it. Each neuron then sums all those adjusted weights and it checks if a

certain threshold is reached. If the threshold is reached then an output is generated [32].

NNs are made up of layers of nodes. There are usually multiple layers: input layer, output

layer, and at least one hidden layer [33]. The NNs learn by adjusting those weights and

biases until they have the same output that is expected during training. For example, we

can have hundreds of labeled images of ice cream cones and hot dogs. The weights and

biases in the NN will be adjusted until it is correctly predicting the labeled images of ice

cream cones and hot dogs.

5

FPGAs, as well as application-specific integrated circuits (ASICs), have a great

advantage over traditional software based designs and implemenations [34-36]. The

hardware acceleration will be most noted in the resource costs and latency. For FPGAs

the advantages lie in its highly parallel architecture, flexible design architectures, real-

time data processing, and low power consumption [37-40]. Further, the approximate

design on FPGAs can improve the energy-efficiency with the corresponding quality

constraints [41-43].

2.1.1 Multilayer Perceptron

The most utilized class of NNs is the MLP version [31]. Briefly, I want to cover

single layer perceptron NN. Both single layer perceptron neural networks (SLPNN) and

the multilayer perceptron neural network (MLPNN) are feedforward networks. A SLPNN

will take in associated weights and inputs. The input is a vector of numbers. The weights

are adjusted in training to help produce the correct output. Then the weighted sum of all

inputs is adjusted by a bias and the final result is computed. A general single layer NN

architecture will have one input and one output layer of processing units. Single layer

perceptrons can only solve linearly separable problems [44]. Below you can find the

formula for a SLPNN.

𝑆𝐿𝑃𝑁𝑁 = ∑ (𝑤𝑖

𝑚

𝑖
𝑥𝑖) + 𝑏

In the SLPNN formula, w equals weights, x equals inputs, and b equals bias.

MLPNN consists of at least three layers: one input layer, at least one hidden layer, and

one output layer [45]. Every layer except for the input layer will have a node that uses a

nonlinear activation function. An activation function then takes that weighted sum of all

inputs with the adjusted bias and conforms those results to some desired range to help

6

produce the final output. A general MLPNN architecture will have one input and one

output layer of processing units as well as one or more hidden layers of processing units

[46]. MLPNN can solve nonlinearly separable problems.

MLPNN uses a variety of learning techniques, but one of the most popular

supervised learning techniques is back-propagation. The outputs are compared to

provided answers for the problem that is trying to be solve. An error rate is then

calculated and sent back through the network. Weights and biases are adjusted and fine-

tuned with each iteration during training.

2.1.2 Sigmoid Neurons

Activation functions, sometimes referred to as threshold functions, are very

important to MLPNNs [47]. The difference between linear and nonlinear activation

functions, is that a linear activation functions produces an output that is proportional to

the input, while non linear activation functions produces complex outputs that are not

linearly related to the input. Most NNs will have non linear activation function in order to

solve complex problems. There are many activation functions, some of the most

referenced are sigmoid, relu, tanh, and activation. The most popular nonlinear activation

function is the sigmoid function. Below is the sigmoid function.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

1 + 𝑒−𝑥

Sigmoid functions produce outputs between 0 and 1. They have a smooth

gradient, since they are able to make small changes instead of changes in large steps,

therefore helping to fine tune the weights and biases needed for the NN [16]. An example

of a MLPNN is shown in Figure 2.1.2.

7

A sigmoid neuron employees the information we know about the SLPNN formula

and the sigmoid function. Below is the formula for a sigmoid neuron. An example of a

MLPNN fully connected three layer design then follows.

𝑆𝐿𝑃𝑁𝑁 = 𝑥 = ∑ (𝑤𝑖

𝑚

𝑖
𝑥𝑖) + 𝑏

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

1 + 𝑒−𝑥

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑛𝑒𝑢𝑟𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 =
1

1 + 𝑒− ∑ (𝑤𝑖
𝑚
𝑖 𝑥𝑖)+𝑏𝑖𝑎𝑠

Figure 2.1.2

A general MLPNN fully connected three layer design.

8

2.4 Floating Point Single Precision

In an attempt to further reduce the area-latency-power for each of the MLPNN

architecture designs, the floating point components were examined. The Institute of

Electrical and Electronic Engineers (IEEE) 754 Standard was established in 1985 and it

standardized floating-point arithmetic [48]. The current version is a revision of the IEEE

Standard 754-2008, the IEEE Standard 754-2019 [49]. Floating point numbers can

represent a larger range and higher precision of real numbers versus fixed point numbers

[50]. There is a tradeoff between range and precision in floating point numbers [51]. The

range is determined by the size of the exponent and the precision is determined by the

size of the fraction.

The IEEE Standard 754 standardized the formats for floating point numbers. The

format is specified by a radix, precision, and an exponent range [49]. The format

comprises of three parts: the sign, the exponent, and the significand. The IEEE binary

basic format describes three types of precision: 32-bit single precision, 64-bit double

precision, and 128-bit quadruple precision. For this project, single precision was used and

will be referenced as the precision used in the rest of this paper.

Figure 2.4.1

IEEE 754 Standard's Single Precision Format

9

In Figure 2.4.1, the distribution of the 32-bits can be seen. The most significant bit

(MSB) represents the sign bit. The sign bit denotes whether the number is positive or

negative, with ‘0’ representing a positive number and ‘1’ representing a negative number

[52]. The next 8-bits represent the biased exponential. The bias is calculated as follows:

𝐵 = 2𝑛−1 − 1

Where B represents the bias and n represents the number of bits that represent the

biased exponent. For single precision, n = 8, therefore B = 127. The exponent is biased

by a constant in order for the exponent to represent positive and negative numbers [52].

The last 23-bits represent the significand. The significand represents the precision.

It is comprised of the significant digits of the number, led by an implicit non-zero digit.

To normalize a number in scientific notation the leading bit is required to be a non-zero

digit. In binary digits normalizing the number helps maximize the amount of

representable numbers that can be stored and the leading bit will always be ‘1’. The

significand is represented as follows:

𝑆 = 1. 𝑠22𝑠21𝑠20𝑠19𝑠18𝑠17𝑠16𝑠15𝑠14𝑠13𝑠12𝑠11𝑠10𝑠9𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1𝑠0

𝑠22𝑠21𝑠20𝑠19𝑠18𝑠17𝑠16𝑠15𝑠14𝑠13𝑠12𝑠11𝑠10𝑠9𝑠8𝑠7𝑠6𝑠5𝑠4𝑠3𝑠2𝑠1𝑠0 represents the

significant digits for single precision, the digit 1 is the implied 1, and S represents the

significand.

The IEEE 754 Standard also covers exceptions that may occur. Some of the

exceptions that can occur are an an invalid operation, a divid by zero, and an inexact. The

10

output for floating points arithmetic numbers can be normal, subnormal, infinity, zero,

and Not a Number (NaN) [53].

There are five rounding rules in the IEEE 754 Standard. They are as follows:

Round towards zero, round towards positive infinity, round towards negative infinity,

round to nearest, ties to even, and round to nearest, ties away from zero. Round to

nearest, ties to even is the default for rounding for binary point. Round to nearest, tie to

even is the rounding rule that will be implemented in the adder and multiplier

components used in the designs.

2.5 Adder

The IEEE 754 Standard also specifies addition. In arithmetic logic units (ALUs),

adders are the main processing component [54]. There are three main stages for

performing floating point addition: Pre-normalizing before addition, addition, and post-

normalizing after addition [55]. When traversing through these three main stages there

are several components that are necessary to properly complete the order of operations

and they help to ensure that the floating point addition holds up to the IEEE 754

Standard. These main components are exponential comparison, significand addition,

normalization, rounding, and exceptions [51, 56].

Exponential Comparison

This component will compare two inputs’ exponential bias to see which is larger.

The smaller exponential bias is replaced with the larger exponential bias. Before this

occurs, the difference between the two exponential biases is found and stored.

Significand Addition

Once the exponent biases match and the smaller number has been shifted

accordingly, addition occurs.

11

Normalization

This component needs to count the leading zeroes and shift accordingly so that

the first implicit digit is a one [57]. The amount that is shifted will also be used to either

increment or decrement the exponent. We may need to use this component again after

rounding has occurred.

Rounding

After normalization we are left with the outputs’ significand plus additional bits.

These bits help with rounding. As mentioned above, there are five rounding rules in the

IEEE 754 Standard, though by default rounding to nearest, ties to even is used.

Exceptions

Exceptions are checked to shorten the process if one of the inputs is zero or to

produce specific outputs for special cases.

2.6 Multiplier

The IEEE 754 Standard specifies multiplication. Multipliers are some of the most

frequently used components in digital signal processing (DSP), graphics processing,

image processing, and robotics [58, 59]. Multipliers are used because with those

applications computational taxing matrix multiplication is involved [60]. There are three

main stages for performing floating point multiplication: exponential addition,

significand multiplication, and normalization. Although those are the three main stages

there are several components that are necessary to properly complete the order of

operations and they help to ensure that the floating point multiplication holds up to the

IEEE 754 Standard. These main components are exponential addition, significand

multiplication, normalization, rounding, and exceptions [61,62]. Normalization,

12

rounding, and exceptions components were described in the Adder subsection, therefore I

will only go over the exponential addition and significand multiplication below.

Exponential Addition

The component will add the exponential bias from each input. This will introduce

an extra bias, since not only were we adding the exponents, but also the biases.

Subtracting a bias from the added exponential biases together will result in the correct

exponential bias addition.

Significand Multiplication

This component will multiply the significands from each input. With decimal

point multiplication we need to keep track of each input’s digit placement. Since the

significands are normalized, the sum of the significands length will give us the decimal

placement for the result. With single precision there are 23 bits allocated for the

significand. From this we can deduce that the decimal will fall right before the 46th bit in

the result.

13

CHAPTER III:

DESIGN ARCHITECTURES

This dissertation is an extended work to reference [63] presented by Isaac

Westby. Therefore, in this chapter the prior work – a design on 98-MUL (98MUL)

architecture is firstly introduced. Then what follows are three different architectures, 28

multiplier architecure design (28-MUL), 49 multiplier architecure design (49-MUL), and

196 multiplier architecure design (196-MUL). These designs are mainly proposed to

compare and evaluate the design performance in terms of latency, slice count, and power

consumption.

3.1 Previous Design

Earlier work [64] presented the algorithm of a typical MLPNN, and further in [63]

the hardware design on the MLPNN was implemented and estimated to classify

handwritten digits. In general, it consists of 784 input nodes, 12 neurons in the hidden

layer, and 10 output neurons. The goal of reference [63] was to create a low-latency and

highly-accurate digit recognition NN. They achieved this with a significant speedup for

digit recognition compared to other related works. Below is their final network design.

14

Figure 3.1.1

Final network design for a digit recognition MLPNN.

The final network design is also the basis for my work. I will now explain the

different parts for this specific MLPNN. The image that is going to be processed will be

resized to a 28 pixel by 28 pixel image, therefore there needs to be 784 input nodes for

each pixel in the image. It was determined in Westby’s work that only one hidden layer

would suffice, since there was not a difference in accuracy between one hidden layer and

two hidden layers [16]. Westby also examined the different accuracies between the

amount of neurons in one and two hidden layers. He found in his research that 12 neurons

would give an accuracy of 92.96%, given the accuracy versus resource cost, it was

determined that 12 neurons in one hidden layer would be used in the network design [16].

15

The outputs represent the digits 0 through 9, therefore there are 10 neurons in the final

layer.

When Westby trained the network, he was able to produce the weights and biases

for the hidden layer and for the outer layer. For the hidden layer, there are 9,408 single

precision weights. The 9,408 single precision weights are distributed in 12 rows and 784

columns [16]. There are 12 biases’ values in vector form for the hidden layer, one for

each neuron [16]. For the outer layer, there are 120 single precision weights. The 120

single precision weights are distributed in 10 rows and 12 columns. There are 10 biases’

values in vector form for the outer layer, again, one for each neuron [16]. For the hidden

layer neuron, the input contains 784 pixels that are distributed in 28 rows and 28

columns. Also to note, the outer layer input will be received as the output from the hidden

layer.

Now that we have the information for the inputs, weights (hidden), bias (hidden),

weights (hidden), and bias (outer), we can see how this information fits into the hidden

neuron output equation and outer neuron output equation.

ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝑍 =
1

1 + exp (− ∑ (𝑤(𝑥)𝑖 ∗ 𝑝𝑖)
𝑚=784
𝑖=1 − 𝑏(𝑥))

For the hidden neuron output equation, w(x) stands for the weights associated

with the hidden layer, p stands for the input, and b(x) stands for the biases associated with

the hidden layer.

𝑜𝑢𝑡𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =
1

1 + exp (− ∑ (𝑤(𝑥)𝑖 ∗ 𝑍𝑖)𝑚=12
𝑖=1 − 𝑏(𝑥))

16

For the outer neuron output equation, w(x) stands for the weights associated with

the outer layer, Z stands for the input, which is also the output for the hidden layer, and

b(x) stands for the biases associated with the outer layer.

 Using this information, Westby compared a non-pipelined design, a pipelined

784-multiplier design, and a multiple pipelined 98-MUL design [16]. When comparing

latency and resources, it was noted that even though the 98-MUL design had the highest

lantency between the three, it would be a fast enough execution time for real-world

applications, while using the least amount of resources in comparison with the other two

designs [16]. Therefore, Westby designed and created a 98-MUL architecture design

[16]. Below are the figures for the 98-MUL power summary and utilization summary.

Figure 3.1.2

Power summary for 98-MUL

17

Figure 3.1.3

Utilization summary for 98-MUL

3.2 28-MUL

One part of my contributions for this project was to create three different

architecture designs with the multiplers as the baseline. Therefore, there is a 28 multiplier

architecture design, a 49 multiplier architecture design, and a 196 multiplier architecture

design. There was one more architecture design that was created, a 392 multiplier

architecture design, but there were not enough resources on the FPGA, specificly the

DSP resources, therefore the 392 multiplier architecture design was dropped.

Since the outer neuron output equation, has its own associated weights and biases,

and its input always depends on the hidden neuron output, the outer neuron output design

will be the same for each multiplier based architecture design. Therefore, we only need to

consider the hidden neuron output equation for each of these designs. Below is the outer

neuron output’s design that is used for all multiplier based architecture designs.

18

Figure 3.2.1

Outer layer output design used for all multiplier based designs.

Clock Cycles 1 2 3 4 5 6 7 8 9 10 11

Hidden_Output0

WeightX0

Hidden_Output1

WeightX1

Hidden_Output2

WeightX2

Hidden_Output3

WeightX3

Hidden_Output4

WeightX4

Hidden_Output5

WeightX5

Hidden_Output6

WeightX6

Hidden_Output7

WeightX7

Hidden_Output8

WeightX8

Hidden_Output9

WeightX9

Hidden_Output10

WeightX10

Hidden_Output11

WeightX11

Hidden_Output12

WeightX12

Hidden_Output13

WeightX13

Hidden_Output14

WeightX14

Hidden_Output15

WeightX15

ResultsNegative Sub Bias Exponential Add 1.0 Reciprocal

Adder0_6

Multiplier13

Adder1_3

Multiplier14

Adder0_7

Multiplier15

Adder3_0

Multiplier8

Adder0_4

Multiplier9

Adder1_2

Multiplier10

Adder0_5

Multiplier11

Adder2_1

Multiplier12

Adder2_0

Multiplier4

Adder0_2

Multiplier5

Adder1_1

Multiplier6

Adder0_3

Multiplier7

Multiplier0

Adder0_0

Multiplier1

Adder1_0

Multiplier2

Adder0_1

Multiplier3

19

When deciding the multiplier base architecture designs, the information that was

known was that there are 784 inputs and that the previous work contributed a 98-MUL

design. The goal was to compare the differences in area, power, and speed between

different designs. Therefore, the first step was to look at the divisors of 784. Those

divisors are listed as follows: 1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, and 784.

My goal from here was to choose a design that could still be used in real-world

application as well as be varied enough from the other designs, so that area-power-speed

comparisons would be notable. I decided that the lowest design that I was going to create

was with 49-MUL architecture design. Therefore that leaves: 56, 112, 196, and 392.

Since, 112-multipliers are close enough to the 98-MUL design and similarly with the 56-

multipliers being too close to a 49-MUL design, I was worried there would not be a

notable difference. Therefore, I removed those possibilities and I was left with a 196-

MUL design, and a 392-multiplier design. I then exceuted the 49, 196, and 392 designs.

As noted before I was not able to execute the 392-multiplier architecture design. I then

went back to the list of divisors and choose the highest, most varied number, which was

28.

The 28-MUL architecture design, is unique in that the number of inputs into the

input layer also equals the number of times the design needs to be iterated. Below, in

Figure 3.2.2 and Figure 3.2.3 you can see the design for the 28-MUL hidden layer output

design and Figure 3.2.4 is the timing diagram for the same design. The timing diagram is

very intricate therefore, I included in Figure 3.2.5 the hidden layer timing and in Figure

3.2.6 I included the very first iteration for the outer layer timing. Figure 3.2.7 is the

power dissipation for the 28-MUL design and Figure 3.2.8 indicated the overall resources

used.

20

Figure 3.2.2

First half of the hidden layer output design used in the 28-MUL architecture design.

Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Pixel0

WeightX0

Pixel1

WeightX1

Pixel2

WeightX2

Pixel3

WeightX3

Pixel4

WeightX4

Pixel5

WeightX5

Pixel6

WeightX6

Pixel7

WeightX7

Pixel8

WeightX8

Pixel9

WeightX9

Pixel10

WeightX10

Pixel11

WeightX11

Pixel12

WeightX12

Pixel13

WeightX13

Pixel14

WeightX14

Pixel15 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

WeightX15

Pixel16

WeightX16

Pixel17

WeightX17

Pixel18

WeightX18

Pixel19

WeightX19

Pixel20

WeightX20

Pixel21

WeightX21

Pixel22

WeightX22

Pixel23

WeightX23

Pixel24

WeightX24

Pixel25

WeightX25

Pixel26

WeightX26

Pixel27

WeightX27

Adder1_6

Adder3_1

Multiplier24

Adder0_12

Multiplier25

Adder1_6

Multiplier26

Adder0_13

Multiplier27

Adder4_0

Multiplier16

Adder0_8

Multiplier17

Adder1_4

Multiplier18

Adder0_9

Multiplier19

Adder2_2

Multiplier20

Adder0_10

Multiplier21

Adder1_5

Multiplier22

Adder0_11

Multiplier23

Adder3_0

Multiplier8

Adder0_4

Multiplier9

Adder1_2

Multiplier10

Adder0_5

Multiplier11

Adder2_1

Multiplier12

Adder0_6

Multiplier13

Adder1_3

Multiplier14

Adder0_7

Multiplier15

Adder2_0

Multiplier4

Adder0_2

Multiplier5

Adder1_1

Multiplier6

Adder0_3

Multiplier7

Multiplier0

Adder0_0

Multiplier1

Adder1_0

Multiplier2

Adder0_1

Multiplier3

21

Figure 3.2.3

Second half of the hidden layer output design used in the 28-MUL architecture design.

Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Pixel0

WeightX0

Pixel1

WeightX1

Pixel2

WeightX2

Pixel3

WeightX3

Pixel4

WeightX4

Pixel5

WeightX5

Pixel6

WeightX6

Pixel7

WeightX7

Pixel8

WeightX8

Pixel9

WeightX9

Pixel10

WeightX10

Pixel11

WeightX11

Pixel12

WeightX12

Pixel13

WeightX13

Pixel14

WeightX14

Pixel15 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

WeightX15

Pixel16

WeightX16

Pixel17

WeightX17

Pixel18

WeightX18

Pixel19

WeightX19

Pixel20

WeightX20

Pixel21

WeightX21

Pixel22

WeightX22

Pixel23

WeightX23

Pixel24

WeightX24

Pixel25

WeightX25

Pixel26

WeightX26

Pixel27

WeightX27

Adder1_6

Adder3_1

Multiplier24

Adder0_12

Multiplier25

Adder1_6

Multiplier26

Adder0_13

Multiplier27

Adder4_0

Multiplier16

Adder0_8

Multiplier17

Adder1_4

Multiplier18

Adder0_9

Multiplier19

Adder2_2

Multiplier20

Adder0_10

Multiplier21

Adder1_5

Multiplier22

Adder0_11

Multiplier23

Adder3_0

Multiplier8

Adder0_4

Multiplier9

Adder1_2

Multiplier10

Adder0_5

Multiplier11

Adder2_1

Multiplier12

Adder0_6

Multiplier13

Adder1_3

Multiplier14

Adder0_7

Multiplier15

Adder2_0

Multiplier4

Adder0_2

Multiplier5

Adder1_1

Multiplier6

Adder0_3

Multiplier7

Multiplier0

Adder0_0

Multiplier1

Adder1_0

Multiplier2

Adder0_1

Multiplier3

Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Pixel0

WeightX0

Pixel1

WeightX1

Pixel2

WeightX2

Pixel3

WeightX3

Pixel4

WeightX4

Pixel5

WeightX5

Pixel6

WeightX6

Pixel7

WeightX7

Pixel8

WeightX8

Pixel9

WeightX9

Pixel10

WeightX10

Pixel11

WeightX11

Pixel12

WeightX12

Pixel13

WeightX13

Pixel14

WeightX14

Pixel15 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

WeightX15

Pixel16

WeightX16

Pixel17

WeightX17

Pixel18

WeightX18

Pixel19

WeightX19

Pixel20

WeightX20

Pixel21

WeightX21

Pixel22

WeightX22

Pixel23

WeightX23

Pixel24

WeightX24

Pixel25

WeightX25

Pixel26

WeightX26

Pixel27

WeightX27

Adder1_6

Adder3_1

Multiplier24

Adder0_12

Multiplier25

Adder1_6

Multiplier26

Adder0_13

Multiplier27

Adder4_0

Multiplier16

Adder0_8

Multiplier17

Adder1_4

Multiplier18

Adder0_9

Multiplier19

Adder2_2

Multiplier20

Adder0_10

Multiplier21

Adder1_5

Multiplier22

Adder0_11

Multiplier23

Adder3_0

Multiplier8

Adder0_4

Multiplier9

Adder1_2

Multiplier10

Adder0_5

Multiplier11

Adder2_1

Multiplier12

Adder0_6

Multiplier13

Adder1_3

Multiplier14

Adder0_7

Multiplier15

Adder2_0

Multiplier4

Adder0_2

Multiplier5

Adder1_1

Multiplier6

Adder0_3

Multiplier7

Multiplier0

Adder0_0

Multiplier1

Adder1_0

Multiplier2

Adder0_1

Multiplier3

22

Figure 3.2.4

Partial timing diagram for the 28-MUL architecture design, emphasizing the first

iteration of the hidden layer timing.

23

Figure 3.2.5

Partial timing diagram for the 28-MUL architecture design, emphasizing the outer layer timing.

24

Figure 3.2.6

Power Summary for 28-MUL

Figure 3.2.7

Utilization Summary for 28-MUL

25

3.3 Architecture Design 49

The 49-MUL architecture design, has 49 multipliers and needs to be iterated 16

times to process all 784 inputs. Similarly done with the 28-MUL architecture design I

will include the figures below. The first figures in this section are Figure 3.3.1 and Figure

3.3.2. Those figures contains the design for the 49-MUL hidden layer output design.

Figure 3.3.3 is the timing diagram for the same design. The design is also very intricate

therefore, Figure 3.3.4 is included to show in greater detail the hidden layer timing and

Figure 3.3.5 is included to show the outpur layer timing. Figure 3.3.6 is the power

dissipation for the 49-MUL design and Figure 3.3.7 indicated the overall resources used.

26

Figure 3.3.1

First half of the hidden layer output design used the 49-MUL

architecture design. Make note that there are hidden

rows in order to show overall design.

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

60 Pixel29

61 WeightX29

62 Pixel30

63 WeightX30 Adder5_0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

82 Pixel40

83 WeightX40

84 Pixel41

85 WeightX41

86 Pixel42

87 WeightX42

88 Pixel43

89 WeightX43

90 Pixel44

91 WeightX44

92 Pixel45

93 WeightX45

94 Pixel46

95 WeightX46

96 Pixel47

97 WeightX47

98 Pixel48

99 WeightX48

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier46

Multiplier47

Multiplier42

Multiplier40

Multiplier41

Multiplier49

Adder0_20

Adder0_21

Adder0_22

Adder0_23

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder1_0

Adder2_0

Multiplier29

Multiplier30

Adder1_1

Adder1_7

Adder0_14

Adder0_15

Multiplier48

Multiplier43

Multiplier44

Multiplier45

Adder3_0

Adder3_2

Multiplier49Multiplier49

Adder4_1

Adder1_11

Adder2_6

Adder1_10

Multiplier49

27

Figure 3.3.2

Second half of the hidden layer output design used the 28-MUL architecture design.

Figure 3.3.3

Timing diagram to show overall structure for the 49-MUL architecture design.

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

60 Pixel29

61 WeightX29

62 Pixel30

63 WeightX30 Adder5_0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

82 Pixel40

83 WeightX40

84 Pixel41

85 WeightX41

86 Pixel42

87 WeightX42

88 Pixel43

89 WeightX43

90 Pixel44

91 WeightX44

92 Pixel45

93 WeightX45

94 Pixel46

95 WeightX46

96 Pixel47

97 WeightX47

98 Pixel48

99 WeightX48

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier46

Multiplier47

Multiplier42

Multiplier40

Multiplier41

Multiplier49

Adder0_20

Adder0_21

Adder0_22

Adder0_23

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder1_0

Adder2_0

Multiplier29

Multiplier30

Adder1_1

Adder1_7

Adder0_14

Adder0_15

Multiplier48

Multiplier43

Multiplier44

Multiplier45

Adder3_0

Adder3_2

Multiplier49Multiplier49

Adder4_1

Adder1_11

Adder2_6

Adder1_10

Multiplier49

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

60 Pixel29

61 WeightX29

62 Pixel30

63 WeightX30 Adder5_0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

82 Pixel40

83 WeightX40

84 Pixel41

85 WeightX41

86 Pixel42

87 WeightX42

88 Pixel43

89 WeightX43

90 Pixel44

91 WeightX44

92 Pixel45

93 WeightX45

94 Pixel46

95 WeightX46

96 Pixel47

97 WeightX47

98 Pixel48

99 WeightX48

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier46

Multiplier47

Multiplier42

Multiplier40

Multiplier41

Multiplier49

Adder0_20

Adder0_21

Adder0_22

Adder0_23

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder1_0

Adder2_0

Multiplier29

Multiplier30

Adder1_1

Adder1_7

Adder0_14

Adder0_15

Multiplier48

Multiplier43

Multiplier44

Multiplier45

Adder3_0

Adder3_2

Multiplier49Multiplier49

Adder4_1

Adder1_11

Adder2_6

Adder1_10

Multiplier49

28

Figure 3.3.4

Partial timing diagram for the 49-MUL architecture design, emphasizing the outer layer timing.

29

Figure 3.3.5

Partial timing diagram for the 49-MUL architecture design,

emphasizing the first iteration of the hidden layer timing. Counters can also be viewed.

30

Figure 3.3.6

Power Summary for 49-MUL

Figure 3.3.7

Utilization Summary for 49-MUL

31

3.4 Architecture Design 196

The 196-MUL architecture design, has 196 multipliers and needs to be iterated 4

times to process all 784 inputs. Similarly done with the 28 and 49 multiplier architecture

designs I will include the figures below. The first figure in this section is Figure 3.4.1. It

contains the first part of the design for the 196-MUL hidden layer output design. Figure

3.4.2 shows the second half of the hidden later output design. Figure 3.4.3 is the timing

diagram for the same design. The design is also very intricate, therefore Figure 3.4.4

includes the very first iteration of the hidden layer timing and Figure 3.4.5 includes the

output layer timing. Although the timing diagram is intricate, the 196-MUL timing

diagram does not have as many iterations, therefore it may be easier to view than the

previous designs. Lastly, included is Figure 3.4.6 that discloses the power dissipation for

the 196-MUL design and Figure 3.4.7 which indicates the overall resources used.

32

Figure 3.4.1

First half of the hidden layer output design used in the 196-MUL architecture design.

Make note that there are hidden rows.

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

20 Pixel9

21 WeightX9

22 Pixel10

23 WeightX10

24 Pixel11

25 WeightX11

26 Pixel12

27 WeightX12

28 Pixel13

29 WeightX13

30 Pixel14

226 Pixel112 Adder7_0 A0 A1 A2 A3 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

372 Pixel185

373 WeightX185

374 Pixel186

375 WeightX186

376 Pixel187

377 WeightX187

378 Pixel188

379 WeightX188

380 Pixel189

381 WeightX189

382 Pixel190

383 WeightX190

384 Pixel191

385 WeightX191

386 Pixel192

387 WeightX192

388 Pixel193

389 WeightX193

390 Pixel194

391 WeightX194

392 Pixel195

393 WeightX195

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier9

Multiplier10

Multiplier11

Multiplier12

Multiplier13

Multiplier14

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier112

Multiplier195

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder0_5

Adder0_6

Multiplier189

Multiplier190

Multiplier191

Multiplier192

Multiplier193

Multiplier194

Multiplier185

Multiplier186

Multiplier187

Multiplier188

Adder1_0

Adder1_1

Adder1_2

Adder1_3

Adder0_95

Adder0_96

Adder0_97

Adder0_92

Adder0_93

Adder0_94

Adder2_0

Adder2_1

Adder1_48

Adder1_46

Adder1_47

Adder3_0

Adder1_48 Adder1_48 Adder1_48 Adder1_48

Adder2_23

33

Figure 3.4.2

Second half of the hidden layer output design used in the 196-MUL architecture design.

Figure 3.4.3

Timing diagram to show structure for the 196-MUL architecture design.

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

20 Pixel9

21 WeightX9

22 Pixel10

23 WeightX10

24 Pixel11

25 WeightX11

26 Pixel12

27 WeightX12

28 Pixel13

29 WeightX13

30 Pixel14

226 Pixel112 Adder7_0 A0 A1 A2 A3 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

372 Pixel185

373 WeightX185

374 Pixel186

375 WeightX186

376 Pixel187

377 WeightX187

378 Pixel188

379 WeightX188

380 Pixel189

381 WeightX189

382 Pixel190

383 WeightX190

384 Pixel191

385 WeightX191

386 Pixel192

387 WeightX192

388 Pixel193

389 WeightX193

390 Pixel194

391 WeightX194

392 Pixel195

393 WeightX195

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier9

Multiplier10

Multiplier11

Multiplier12

Multiplier13

Multiplier14

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier112

Multiplier195

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder0_5

Adder0_6

Multiplier189

Multiplier190

Multiplier191

Multiplier192

Multiplier193

Multiplier194

Multiplier185

Multiplier186

Multiplier187

Multiplier188

Adder1_0

Adder1_1

Adder1_2

Adder1_3

Adder0_95

Adder0_96

Adder0_97

Adder0_92

Adder0_93

Adder0_94

Adder2_0

Adder2_1

Adder1_48

Adder1_46

Adder1_47

Adder3_0

Adder1_48 Adder1_48 Adder1_48 Adder1_48

Adder2_23

1 Clock Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 Pixel0

3 WeightX0

4 Pixel1

5 WeightX1

6 Pixel2

7 WeightX2

8 Pixel3

9 WeightX3

10 Pixel4

11 WeightX4

12 Pixel5

13 WeightX5

14 Pixel6

15 WeightX6

16 Pixel7

17 WeightX7

18 Pixel8

19 WeightX8

20 Pixel9

21 WeightX9

22 Pixel10

23 WeightX10

24 Pixel11

25 WeightX11

26 Pixel12

27 WeightX12

28 Pixel13

29 WeightX13

30 Pixel14

226 Pixel112 Adder7_0 A0 A1 A2 A3 Negative Sub Bias Exponential Add 1.0 Reciprocal Result for Hidden Layer Output

372 Pixel185

373 WeightX185

374 Pixel186

375 WeightX186

376 Pixel187

377 WeightX187

378 Pixel188

379 WeightX188

380 Pixel189

381 WeightX189

382 Pixel190

383 WeightX190

384 Pixel191

385 WeightX191

386 Pixel192

387 WeightX192

388 Pixel193

389 WeightX193

390 Pixel194

391 WeightX194

392 Pixel195

393 WeightX195

Multiplier0

Multiplier1

Multiplier2

Multiplier3

Multiplier9

Multiplier10

Multiplier11

Multiplier12

Multiplier13

Multiplier14

Multiplier4

Multiplier5

Multiplier6

Multiplier7

Multiplier8

Multiplier112

Multiplier195

Adder0_0

Adder0_1

Adder0_2

Adder0_3

Adder0_4

Adder0_5

Adder0_6

Multiplier189

Multiplier190

Multiplier191

Multiplier192

Multiplier193

Multiplier194

Multiplier185

Multiplier186

Multiplier187

Multiplier188

Adder1_0

Adder1_1

Adder1_2

Adder1_3

Adder0_95

Adder0_96

Adder0_97

Adder0_92

Adder0_93

Adder0_94

Adder2_0

Adder2_1

Adder1_48

Adder1_46

Adder1_47

Adder3_0

Adder1_48 Adder1_48 Adder1_48 Adder1_48

Adder2_23

34

Figure 3.4.4

Partial timing diagram for the 196-MUL architecture design, emphasizing the first

iteration of the hidden layer timing. Counters can also be partially viewed.

35

Figure 3.4.5

Partial timing diagram for the 196-MUL architecture design, emphasizing the outer layer

timing. The counters are partially visible in the green-blue gradient colors.

36

Figure 3.4.6

Power Summary for 196-MUL

Figure 3.4.7

Utilization Summary for 196-MUL

37

CHAPTER IV:

FLOATING POINT COMPONENTS

In this chapter, the designs on floating point adders and multipliers are mainly

discussed. Further, the simulation and synthesis results are shown by using Xilinx Vivado

and the FPGA design flow [65, 66].

4.1 Floating Point Adder Design

First, data is extracted from the two inputs and the data is then distributed to the

three main parts (sign, exponential bias, and significand) for each input. Next, it is

determined if any exceptions are present. For example, if we have a Not a number (NaN)

added to a normal number the result would be NaN (32’hFFFFFFFF). Another example

would be with a positive infinity added to a normal number. That would result in the

answer to be positive infinity (32’h7F800000). If an exception is found, then the

predetermined results are sent to the output. Otherwise, concatenation to each of the

inputs’ significands occur followed by the exponential comparison. During the

exponential comparison the signs will be determined. If the inputs’ exponential biases are

equal, then move onto the next step which is significand addition. If the inputs’

exponential biases are not equal, then the next step is finding the smaller exponential

bias. The smaller exponential bias is subtracted from the larger and that difference

determines how much the small exponential bias’s input’s significand needs to be shifted.

The smaller exponential bias then takes on the same exponential bias of the larger

exponential bias. Now significand addition can occur. A leading zero counter is

implemented to see if the results from the significand addition need to be normalized. If

yes, then normalization occurs and move onto the step of special cases. If no, then move

onto the next step, special cases. If a special case is valid then the results are sent to the

38

output, otherwise rounding will occur. The result of the normalized significand addition

needs to be rounded. For rounding, we will have four bits that will help determine

whether rounding up or rounding down should occur. The check bit which is the least

significant bit. The next three bits are to the right of the check bit, in the subsequent

order: guard bit, round bit, and sticky bit. The sticky bit is a reduction or of all the rest of

the bits that are to the right of the round bit. The guard bit, round bit, and sticky bit are

concatinated together and they form grs. If grs = 100, then the check bit will be checked

if it contains a one or a zero. If a zero is present then we round down, by not doing

anything to the significand. If a one is present then we round up. Rounding up calls for

the significand to be incremented by one. Rounding up also occurs when the gbs equals

101, 110, or 111. Rounding down occurs when the guard bit equals 0 or when the gbs

equals 0XX. Once rounded, the result is then checked to see if it is still normalized. If

normalization needs to occur then the normalization step will be repeated. If the result is

still normalized then send the significand and exponent to the final output.

These were the steps that I followed in order to build a floating point adder

adhereing to the IEEE 754 Standard. Below you can find a flow chart for this adder.

39

Figure 4.1.1

Adder flow chart

40

4.1.2 Adder Simulation Results

The adder was constructed using the Hardware Description Language, Verilog

HDL. The design was created, simulated, and synthesized in Xilinx Vivado. The results

were verified with handwritten computation and an online IEEE 754 Standard floating

point calculator, IEEE 754 Calculator. At the bottom of the webpage I selected binary32,

inputted the two inputs in hexadecimal format, and selected the addition symbol. The

online calculator can be found at: http://weitz.de/ieee/. For the test bench, I tested with 20

different test cases. The simulation results matched my expected results for all test cases.

Below, you can see in Figure 4.1.2 nine test cases are displayed in the waveform.

For the sixth test case my input for A was 0xDFF236E1 and my input for B was

0x5FCFC469. My output for F was 0xDE89C9E0. For the eighth test case my input for A

was 0x510D36B7my input for B was 0x510D58B5. My output for F was 0x518D47B6.

The other signals that are displayed represent some of the component stages that were

described in my adder design and flow chart. For example, “ExAB” the larger exponent

that will be sent forward and evaluated when normalization occurs. .

In Figure 4.1.3, we can analyze the power implementation estimate. The total on-

chip power estimation is 10.471 W. The on-chip power distribution for static power is 6%

while the dynamic power is the remaining 94%.

In Figure 4.1.4, we can analyze the adder’s resource utilization. The Look up tables

(LUT) utilizes 880 out of the 203,128 available. The flip flops (FF) utilizes 333 out of

406,256 available. The inputs/output ports utilizes 97 out of 368 available. The LUTs and

FFs utilize less than 1% of the board’s corresponding resources while the IOs utilize a

little over one-fifth of the board’s IO resources.

http://weitz.de/ieee/

41

Figure 4.1.2

Adder component showing the test bench simulation results. A and B are inputs and F is the output.

42

Figure 4.1.3

Adder summarization for estimate power implementation.

Figure 4.1.4

Adder summarization for resource utilization.

43

4.2 Floating Point Multiplier Design

Some of the steps that are needed for the multiplier will replicate some of the

steps we used for the adder. First, data is extracted from the two inputs and the data is

then distributed to the three main parts (sign, exponential bias, and significand) for each

input. Next, it is determined if any exceptions are present. If this is the case, then the

exception is determined and the results are sent to the output. If no exceptions are present

then we XOR the signs from each input and send that result to the sign bit in the final

output.

The next step involves calculating the exponential bias. First, we add the

exponential biases from each of the inputs. Then we subtract out the bias associated each

precision. Since we are using single precision in our project, we will subtract 127 from

the summed exponential biases.

Multiplication of the significands follows exponential addition. As mentioned

before, we can find the placement of the multiplication result by summing the

significand’s length for each input. This will let us know where our decimal placement

will be in our result. Therefore in our result significand, if our leftmost bit is 0 then our

decimal lies between the 45th and 46th bit.

Normalization step occurs next. We need to find the leading one and count the

zeroes before that leading one. This is done to know how much to shift the resultant

significand. This information is also used to adjust the exponent bias value. Once

normalization is complete or if normalization is not needed then move to the step of

special cases. If the special case is valid then the results are sent to the output, otherwise

rounding will occur.

Once normalization is complete, the result of the normalized significand

multiplication needs to be rounded. For rounding, we followed the round to nearest even.

44

If the grs was 0XX or 100 with a checkbit equal to zero then we would leave the result.

Otherwise we would increment the signficand by one. After the result is rounded, the

rounded result is then checked to see if it is still normalized. If it is not normalized,

normalization needs to occur again. Once the result is normalized, send the significand

and exponent information to the final output. Multiplication of the significands is now

complete.

This concludes the steps that I followed in order to build a floating point

multiplier. On the following page is the flow chart for this multiplier.

45

Figure 4.2.1

Multiplier flowchart

46

4.2.2 Multiplier Simulation Results

The multiplier was constructed using the Hardware Description Language,

Verilog HDL. The design was created, simulated, and synthesized in Xilinx Vivado. The

results were verified the same way that the adder results were verified, with handwritten

computation and an online IEEE 754 Standard floating point calculator, IEEE 754

Calculator that was mentioned before during the Addition Simulation Results. For the test

bench, I tested with 20 different test cases. The simulation results matched my expected

results for all test cases.

Below, you can see in Figure 4.2.2 two test cases are displayed in the waveform.

For the first test case my input for A was 0xf0000001 and my input for B was

0xb000000f. My output for F was 0x60800010. For the second test case my input for A

was 0x254fc469 and my input for B was 0xc7f236e1. My output for F was 0xadc49435.

The other signals that are displayed represent some of the component stages that were

described in my multiplier design and flow chart. For example, “E” represents the step in

which two exponential biases are summed together, then the bias is subtracted from the

sum.

In Figure 4.2.3, we can analyze the power implementation estimate. The total on-

chip power estimation is 32.451 W. The on-chip power distribution for static power is 6%

while the dynamic power is the remaining 94%.

In Figure 4.2.4, we can analyze the multiplier’s resource utilization. The Look up

tables (LUT) utilizes 452 out of the 203,128 available. The flip flops (FF) utilizes 32 out

of 406,256 available. The inputs/output ports utilizes 97 out of 468 available. The LUTs

and FFs utilize less than 1% of the board’s corresponding resources while the IOs utilize

almost one-third of the board’s IO resources.

47

Figure 4.1.2

Multiplier component showing the test bench simulation results

48

Figure 4.2.3

Multiplier summarization for estimate power implementation.

Figure 4.2.4

Multiplier summarization for resource utilization.

49

CHAPTER V:

ADDER AND MULTIPLIER RTL VERSUS IP

The goal of creating the RTL adder and multiplier was to be able to instantiate

them into our 28-MUL, 49-MUL, 98-MUL, and 196-MUL designs, instead of using the

Xilinx IP adder and multiplier. Instantiating these designs creates our 28-MUL-AM, 49-

MUL-AM, 98-MUL-AM, and 196-MUL-AM designs. The latency should be the same

between the same numbered MUL and MUL-AM designs, but there should be a

significant difference between the designs in regards to power and area. After running the

28-MUL-AM design and comparing the results with the 28-MUL design, it became

apparent that the Xilinx IP adders and multipliers were superior in resource and power

consumption. Therefore, instead of detailing the differences between all of the MUL and

MUL-AM designs, in this section, I will only go over the 28-MUL and 28-MUL-AM

design, as well as compare the RTL and Xilinx IP adder and multiplier.

Now that the floating point multiplier and adder have been made we can

instantiate those files into our 28-MUL design and not use the Xilinx IP floating point

multiplier and adder. This creates our 28-MUL-AM design. Although the RTL adder and

multiplier did not have lower resources and power costs than the IP versions, this still

allows for user flexibility in the future, in regards to accuracy in digit detection. Custom

design implementations can be made with the main goal of power costs and/or utilization

costs for the user. The custom floating point designs was slightly more accurately in

testing for the digit one, but the cost in resources and power have increased tremendously

in comparison to the designs using the Xilinx IPs. The 28-MUL-AM strongly detected

the digit one with a decimal result of 0.999954, while the 28-MUL strongly predicted the

digit one with a decimal result of 0.9997094 precision. Even though the prediction was

slightly higher on the 28-MUL-AM design for the digit one, there was a digit that the 28-

50

MUL-AM also tried to predict; a prediction of the digit six with a decimal result of

0.4561733.

Figure 5.1.1 displays the power cost for the 28-MUL-AM design. Figure 5.1.2

displays the utilization cost for the 28-MUL-AM design. Figure 5.2.1 shows the 28-MUL

simulation results for digit one. Figure 5.2.1 shows the 28-MUL simulation results for

digit one. Table 5.2.1 examines the previous two simulation results for digit recognition

between the 28-MUL and 28-MUL-AM designs and shows the digit predictions. Lastly,

we will examine the power and utilization figures for the RTL and Xilinx IP adder and

multiplier.

51

5.1 Design 28-MUL-AM

Figure 5.1.1

Power Utilization Summary for 28-MUL-AM

Figure 5.1.2

Utilization Summary for 28-MUL-AM

52

5.2 Simulation Results Comparison

Figure 5.2.1

28-MUL Simulation Results for digit #1

Figure 5.2.2

28-MUL-AM Simulation Results for digit #1

Table 5.2.1

A comparison of the simulation results for digit recognition between 28-MUL and 28-MUL-AM for digit #1

Comparing Simulation Results for Digit Recognition of Digit #1

0 0x2f5bc018 2.00E-10 0x307cfd02 9.20E-10 0.00000007%

1 0x3f7fecf5 0.9997094 0x3f7ffcfc 0.999954 0.02446000%

2 0x315e33a1 3.23E-09 0x31a72c80 4.87E-09 0.00000016%

3 0x35536466 7.87E-07 0x343d8974 1.77E-07 -0.00006110%

4 0x33a3fa45 7.64E-08 0x37ad99b5 2.07E-05 0.00206184%

5 0x39f31170 4.64E-04 0x3a998e92 1.17E-03 0.07079307%

6 0x3c6b6c34 1.44E-02 0x3ee98f8c 4.56E-01 44.18042410%

7 0x3a8ec39e 1.09E-03 0x38113828 3.46E-05 -0.10545809%

8 0x2e71543b 5.49E-11 0x30856a7f 9.71E-10 0.00000009%

9 0x384e6d0f 4.92E-05 0x39544c70 2.02E-04 0.01532479%

Probability of Digit Probability of Digit
Percent DifferencePossible Digit

28_MUX 28_MUX_AM

53

5.3 Simulation Results Comparison

Figure 5.3.1 is the Xilinx IP adder Power Summary. Figure 5.3.2 is the Xilinx IP

adder Utilization Summary. Figure 5.3.3 is the Xilinx IP multiplier Power Summary.

Figure 5.3.4 is the Xilinx IP multiplier Utilization Summary. Lastly, Table 5.3.5 is the

table that compares the previous four figure’s results with the RTL figures that were

mentioned earlier.

Figure 5.3.1

Xilinx IP Adder summarization for estimate power cost.

54

Figure 5.3.2

Xilinx IP Adder summarization for estimate utilization cost.

Figure 5.3.3

Xilinx IP Multiplier summarization for estimate power cost.

55

Figure 5.3.4

Xilinx IP Multiplier summarization for estimate utilization cost.

Figure 5.3.5

Comparison between the Xilinx IP and RTL designs for the adders and Multipliers

IP and RTL Adder and Multiplier Comparison

Xilinx IP RTL design Xilinx IP RTL design

LUT 250 880 74 452

FF 82 333 33 32

DSP 2 N/A 3 2

Power 1.806 W 10.471 W 1.28 W 32.451 W

Adder Multiplier

56

CHAPTER VI:

EXPERIMENTAL RESULTS

After the implementation of the MLPNN, this chapter discusses the hardware

performance in terms of execution time, slice count, and power dissipation. Finally the

comparison between the existing works and my proposed design is discussed.

6.1 Execution Time

The designs that had the lowest latency between the multiplier architecture

designs was the 196 multiplier architecture design. The 196 multiplier architecture design

executed in 126 clock cycles. The 98 multiplier architecture design executed in 129 clock

cycles. The 49 multiplier architecture design executed in 246 clock cycles. The 28

multiplier architecture design executed in 390 clock cycles. In the tables below, we can

see the different designs with their latency followed by another table that emphasizes the

percentage change in latency compared to the 196 multiplier design.

Table 6.1.1

Latency comparison displayed in clock cycles for all designs

Latency Comparison

Clock Cycles 390 246 129 126

Designs 28-MUL 49-MUL 98-MUL 196-MUL

57

Table 6.1.2

Percent difference calculations for latency compared to the 196-MUL design.

6.2 Resource Cost

The design that had the lowest resource cost between the multiplier architecture

designs was the 28-MUL architecture design. The 28-MUL architecture design utilized

294 DSPs, 7865 FFs, and 24,662 LUTs. The 49-MUL architecture design utilized 380

DSPs, 9,348 FFs, and 30,024 LUTs. The 98-MUL architecture design utilized 604 DSPs,

14,274 FFs, and 44,668 LUTs. The 196-MUL architecture design utilized 1,086 DSPs,

25,217 FFs, and 79,931 LUTs. The 28-MUL-AM architecture design utilized 178 DSPs,

17,363 FFs, and 66,519 LUTs. The LUTs and FFs were overall much lower in the IP

designs (MUL designs), while the DSP count was overall lower in the MUL-AM designs.

In the table below, we can see the resources utilization for the LUTs, FFs, and DSPs for

our designs. In the following table, the percentage difference is displayed for resource

costs compared to the 28-MUL design.

Latency Percent Difference

Clock Cycles 390 246 129 126

% difference in

comparison to the

196-MUL design

210% 95% 2% 0%

Designs 49-MUL 196-MUL98-MUL28-MUL

58

Table 6.2.1

Resource cost comparison for LUT, FF, and DSP for all designs

Table 6.2.2

Percent difference calculations for resource cost compared to the 28-MUL design.

6.3 Power Cost

The design that had the lowest power cost between the multiplier architecture

designs while instantiating the adder and multiplier components was the 28-MUL

architecture design. The 28-MUL design power implementation cost is 207.996 W,

versus 519.052 W for the 28-MUL-AM design. The 49-MUL design power

implementation cost is 342.177 W. The 98-MUL design power implementation cost is

569.749 W. The 196-MUL design power implementation cost is 572.464 W. In the table

below, we can see the power cost comparison between all MUL designs. The next table

displays the percentage change in power cost between the MUL designs, using the 28-

MUL design as the initial design since it had the lowest power cost.

Resources Comparison

Design 28-MUL 49-MUL 98-MUL 196-MUL

LUT 24,662 30,024 44,668 79,931

FF 7,865 9,348 14,274 25,217

DSP 294 380 604 1,086

Resources Percent Difference

Design 28-MUL 49-MUL 98-MUL 196-MUL

LUT 0% 22% 81% 224%

FF 0% 19% 81% 2%

DSP 0% 29% 105% 96%

59

Table 6.3.1

Power cost comparison in Watts between all designs

Table 6.3.2

Percent difference calculations for power cost compared to the 28-MUL design.

6.4 Comparison of Related Work

As mentioned in the beginning, there has been many breakthroughs in hardware

acceleration in recent years. Some of the work that has been published focuses on image

recognition latency. A 5-layer accelerator for MNIST digit recognition executed

processing one image correctly in 25.4 microseconds [13]. Another author was able to

processing an image in 17.6 microseconds [14]. Another related work was able to use the

same hardware as our design and they were able to processing an image in 14.2

microseconds. The work that this thesis is built upon was able to process an image in 1.55

microseconds [16]. The design with the 196-MUL was able to process an image in 1.52

microseconds. There is room for improvement and there are ways to improve the latency

for our system.

With latency, our designs can be competitive, but much work needs to be done to

lower our utilization of resources. According to [19] they were able to execute image

recognition in 3.2 milliseconds with only 18,426 LUTs and 8,264 FF. [15] has excellent

latency with 14.2 microseconds. Their [15] numbers for their resource cost are 213,593

LUTs and 136,677 FFs. The 196-MUL-AM design had the lowest latency and therefore

had the highest utilization of resources. The 196-MUL-AM resource cost was 297,302

Power Comparison

Designs 28-MUL 49-MUL 98-MUL 196-MUL

Watts 207.996 342.177 569.749 572.464

Power Percent Difference

Designs 28-MUL 49-MUL 98-MUL 196-MUL

Watts 0% 65% 174% 175%

60

LUTs and 76,715 FFs. The 28-MUL design has the highest latency and therefore its

resource cost is lower with 24,662 LUTs and 7,865 FFs.

Lastly, the power consumption on all my designs were high. The 28-MUL design

had the lowest power cost of 208 W. The highest power cost design was the 196-MUL-

AM design. Below you can find a table that summarizes the comparison of related work

with our 28-MUL design.

Comparison with Existing Work

Designs [12] [10] [19] [11] [13] [14] [15] [16]
Proposed

Work

Accuracy 0.9862 0.9864 0.96 0.9467 0.968 0.9757 - 0.9325 0.9582

Latency (us) 26000 3580 3200 637 25.4 17.6 14.2 1.55 3.9

LUTs 14832 32589 18426 38899 80175 12588 213593 44668 24662

FFs 54075 33585 8264 40534 40140 48765 136677 14274 7865

Energy (mJ) - - 4.83 - - - - 0.88 0.81

61

CHAPTER VII:

CONCLUSION

7.1 Conclusion

In conclusion, this dissertation is summarized. Firstly, the paper started with the

goals of what should be accomplished, as well as mention the related work to this project.

The next section explained a neural network, a single layer perceptron neutral network, a

multilayer perceptron neural network, the sigmoid function, and the sigmoid neutron. The

next part covered the explanation of the IEEE 754 Standard.

The following section, described the previous work that was done regarding this

project and explained how the network was determined. I then went over the three

designs that were completed: 28-MUL, 49-MUL, and 196-MUL architecture designs.

The next section covered the design aspects of the adder and multiplier. Then all the

results were covered.

Overall, this dissertation presented several parallel architectures for handwritten

digit recognition in order to improve hardware efficiency in terms of resources, power,

and speed in a Field Programmable Gate Array (FPGA) neuromorphic processor. The

conclusion of the project is that the proposed designs offered different levels of hardware

efficiency depending on what is needed. The proposed designs allow for the user to

choose what they deem important, whether they value area, speed, or power. There are

many improvements and customization that can be made.

7.2 Future Work

Implementation of custom modules should bring the resource costs lower. With

custom modules for adders and multipliers, there is much room to improve. Depending

on the desired output regarding area, power, and speed, there are many algorithms that

62

are geared towards just lowering latency, resources, and power for adders and multipliers.

If the goal is low power or low utilization of resources then the entire system can be

custom tailored to reach that desired outcome.

In order to demonstrate the FPGA application of classifying handwritten digits, a

data path design on image or video processing should be instantiated [67]. By capturing

frames of image through a camera the dissertation enables a platform to recognize

handwritten digits in real time.

63

 REFERENCES

[1] F. Chen, N. Chen, H. Mao, and H. Hu, “Assessing Four Neural Networks on

Handwritten Digit Recognition Dataset (MNIST),” Computer Vision and Pattern

Recognition, Nov. 2018.

[2] S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved

Handwritten Digit Recognition Using Convolutional Neural Networks (CNN),” Sensors,

Vol. 2020, No. 20, June 2020.

[3] S. Ali, Z. Shaukat, M. Azeem, et al., “An efficient and improved scheme for

handwritten digit recognition based on convolutional neural network,” SN Applied

Sciences Vol. 1, No.9, 2019.

[4] Y. Wang, R. Wang, D. Li, D. Adu-Gyamfi, et al., “Improved Handwritten Digit

Recognition using Quantum K-Nearest Neighbor Algorithm,” International Journal of

Theoretical Physics, Vol. 58, PP. 2331-2340, 2019.

[5] S. Hadjis and K. Olukotun, “TensorFlow to Cloud FPGAs: Tradeoffs for

Accelerating Deep Neural Networks,” 2019 29th International Conference on Field

Programmable Logic and Applications (FPL), 2019.

[6] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient parallel

neuromorphic architectures with approximate arithmetic on FPGA,” Neurocomputing,

Vol. 221, PP. 146–158, 2017.

[7] N. I. Chervyakov, P. A. Lyakhov, M. V. Valueva, et al., “Area-Efficient FPGA

Implementation of Minimalistic Convolutional Neural Network Using Residue Number

System,” 2018 23rd Conference of Open Innovations Association (FRUCT), 2018.

64

[8] A. Shawahna, S. M. Sait and A. El-Maleh, "FPGA-Based Accelerators of Deep

Learning Networks for Learning and Classification: A Review," in IEEE Access, Vol. 7,

PP. 7823-7859, 2019, doi: 10.1109/ACCESS.2018.2890150.

[9] M. Pantho, F. Hategekimana, and C. Bobda, “A System on FPGA for Fast

Handwritten Digit Recognition in Embedded Smart Cameras,” Proceedings of the 11th

International Conference on Distributed Smart Cameras September (ICDSC 2017), PP.

35–40, 2017.

[10] M. Cho and Y. Kim, "Implementation of Data-optimized FPGA-based

Accelerator for Convolutional Neural Network," 2020 International Conference on

Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 2020, pp. 1-2,

doi: 10.1109/ICEIC49074.2020.9050993.

[11] T. Tsai, Y. Ho and M. Sheu, "Implementation of FPGA-based Accelerator for

Deep Neural Networks," 2019 IEEE 22nd International Symposium on Design and

Diagnostics of Electronic Circuits & Systems (DDECS), Cluj-Napoca, Romania, 2019,

pp. 1-4, doi: 10.1109/DDECS.2019.8724665.

[12] S. Ghaffari and S. Sharifian, "FPGA-based convolutional neural network

accelerator design using high level synthesize," 2016 2nd International Conference of

Signal Processing and Intelligent Systems (ICSPIS), Tehran, 2016, pp. 1-6, doi:

10.1109/ICSPIS.2016.7869873.

[13] Y. Zhou and J. Jiang, "An FPGA-based accelerator implementation for deep

convolutional neural networks," 2015 4th International Conference on Computer Science

and Network Technology (ICCSNT), Harbin, 2015, pp. 829-832, doi:

10.1109/ICCSNT.2015.7490869.

65

[14] R. Xiao, J. Shi and C. Zhang, "FPGA Implementation of CNN for Handwritten

Digit Recognition," 2020 IEEE 4th Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), Chongqing, China, 2020, pp. 1128-1133, doi:

10.1109/ITNEC48623.2020.9085002.

[15] J. Park and W. Sung, "FPGA based implementation of deep neural networks using

on-chip memory only," 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Shanghai, 2016, pp. 1011-1015, doi:

10.1109/ICASSP.2016.7471828.

[16] I. Westby and X. Yang, “Exploring FPGA Acceleration on a Multi-Layer

Perceptron Neural Network for Digit Recognition,” The Journal of Supercomputing (J

SUPERCOMPUT), Under Review, 2020.

[17] S. Wisayataksin and G. Boonyuu, "A Programmable Artificial Neural Network

Coprocessor for Handwritten Digit Recognition," 2019 International Conference on

Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2019,

pp. 139-142, doi: 10.1109/ICOIACT46704.2019.8938541.

[18] H. Sharma, et al., "From high-level deep neural models to FPGAs," 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei,

2016, pp. 1-12, doi: 10.1109/MICRO.2016.7783720.

[19] H. Madadum and Y. Becerikli, "FPGA-Based Optimized Convolutional Neural

Network Framework for Handwritten Digit Recognition," 2019 1st International

Informatics and Software Engineering Conference (UBMYK), Ankara, Turkey, 2019, pp.

1-6, doi: 10.1109/UBMYK48245.2019.8965628.

66

[20] J. Si, E. Yfantis and S. L. Harris, "A SS-CNN on an FPGA for Handwritten Digit

Recognition," 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), New York City, NY, USA, 2019, pp. 0088-

0093, doi: 10.1109/UEMCON47517.2019.8992928.

[21] J. Si and S. L. Harris, "Handwritten digit recognition system on an FPGA," 2018

IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC),

Las Vegas, NV, 2018, pp. 402-407, doi: 10.1109/CCWC.2018.8301757.

[22] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,” 2010.

[23] K. Vaca, A. Gajjar, and X. Yang, “Real-Time Automatic Music Transcription

(AMT) with Zync FPGA,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

PP. 378-384, Miami, FL, US, Jan. 13, 2020.

[24] K. Vaca, M. Jefferies, and X. Yang, “An Open Real-Time Audio Processing

Platform on Zync FPGA,” International Symposium on Measurement and Control in

Robotics (ISMCR), PP. D1-2-1-D1-2-6, Houston, TX, USA, 2019.

[25] H. He, et al., “Synthesize Corpus for Chinese Word Segmentation,” The 21st

International Conference on Artificial Intelligence (ICAI), Las Vegas, USA, PP. 129-134,

July 29 - August 1, 2019.

[26] H. He, et al., “Dual Long Short-Term Memory Networks for Sub-Character

Representation Learning,” The 15th International Conference on Information Technology

- New Generations (ITNG), Las Vegas, NV, USA, 2018.

[27] H. He, et al., “Iterated Dilated Convolutional Neural Networks for Word

Segmentation,” Neural Network World (NNW), In Press, 2020.

67

[28] A. Gajjar, et al., “An FPGA Synthesis of Face Detection Algorithm using HAAR

Classifiers,” International. Conference on Algorithms, Computing and Systems (ICACS

2018), PP.133-137, July 27-29, Beijing China, 2018.

[29] X. Yang, et al., "An Edge Detection IP of Low-cost System-on-Chip for

Autonomous Vehicles," The 22nd International Conference on Artificial Intelligence

(ICAI 2020), In Press, March 2020.

[30] A. Gajjar, et al., "An IoT-Edge-Server System with BLE Mesh Network, LBPH,

and Deep Metric Learning," The 22nd International Conference on Artificial Intelligence

(ICAI 2020), In Press, March 2020.

[31] A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, “An efficient hybrid

multilayer perceptron neural network with grasshopper optimization,” Soft Computing,

Vol. 23, No. 17, PP. 7941–7958, 2019.

[32] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural

Networks: A Tutorial and Survey," in Proceedings of the IEEE, vol. 105, no. 12, pp.

2295-2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.

[33] K. Gurney, An introduction to neural networks. Boca Raton, Florida: CRC Press,

1997.

[34] X. Yang, et al., “A Vision of Fog Systems with Integrating FPGAs and BLE

Mesh Network,” Journal of Communications (JoC), Vol. 14, No. 3, PP. 210-215, March

2019.

[35] X. Yang and X. He, “Establishing a BLE Mesh Network using Fabricated CSR

mesh Devices,” The 2nd ACM/IEEE Symposium on Edge Computing (SEC 2017), No.

34, San Jose/Fremont, CA, US, 2017.

68

[36] A. Gajjar, Y. Zhang, and X. Yang, “A Smart Building System Integrated with An

Edge Computing Algorithm and IoT Mesh Networks,” The Second ACM/IEEE

Symposium on Edge Computing (SEC 2017), Article No. 35, San Jose/Fremont, CA, US,

2017.

[37] Y. Hao, "A General Neural Network Hardware Architecture on FPGA", PP. 1-6,

2017. [Accessed 17 May 2020].

[38] X. Yang and W. Wen, “Design of A Pre-Scheduled Data Bus (DBUS) for

Advanced Encryption Standard (AES) Encrypted System-on-Chips (SoCs),” The 22nd

Asia and South Pacific Design Automation Conference, (ASP-DAC 2017), PP. 506-511,

Chiba, Japan, Jan. 2017.

[39] X. Yang, W. Wen, and M. Fan, “Improving AES Core Performance via An

Advanced IBUS Protocol,” ACM Journal on Emerging Technologies in Computing

(JETC), Vol. 14, No. 1, PP. 61-63, Jan. 2018.

[40] X. Yang, S. Sha, I. Unwala, and J. Lu, “Towards Third-Part IP Integration: A

Case Study of High-Throughput and Low-Cost Wrapper Design on A Novel IBUS

Protocol,” IET Computers & Digital Techniques (IET-CDT), Vol. 14, No. 6, PP. 353-362,

Nov., 2020.

[41] Y. Zhang and X. Yang, "A Case Study on Approximate FPGA Design With an

Open-Source Image Processing Platform," IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), Student Forum, PP.372-377, Miami, FL, US, 2019.

[42] X. Yang and S. Shi, “Exploiting Energy-Quality (E-Q) Tradeoffs on Approximate

FPGA Designs of Scalable Sequential Circuits,” Journal of Circuits, Systems and

Computers (JCSC), Aug. 27, 2020.

69

[43] Y. Zhang, et al., “Exploring Slice-Energy Saving on A Video Processing FPGA

Platform with Approximate Computing,” International Conference on Algorithms,

Computing and Systems (ICACS), PP.138-143, July 27-29, Beijing China, 2018.

[44] N. K. Manaswi, Deep learning with applications using Python: chatbots and face,

object, and speech recognition with TensorFlow and Keras. Berkeley, California:

Apress., 2018.

[45] Z. Ali, I. Hussain, M. Faisal, H. M. Nazir, T. Hussain, M. Y. Shad, A. M.

Shoukry, S. H. Gani, "Forecasting Drought Using Multilayer Perceptron Artificial Neural

Network Model", Advances in Meteorology, Vol. 2017, doi: 10.1155/2017/5681308.

[46] P. S. Geidarov, “Clearly defined architectures of neural networks and multilayer

perceptron,” Optical Memory and Neural Networks, Vol. 26, No. 1, PP. 62–76, 2017.

[47] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy and A. Raghunathan,

"SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromorphic

computing," 2014 IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), La Jolla, CA, 2014, pp. 15-20, doi: 10.1145/2627369.2627625.

[48] "IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2008, Vol., No.,

PP.1-70, 29 Aug. 2008, doi: 10.1109/IEEESTD.2008.4610935.

[49] "IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision

of IEEE 754-2008), Vol., No., PP.1-84, 22 July 2019, doi:

10.1109/IEEESTD.2019.8766229.

[50] Kumar, B.V.V., and Basha, S.M. (2016). Design and Simulation of Single-

Precision Inexact Floating-Point Adder/Subtractor. I-manager's Journal on Electronics

Engineering, 6(4), 7-12, doi: 10.26634/jele.6.4.8087.

70

[51] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS

Edition: The Hardware/Software Interface, 5th ed. Oxford, England: Morgan Kaufmann

Publisher, 2013.

[52] R. R. Taksande, M. N. Thakare, G. D. Korde, “Design of Floating Point

Adder/Subtractor and Floating Point Multiplier for FFT Architecture Using VHDL”,

International Journal of Advanced Research in Electrical, Electronics, and

Instrumentation Engineering, Vol. 6, No. 1., 2017.

[53] N. Grover and M. K. Soni, “Design of FPGA based 32-bit Floating Point

Arithmetic Unit and verification of its VHDL code using MATLAB,” International

Journal of Information Engineering and Electronic Business, Vol. 6, No. 1, PP. 1–14,

2014.

[54] R. Omidi and S. Sharifzadeh, “Design of low power approximate floating‐point

adders,” International Journal of Circuit Theory Applications, 2020.

[55] 2015 International Conference on Soft Computing Techniques and

Implementations (ICSCTI). Faridabad, India: IEEE, 2015.

[56] H. Zhang, D. Chen, and S.-B. Ko, “High performance and energy efficient single-

precision and double-precision merged floating-point adder on FPGA,” IET Computers

and Digital Techniques, Vol. 12, No. 1, PP. 20–29, 2018.

[57] R. Dhobale and S. Chaturvedi, “Implementation of 32 Bit Binary Floating Point

Adder Using IEEE 754 Single Precision Format”, IOSR Journal of VLSI and Signal

Processing (IOSR-JVSP), Vol. 5, No. 1., February 2015.

[58] A. Sharma and T. K. Rawat, "Truncated Wallace Based Single Precision Floating

Point Multiplier," 2018 7th International Conference on Reliability, Infocom

71

Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India,

2018, PP. 407-411, doi: 10.1109/ICRITO.2018.8748843.

[59] V. R. Krishnan, A. S. Rajiv, and N. R. Deborah, "A comparative study on the

performance of FPGA implementations of high-speed single-precision binary floating-

point multipliers," 2019 International Conference on Smart Systems and Inventive

Technology (ICSSIT), Tirunelveli, India, 2019, pp. 1041-1045, doi:

10.1109/ICSSIT46314.2019.8987800.

[60] S. Arish and R. K. Sharma, “Run-time-reconfigurable multi-precision floating-

point matrix multiplier intellectual property core on FPGA,” Circuits, Systems, and

Signal Processing, Vol. 36, No. 3, PP. 998–1026, 201.

[61] M. Al-Ashrafy, A. Salem and W. Anis, "An efficient implementation of floating

point multiplier," 2011 Saudi International Electronics, Communications and Photonics

Conference (SIECPC), Riyadh, 2011, pp. 1-5, doi: 10.1109/SIECPC.2011.5876905.

[62] 2018 International Conference on electrical, electronics, communication,

computer, and optimization techniques (ICEECCOT). Karnataka, India: IEEE, 2018.

[63] I. Westby, "FPGA Acceleration on Multilayer Perceptron (MLP) Neural Network

for Handwritten Digit Recognition", Master Thesis, The University of Houston - Clear

Lake, May 2020.

[64] I. Westby, X. Yang, H. Koc, and J. Lu, "Accelerating Digit Recognition with

Neural Network," The 22nd International Conference on Artificial Intelligence (ICAI

2020), Under Review, March 2020.

72

[65] X. Yang and J. H. Andrian, "A High-Performance On-Chip Bus (MSBUS) Design

and Verification," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 23, no. 7, pp. 1350-1354, July 2015, doi: 10.1109/TVLSI.2014.2334351.

[66] X. Yang, N. Wu, and J. Andrian, “A Novel Bus Transfer Mode: Block Transfer

and A Performance Evaluation Methodology,” Elsevier, Integration, the VLSI Journal,

Vol. 52, Issue: C, PP. 23-33, January 2016.

[67] X. Yang, Y. Zhang, and L. Wu, "A Scalable Image/Video Processing Platform

with Open Source Design and Verification Environment," 20th International Symposium

on Quality Electronic Design (ISQED 2019), PP. 110-116, Santa Clara, CA, USA, 2019.

73

VITA:

APRIL REED

2020 M.S., Computer Engineering

University of Houston Clear Lake (UHCL),

Houston, Texas

2019 B.S., Computer Engineering

University of Houston Clear Lake (UHCL),

Houston, Texas

2014 M.S., Counseling

University of Houston Clear Lake (UHCL),

Houston, Texas

2010 B.S., Psychology

University of Houston,

Houston, Texas

WORK-IN-PROGESS:

April L. Reed and Xiaokun Yang. 2018. Area-Speed-Power Tradeoff: FPGA Design and

Implementation on Handwritten Digit Recognition,” Submitted, The 58th Design

Automation Conference (DAC), 2021.

