

Copyright

by

Erik Whiting

2020

A FRAMEWORK FOR IMPROVING PERFORMANCE TESTING IN AGILE

SOFTWARE DEVELOPMENT

by

Erik Whiting, BS

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Software Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

DECEMBER, 2020

A FRAMEWORK FOR IMPROVING PERFORMANCE TESTING IN AGILE

SOFTWARE DEVELOPMENT

by

Erik Whiting

APPROVED BY

 __

 Soma Datta, PhD, Chair

 __

 James Carlton Helm, PhD, Committee Member

 __

 James B. Dabney, PhD, Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, PhD, Interim Associate Dean

__

Miguel A. Gonzalez, PhD, Dean

Dedication

For every stakeholder in software quality.

v

Acknowledgements

I want to thank all the wonderfully supportive professors in the College of

Science and Engineering who have helped me in the last two years. I also want to thank

my wife who has been endlessly and inexplicably patient with me throughout my

academic career.

vi

ABSTRACT

A FRAMEWORK FOR IMPROVING PERFORMANCE TESTING IN AGILE

SOFTWARE DEVELOPMENT

Erik Whiting

University of Houston-Clear Lake, 2020

Thesis Chair: Soma Datta, PhD

The subdiscipline of software quality assurance concerned with non-functional

requirements (NFRs) and hardware metrics is known as performance testing. Conducting

effective performance testing is complicated, time consuming, and expensive. These

attributes put performance testing at odds with agile software development

methodologies, which incrementally build software systems in quick cycles while being

supported by exhaustive unit and integration test coverage. Due to a variety of

challenges, performance testing often cannot keep up with an agile release cadence, and

there is a growing body of research that catalogues and describes these challenges and

proposes solutions to some of them. This study presents a software testing framework

which implements several of the proposed solutions. The framework, called Lulu

Performance Test (LPT), aims to confront many of the challenges noted in recent

research, with the goal of making effective performance testing more palatable to agile

software development methodologies.

vii

TABLE OF CONTENTS

List of Tables .. x

List of Figures .. xi

CHAPTER I: AGILE SOFTWARE DEVELOPMENT AND PERFORMANCE

TESTING .. 1

Agile and Performance Testing Defined... 1

Performance Testing Challenges in Agile Software Development 3

Purpose of This Study ... 4

CHAPTER II: LITERATURE REVIEW .. 6

Systematic Literature Review Research Questions .. 6

Literature Review Steps .. 7

Literature Search ... 7

Deciding Which Studies are Relevant .. 8

Search Terms by Database .. 9

IEEE Explore Database Search ... 9

ACM Digital Library Database Search ... 10

Web of Science Database Search .. 10

Research Item Quality Review ... 11

Title Review .. 11

Abstract Review .. 12

Article Review .. 12

Content Type Categories... 14

Solution Type Categories .. 14

Challenge Type Categories ... 16

Performance Testing Challenges .. 16

Agile Testing Challenges .. 17

Application Domain Categories .. 17

Analysis of Results ... 18

Quantitative Analysis .. 18

Qualitative Analysis .. 25

CHAPTER III: METHODOLOGY .. 27

Lulu Performance Test Goals ... 27

Quick Development Time ... 27

Customizability ... 28

Expressive Syntax ... 28

Compatibility with Continuous Integration/Continuous Delivery

Tools ... 28

viii

Research Questions ... 29

Test Protocol ... 29

Sandbox... 29

Testing for Rapid Development .. 30

Testing for Customization... 30

Testing for Continuous Integration/Continuous Delivery

Integration ... 30

Sandbox Design .. 31

Lulu Performance Test Design and Architecture.. 32

CHAPTER IV: RESULTS .. 36

Rapid Development Test Results .. 36

Customization Test Results... 38

Continuous Integration and Continuous Delivery Pluggability Test Results 41

Not Tested: Expressive Syntax ... 44

Answers to Research Questions .. 44

RQ1. Can Lulu Performance Test provide a way to rapidly develop

performance tests? .. 44

RQ2. Can Lulu Performance Test be Customizable Enough that

Users do not Have to Change Their Development Practices to

Integrate the Framework? ... 44

RQ3. Can Lulu Performance Test Improve or Facilitate

Communication Between Development, Testing, and Business

Teams? .. 45

RQ4. Can Lulu Performance Test be Integrated into a Typical

Agile Development Suite of Tools? .. 45

CHAPTER V: CONCLUSION AND FUTURE WORK ... 46

Literature Review Lessons Learned.. 46

Future Work .. 47

Further Research into Chaos Testing .. 47

Improvements to the Lulu Performance Test Framework 47

Unifying Rapid Test Development Tools ... 48

Conclusion .. 49

REFERENCES ... 50

APPENDIX A: INCLUDED STUDIES .. 54

APPENDIX B: PAPER CATEGORIZATION INFORMATION 62

APPENDIX C: REMOVED STUDIES .. 65

ix

APPENDIX D: RESEARCH QUESTION MAPPING .. 79

APPENDIX E: GLOSSARY .. 89

x

LIST OF TABLES

Table 2.1 Solution Type Correlation .. 21

xi

LIST OF FIGURES

Figure 1.1 Agile Testing Quadrants by Brian Marick. ... 3

Figure 2.1 Search Terms ... 8

Figure 2.2 IEEE Search Terms ... 9

Figure 2.3 ACM Search Terms ... 10

Figure 2.4 Web of Science Search Terms ... 10

Figure 2.5 Article Review Process Workflow .. 11

Figure 2.6 Article Review Process.. 13

Figure 2.7 Paper Types ... 18

Figure 2.8 Paper Types by Year ... 19

Figure 2.9 Solution Type Distribution .. 20

Figure 2.10 Solution Type Trends .. 22

Figure 2.11 Papers citing performance testing challenges.. 23

Figure 2.12 Papers citing Agile testing challenges ... 23

Figure 2.13 Trending Challenges .. 24

Figure 3.1 LPT Framework High-Level architecture ... 33

Figure 3.2 Monitors module ... 34

Figure 3.3 Monitors module class diagram... 35

Figure 4.1 LPT DSL Script ... 37

Figure 4.2 Python Performance Test .. 38

Figure 4.3 Python automation script ... 39

Figure 4.4 Ruby automation script.. 40

Figure 4.5 Language-agnostic automation .. 41

Figure 4.5 Travis CI Build script (.travis.yml) ... 43

1

CHAPTER I:

AGILE SOFTWARE DEVELOPMENT AND PERFORMANCE TESTING

Agile and Performance Testing Defined

Agile software development (ASD) [1], when compared to traditional

development methodologies, is relatively new to software engineering. ASD is actually a

collection of methodologies which share twelve principles [2] [3] [4]. Methodologies

considered ASD share the themes of frequent delivery of working software, constant

technical excellence, consistent velocity, and good communication. The actualization of

these principles is achieved through shared practices common to the different

methodologies, most relevant to this paper of which include dedication to effective

software testing.

Testing is a broad discipline in software engineering [5], and its specific

implementation depends upon the software development methodology being used [6] [7].

There are two broad types of testing: black box, where testers have no insight into the

inner workings of a system such as source code, database schemas, and other design

documents; and white box, where testers do have access to the formal specifications and

implementations of the system. As an example, unit testing—tests that check atomic units

of functionality such as individual functions and classes—are written in source code,

typically the same kind of source code the system is built in, are considered white box

tests since the source code itself is being tested. In contrast, usability testing—activities

taken to evaluate how easily a system is used by its intended audience—does not require

access to source code and is thus considered black box testing.

There are many kinds of testing in addition to those mentioned above. Integration

testing involves activities to check that disparate parts of a system work together as

expected and, depending on how it is conducted, could be accomplished as either a black

2

box or white box technique. Exploratory testing involves probing a system from several

angles, creatively, and without a clear metric to be evaluated. This kind of testing is

strictly a black box testing activity. Smoke testing or sanity checking involves running a

small number of tests against a system to ensure the most basic pieces of functionality are

operating as expected and combines both white box and black box elements. System

testing involves evaluating an entire system’s adherence to its specifications and is a

black box testing activity.

Performance testing is another kind of testing activity that can be conducted as

both white box and black box methods, and is a blanket term for many different kinds of

testing that measure a software system’s hardware metrics under different conditions [8].

Test activities that are considered performance testing include load, stress, spike,

endurance, volume, and scalability testing [9] [10] [11] [12] [13] [14]. Performance

testing asserts traits of a system such as reliability, scalability, elasticity, security, and

more. These traits are often colloquially called “the -ilities” and thus performance testing

can be called “-ility testing.” Other names for performance testing include non-

functional requirements (NFR) testing, as well as quadrant 4 (Q4) testing, in reference to

the Agile testing quadrants [15]. Like other kinds of testing, the specific ways in which

performance testing is conducted vary depending on the development methodology being

used to build the system in question.

3

Figure 1.1

Agile Testing Quadrants by Brian Marick.

Performance Testing Challenges in Agile Software Development

Performance testing is a complicated, expensive, and time-consuming endeavor

[16]. Its complexity comes from the fact that many of the metrics to be gathered for

effective performance testing and meaningful analysis sit at the union of the

software/hardware relationship. Its expense is due to several factors, including the high

expense of experienced performance engineers, the hardware or cloud resources required

to conduct performance testing effectively, and the expense of existing tools [17].

Finally, performance testing is time consuming, because it involves simulating users over

an extended period of time and gathering relevant hardware metrics and then conducting

complex analysis on those metrics. The time consuming and complex nature of

performance testing also add to its cost [18].

Due to the challenges listed above, performance testing is not easily implemented

in an ASD environment. The metrics gathered from performance testing are most

meaningful when the environment in which they are gathered is most like the production

environment intended for the system under test (SUT) [19]. In other words, performance

4

testing requires a completely integrated and nearly finished system in order to provide

accurate and meaningful insights. In contrast, ASD methodologies favor the delivery of

working software in several successive and short increments. This means that many

times, a system delivered by an agile team is never truly a completed system. Therefore,

the metrics gathered on an SUT developed by an agile team at least have the potential to

be misleading, if not completely false. Additionally, the release cadence of a system built

in an ASD environment requires quick feedback from tests. As mentioned before,

performance testing is a time consuming endeavor, which makes it a hindrance to Agile

methodologies [16] [20].

Purpose of This Study

Nearly all industries which rely on application development can benefit from

adopting Agile software development (ASD) methodologies. Paramount to a system’s

success in any development methodology is the quality of the system’s tests, and the

feedback they provide [20]. Because of the challenges around performance testing in

ASD, improvements to this practice will improve agile software development. The

immediate purpose of this study is to identify promising and complementary techniques

regarding performance testing in the recent literature and consolidate them into a single

testing framework for both professional and academic software engineers. More broadly,

the long-term goal of this study is to improve upon the quality of software developed by

software engineers everywhere. Software pervades the daily lives of nearly all people

around the world, improvements to its quality hopefully lead to improvements to the

overall quality of life.

The framework developed will comprise of techniques from the recent literature

and integrate easily into development processes to provide the most benefit to intended

users. The goals of this framework are to provide an easy to use, open source, and

5

technology-agnostic tool to facilitate performance testing in ASD. The design and

development of this framework--named Lulu Performance Test, or just LPT--will

therefore make trade-offs which favor these traits. The intended audience of the

framework is software developers and quality assurance personnel working in an ASD

environment who prefer tools that are both ready to use and easy to augment. Given this

scope, the system will be open source and free to use.

6

CHAPTER II:

LITERATURE REVIEW

The purpose of this thesis and the software artifact developed alongside it is to

improve the current state of software performance testing in agile software development

(ASD). Given the scope detailed in the previous chapter, the goals of this project will best

be achieved by focusing on a few specific challenges and building upon concepts already

presented in the research instead of developing solutions from scratch. To guide this

research and the development of the software artifact, a systematic literature review was

conducted by the author and his thesis advisor.

Systematic Literature Review Research Questions

To ensure the literature review aided the goals of this research, the following

systematic literature review research questions were developed:

• SLR-RQ1. What are the current ideas, challenges, and solutions presented in the

peer-reviewed literature regarding performance testing and Agile software

development?

• SLR-RQ2. What trends are emerging in the current peer-reviewed literature

regarding performance testing and Agile software development?

The rest of this chapter will detail the methods used to answer these questions and the

results found, part of Chapter IV will discuss how the recent literature informed the

design of the Lulu Performance Test (LPT) framework.

The goal in answering the first research question is to provide context for readers and

future researchers. Sharing the common ideas existing in the research will provide a

common understanding and vocabulary when discussing the findings of this and future

research. Additionally, understanding the common challenges help consolidate research

efforts by promoting a shared understanding among those working in this area. Finally, a

7

shared understanding of the current proposed solutions promotes the minimization of

duplicated efforts, allowing researchers to know what has been attempted, what has

worked, and what ideas need more development.

 In answering the second research question, researchers may be able to identify

trends that will lead to favorable results. By showing the current trends in the literature

related to the common challenges in performance testing in Agile software development,

ideas worth developing further are easier to spot, and new progress can be made.

Furthermore, in highlighting current trends, it will also be easier to identify solutions that

have not yet been attempted in the existing research, fostering innovation among

solutions to the common problems.

To ensure the systematic literature review was reproducible by future researchers

or other interested parties, the steps and analysis will be presented in this section.

Literature Review Steps

The overall structure and method of this study is influenced by Vallon et. al [21].

As such, the research steps followed in this study are very similar. They are as follows:

1. Planning the review:

a. Identifying areas of interest to review

i. Selecting this area (performance testing and Agile)

b. Developing research questions

c. Developing review protocol

2. Conducting the review:

a. Locating recent literature

b. Filtering of literature

c. Data extraction and analysis

3. Report findings

Literature Search

In order to locate the appropriate resources for the subject at hand, the search

terms are designed to find all relevant and recent literature. Because many software

development methodologies fall under the banner term “Agile,” several search terms had

8

to be combined to encompass Agile development, and this report uses the same terms for

“Agile” as used in the report by Vallon et. al [21]. Additionally, “performance” testing

can go by many names and the authors made the best attempt at finding a list of terms

that would exhaustively cover all of performance testing subjects. The query used to yield

the papers for this study is generalized as follows:
(agile OR scrum OR “extreme programming” OR “pair programming” OR “lean

software development” OR “iterative development”)

AND

(“performance test” OR “performance engineering” OR “non-functional

test” OR “NFR test”)

Figure 2.1

Search Terms

The search terms are applied to both the full text and metadata. This study applies

these search terms to the ACM Digital Library, IEEE Xplore, and Web of Science

databases. Search queries are configured slightly differently for each database and the

following sections document the exact queries used in each database.

Deciding Which Studies are Relevant

After querying a database with the above search terms, the results were filtered

twice. First, the results are filtered to include only the literature published between the

beginning of 2015 and the end of 2019, effectively gathering research published in the

five years prior to 2020. This search was conducted in June of 2020; however, this is not

relevant due to the fact the December 2019 publications are the most recent items

gathered. This is to ensure that only the most recent and relevant literature is analyzed for

this study. Secondly, to ensure that the most authoritative sources are evaluated, the

results are filtered once again to include only journal articles and conference proceedings.

The next section explains how research items are further analyzed for fitness in this work.

9

Search Terms by Database

The search terms mentioned earlier were applied to three different databases:

IEEE Xplore, ACM Digital Library, and Web of Science. After applying the filters

described in previous section, there are 117 search results altogether. The next three sub-

sections describe the steps taken on each individual search database, so the results can be

duplicated.

IEEE Explore Database Search

Once on the IEEE Xplore homepage, click “Command Search” and fill in the

subsequent box with this specific query:
(

"Full Text Only": "agile"

OR "Full Text Only": "scrum"

OR "Full Text Only": "extreme programming"

OR "Full Text Only": "pair programming"

OR "Full Text Only": "lean software development"

OR "Full Text Only": "iterative development"

) AND (

"Full Text Only": "performance test"

OR "Full Text Only": "non-functional test"

OR "Full Text Only": "NFR test"

)

Figure 2.2

IEEE Search Terms

And click “search.” On the next page, find the “Year” range selector and set the

years to be from 2015 to 2019 and click “apply.” Finally, check the “conferences” and

“journals” check box. Altogether, there should be 80 results. These are the papers that

will be further analyzed in “Title Review” and “Abstract Review” detailed in later

sections.

10

ACM Digital Library Database Search

Once on the ACM Digital Library homepage, click “Advanced Search.” On the

next page, select “Full Text” from the “Search Within” drop down. In the search terms

box, enter the following query:
("agile" OR "scrum" OR "extreme programming" OR "pair programming" OR

"lean software development" OR "iterative development")

AND

("performance test" OR "non-functional test" OR "NFR test")

Figure 2.3

ACM Search Terms

Scroll down to the “Publication Date” section and select “Custom Range” and set

the range to be from January 2015 to December 2019. Click “search.” On the next page,

in the “Publications” section, click the “All Publications” drop down and select

“Proceedings” (there should be 35). After this, go back, and select “Journals” from the

“Publications” sub-section “All Publications” (there should be 2). These 37 papers will

be further filtered in the Title and Abstract Reviews described in a later section.

Web of Science Database Search

Once on the Web of Science homepage, click “Advanced Search” and put the following

query into the search box:
AB=("agile" OR "scrum" OR "extreme programming" OR "pair programming"

OR "lean software development" OR "iterative development")

AND

AB=("performance test" OR "non-functional test" OR "NFR test")

 Figure 2.4

Web of Science Search Terms

Note that Web of Science does not have the option to search by full text, so we are

searching the abstracts.

Under “Timespan” select “Custom year range” and set the range to 2015 to 2019.

Click “search.” There will be zero results from this search.

11

Research Item Quality Review

After exporting the bibliographies and downloading the search results, the

research items were put through a quality review to ensure they were relevant to this

research. The quality review involved a title review, abstract review, and article review,

which will be expounded upon in further detail in the following subsections. If at any

point of the quality review a research item was deemed as irrelevant to this study, it was

removed from the list of results and was not part of the final analysis.

Title Review

After the search results were filtered, their bibliographic information was

exported and consolidated into an Excel spreadsheet. On this spreadsheet, each author of

this study evaluated the title of every search result and annotated whether they thought it

is relevant to this study or not. When the authors disagreed on the potential relevance, the

authors discussed their disagreement until a consensus was reached. If a search result was

decided to be irrelevant based on its title, the authors removed it from the list of relevant

studies. Appendix C lists the studies deemed irrelevant to this report.

Figure 2.5

Article Review Process Workflow

12

Altogether, 42 papers were removed during title review: 28 from the IEEE Xplore

result set, and 14 from the ACM Digital Library result set. After title review, the

remaining 75 results were evaluated for relevance via abstract review.

Abstract Review

After title review, the remaining results were evaluated based on their abstracts.

Papers were considered irrelevant to this study if the abstracts conveyed that the papers

would not talk about either software performance testing or testing in Agile software

development. Like in title review, the authors evaluated and discussed their opinions on

the potential relevance of the search results until they came to a consensus. Appendix C

lists the studies the authors deemed irrelevant to this report.

Altogether, 21 papers were removed: 19 from the IEEE Xplore result set, and 2

from the ACM Digital Library result set. The remaining 54 papers were then checked for

duplicates, of which, 2 were found. The studies marked as duplicate were removed from

the ACM collection of papers and ultimately, 52 papers are selected for article review.

Article Review

After abstract review, the remaining 52 articles were read in their entirety to be

evaluated for relevance to this study. Like the title review and abstract review phases, the

authors of this report evaluated and discussed whether each article was relevant to this

study. Once a consensus was reached, the articles were deemed relevant and passed the

final phase of the review protocol.

Altogether 13 papers were removed: 9 from the IEEE Xplore result set, and 4

from the ACM Digital Library result set. Finally, there are 39 studies analyzed in this

report.

13

Figure 2.6

Article Review Process

After performing the quality assessment on the literature as described above,

some patterns and categories began to emerge. The rest of this chapter will annotate and

expound on those patterns. First, the various research items can be categorized by their

content in one of three types. Secondly, papers that propose solutions can be categorized

by broad solution types. Finally, many papers cite different challenges and obstacles

related to either performance testing or Agile software development (and sometimes

14

both), which can also be broadly categorized. The next several subsections will detail the

categorizations of the papers analyzed in this study.

Content Type Categories

After reviewing the literature related to the proposed research questions, it was found

that research items broadly fell into one of three categories:

• Solution Proposals: Papers designated as solution proposals are those that

present a new way of conducting performance testing or approaching testing in an

Agile context in response to a specific challenge. Solutions proposed can include

the introduction of a new framework or technique, or they can include a

rethinking of existing tools and processes. Papers are considered solution

proposals if they present something like a new tool, method, or algorithm in

response to a stated challenge relevant to the research questions in this paper.

• Reports: Papers are considered reports when they document the experiences or

findings related to performance testing. These papers do not necessarily present a

solution to a found problem, they simply provide some useful knowledge to the

research questions being asked in this study. An example of a research item

designated as a “report” is a paper that gathered and analyzed data from a group

of Agile developers related to their feelings towards performance testing.

• Literature Reviews: A third category which merits its own designation is that of

literature reviews. Within the search results defined in sections 3.4 and 3.5, there

were several studies such as this one. The literature reviews which passed the

described quality assessments were deemed to contain valuable information

related to this research even though none of them seek to answer the same exact

questions.

 The categories listed above may offer limited insight into the current state of

performance testing and Agile software development, but they are categorized in this way

to offer further analysis. For example, we will analyze solution papers for the types of

solutions they offer.

Solution Type Categories

Solution proposals are further categorized into one of seven broad solution types.

The following categories are necessarily broad to accommodate the creativity and

ingenuity of proposed solutions in the literature while still allowing some kind of analysis

to be conducted. As such, the authors urge readers to keep in mind that each solution

15

proposal in the literature offers a unique or novel way to approach a problem despite its

categorization here. The solution types for this study were captured as follows:

Model based solutions: Papers counted as model-based solutions are presenting

solutions that implement model-based testing (MBT) [22] [23] to address the challenges

of performance testing. MBT is a testing paradigm which focuses on a more abstract

level of testing than traditional unit tests. These papers put forth augmentations to MBT

processes that favor performance testing.

Test Automation: Some papers put forth solutions that generate code or

automated tests. The code generated is usually a test script or load definition. To be

considered a “test automation” solution, the paper had to propose a solution which

automatically generated some artifact or artifacts related to performance testing.

Load manipulation: Some papers in the search results present solutions in which

the workload of a performance test is generated. An example is a program dynamically

calculating the optimum number of simulated users to run through test scripts. Another

example is one paper which injected realistic “think times” into test script executions.

Domain specific languages (DSLs): Papers falling into this category either

introduce a DSL or augment an existing one. In this research, DSLs are always proposed

as supporting tools to a more comprehensive solution in the paper. In other words, DSLs

are never presented as solutions themselves, but as a tool for driving the proposed

solution.

Visualization based solutions: These solution types offer ways of presenting

data gathered from test runs in some novel way. These solutions endeavor to give

stakeholders a new or unique point of view to some aspect of performance engineering

activities.

16

Continuous Integration/Continuous Delivery Extensions: Several papers

introduce solutions that require a continuous integration or continuous delivery (CI/CD)

platform to actualize. For example, monitoring solutions may require data gleaned from a

CI/CD process to present findings, or a load manipulation tool may need to work in the

context of a build server to effectively carry out its purpose.

Fault Injection Solutions: One paper did not neatly fall into any of the previous

categories and thus merited its own solution type: fault injection. This has been included

as a solution type not only because it is a unique kind of approach, but also because it

seems to be a promising area for further research. As mentioned before, only one paper

fell into this category.

Note that papers proposing a solution can be counted in more than one category.

For example, a paper proposing a domain specific language for load manipulation is

counted as both a DSL solution and load manipulation solution.

Challenge Type Categories

Because this report aims to identify the trends in performance testing solutions as

well as the challenges present in performance testing in Agile software development, we

also analyze the presence of these challenges in the literature. The papers analyzed for

this study mention challenges in both the performance testing on its own and in Agile; as

such, these challenges were analyzed separately.

Performance Testing Challenges

The literature presents several challenges specific to performance testing, all of which fall

into one of nine categories. Like with solution types, papers can mention more than one

type of challenge. The categories of performance testing challenges are as follows:

1. Accuracy – Related to how much test results reflect reality

2. Automation – These are problems around the limitations of test automation

3. Complexity – These are challenges related to the complexity of performance

testing

17

4. Cost – Obstacles presented related to the expense of performance testing

5. Ignored – These challenges relate to software teams ignoring performance testing

6. Infrastructure – Challenges related to provisioning infrastructure and setting up

environments

7. Load – These challenges relate to finding proper load configurations in

performance tests

8. Resources – This category relates to the challenge of having proper tools

9. Time – This category is related to the time-based challenges of performance

testing

Agile Testing Challenges

The literature also poses challenges that are specific to performance testing in

Agile software development environments. These challenges are not mentioned as often

as performance testing challenges but they were nonetheless categorized. Performance

testing challenges specific to Agile development fall into one of the following categories:

1. Artifact Maintenance – Related to keeping test-related documentation up to date

2. Communication – These are challenges related to communication among teams

and individuals

3. Collaboration – Related to the challenges of coordination performance testing

tasks

4. Company Culture – Challenges around the testing culture of organizations

5. Lack of performance testing emphasis – Occurs when teams do not prioritize NFR

testing

6. Lack of research – Challenges related to a lack of related literature

7. Technical Debt – Related to maintainability requirements that get put off for one

reason or another

8. Time – Related to the time constraints present in Agile software development

Application Domain Categories

One final area of analysis is the application domain. Some research items from the

literature search are specific to certain application domains. It is a small subset of papers

that mention specific application domains, but these domains are recorded here anyway.

The application domains mentioned in the literature are listed below.

• Big Data

• Blockchain

• Cloud

• Embedded systems

18

• IoT

• Microservices

• Software Product Lines (SPLs)

• Web applications

• Mobile applications

Analysis of Results

As mentioned in a previous section, analyzing the 39 papers revealed multiple

patterns. These patterns are illustrated in the next subsections. For further information on

how the selected papers were analyzed, refer to Appendix A for a list of the articles

selected for analysis, or Appendix B for categorization information regarding the 39

papers.

Quantitative Analysis

Paper Type

The “Paper Type” refers to whether the paper presents a solution, report, or a

literature review. Note that some papers can fall into multiple categories. Altogether, 22

papers present solutions, 14 present reports, and there are three literature reviews.

Figure 2.7

Paper Types

Paper Type

Solution Lit Review Report

19

By year, there seven papers published in each year of 2015 through 2018, and 11

papers published in 2019. 2019 was the year in which both solution and literature reviews

were most prevalent. 2016 saw the least amount of solution proposals, but the most

reports.

Figure 2.8

Paper Types by Year

Solution Types

When it comes to solution types, load manipulation was the most popular,

followed by CI/CD based solutions, which was then followed by a three-way tie between

DSL, visualization, and MBT based solutions.

0

1

2

3

4

5

6

7

8

2015 2016 2017 2018 2019

Research Type By Year

Solution Report Lit Review

20

Figure 2.9

Solution Type Distribution

The next figure shows how solution types are grouped together. In other words,

when papers present solutions that comprise of more than one category, the following

figure is meant to show which types seem to complement each other best. Marginally, it

appears load manipulation and DSL solutions go together most often in the research.

Beyond this relationship though, there does not appear to be a statistically significant

correlation between solution types. (Fault injection was neglected from the following

table since it had no correlation)

0 1 2 3 4 5 6 7 8 9

CI/CD

Test Automation

DSL

Fault Injection

Load Manipulation

Visualization

MBT

Number of papers presenting this solution type

Solution Type

21

CI/CD DSL

Load

Manipulation

Visualization MBT

Test

Automation

Log

Evaluation

CI/CD x

1 1 1

DSL

x 2

1 1

Load

Manipulation

1 2 x

1 1 1

Visualization 1

x

MBT 1 1 1

x

Test

Automation

1 1

x

Log

Evaluation

1

x

Table 2.1

Solution Type Correlation

In addition to the types of solutions presented, we can also group solution types

by years presented in order to identify trends in the research. Figure 8 visualizes this data.

Note, in the visualization, we removed the “Fault Injection” solution type since it was

only mentioned in one article and thus could not possibly show a trend. Looking at the

visualization, it appears that load manipulation and CI/CD extensions are consistently

popular solutions to performance testing problems. The visualization also seems to imply

22

that the other categories of solution proposals are sporadically attempted as tools to solve

performance testing problems.

Figure 2.10

Solution Type Trends

Problems Cited

Of the 39 papers analyzed, only 6 of them (7.7%) did not specifically mention

problems associated with performance testing or testing in Agile; the rest mention one of

several challenges. The following figures visualize the number of papers which site

specific challenges, either in performance testing itself or performance testing within

Agile software development.

0

0.5

1

1.5

2

2.5

3

3.5

2015 2016 2017 2018 2019

So
lu

ti
o

n
 T

yp
e

Year

Solution Type Trends

CI/CD

DSL

Load Manipulation

MBT

Test Automation

Visualization

23

Figure 2.11

Papers citing performance testing challenges

Figure 2.12

Papers citing Agile testing challenges

Complexity and time are tied for the most often cited challenges when it comes to

performance testing, followed closely by cost, together making up 68% of the problems

0

1

2

3

4

5

6

7

8

9

10

Performance Testing Challenges

0

0.5

1

1.5

2

2.5

Agile Testing Challenges

24

noted in the literature. Time is also the challenge most likely to be cited as an Agile

challenge when mentioned along with performance testing challenges.

 In addition to the count and correlation of performance testing challenges,

we can also look at how challenges have been reported over the years. If we remove the

challenge types that are only reported once and instead focus on the types of challenges

that are reported year over year, we can identify a trend. Figure 11 visualizes this trend

and offers some interesting insight. First, despite complexity being among the most often

cited challenges in performance testing, its frequency of mention seems to decline over

time. Conversely, it appears as though challenges related to cost are becoming

increasingly apparent and cited in the research. Not so obvious trends are the decreasing

concern of infrastructure challenges but a possible resurgence in concern around cost

related challenges in performance testing.

Figure 2.13

Trending Challenges

0

1

2

3

4

5

6

2015 2016 2017 2018 2019

C
h

al
le

n
gs

 b
y

Ty
p

e

Year

Trending Challengs

Complexity

Cost

Ignored

Infrastructure

Resources

Time

25

Qualitative Analysis

 In this section, the answers to the research questions posed earlier in the

thesis are discussed.

SLR-RQ1. What are the current ideas, challenges, and solutions presented in the peer-

reviewed literature regarding performance testing and Agile software development?

There are several takeaways from the analysis of the last five years of research

regarding the current state of performance testing and Agile software development. First,

as suspected, there is relatively little research and effort in this area, making it difficult to

build upon previous efforts. Papers S15 and S28 both specifically note this, while papers

S13 and S14 note that teams do not emphasize performance testing enough.

Regarding challenges, the previous sections show that complexity, cost, and time

are among the most prevalent challenges in this area. Time specifically is a challenge

inherent to the union of performance testing and Agile software development as

mentioned in papers S34 and S38 because the release cadence of Agile and the time

required for good performance testing are fundamentally at odds.

When it comes to solutions, the research heavily favors load manipulation as a

primary solution to problems in performance testing. Additionally, analysis of the last

five years of research indicates that domain specific languages (DSLs) are a common

companion to other solutions in this space. For example, papers S1, S8, and S38

document the development of a model-based load manipulation tool that is driven by a

DSL extending YAML (YAML Ain’t Markup Language) scripts.

SLR-RQ2. What trends are emerging in the current peer-reviewed literature regarding

performance testing and Agile software development?

With a picture of the current state of performance testing and Agile software

development, we can start to look at the data analysis conducted and identify trends in the

26

research. First, it appears as though the problems of performance testing and Agile

software development are starting to become apparent to researchers and professionals

alike as evidenced in papers S5, S13, S14, S15, and S28. This may imply that research in

this area is being recognized as important, or at least as an addressable problem. In any

case, it is a contrast to the relative lack of research present in the literature now.

 Regarding challenges cited in the research, there does appear to be a trend

towards recognizing time as a major constraint. As mentioned in the answer to the

previous research question, this is to be expected as Agile software release cadences do

not lend themselves to the amount of time needed to conduct performance tests.

Additionally, it appears as if challenges related to complexity are being cited less often in

recent years. This could mean that complexity in this area is considered a solved problem,

or it could mean that it is not the prevalent challenge it was once considered to be.

 Trends in solutions seem to point towards a stable popularity in load

manipulation and extending CI/CD tools when addressing performance testing

challenges. The data does not seem to identify any shift in trends, either negative or

positive, but does appear to imply that the types of tools applied to performance testing

challenges tend to be done so at random intervals of popularity.

27

CHAPTER III:

METHODOLOGY

After conducting the literature review and analyzing the data therein, the author

endeavored to extend the research by applying the lessons learned. This chapter will

describe the design and development of Lulu Performance Test (LPT), the problems it

aims to solve, and how it will be tested.

Lulu Performance Test Goals

With the goal of extending the state of performance testing in Agile software

development, and after synthesizing the information found in the literature review

described in chapter 2, the author believes a performance testing framework would be

beneficial to software quality professionals and researchers. To deliver the most benefit

to potential users, development of this framework should produce a system with four

broad qualities, described here.

Quick Development Time

In the literature review, time was cited as a challenge in both performance testing

and Agile development. In many cases, this has to do with the long runtime required for

performance testing, but it often refers to the amount of time required to build

performance tests as well. Agile methodologies require functionality built in quick

iterations and supporting unit and integration tests. These tests, relative to performance

and functional tests, are easy to build and thus do not introduce a significant strain on

Agile release cadences. As such, to further the field of performance testing in Agile

software development, a framework for creating performance tests should model the ease

of building unit tests found in the xUnit family of testing frameworks.

28

Customizability

The literature review reveals that research into performance testing is conducted

for various application domains such as mobile, cloud, web, and even embedded systems.

Additionally, because different systems have different user bases, the load configurations

for proper testing will vary widely from system to system. Finally, different teams will

have different testing philosophies relative to their experience and requirements. As such,

LPT should be as customizable as possible. In other words, the framework should

facilitate user ingenuity in things like gathering metrics and manipulating load

configurations rather than defining how these things are done.

Expressive Syntax

Another problem cited in the literature is issues with communication. If possible,

the framework should help facilitate conversation and collaboration between testers and

development teams. Ideally, the framework should also be able to facilitate better

communication between technical and business teams. To achieve this, design and

development activities must keep in mind that company and team cultures will be

different from one to the next. As such, LPT should facilitate improvements to

communication rather than defining or manipulating how communication is conducted.

Compatibility with Continuous Integration/Continuous Delivery Tools

Finally, because the literature often introduces performance testing solutions as

CI/CD extensions, it is imperative that the LPT framework be compatible with related

tools. Continuous integration, continuous delivery, continuous deployment, version

control, and configuration management are all inextricable concepts within Agile

software development. For any tool that claiming to improve testing within an Agile

context to be successful, it is incumbent upon that tool to plug in easily to these

technologies and tools.

29

Research Questions

The design and development of Lulu Performance Test aims to solve problems

around performance testing in Agile software development as mentioned in the literature.

Ultimately, this research sets out to answer four research questions related to the

performance testing framework to be built:

RQ1. Can it provide a way to rapidly develop performance tests?

RQ2. Can it be customizable enough that users do not have to change their

development practices to integrate the framework?

RQ3. Can the framework improve or facilitate communication between development,

testing, and business teams?

RQ4. Can the framework be easily integrated into a typical Agile development suite

of tools?

Test Protocol

Before development of the LPT framework begins, this study will first define a

set of tests the framework will be evaluated against to answer the research questions.

Sandbox

To simulate real-world use, a sandbox was created. The sandbox is a web

application that emulates a point of sale (POS) system for a music store; it provides a

theoretical system under test (SUT) for which the LPT framework will develop

performance tests. The system was built using Python, Flask API, and Postgres SQL, and

is deployed to an Amazon Web Services (AWS) Ubuntu Linux image.

The sandbox allows a few very basic customer and employee use cases. These use

cases are not important to this study, they merely provide a set of tasks for the

performance testing framework to run through during prototyping. Source code for the

sandbox system as well build scripts for both local and remote deployment can be found

30

on the author’s GitHub. The URL for this source code is https://github.com/erik-

whiting/test_site.

Testing for Rapid Development

To evaluate that the system facilitates rapid development of performance tests, the

LPT test scripts line count and cyclomatic complexity will be analyzed. The LPT scripts

must be compared to other performance testing tools that are text-based. GUI (Graphical

User Interface) tools like JMeter, which may be the industry standard, are not comparable

to script-based test tools, because lines of code cannot be compared. Additionally,

comparing a script or text-based tool to a GUI tool will largely depend on preference.

Some people may work faster with a point-and-click workflow while others are more

efficient when writing scripts.

Testing for Customization

The goal of customizability for the LPT framework is to minimize disruption to a

development team’s preexisting workflow. In this stage of the LPT framework

development, the author believes the best way to test this is to have the framework utilize

test scripts written in different programming languages. If the system can reproduce

results when running similar automation scripts in different languages, it can be

concluded that the system is customizable.

Testing for Continuous Integration/Continuous Delivery Integration

As mentioned in a previous section, it is imperative that the LPT framework be

easily implemented into a CI/CD system, and that it will work well with typical tools

used in Agile software development. Therefore, to test the LPT framework’s ability to

plug into these tools, the following test is defined:

The sandbox system will be given a tests directory. First, this test directory will

include a few basic unit tests to emulate what a production level project might have. In

https://github.com/erik-whiting/test_site
https://github.com/erik-whiting/test_site

31

addition to these unit tests will also be LPT scripts. The author will then link the

repository to a TravisCI project via a GitHub hook. This will run all the tests for the

sandbox every time new commits are pushed to the repository. If the TravisCI build runs

as expected, it can be concluded that the LPT framework has the ability to plug into

CI/CD systems and other Agile software development tools.

 Sandbox Design

For the sake of completeness, this section will briefly describe the web

application sandbox, and how it is used for this research. The sandbox application

simulates a music store in which customers can buy records and employees can manage

sales. The application is built using Flask API, a Python framework, and deployed to

Amazon Web Services (AWS) and thus has a dynamically generated URL.

The application architecture is fairly simple. There is an object relational mapper

(ORM) module with a Connection and Query class. These classes abstract database

connection functions and query results parsing. There is also a Resources module, which

implements the ORM module. The Resources module handles specific operations to be

conducted on the various data models of the application. Finally, there is the rest of the

model-view-controller (MVC) architecture which defines the rest of the application.

There are three main use cases for the sandbox application. The first is general

browsing from the customer’s point of view. This includes clicking through bands and

their albums and seeing song lists of those albums. The second use case is also from the

customer’s perspective and simulates an online shopping experience. Customers can

select form the store inventory, see their bill, and place an order. The final use case is

from an employee point of view and involves looking through sales records. This is a

basic view of how much of what items were sold and when they were sold.

32

Lulu Performance Test Design and Architecture

Lulu Performance Test (LPT) aims to solve two of the main problems cited in the

literature—time and communication—by utilizing three of the solution types cited by the

literature: load manipulation, domain specific language, and CI/CD extensions. The LPT

framework aims to improve the communication between test teams, development teams,

and business teams by providing a configurable DSL based on concepts common to all

software systems.

On a technical level, the LPT framework provides a means for defining metrics of

a system to be measured, as well as a means for measuring common system metrics such

as memory usage, CPU usage, and disk space usage. The system allows test engineers to

write scripts that poll these metrics on configurable time intervals. The system polls and

returns these metrics as decimal numbers, allowing script developers to use these results

however their teams prefer.

On a business level, the LPT framework assigns use cases to user profiles, which

comprise user groups. The framework also allows use case automation scripts to be

written in any language as long as the scripts can be run from a command line. This

means that test engineers can write a test script, assign it to a user profile (e.g., “Bob”),

assign that user profile to a user group, (e.g., “Accounting”) and then use these to define a

typical workload. The high-level architecture of the system is shown below.

33

Figure 3.1

LPT Framework High-Level architecture

LPT monitors system processes via threading, where each item to be monitored is

done so on a single logical thread. The Monitors module features a class called

MetricMonitor which implements two interfaces. The first interface is called Monitoring

and is defined in LPT. The second is called Runnable and is a built-in Java library for

multithreaded applications. MetricMonitor is the supertype for four subtypes:

MemoryMonitor, CpuMonitor, DiskSpaceMonitor, and OtherMonitor. The first three

provide out-of-the-box capability for monitoring the metric they are named after. The

OtherMonitor class provides developers with a way to implement LPT’s Monitors class

with a system level command for monitoring a metric the developer may want to

monitor. The Monitors module is visualized in the figure below:

34

Figure 3.2

Monitors module

Additionally, the class diagram generated by the development IDE (JetBrains)

provides a more technical illustration of the module:

35

Figure 3.3

Monitors module class diagram

Running in parallel with the monitors are the actual test scripts. Users define the

location of these automation scripts which the user also defines. The framework will run

the scripts while also running the metric monitors, giving users an idea of system

performance under any kind of load the user defines.

36

CHAPTER IV:

RESULTS

 Results of the testing performed will be described here. Lulu Performance Test

(LPT) had four goals and four research questions.

Rapid Development Test Results

One of the main goals of LPT was to provide testers and developers in an Agile

software development environment an efficient way to write performance tests. To

evaluate LPT’s efficacy in rapid development, we wrote a test script using the LPT

Domain Specific Language (DSL) and evaluate it against a similar JMeter Script.

Originally, the cyclomatic complexity of the DSL script was to be evaluated as well, but

because the DSL is written in JavaScript Object Notation (JSON), it is not possible to

calculate cyclomatic complexity (or the cyclomatic complexity is calculated as 0).

The following script, written in the LPT DSL runs two test scripts, each with two

threads, and monitors the memory and CPU usage of the system under test (SUT):

37

{

 "Performance Test": {

 "name": "default",

 "useCases": [

 {

 "name": "Explore Albums",

 "script":

"C:\\Users\\eedee\\Documents\\test_site_tests\\customer_user_group\\exp

lore_albums.py",

 "command": "python",

 "threads": "2"

 },

 {

 "name": "Explore Bands",

 "script":

"C:\\Users\\eedee\\Documents\\test_site_tests\\customer_user_group\\exp

lore_bands.py",

 "command": "python",

 "threads": "2"

 }

],

 "monitors": [

 {

 "name": "memory", "every": "500"

 },

 {

 "name": "CPU", "every": "500"

 }

]

 }

}

Figure 4.1

LPT DSL Script

The script above is 27 lines when formatted for easy reading. Functionally, only

14 of the lines are necessary and contribute to the test script (the rest are bracket-or-

comma-only lines). To build a similar script, the developer need only know the location

of a test script, the command needed to run that script, and to know which metrics to

monitor.

This test script will be compared against a similar test script written in Python.

Python is chosen because it tends to be less verbose than languages like Java and because

38

it is a common tool to use in test automation. The following script is a Python script that

runs a similar test and monitor combination, but only once:

1. import threading
2. import psutil
3.
4. def monitorMemory():
5. proc = psutil.Process()
6. print(proc.memory_info().rss)
7.
8. def monitorCPU():
9. print(psutil.cpu_percent())
10.

11. def runTestScript(path_to_script):

12. # test script running code

13. print("running")

14.

15. if __name__ == "__main__":

16. thread1 = threading.Thread(target=monitorMemory)

17. thread2 = threading.Thread(target=monitorCPU)

18. thread3 = threading.Thread(target=runTestScript,

args=("path1",))

19. thread3 = threading.Thread(target=runTestScript,

args=("path2",))

20. threads = [thread1, thread2, thread3, thread4]

21. for thread in threads:

22. thread.start()

 Figure 4.2

Python Performance Test

The script above is 22 lines, 17 of which are not whitespace. This script requires

more lines of code than the LPT domain specific language (DSL) to run a single instance

of the performance test to be conducted, in order to run multiple iterations like the LPT

script does, even more lines would have to be added. From this information, it can be

concluded that the LPT DSL facilitates comparatively rapid performance test

development.

 Customization Test Results

The goal of customization in the context of LPT is to provide developers a

technology-agnostic tool for running performance tests. LPT is designed to run

39

automation scripts on a system while monitoring that system’s metrics. In the

development phase, Python automation scripts were used against the Sandbox system. To

test the customizability of LPT, a similar test script in a different language will be

developed and used as input to the LPT DSL script. Here is a test script for exploring the

bands page in the sandbox (note the test script uses a library called LuluTest, a browser

automation framework developed by the author):

1. import random
2. from LuluTest import *
3.
4. from vars import Vars
5. from customer_profile import CustomerProfile
6.
7. customer = CustomerProfile()
8.
9. vars = Vars()
10. page = vars.new_page()

11. actions = vars.new_actions() # Make headless by passing False

12.

13. actions.go(page)

14. customer.linger()

15. actions.click(

16. PageElement(('id', 'bands'), 'bands')

17.)

18. customer.linger()

19.

20. band_id = random.randrange(30)

21. actions.click(

22. PageElement(('id', f'band-{band_id}'), 'random band')

23.)

24. customer.get_distracted()

25.

26. actions.click(

27. PageElement(('link text', 'Bands'), 'back')

28.)

29. customer.linger()

30. actions.close()

Figure 4.3

Python automation script

A similar script, albeit one without the simulated wait times, in Ruby is defined as

follows:

40

1. require 'watir'
2.
3. browser = Watir::Browser.new
4. browser.goto('127.0.0.1:5000')
5. browser.link(text: 'Albums').click
6.
7. rand_album = rand(10)
8. browser.goto("127.0.0.1:5000/bands/#{rand_album}")
9.
10. browser.link(text: 'Bands').click

11. rand_album = rand(20)

12. browser.goto("127.0.0.1:5000/bands/#{rand_album}")

13. browser.close

Figure 4.4

Ruby automation script

To test that both of these scripts can be run by LPT, we define the following

prototype in Java and observe the results:

41

1. package com.lulu.main.prototype;
2.
3. import com.lulu.main.java.models.use_cases.UseCase;
4. import com.lulu.main.java.models.use_cases.UseCases;
5.
6. import java.util.ArrayList;
7.
8. public class UseCasePrototype {
9. public static void main(String[] args) throws

InterruptedException {

10. String ucCustomerScriptRoot =

"C:\\Users\\eedee\\Documents\\test_site_tests\\customer_user_grou

p";

11. String customerUcScript1 = ucCustomerScriptRoot +

"\\explore_albums.py";

12. String customerUcScript2 = ucCustomerScriptRoot +

"\\explore_albums.rb";

13.

14. UseCases useCases = new UseCases(new ArrayList<>() {

15. {

16. add(new UseCase("Explore Albums (python)",

customerUcScript1, "python", 2));

17. add(new UseCase("Explore Albums (ruby)",

customerUcScript2, "ruby", 2));

18. }

19. });

20.

21. useCases.start();

22. System.out.println(useCases.doneRunning());

23. }

24. }

 Figure 4.5

Language-agnostic automation

Running this script works as expected, both the Python and Ruby script run the

commands against a browser. As long as a system command and script can be passed to

the UseCase class, LPT can run the script. This proves that LPT can be customized and

run whatever technologies the users want to use.

Continuous Integration and Continuous Delivery Pluggability Test Results

Most importantly, the framework’s ability to plug into Agile tools such as version

control and Continuous Integration/Continuous Delivery (CI/CD) tools is tested. To

42

complete this test within the time allotted, the author implemented some non-standard

techniques to implement Lulu Performance Test into these tools.

Lulu Performance Test (LPT) is first compiled into a Java Archive (or JAR) file

and moved into the Test Site tests directory. Within this directory is also a similar LPT

script as the JavaScript Object Notation (JSON) file detailed in figure 4.1. Essentially, to

run the performance test, the application must be started, and the JAR file ran with the

DSL file location as input. To accomplish this, the Test Site application’s repository is

hosted in GitHub and configured to run a build script in TravisCI every time a new

commit is pushed to the repository.

 To accomplish this testing strategy, and to emulate what a typical build for an

application like Test Site might look like, the following build script drives the TravisCI

integration and testing:

43

1. language: python
2. python:
3. - "3.6"
4.
5. services:
6. postgresql
7.
8. addons:
9. chrome: stable
10.

11. after_script:

12. - chmod +x ~/build.sh

13. - chmod 777 ./tests/LPT/LuluPerfTest.jar

14. - bash ~/build.sh

15. - sudo java -jar ./tests/LPT/LuluPerfTest.jar

./tests/LPT/basic_test.json

16.

17. script: python -m unittest discover tests

18.

19. install:

20. - pip install flask

21. - pip install psycopg2

22. - wget -N

https://chromedriver.storage.googleapis.com/83.0.4103.39/chromedr

iver_linux64.zip -P ~/

23. - unzip ~/chromedriver_linux64.zip -d ~/

24. - rm ~/chromedriver_linux64.zip

25. - sudo mv -f ~/chromedriver /usr/local/share/

26. - sudo chmod +x /usr/local/share/chromedriver

27. - sudo ln -s /usr/local/share/chromedriver

/usr/local/bin/chromedriver

28. - sudo apt-get install binfmt-support

Figure 4.5

Travis CI Build script (.travis.yml)

Note lines 11 through 16. These lines first change permissions of both the build

script and JAR file to be executable. The next portion runs the build script located in

the Test Site repository so that the application is actually running. Finally, the Lulu

Performance Test JAR is invoked with the DSL script as input. When run in the

TravisCI build server, the LPT script runs as expected. This proves that the LPT

framework is pluggable into Agile tools.

44

Not Tested: Expressive Syntax

One of the goals of LPT is to provide an expressive syntax via the DSL to

facilitate communication between test teams, development teams, and business teams.

The time and scope of this thesis project did not allow for testing this goal. In order to

properly test the DSL expressiveness, a survey would have to be conducted among

professionals within the aforementioned functional units. The survey would feature

scripts from a more fully defined DSL and ask respondents what they meant. The more

correct answers on the survey would mean the syntax was expressive and a good tool for

facilitating communication among these disparate teams. As mentioned before, the time

required to complete a survey and analyze the data is not conducive to the scope and

timeline of this project.

Answers to Research Questions

The rest of this chapter will elaborate on the answers to the study’s research questions

RQ1. Can Lulu Performance Test provide a way to rapidly develop performance

tests?

Yes, the DSL provided by Lulu Performance Test (LPT) can generate

performance tests qin fewer lines and less complex scripts than general purpose

programming languages. LPT was not compared against tools like JMeter or Postman,

since these tools utilize a graphical user interface and cannot be easily compared with a

framework using a DSL to script tests.

RQ2. Can Lulu Performance Test be Customizable Enough that Users do not Have

to Change Their Development Practices to Integrate the Framework?

Yes, this study proved the LPT will work when given either a Python or Ruby

script. The framework works by utilizing system commands to run automation scripts. As

45

long as an automation script can be invoked from the command line, it can be used as an

automation script with LPT.

RQ3. Can Lulu Performance Test Improve or Facilitate Communication Between

Development, Testing, and Business Teams?

 This research question remains unanswered. There were no tests conducted to

evaluate if LPT’s domain specific language would facilitate or improve communication

between development, testing, and business teams.

RQ4. Can Lulu Performance Test be Integrated into a Typical Agile Development

Suite of Tools?

Yes, although its current implementation in the test application is not scalable.

The pluggability of LPT has been proven in this study, however this pluggability can be

implemented in more efficient ways. Further work is needed in this area.

46

CHAPTER V:

CONCLUSION AND FUTURE WORK

Literature Review Lessons Learned

Analysis of the literature as described in the literature review revealed current

states and apparent trends. In addition, the analysis also allows for further questions to be

asked and opens some paths to further research.

First, the decline of complexity coupled with the rise of cost and time in

performance testing challenges seems to be an anomaly. The author hypothesizes that this

may be due to the increasing popularity of cloud-based application development. It is

hypothesized as such due to the componentization of different pieces of infrastructure

(i.e., database servers, virtualized networks, and so on) that allow for a higher level of

atomicity when troubleshooting performance bottlenecks. This could also be due to

performance monitoring capabilities in the cloud, a subject which—upon a cursory

literature database search—appears to already have a sizeable body of work. It is likely

worth researching the relationship between reduced complexity in performance testing

and the proliferation of cloud-based applications.

As noted in the section describing solutions, one paper (S23) introduces the idea

of fault injection which draws ideas from Netflix’s Chaos Monkey approach to testing

[24] [25]. This type of solution falls into its own category due to its uniqueness.

However, it is possible a more focused approach to collecting data in this area would be

beneficial to understanding what value “Chaos Engineering” can or does bring to

performance testing. This area of research also seems to be growing in interest judging

from a quick search in the IEEE Xplore and ACM Digital Libraries.

47

Future Work

This study aimed to address some of the challenges present in the union of

performance testing and Agile software development. The literature review component of

the study identifies the current state and emerging trends of performance testing. The

application developed in tandem with this study shows that ideas from the literature can

be consolidated into a single tool. There is a lot of research left undone in this study,

however, and performance testing is still at odds with Agile software development. There

are two areas in which further research may benefit the software engineering community.

Further Research into Chaos Testing

As mentioned before, the area of chaos testing—and the broader discipline of

chaos engineering—were only barely touched on in this study. The author believes that

this area shows promise in both solving unique problems as well as yielding interesting

findings. If given more time, a similar literature review of these areas could be conducted

to provide a starting point for future research.

Improvements to the Lulu Performance Test Framework

Chapter IV mentions that one of the Lulu Performance Test (LPT) framework

goals was to facilitate communication between teams of differing disciplines. The

timeline of this study did not lend itself to looking into the realization of this goal. To

further develop and analyze LPT’s efficacy in improving communication, there are a few

things that must be done. First, the domain specific language (DSL) should be ported to

its own standalone language rather than being written in JSON. Second, scripts of this

independent DSL should be developed and presented to LPT’s intended users. From here,

the users would say whether or not the scripts accurately describe what they are doing.

Responses would then be analyzed and updated according to respondent feedback leading

48

to incremental improvements to the DSL and, eventually, an effective communication

and technical tool.

Additionally, LPT’s system reporting features need improvement. Currently, the

monitoring classes report metrics via standard output in the command line; a more

appropriate way to report results would be either by recording data in a database or some

kind of spreadsheet software. In this way, performance test results could be persisted and

analyzed by teams for better quality improvements. Furthermore, reporting dashboards

could be developed and pass/fail configurations could be defined to aid in continuous

deployment environments.

Finally, LPT delivery does not use best practices. In this study, a JAR file

containing the LPT files are stored in a system’s test folder and called on the command

line via a build script. The more appropriate way to utilize a tool like this would be to

clone or remotely download the LPT test runner classes, compile in the build server, and

then ran with user-provided DSL scripts. This would allow teams to customize their build

environments with the Java versions they prefer as well as allow users to get an updated

and centralized version of LPT rather than a JAR file the author compiled on his personal

computer, then copy and pasted into a test directory.

Unifying Rapid Test Development Tools

The automation scripts used in this study implement an open source automation

framework developed by the author known as LuluTest (https://github.com/erik-

whiting/LuluTest). The author’s goals with LuluTest were much like the goals of Lulu

Performance Test: to provide Agile development teams a tool to develop tests quickly.

LuluTest also has the added goal of allows tests to be robust and easy to understand.

Agile development relies on exhaustive testing, and thus improving the efficiency and

cost effectiveness of Agile testing is always a good contribution to software engineering.

49

Conclusion

To conclude, the benefits of Agile software development are due in no small part

to its philosophy regarding testing. Generally speaking, better tests means better products.

However, there are several challenges in the realm of performance or non-functional

requirements testing. The time required to conduct proper performance testing is

fundamentally at odds with the release cadence of Agile software development. Many

kinds of solutions to this problem exist, and it is possible to unify these approaches.

50

REFERENCES

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S.

Mellor, K. Schwaber, J. Sutherland and D. Thomas, Manifesto for Agile Software

Development, 2001.

[2] H. Guang-yong, "Study and practice of import Scrum agile software development,"

in 2011 IEEE 3rd International Conference on Communication Software and

Networks, Xi'an, 2011.

[3] J. a. M. R. C. Newkirk, "Extreme Programming in Practice," in Addendum to the

2000 Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications (Addendum), Minneapolis, 2000.

[4] U. W. M. Shafiq, "Documentation in Agile Development A Comparative Analysis,"

in 2018 IEEE 21st International Multi-Topic Conference (INMIC), Karachi, 2018.

[5] R. A. DeMillo, "Software Testing," in Encyclopedia of Computer Science, John

Wiley and Sons Ltd., 2003, p. 1645–1649.

[6] E. F. d. L. V. F. Collins, "Software Test Automation Practices in Agile

Development Environment: An Industry Experience Report," in Proceedings of the

7th International Workshop on Automation of Software Test, Zurich, 2012.

[7] R. Khan, A. K. Srivastava and D. Pandey, "Agile approach for Software Testing

process," in 2016 International Conference System Modeling & Advancement in

Research Trends (SMART), Moradabad, 2016.

[8] A. Freitas and R. Vieira, "An Ontology for Guiding Performance Testing," in

Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web

51

Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01, Warsaw,

2014.

[9] Z. M. J. Jiang, "Load Testing Large-Scale Software Systems," in 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Florence, 2015.

[10] S. Pradeep and Y. K. Sharma, "A Pragmatic Evaluation of Stress and Performance

Testing Technologies for Web Based Applications," in 2019 Amity International

Conference on Artificial Intelligence (AICAI), Dubai, 2019.

[11] A. Mehta, J. Dürango, J. Tordsson and E. Elmroth, "Online Spike Detection in

Cloud Workloads," in 2015 IEEE International Conference on Cloud Engineering,

Tempe, AZ, 2015.

[12] S. V. E. Tchagou, A. Termier, J.-F. Mehaut, B. Videau, M. Santana and R. Quiniou,

"Reducing Trace Size in Multimedia Applications Endurance Tests," in

Proceedings of the 2015 Design, Automation & Test in Europe Conference &

Exhibition, Grenoble, 2015.

[13] O. Sinanoglu and E. J. Marinissen, "Analysis of the Test Data Volume Reduction

Benefit of Modular SOC Testing," in Proceedings of the Conference on Design,

Automation and Test in Europe, Munich, 2008.

[14] P. Moura and F. Kon, "Automated Scalability Testing of Software as a Service," in

Proceedings of the 8th International Workshop on Automation of Software Test,

San Francisco, 2013.

[15] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers and Agile

Teams, Addison-Wesley Professional, 2009.

[16] V. Ferme and C. Pautasso, "A Declarative Approach for Performance Tests

Execution in Continuous Software Development Environments," in 2018

52

ACM/SPEC International Conference on Performance Engineering (ICPE '18),

New York, 2018.

[17] A. O. Portillo-Dominguez, M. Wang, J. Murphy, D. Magoni, N. Mitchell, P. F.

Sweeney and E. Altman, "Towards an automated approach to use expert systems in

the performance testing of distributed systems," in Proceedings of the 2014

Workshop on Joining AcadeMiA and Industry Contributions to Test Automation

and Model-Based Testing, San Jose, 2014.

[18] H. Schulz, D. Okanovic, A. van Hoorn, V. Ferme and C. Pautasso, "Behavior-

Driven Load Testing Using Contextual Knowledge - Approach and Experiences,"

in Proceedings of the 2019 ACM/SPEC International Conference on Performance

Engineering, Mumbai, 2019.

[19] A. Kattepur and M. Nambiar, "Service Demand Modeling and Prediction with

Single-User Performance Tests," in Proceedings of the 9th Annual ACM India

Conference, Gandhinagar, 2016.

[20] T. Field, R. Chatley and D. Wei, "Software Performance Testing in Virtual Time,"

in Companion of the 2018 ACM/SPEC International Conference on Performance

Engineering, Berlin, 2018.

[21] V. R, B. Silva Estacio, R. Prikladnicki and T. Greechenig, "Systematic Literature

Review on Agile Practices in Global Software Development," Information and

Software Technology, vol. 96, pp. 161-180, 2018.

[22] F. Abbors and D. Truscan, "Approaching Performance Testing from a Model-Based

Testing Perspective," in 2010 Second International Conference on Advances in

System Testing and Validation Lifecycle, Nice, France, 2010.

53

[23] M. Utting and B. Legeard, Practical model-based testing: A Tools Approach,

Elsevier Science, 2010.

[24] M. A. Chang, B. Tschaen, T. Benson and L. Vanbever, "Chaos Monkey: Increasing

SDN Reliability through Systematic Network Destruction," in Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communication,

London, 2015.

[25] n. T. Blog, "The Netflix Simian Army," 19 July 2011. [Online]. Available:

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116. [Accessed 21

Austust 2020].

[26] A. C. Z. S. H. A. S. P. F. M. T. D. Hellmann, "Agile Testing: A Systematic

Mapping across Three Conferences: Understanding Agile Testing in the XP/Agile

Universe, Agile, and XP Conferences," in 2013 Agile Conference, Nashville, 2013.

54

APPENDIX A:

INCLUDED STUDIES

Article

ID

Article Name Author(s) Year Database

S1 A Declarative Approach for

Performance Tests

Execution in Continuous

Software Development

Environments

Ferme, Vincenzo;

Pautasso, Cesare

2018 ACM

S2 A Systematic Review on

Cloud Testing

Bertolino, Antonia;

Angelis, Guglielmo

De; Gallego, Micael;

Garcia, Boni;

Gortazar, Francisco;

Lonetti, Francesca;

Marchetti, Eda

2019 ACM

S3 A Systematic Review on the

Use of Definition of Done on

Agile Software Development

Projects

Silva, Ana; Araujo,

Thalles; Nunes,

Joao; Perkusich,

Mirko; Dilorenzo,

Ednaldo; Almeida,

Hyggo; Perkusich,

Angelo

2017 ACM

55

S4 Adopting Continuous

Integration and Continuous

Delivery for Small Teams

M. K. A. Abbass; R.

I. E. Osman; A. M.

H. Mohammed; M.

W. A. Alshaikh

2019 IEEE

S5 Agile Team Members

Perceptions on Non-

functional Testing:

Influencing Factors from an

Empirical Study

C. R. Camacho; S.

Marczak; D. S.

Cruzes

2016 IEEE

S6 An analysis of automated

tests for mobile Android

applications

D. Bernardo Silva;

A. T. Endo; M. M.

Eler; V. H. S. Durelli

2016 IEEE

S7 An Architecture to Automate

Performance Tests on

Microservices

de Camargo, Andre;

Salvadori, Ivan;

Mello, Ronaldo dos

Santos; Siqueira,

Frank

2016 ACM

S8 Behavior-Driven Load

Testing Using Contextual

Knowledge - Approach and

Experiences

Schulz, Henning;

Okanovic, Duvsan;

van Hoorn, Andre;

Ferme, Vincenzo;

Pautasso, Cesare

2019 ACM

S9 Browser Performance of

JavaScript Framework,

SAPUI5 & jQuery

J. Raigoza; R.

Thakkar

2016 IEEE

56

S10 Challenges in Adapting

Agile Testing in a Legacy

Product

R. K. Gupta; P.

Manikreddy; A. GV

2016 IEEE

S11 Challenges in Assessing

Technical Debt Based on

Dynamic Runtime Data

M. Ciolkowski; L.

GuzmÃ¡n; A.

Trendowicz; A. M.

Vollmer

2018 IEEE

S12 Continuous Integration and

Continuous Delivery

Pipeline Automation for

Agile Software Project

Management

S. A. I. B. S.

Arachchi; I. Perera

2018 IEEE

S13 Continuous Performance

Testing in Virtual Time

R. Chatley; T. Field;

D. Wei

2019 IEEE

S14 Continuous Software Testing

in a Globally Distributed

Project

N. B. Moe; D.

Cruzes; T. DybÃ¥;

E. Mikkelsen

2015 IEEE

S15 Continuous Testing in the

Development of IoT

Applications

L. G. GuÅŸeilÄƒ;

D. Bratu; S. Moraru

2019 IEEE

57

S16 Crowd and Laboratory

Testing, Can They Co-exist?

An Exploratory Study

F. Guaiani; H.

Muccini

2015 IEEE

S17 Empowering Dynamic Task-

Based Applications with

Agile Virtual Infrastructure

Programmability

H. Zhou; Y. Hu; J.

Su; M. Chi; C. de

Laat; Z. Zhao

2018 IEEE

S18 Enabling Performance

Management During Cloud

Applications Migration

N. Chawla; D.

Kumar; D. Sharma

2019 IEEE

S19 FIG based Quality

Assurance in Software

Product Lines

N. Yousaf; R.

Sheikh; M. Abbas

2017 IEEE

S20 Initial Experiments with

Duet Benchmarking:

Performance Testing

Interference in the Cloud

L. Bulej; V. HorkÃ;

P. TÅ¯ma

2019 IEEE

S21 Model-Based Performance

Evaluations in Continuous

Delivery Pipelines

Dlugi, Markus;

Brunnert, Andreas;

Krcmar, Helmut

2015 ACM

58

S22 Navigate, Understand,

communicate: How

Developers Locate

Performance Bugs

S. Baltes; O.

Moseler; F. Beck; S.

Diehl

2015 IEEE

S23 Online Robustness Testing

of Distributed Embedded

Systems: An Industrial

Approach

K. Alnawasreh; P.

Pelliccione; Z. Hao;

M. RÃ¥nge; A.

Bertolino

2017 IEEE

S24 PerfVis: Pervasive

Visualization in Immersive

Augmented Reality for

Performance Awareness

Merino, Leonel;

Hess, Mario; Bergel,

Alexandre;

Nierstrasz, Oscar;

Weiskopf, Daniel

2019 ACM

S25 Poster: ClearTH Test

Automation Framework: A

Running Example of a DLT-

Based Post-Trade System

V. Panarin; A.

Bulda; I. Itkin; A.

Zverev; K.

Zagorouiko; M.

Mamedov; A.

Rybakova; A.

Gromova; E.

Treshcheva; S.

Tishin; R. Yavorskiy

2019 IEEE

59

S26 Practices to Make Agile Test

Teams Effective: Challenges

and Solutions

T. Anand; V. S.

Mani

2015 IEEE

S27 Pragmatic Scrum

Transformation: Challenges,

Practices & Impacts During

the Journey A Case Study in

a Multi-Location Legacy

Software Product

Development Team

Gupta, Rajeev

Kumar; Manikreddy,

Prabhulinga; Arya,

K. C.

2017 ACM

S28 Quality Assurance Practices

in Continuous Delivery - an

implementation in Big Data

Domain

A. Cheriyan; R. R.

Gondkar; T. Gopal;

S. B. S.

2018 IEEE

S29 Requirements Engineering

and Software Testing in

Agile Methodologies: A

Systematic Mapping

Coutinho, Jarbele C.

S.; Andrade,

Wilkerson L.;

Machado, Patricia D.

L.

2019 ACM

S30 Service Demand Modeling

and Prediction with Single-

User Performance Tests

Kattepur, Ajay;

Nambiar, Manoj

2016 ACM

S31 Setting Realistic Think

Times in Performance

Ramakrishnan,

Raghu; Shrawan,

2017 ACM

60

Testing: A Practitionerâ€™s

Approach

Vandana; Singh,

Prabhpahul

S32 Social dogfood: A

framework to minimise

cloud field defects through

crowd sourced testing

D. Malone; J. Dunne 2017 IEEE

S33 Software Crowdsourcing

Practices and Research

Directions

E. Bari; M.

Johnston; W. Wu;

W. Tsai

2016 IEEE

S34 Software Performance

Testing in Virtual Time

Field, Tony;

Chatley, Robert;

Wei, David

2018 ACM

S35 Survey of Testing Methods

of O2O Catering Platform

Xu, Hefang; Su,

Caihong; Wu,

Shaoyu; Tang,

Dongping

2019 ACM

S36 Test orchestration a

framework for Continuous

Integration and Continuous

deployment

N. Rathod; A. Surve 2015 IEEE

S37 The Internet of (Showbiz)

Things: Scalability Issues in

Deploying and Supporting

Ledwidge, Michela;

Burrell, Dr Andrew

2015 ACM

61

Networked Multimedia

Experience.

S38 Towards Holistic

Continuous Software

Performance Assessment

Ferme, Vincenzo;

Pautasso, Cesare

2017 ACM

S39 VICTORY: A New

Approach to Automated

Vehicle Testing

T. Thompson; K.

Saylor

2018 IEEE

62

APPENDIX B:

PAPER CATEGORIZATION INFORMATION

Id Paper

Type

Perf.

Challenges

Agile Challenges App Domain Solution

Type

S1 Solution Complexity;

Cost

DSL; MBT

S2 Lit

Review

Cost; Time

Cloud

S3 Lit

Review

Technical Debt

S4 Solution Time

CI/CD

S5 Report Complexity;

Cost; Time;

Awareness

Company Culture

S6 Report Resources

Mobile

S7 Solution Infrastructure

Microservices Test

Automation;

Load

Manipulation

S8 Solution Automation

DSL; Load

Manipulation

S9 Report

Web

S10 Report Complexity

S11 Report Complexity

63

S12 Solution Load

Load

Manipulation;

CI/CD

S13 Solution Cost; Time Lack of Perf

testing emphasis

Load

Manipulation;

MBT

S14 Report

Lack of Perf

testing emphasis

S15 Solution

Lack of Research IoT CI/CD

S16 Report Cost

S17 Solution Resources

Test

Automation;

DSL

S18 Report Time

Cloud

S19 Solution Complexity

SPL Visualization

S20 Solution Cost; Time;

Infrastructure

Cloud Load

Manipulation

S21 Solution Resources;

Infrastructure

MBT; CI/CD

S22 Report Complexity

S23 Solution Complexity

Embedded Fault

Injection

S24 Solution

Visualization

S25 Solution

Blockchain Test

Automation

64

S26 Report

S27 Report

Communication;

Collaboration;

Technical Debt

S28 Solution

Lack of

Research;

Company Culture

Big Data CI/CD

S29 Lit

Review

Artifact

Maintenance

S30 Solution Time;

Infrastructure

Load

Manipulation

S31 Solution Accuracy

Load

Manipulation

S32 Report

Cloud

S33 Report Complexity;

Cost

S34 Solution Time; Ignored Time

MBT

S35 Report Ignored

Web

S36 Solution Cost

CI/CD;

Visualization

S37 Solution

IoT Visualization

S38 Solution Complexity Time

DSL; Load

Manipulation

S39 Solution Time

65

APPENDIX C:

REMOVED STUDIES

Article Name Authors Year Phase

Removed

Fast and accurate synthesis of

electronically reconfigurable annular

ring monopole antennas using particle

swarm optimisation and artificial bee

colony algorithms

E. J. Brito

Rodrigues; H.

W. Castro Lins;

A. G.

D'AssunÃ§Ã£o

2016 Title Review

Laguna Patroller: Mobile Application

for Public Awareness about Violence

with Global Positioning System and

Image Processing

M. F. S. Algaba;

R. A. Peji; A. L.

S. Maria; J. M.

Bawica

2018 Title Review

A temperature monitoring system

incorporating an array of precision

wireless thermometers

A. Javadpour; H.

Memarzadeh-

Tehran; F.

Saghafi

2015 Title Review

Using Raspberry Pi to Create a

Solution for Accessing Educative

Questionnaires From Mobile Devices

R. A. RodrÃ-

guez; P.

Cammarano; D.

A. Giulianelli; P.

M. Vera; A.

Trigueros; L. J.

Albornoz

2018 Title Review

66

Mechanical Design of Dexterous

Bionic Leg with Single-DOF Planar

Linkage *

H. ZANG; D.

LI; L. SHEN

2018 Title Review

The SOTM environment:

Developments in satellite land, sea &

air mobile terminals

M. Jarrold 2015 Title Review

Low-voltage ride-through

enhancement with the Ï‰ and T

controls of PMSG in a grid-integrated

wind generation system

S. M. Tripathi;

A. N. Tiwari; D.

Singh

2019 Title Review

Network Function Virtualization:

State-of-the-Art and Research

Challenges

R. Mijumbi; J.

Serrat; J.

Gorricho; N.

Bouten; F. De

Turck; R.

Boutaba

2016 Title Review

Systems Engineering Based Effective

Approach for Executing Senior

Projects for Engineering Students

H. El-Sherief 2019 Title Review

Digital geographic information based

complex electromagnetic environment

signal simulation and generation

Tai Xin; S. Liu;

Fan Xiaoteng

2015 Title Review

Parallel Link-based Light-Weight Leg

Design for Bipedal Robots

Y. Tazaki 2019 Title Review

67

A Feasible 5G Cloud-RAN

Architecture with Network Slicing

Functionality

C. Lee; M. Lee;

J. Wu; W.

Chang

2018 Title Review

A fine manipulation tweezer with

embedded ultrasonic motor for

assembly and gripping miniature parts

C. Li; B. Wu; S.

Li; Q. Zhang

2016 Title Review

Reactive Microservices in Commodity

Resources

D. Goel; A.

Nayak

2019 Title Review

Ground-level observation of terrestrial

gamma-ray bursts initiated by

lightning

X. Li; R. Jiang;

Y. Zheng; H.

Zhou; B. Xing;

Y. Li; W. Liu

2017 Title Review

High-Speed 2 Ã— 25 kV Traction

System Model and Solver for

Extensive Network Simulations

B. Mohamed; P.

Arboleya; I. El-

Sayed; C.

GonzÃ¡lez-

MorÃ¡n

2019 Title Review

Tunable Photonic Radio-Frequency

Filter With a Record High Out-of-

Band Rejection

P. Li; X. Zou;

W. Pan; L. Yan;

S. Pan

2017 Title Review

A cyber-physical architecture for

industry 4.0-based power equipments

detection system

M. Yu; M. Zhu;

G. Chen; J. Li;

Z. Zhou

2016 Title Review

Book of abstracts

2016 Title Review

68

MD2-NFV: The case for multi-

domain distributed network functions

virtualization

R. V. Rosa; M.

A. S. Santos; C.

E. Rothenberg

2015 Title Review

Total Ionizing Dose Effects on a

Highly Integrated RF Transceiver for

Small Satellite Radio Applications in

Low Earth Orbit

J. Budroweit; M.

Sznajder

2018 Title Review

MAVEN relay operations N. Chamberlain;

R. Gladden; P.

Barela; L. Epp;

K. Bruvold

2015 Title Review

In-Situ TID Testing and

Characterization of a Highly

Integrated RF Agile Transceiver for

Multi-Band Radio Applications in a

Radiation Environment

J. Budroweit; M.

P. Jaksch

2019 Title Review

A comparison between several

Software Defined Networking

controllers

A. L. Stancu; S.

Halunga; A.

Vulpe; G. Suciu;

O. Fratu; E. C.

Popovici

2015 Title Review

Sales configuration creation for

complex telecommunication solutions

T. GreguroviÄ‡;

R. Penco

2018 Title Review

iCAST 2017 proceedings

2017 Title Review

69

2018 Index IEEE Robotics and

Automation Letters Vol. 3

2018 Title Review

Table of Contents

2018 Title Review

Adopting Autonomic Computing

Capabilities in Existing Large-Scale

Systems: An Industrial Experience

Report

Li, Heng; Chen,

Tse-Hsun

(Peter); Hassan,

Ahmed E.;

Nasser,

Mohamed;

Flora, Parminder

2018 Title Review

Automated Grading of Collaborative

Software Engineering Training with

Cloud Distributing Scripts

Ma, Kun; Yang,

Bo; Liu, Kun

2019 Title Review

FSE 2016: Proceedings of the 2016

24th ACM SIGSOFT International

Symposium on Foundations of

Software Engineering

2016 Title Review

ICFP 2016: Proceedings of the 21st

ACM SIGPLAN International

Conference on Functional

Programming

2016 Title Review

Improve Student Performance Using

Moderated Two-Stage Projects

Chen, Juan; Cao,

Yingjun; Du,

Linlin; Ouyang,

2019 Title Review

70

Youwen; Shen,

Li

Multidisciplinary Groups Learning to

Develop Mobile Applications from the

Challenge Based Learning

Methodology

da Costa,

Andrew Diniz;

de Lucena,

Carlos Jos\'{e}

Pereira; Coelho,

Hendi Lemos;

Carvalho,

Gustavo

Robichez; Fuks,

Hugo; Venieris,

Ricardo Almeida

2018 Title Review

On the Use of Metaprogramming and

Domain Specific Languages: An

Experience Report in the Logistics

Domain

Costa, Pedro

Henrique

Teixeira;

Canedo, Edna

Dias;

Bonif\'{a}cio,

Rodrigo

2018 Title Review

71

Parameterized Diamond Tiling for

Stencil Computations with Chapel

Parallel Iterators

Bertolacci, Ian

J.;

Olschanowsky,

Catherine;

Harshbarger,

Ben;

Chamberlain,

Bradford L.;

Wonnacott,

David G.; Strout,

Michelle Mills

2015 Title Review

Research on Distributed Database

Access Technology Based on .NET

Dinghua, He 2018 Title Review

SA 15: SIGGRAPH Asia 2015 Mobile

Graphics and Interactive Applications

2015 Title Review

Source-Code Similarity Detection and

Detection Tools Used in Academia: A

Systematic Review

Novak, Matija;

Joy, Mike;

Kermek,

Dragutin

2019 Title Review

Towards Versioning of Arbitrary RDF

Data

Frommhold,

Marvin; Piris,

Rub\'{e}n

Navarro; Arndt,

Natanael;

Tramp,

2016 Title Review

72

Sebastian;

Petersen, Niklas;

Martin, Michael

Verdict machinery: ON the need to

automatically make snese of test

results

2016 Title Review

A design of a small mobile robot with

a hybrid locomotion mechanism of

wheels and multi-rotors

K. Tanaka; D.

Zhang; S. Inoue;

R. Kasai; H.

Yokoyama; K.

Shindo; K.

Matsuhiro; S.

Marumoto; H.

Ishii; A.

Takanishi

2017 Abstract

Review

A Survey on Systems Engineering

Methodologies for Large Multi-

Energy Cyber-Physical Systems

E. Azzouzi; A.

Jardin; D.

Bouskela; F.

Mhenni; J.

Choley

2019 Abstract

Review

Back to Basics - Redefining Quality

Measurement for Hybrid Software

Development Organizations

S. Pradhan; V.

Nanniyur

2019 Abstract

Review

73

Container Orchestration Engines: A

Thorough Functional and Performance

Comparison

I. M. A.

Jawarneh; P.

Bellavista; F.

Bosi; L.

Foschini; G.

Martuscelli; R.

Montanari; A.

Palopoli

2019 Abstract

Review

Design and Performance Analysis of a

Nonstandard EPICS Fast Controller

J. Jugo; M.

Eguiraun; I.

Badillo; I.

Arredondo; D.

Piso

2015 Abstract

Review

Development of information and

communications technology related

products: Technical expertise,

infrastructures and processes

Ã–. Aydin 2016 Abstract

Review

Driving self-learning system based on

the virtual reality

D. Sun; X. Liu 2017 Abstract

Review

Enhancing Product and Service

Capability Through Scaling Agility in

a Global Software Vendor

Environment

R. Lal; T. Clear 2018 Abstract

Review

74

Green Propellant Infusion Mission

(GPIM) space vehicle integration and

test status

W. Deininger; S.

Plaisted; A.

Sexton; T.

Smith; V. Moler;

M. Goldman; G.

Simmons; D.

Cavender; R.

Osborne; R.

Wendland; J.

Jonaitis; D.

Smith; L.

Wotruba; M.

Riesco; C.

McLean

2016 Abstract

Review

How to Make Business Intelligence

Agile: The Agile BI Actions Catalog

R. Krawatzeck;

B. Dinter; D. A.

P. Thi

2015 Abstract

Review

Implementation of a software

application for comprehensive

monitoring of children and young

patients under closed regimes in

Argentina (SISP)

M. C. Abeledo;

F. Bruschetti; D.

Priano; R.

Bevilacqua; G.

Aguilera; P.

Iriso; D. MartÃ-

nez; E. Abete;

A. Lacapmesure;

2015 Abstract

Review

75

N. M. Calcagno;

G. Altobelli

OSI Standards and the Top Fallacy of

Distributed Computing

J. Y. Shi 2016 Abstract

Review

Refinement and Resolution of Just-in-

Time Requirements in Open Source

Software: A Case Study

A. Q. Do; T.

Bhowmik

2017 Abstract

Review

Research on visual navigation

algorithm of AGV used in the small

agile warehouse

W. Chun-Fu; W.

Xiao-Long; C.

Qing-Xie; C.

Xiao-Wei; L.

Guo-Dong

2017 Abstract

Review

SecFT-SDN: Securing the Flow-Table

for Software-Defined Network

R. You; B. Tu;

Z. Yuan; J.

Cheng

2019 Abstract

Review

Smart Audio Sensors in the Internet of

Things Edge for Anomaly Detection

M. Antonini; M.

Vecchio; F.

Antonelli; P.

Ducange; C.

Perera

2018 Abstract

Review

76

Smart City IoT: Smart Architectural

Solution for Networking, Congestion

and Heterogeneity

L. Pawar; R.

Bajaj; J. Singh;

V. Yadav

2019 Abstract

Review

The Increasing Importance of

Utilizing Non-intrusive Board Test

Technologies for Printed Circuit

Board Defect Coverage

M. R. Johnson 2018 Abstract

Review

Wireless SDN architecture Testbed to

support IP Multimedia Subsystem

A. Issa; N.

Hakem; N.

Kandil

2019 Abstract

Review

A Global View on the Hard Skills and

Testing Tools in Software Testing

Florea, Raluca;

Stray, Viktoria

2019 Abstract

Review

Have Your Data and Query It Too:

From Key-Value Caching to Big Data

Management

Borkar, Dipti;

Mayuram, Ravi;

Sangudi, Gerald;

Carey, Michael

2016 Abstract

Review

A Global View on the Hard Skills and

Testing Tools in Software Testing

R. Florea; V.

Stray

2019 Article Review

A parallel computing model for

container terminal logistics

B. Li; W. Shen 2015 Article Review

Development of an information

platform for observation of seismic

events in Chile using RAD

methodology

M. V. Tombolini

Echeverria; S. G.

Cornejo; F. A.

Pontigo

2016 Article Review

77

LTE-based MCPTT Architecture for

Next Generation Railway Dispatching

Communication System

J. Huang; J.

Ding; Z. Zhong;

B. Sun; W.

Wang; K. Li

2018 Article Review

On the RESTful Web Services for

Managing Application Virtualization

Environments

E. C. Yildiz; E.

Unal; H. Tuzun;

D. E. Aktas; M.

S. Aktas

2019 Article Review

Performance evaluation and

improvement in cloud computing

environment

O. Khedher; M.

Jarraya

2015 Article Review

Set-based Design in Agile

Development: Developing a Banana

Sorting Module - A Practical

Approach

D. Saad; S.

RÃ¶tzer; M.

Zimmermann

2019 Article Review

Systematic mapping study on MBT:

tools and models

M. Bernardino;

E. M. Rodrigues;

A. F. Zorzo; L.

Marchezan

2017 Article Review

The effect of software programmers'

personality on programming

performance

X. Li; P. Shih;

E. David

2018 Article Review

Beyond Continuous Delivery: An

Empirical Investigation of Continuous

Deployment Challenges

Shahin, Mojtaba;

Babar,

Muhammad Ali;

2017 Article Review

78

Zahedi,

Mansooreh; Zhu,

Liming

In-Memory Integration of Existing

Software Components for Parallel

Adaptive Unstructured Mesh

Workflows

Smith, Cameron

W.; Granzow,

Brian; Ibanez,

Dan; Sahni,

Onkar; Jansen,

Kenneth E.;

Shephard, Mark

S.

2016 Article Review

Key Factors in Scaling up Agile Team

in Matrix Organization

Gupta, Rajeev

Kumar; Jain,

Shivani; Singh,

Bharat; Jha,

Sanjay Kumar

2019 Article Review

Managing Quality Assurance

Challenges of DevOps through

Analytics

Ibrahim,

Mahmoud

Mohammad

Ahmad; Syed-

Mohamad,

Sharifah

Mashita; Husin,

Mohd Heikal

2019 Article Review

79

APPENDIX D:

RESEARCH QUESTION MAPPING

Below is a mapping of all research questions within the papers analyzed (if there

were any) and their answers. In all cases, the questions in the question column are direct

quotes from the paper itself and should be thought of as such. In some cases, the answers

to the research questions are paraphrases from the papers in which they are found but are

often direct quotes as well. The author does not claim that any text in the following table

is original content but drawn from the adjacent paper designated in the Id column.

Id RQ

Number

Question Answer

S6 1 How often does test automation appear in

open-source Android projects?

about 47% of the time

S6 2 Which testing frameworks are adopted in

open-source Android projects?

Android.Test,

EasyMock, Fest,

Hamcrest, JUnit,

Roboelectric, Robotium,

Espresso

S6 3 What is the relation between the elements

of production code and the elements of

test code?

About 8.3% LoC are

dedicated to tests

S6 4 Do the automated tests of open source

Android projects cover specific

challenges of mobile devices, namely,

connectivity, rich GUIs, limited

Connectivity: about 36%

of the time

Rich GUIs: about 30% of

the time

Limited Resources: 0%

80

resources, sensors, and multiple

configurations?

(no performance testing

found)

Sensors: About 19% of

the time

Multiple Configurations:

about 48% coverage

S8 1 How expressive is the BDLT language in

regards to load test concerns of industrial

use cases?

Can express all use cases

named by industrial

partners, but had to make

use of extensions

mechanisms for one

custom event

S8 2 How would BDLT be used in industrial

contexts?

By DevOps teams to

define load tests

S8 3 What are the benefits and limitations of

using BDLT in comparison to defining

load test scripts?

Benefits: natural

language

Limitations: need for

extensions for custom

events, non-trivial subset

of config possibilities

S16 1 Which type of tests a crowd tester is used

to run

Functional, usability, and

performance testing are

most required

Stress and load are least

applied

81

S16 2 What are the challenges and limitations

faced by crowd testing?

Timing and time pressure

S16 3 How laboratory testing and crowd testing

can complement each other?

* Better communication

* Showing more

underlying info on SUT

* Competition/pressure

should be addressed

S22 1 How do developers navigate and what

information and representation is

supportive for locating a performance

bug?

Real-time information

regarding method calls

and resource

consumption is important

to finding performance

bugs, visually displaying

this information is

helpful, and developers

will either toggle or path-

follow through such

information

S22 1.1 How was information from the profiling

tool or other parts of the IDE used to

locate the performance bug?

Using dynamic instances

of method calls as links

to runtime information

S22 1.2 Is the in-situ visualization of the profiling

data beneficial compared to a traditional

list representation?

Yes

82

S22 1.3 What navigation strategies do developers

pursue to locate a specific performance

bug?

Toggling - Switching

back and forth between

test classes and other

important classes

Path Following -

Following dynamic calls

through the visualization

S22 2 How do developers try to understand and

explain the causes of performance bugs?

Most teams formulate a

hypothesis early,

discussed architecture

and algorithms around

the code, and seemed to

find sketches useful

S22 2.1 How do developers communicate with

each other when locating a performance

bug?

Clear communication

strategies were

reportedly not detectable

in this study

S22 2.2 Could sketches help understand and

communicate a performance bug?

Sketching has obvious

advantages in pair

programming scenarios

but its usefulness is

unclear in a single-

developer scenario

83

S23 A To what extent is the system able to filter

invalid messages?

This is dependent on the

volume and frequency of

the invalid messages

S23 B Is delaying messages an effective strategy

to discover faults?

Yes, helps find timeout-

handling that has been

configured incorrectly.

This was not found in

manual testing

S24 RQ How can visualization support developers

in the analysis of the impact of source

code changes to the performance of a

system?

(note: authors say this

paper is an "initial step

toward answering" this

question)

Visualization needs to be

large enough to model a

whole system, but small

enough to fit on a screen

Properties of text on

visualization impacts

usability

Live visualization

provides feedback on

how current changes

affect the system

84

S29 1 What are the most used practices in this

context? (context of RE and ST alignment

in agile)

Nonspecifically: weekly

meetings with project

stakeholders, conceptual

Use Case models,

description and execution

of test cases, use of

FitNess tables

S29 2 What techniques, strategies, and tools

have been adopted?

Model V, a REST

taxonomy, conceptual

models, ATDD

S29 3 What are the main challenges

encountered in the association of RE and

ST?

for req engineering:

elicitation and

verification, changing

management,

maintaining

documentation, un-useful

Fit tables, maintaining

artifacts.

For software testing:

mostly related to req

engineering problems

and reportedly solved via

automation

S29 4 What are the open problems identified? Open problems mostly

related to test activity

85

automation, validating

use case effectiveness,

maintain req

documentation,

consolidating req

artifacts

S29 5 What requirements and software testing

artifacts are generated?

Class, packet, state,

activity, and use case

diagrams. Business

models, traceability

matrices, user stories,

and Fit tables

S32 First what group is most likely to find either an

in-house or field defect based on defect

severity and test type?

System test team - most

likely to find normal or

major defect, or defect of

any severity.

Function test - most

likely to find critical

defects

System test team - most

likely to find system,

functional, and combined

defect type.

Performance team - most

likely to find

86

performance defect

Security team - most

likely to find security

defect

Customer is most likely

to find any defect of any

severity

S32 Second what is the field defect discovery rate

during the first fourteen days of a release?

Peaks at 6% on day 5,

then 5% on day 7

S2 1 What are the main objectives for cloud

testing?

Performance, then

functional, security,

elasticity, and reliability

S2 2 How are cloud resources exploited for

software testing?

Combinatorial testing is

common, some

algorithms are used to

evaluate cloud

performance under given

configurations

S2 3 What are the test methods, techniques,

and tools mainly used in cloud testing?

Test case generation,

parallelization, MBT,

combinatorial

techniques. Many

frameworks for testing in

cloud exist, offering

87

scaling features, mobile

testing features.

S2 4 How are testing results evaluated in cloud

testing?

Comparison of quality

attributes for SUTs in

different conditions are

evaluated. Results of

many tests shown via

frameworks with web-

based visualizations.

Monitoring of test

executions. Performance

is the thing most often

tested in the cloud

S2 5 What are the research issues and future

research directions of cloud testing?

Frameworks for parallel

test execution,

effective/efficient

resource allocation,

elastic environments,

speeding up tests, self-

service testing, real-

world emulation

S2 6 Which are the main application domains

for software testing in the cloud?

Web and mobile

applications, cloud

infrastructural

applications, SOAs

88

S3 1 What are the done criteria used in agile

software development projects?

62 criteria identified,

may be broadly grouped

as criteria related

activity, metrics, targets,

standards, and checklists

S3 2 What are the characteristics of the

application domain of the papers that

report the done criteria identified in RQ1?

Most methods used are

Scrum, product domain

most often not presented,

application domain is

most often industry.

Teams vary widely in

both size and distribution

S3 3 What types of studies are performed in

the papers the report the done criteria

identified in RQ1?

Most often solution

proposals using a method

or means of

development. Empirical

types are usually Case

study when there is one

89

APPENDIX E:

GLOSSARY

This section will contain some definitions of commonly used acronyms

throughout the paper.

Acronym Spelled Out Definition

NFR Non Functional

Requirement

Describes expected criteria

of system operation rather than

behavior

LPT Lulu Performance

Test

The performance testing

framework developed for this

study

SUT System Under Test Refers to the software

system being tested

CI Continuous

Integration

Software engineering

practice in which developers

check-in code regularly

CD Continuous

Delivery

Software engineering

practice in which a system is

always ready to be deployed

CDE Continuous

Deployment

Software engineering

practice in which a system is

deployed as soon as changes are

checked in and tests are passed

(not used in this study but

90

recorded to highlight that CDE is

not CD)

CI/CD Continuous

Integration/Continuous

Delivery

ASD Agile Software

Development

Collection of software

development methodologies in

which software is developed

incrementally

SLR Systematic

Literature Review

A kind of research study in

which a topic is studied in a

reproducible way

RQ Research Question Question that a research

item endeavors to answer

SLR-RQ Systematic

Literature Review

Research Question

MBT Model Based

Testing

Testing practice which uses

models rather than test steps

DSL Domain Specific

Language

Computer language used

for a specific and likely narrow

domain

91

GPL General Purpose

Language

Computer programming

language such as Python, Java,

Ruby, etc. (not used in this study

but recorded to highlight

difference between GPL and DSL)

YAML YAML A'int

Markup Language

Data serialization

language. Used specifically in this

study to configure TravisCI build

scripts

POS Point of Sale A software system for

managing sales and inventory

AWS Amazon Web

Services

Suite of cloud services

provided by Amazon

ORM Object Relational

Mapper

Software that maps

database tables and columns to

source code classes and attributes

MVC Model-View-

Controller

Software architecture

pattern popular in many web

development frameworks

JSON JavaScript Object

Notation

Data serialization language

originally designed to describe

JavaScript classes, now has many

uses

JAR Java Archive Executable Java package

