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Thesis Chair: Luong A. Nguyen, Ph.D. 

 

 

Robotics is a brand of science and engineering which involves many other fields 

such as mechanical engineering, electrical engineering, and bioengineering. Robotic 

engineers and scientists develop machines that can substitute for humans in various 

situations. Nowadays, robots are used in hazardous and dangerous environments, 

factories or where humans cannot survive (outer space, deep sea, etc.). A lot of tasks can 

be done from something simple such as object lifting and carrying to something 

complicated such as bomb deactivation, sample collecting, etc. In order to do such tasks, 

kinematic redundancy plays an important part, especially in the class of humanoid robots. 

A robot manipulator arm is said to be kinematically redundant when it has more 

degrees of freedom than it is required for a specific task. The redundancy can be used to 

achieve additional goals which is importance in robot design and planning. In this thesis, 

kinematic redundancy resolution will be investigated and applied to Baxter robot. This 
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will include singularity avoidance, collision avoidance, as well as manipulability 

optimization. As a convenient tool for this research, a method of Baxter’s end-effectors 

manipulation, namely Cartesian velocity control, will also be developed.   
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CHAPTER I:  

BAXTER ROBOT 

1. Overview 

1.1 Hardware 

Baxter is an industrial robot built by Rethink Robotics – a company which was 

founded in 2008 as a startup aiming to create low-cost robots. Baxter was introduced in 

September 2011 and was intended to be sold to small to medium-sized companies to do 

dull tasks on the production line. Baxter’s key innovations have been recognized with a 

few awards such as: Time magazine’s “Best 25 Inventions of 2012”, 2013 “Edison 

Awards” Gold Winner in Applied Technology Innovation, MIT technology review’s “10 

Breakthrough Technologies of 2013”…With a base price of just $22,000 Baxter robot 

packs some nice features which enable it to be a low-cost friendly collaborative pioneer 

robot.  

Baxter is a two-armed humanoid robot with an animated face. It is 3’1” tall 

without its pedestal and weighs 165 lbs. With an optional adjustable pedestal, it can reach 

the height of 5’10” – 6’3” which is easy for human to work with. Baxter has a total of 14 

degrees of freedom with 7 per arm. Each arm can run a task independently or both arms 

can do a same task for double capacity. 
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Figure 1.1: Baxter robot 

An interesting feature of Baxter robot is the animated face which shows different 

emotions representing different states of the robot. This function simplifies the interaction 

between the robot and the human coworkers/ operators. A sleeping face with its eyes 

closed showing that Baxter is on standby, concentrating face when it is learning a task, 

focused face when it is working without a problem, surprised face when it detects a 

human approaching,… and even a sad face when it gives up a task. 

Each arm can lift 5 lbs. (higher payload is possible in limited workspace) with a 

maximum reach of 1210mm and can perform tasks with an accuracy of about 0.5 to 1 

centimeter. The maximum speed of an arm with no payload is 3.3 ft/s and 2 ft/s with 

rated payload (5 lbs.). 

The arms are powered by series elastic actuators. Elastic actuators give up some 

precision in exchange for safety when the robot is working collaboratively with human. 

Most industrial robots have rigid actuators which deliver great precision and force. Those 

robots use sensors to measure the slightest impact and stop the motors. With such 
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strength and speed, rigid-actuator robots can deliver a high force from a small 

displacement and a little position error can result in accidents, hence they can be 

dangerous and unfriendly around humans. Series elastic actuators sacrifice the payload 

and stiffness for force control. They contain an elastic element that absorb shocks if they 

hit someone or something, giving the robot additional time to apply the brakes. The 

actuators doubled as force sensors. By measuring the deformation of the elastic part, the 

robot can measure the force at the end of the arm. The robot can sense if it hits someone 

and stop the motion. Force sensing can also be used with cheaper motors (comparing to 

rigid actuators’ motors) to reduce the cost of the robot. 

 

Figure 1.2: Rigid actuator (left) and Elastic actuator (right) 

Baxter robot’s software is run on a personal computer in its chest with core i7-

3770 processor, HD4000 graphics, 4GB DDR3 RAM and 128GB solid state drive.  

Baxter has 3 cameras, 1 on its head and 2 at the end-effector on each arm along 

with 360o sonar sensor, back-drivable motors. Protective covers make it a safe and 

friendly robot to work among human. To train a Baxter robot, a person physically moves 

its arms and uses buttons on the arm to make selections. For instance, if you want to 

program it to pick up and place an object, you would first grab its wrist to engage a 

training and move its end-effector over the item. The camera on the end-effector will 

display the item on the screen using computer vision algorithms. You can confirm that 

it’s the right item. After Baxter picks it up, you would position its arm over the 
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destination and click to confirm. The robot will place the item and the training is finished. 

Baxter then will continuously pick up the items and place them at the destination (if there 

are items presented).  

Baxter may not be super-fast, super strong and super precise like other industrial 

robots, but it is smart, safe and easy to work with. The seven-degree-of-freedom arms 

with force sensing and series elastic actuators help the robot to work effectively and 

safely. A person does not need to have programing skill to train the robot to do simple 

tasks.  The base price of $22,000 is considerably lower than other industrial robots. 

 

1.2 Baxter’s joints 

Baxter robot is a humanoid robot equipped with two seven degree-of-freedom 

arms. Each arm has force, position and torque sensing and control at every joint. There 

are 3 bend joints and 3 twist joints on each arm. 

 

Figure 1.3: Baxter joints 
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Joint Motion 

S0 Shoulder roll 

S1 Shoulder pitch 

E0 Elbow roll 

E1 Elbow pitch 

W0 Wrist roll 

W1 Wrist pitch 

W2 Wrist roll 

Table 1.1: Joint names 

Baxter’s link lengths are measured in mm from the center of a joint to its adjacent 

one.  

 

Figure 1.4: Link lengths 
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Link Length 

L0 270.35 mm 

L1 69 mm 

L2 364.35 mm 

L3 69 mm 

L4 374.29 mm 

L5 10 mm 

L6 229.525 mm 

L7 10 mm 

Table 1.2: Link lengths 

The most common limitation for any robot is probably the joint limits, or range of 

motion, which each joint can archive. Baxter robots have finite range of motion for each 

joint that they can move. 

 

Joint 

name 

Joint 

variable 

Lower 

limit 

(degree) 

Upper 

limit 

(degree) 

Range 

(degree) 

Min 

(radian) 

Max 

(radian) 

S0 𝜃1 -97.494 +97.494 194.998 -1.7016 +1.7016 

S1 𝜃2 -123 +60 183 -2.147 +1.047 

E0 𝜃3 -174.987 +174.987 349.979 -3.0541 +3.0541 

E1 𝜃4 -2.864 +150 153 -0.05 +2.618 

W0 𝜃5 -175.25 +175.25 350.5 -3.059 +3.059 

W1 𝜃6 -90 +120 210 -1.5707 +2.094 

W2 𝜃7 -175.25 +175.25 350.5 -3.059 +3.059 

Table 1.3: Joint limits 
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Other joint specifications of Baxter robot are listed below: 

 

Joint Maximum Speed (rad/s) 

S0 2.0 

S1 2.0 

E0 2.0 

E1 2.0 

W0 4.0 

W1 4.0 

W2 4.0 

Table 1.4: Maximum Joint Speeds 

 

Joint Stiffness 

Small Flexures (W0, W1, W2) 3.4deg @ 15Nm (~250Nm/rad) 

Large Flexures (S0, S1, E0, E1) 3.4deg @ 50Nm (~843Nm/rad) 

Table 1.5: Joint Flexure Stiffness 

 

Description Spec 

Spring Type 
Japanese Industrial Standard (JIS) die spring: Extra light duty 

35 X 200 

Free Length 200 mm 

Stiffness (K) 9.6 N/mm 

Operating length 101 mm - 154 mm 

Table 1.6: S1 Spring Specifications 
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Joint Peak Torque 

S0, S1, E0, E1 50Nm 

W0, W1, W2 15Nm 

Table 1.7: Joint Peak Torque 

The resolution for the joint sensors is 14 bits (over 360 degrees); 360/ (2^14) = 

0.021972656 degrees per tic. All joints have a sinusoidal non-linearity, giving a typical 

accuracy on the order of +/-0.10 degrees, worst case +/-0.25 degrees accuracy when 

approaching joint limits. In addition, there may be an absolute zero-offset of up to +/-0.10 

degree when the arm is not calibrated properly.  

 

1.3 Arm control modes 

Baxter robot has 3 modes to control the arms’ movements: Position, Velocity and 

Torque. Each arm can be controlled independently with different modes. When a joint 

position command is published from the development PC, the 'realtime_loop' process 

which represents a motor control plugin subscribes to this message. This message is then 

parsed and represented in memory based on the control mode. Depending on the control 

mode, modifications are made to the input commands. These modifications are typically 

due to the safety controllers (e.g. arm-to-arm collision avoidance, collision detection, 

etc.) A control rate timeout is also enforced at this motor controller layer. This states that 

if a new 'JointCommand' message is not received within the specified timeout (0.2 

seconds, or 5Hz), the robot will 'Timeout'. When the robot 'Times out', the current control 

mode is exited, reverting to position control mode where the robot will command (hold) 

it's current joint angles. The reason for this is safety. For example, if controlling in 

velocity control mode where you are commanding 1.0 rad/s to joint S0, and you lose 
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network connectivity, the robot could result in dangerous motions. By 'timing out', the 

robot will be safer, reacting to network timeouts, or incorrect control behavior. 

The Position mode is the most fundamental control mode of Baxter robot. Target 

joint angles are published by the user and the internal controller drives the joints to the 

desired angles. The motor controller ensures the safety while processing the joint 

command by collision avoidance and detection. The “raw” option can be enabled which 

will bypass the collision avoidance and allow for very fast motions at the joint limits.  

In Velocity mode, the velocity for all 7 joints are specified which we want the 

joint simultaneously to achieve. The Baxter’s Motor Controller in this mode applies 

collision avoidance and detection and ensures the expected behavior. If a commanded 

velocity to any of the joints will result in a joint position which exceed the joint limits, 

the velocity command is considered invalid and no joints will be commanded. 

In Torque mode, joint torques are published by the user and the joints will move 

at specified torques. Torque mode has the access to the lowest control level, therefore it 

should be used with precaution since safety feature is disabled in this mode. 

 

Figure 1.5: Joint position mode (left) with its “raw” function enabled (right) 
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Figure 1.6: Joint velocity mode (left) and Joint Torque mode (right) 

 

1.4 Baxter’s degrees of freedom 

The Baxter arm is a 7-dof robot arm. It is classified as kinematically redundant 

since it possesses more degrees of freedom than stricly needed for the end effector six 

degrees of freedom motion trajectories  

All of Baxter’s joints are revolute joints. A revolute joint is a one-degree-of-

freedom joint which describe rotational movements between two objects. It can be used 

either as a passive or active joint. 
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Figure 1.7: Revolute joint 

Baxter’s arm design consists of a 2-dof shoulder, a 2-dof elbow and a 3-dof wrist. 

There are no parallel revolute joint axes anywhere on each arm, nor three consecutive 

revolute joints that share a common origin. The 2-dof head provides the ability to tilt and 

pan for the camera.  

The 2-dof shoulder and 2-dof elbow are offset Universal joints (offset-U-joint). A 

universal joint is a mechanical device that allows one or more rotating shafts to be linked 

together, allowing the transmission of torque and/or rotary motion. It also allows for 

transmission of power between two points that are not in line with each other. In robots a 

universal joint consists of two revolute joints which circulate around a point. A pair of 

hinges connected by a cross shaft located close and oriented at 90o to each other allows U 

joint to have 2 degrees of freedom. In Baxter robot, the U joints have offsets, but they 

still have 2 degrees of freedom and behave as a regular U joint. 
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Figure 1.8: Universal joint 

The 3-dof wrist is an offset Spherical joint (offset-S-joint). Spherical joint is a 3-

dof joint which is used to describe rotation movements between objects. It represents 

three rotational degrees of freedom at a single pivot point. Its configuration is defined by 

3 values, each of them shows the amount of rotation around and axis (x, y or z) of their 

reference frame. Spherical joints are passive joints. A spherical joint can be a ball joint 

and it can also be a series of 3 revolute joints connected. The wrist of Baxter is an offset 

S joint since there is no straight line which can connect 3 axles of the 3 joints. 

 

 

Figure 1.9: Two types of a spherical joint 
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Figure 1.10: Baxter offset U joints and offset S joint 

 

1.5 Baxter Research Robot 

In 2013, Rethink Robotics released the Research version of Baxter robot. This 

version has the same hardware as the Industrial version, but the software is different. 

Instead of the pre-programmed manufacturing software for industrial work, it came with 

a software development kit (SDK) installed, based on the Robot Operating System 

(ROS), which is open source. Some libraries of low-level tasks such as joint control and 

position were also made open source. Developers can communicate with the Baxter’s 

workstation via Ethernet and program the robot to do various tasks. 
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Despite being a pioneer in collaborative robots (or co-bots), RethinkRobotics 

eventually closed its doors in October 2018 and sold their technology, patents, and 

intellectual property. Rethink’s designs failed to meet the needs of its target market. 

Elastic actuators, while being safe and flexible, have lower accuracy, smaller force 

bandwidth and lower speed in comparison to other industrial robots with rigid actuators. 

Baxter and Sawyer (Baxter’s one-arm brother) are limited in applications and tasks they 

can perform in industrial environments. Companies typically want simple, fast, 

repeatable robot with great precision on the production lines. They do not change or 

rearrange their production line often, so they care little about the fast training speed and 

the ease of robot retraining which Rethinks offers. The Baxter’s two arm design has little 

use to the customers. Rethink’s robots’ end-effectors were also hard to modify. Rethink 

Robotics is now a part of the HAHN group, a German automation specialist.  

While Baxter is quite far from being the best industrial robot, it is still a great 

research robot. Developers can safely work around it thanks to multiple safety features. 

Series Elastic Actuators are precise and fast enough for research purposes. The open-

source SDK and APIs allow students to study robotic theories and practice robot control. 

Many projects can be developed with Baxter robot. At UHCL, a research version of 

Baxter robot is located at the Robotics Lab where it connects to a computer running the 

Ubuntu operating system. 

 

2. Baxter Kinematics 

This section will be devoted to the kinematics of robot manipulators, which is the 

geometric study of the movement of multi-degree-of-freedom manipulators. Multiple 

studies have been conducted on robot kinematics [1] [2] [3] [4] [5]. The kinematics of 

Baxter robot show the relationship of velocity and position between links. 
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2.1 Coordinate Transformation 

One of the basic ideas of robot control is to know where it is, i.e. its position and 

orientation. In order to mathematically represent an object in 3-dimension space, a 3D 

coordinate frame, called object frame can be attached to it with the position expressed by 

the frame origin and the orientation by the direction of three axes relative to a given 

coordinate frame, called reference frame.  

Consider a reference frame A denoted as ∑𝐴 with origin  𝑂𝐴 and 3 axes 𝑋𝐴, 𝑌𝐴, 𝑍𝐴. 

Similarity, there is an object with frame B attached to it and denoted as ∑𝐵  with origin 

 𝑂𝐵 and 3 axes 𝑋𝐵, 𝑌𝐵, 𝑍𝐵. 𝒑𝐵 
𝐴  represent a vector from 𝑂𝐴 to 𝑂𝐵 which is a position 

vector of 𝑂𝐵 relative to 𝑂𝐴, expressed in ∑𝐴. The unit vectors of 𝑋𝐵, 𝑌𝐵, 𝑍𝐵 expressed in 

∑𝐴 is 𝒙𝐵 
𝐴 , 𝒚𝐵 

𝐴 , 𝒛𝐵 
𝐴 . The object’s orientation is then denoted by { 𝒙𝐵 

𝐴 , 𝒚𝐵 
𝐴 , 𝒛𝐵 

𝐴 }, 

expressed in ∑𝐴 . 

 

Figure 1.11: reference frame and object frame 

A rotation matrix 𝑹𝐵 
𝐴  is used to describe the orientation of ∑𝐵 relative to ∑𝐴. It is 

defined by 
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 𝑹𝐵 
𝐴 = [ 𝒙𝐵 

𝐴 𝒚𝐵 
𝐴  𝒛𝐵 

𝐴 ] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟23 𝑟33

] (1.1) 

The components of any vector of 𝒙𝐵 
𝐴 , 𝒚𝐵 

𝐴 , 𝒛𝐵 
𝐴  in equation (1.1) are the 

projections of them onto the axes of the reference frame ∑𝐴. Therefore, the rotation 

matrix can be expressed as a 3 × 3 matrix with the components are the dot products of 

the pairs of unit vectors 

𝑹𝐵 
𝐴 = [ 𝒙𝐵 

𝐴 𝒚𝐵 
𝐴  𝒛𝐵 

𝐴 ] = [

𝒙𝐵. 𝒙𝐴 𝒚𝐵. 𝒙𝐴 𝒛𝐵. 𝒙𝐴

𝒙𝐵. 𝒚𝐴 𝒚𝐵. 𝒚𝐴 𝒛𝐵. 𝒚𝐴

𝒙𝐵. 𝒛𝐴 𝒚𝐵. 𝒛𝐴 𝒛𝐵. 𝒛𝐴

] (1.2) 

Assuming that 𝑂𝐴 and 𝑂𝐵 are coincident, a vector r in ∑𝐵 is described by 

𝒓 
𝐵 = [ 𝒓𝑋 

𝐵 𝒓𝑌 
𝐵  𝒓𝑧 

𝐵 ]𝑻 

 

Figure 1.12: Two coincident frames with the same origin 

When the origins of two coordinate frames are at the same point, expressing a 

vector in ∑𝐵 relative to ∑𝐴 is done by applying a linear transformation by the rotation 

matrix 𝑹𝐵 
𝐴  from ∑𝐵to ∑𝐴 

𝒓 
𝐴 = 𝑹𝐵 

𝐴 𝒓 
𝐵 (1.3) 

Similarly, if we have a third coordinate frame ∑𝐶  with origin 𝑂𝐶 at the same 

point of 𝑂𝐴 and 𝑂𝐵, a vector 𝒓 
𝐶  in ∑𝐶 can be expressed in ∑𝐴 and ∑𝐵 below: 
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𝒓 
𝐵 = 𝑹𝐶 

𝐵 𝒓 
𝐶 (1.4) 

𝒓 
𝐴 = 𝑹𝐶 

𝐴 𝒓 
𝐶 (1.5) 

From (1.3), (1.4) and (1.5) we have 

𝑹𝐶 
𝐴 = 𝑹𝐵 

𝐴 𝑹𝐶 
𝐵 (1.6) 

The rotation matrix from ∑𝐶 to ∑𝐴 can be computed by pre-multiplying the 

rotation matrix from ∑𝐶 to ∑𝐵 with the rotation matrix from ∑𝐵 to ∑𝐴. This can be 

applied to more frames with the same origin. 

Consider the case where ∑𝐴 and ∑𝐵 do not have the same origin but their three 

axes have the same directions, i.e. 𝑋𝐴, 𝑌𝐴, 𝑍𝐴 have the same directions as 𝑋𝐵, 𝑌𝐵, 𝑍𝐵, 

respectively. We have a point in ∑𝐵 defined by a vector 𝒓 
𝐵  and we want to express it in 

∑𝐴. Since the two frames have the same orientation, ∑𝐵 differs to ∑𝐴 only by translation. 

We can calculate the description of point 𝒑 in ∑𝐴 by vector addition of 𝒓 
𝐵  and 𝒑𝐵 

𝐴 , a 

vector located at the origin of ∑𝐵 expressed in ∑𝐴 (vector from 𝑂𝐴 to 𝑂𝐵) 

𝒓 
𝐴 = 𝒑𝐵 

𝐴 + 𝒓 
𝐵 (1.7) 

 

 

Figure 1.13: Two parallel frames   
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Figure 1.14: General case of mapping between two coordinate frames 

Figure 1.14 shows a general case where the origins of ∑𝐴 and ∑𝐵 are not the same 

and the frames’ orientations are different. In order to describe vector 𝒓 
𝐵  in ∑𝐴, we first 

find its description in ∑𝐴 using the rotation matrix from ∑𝐵 to ∑𝐴, then we add it with 

vector 𝒑𝐵 
𝐴  

𝒓 
𝐴 = 𝑹𝐵 

𝐴 𝒑𝐵 
𝐴 + 𝒓 

𝐵  (1.8) 

With 𝒑𝐵 
𝐴 = [𝑝𝐵𝑥 𝑝𝐵𝑦 𝑝𝐵𝑧]

𝑇 and 𝒓 
𝐵 = [ 𝑟 

𝐵
𝑥 𝑟 

𝐵
𝑦 𝑟 

𝐵
𝑧]

𝑇 we have 

𝒓 
𝐴 = [

𝑟11 𝑟 
𝐵

𝑥 + 𝑟12 𝑟 
𝐵

𝑦 + 𝑟13 𝑟 
𝐵

𝑧 + 𝑝𝐵𝑥

𝑟21 𝑟 
𝐵

𝑥 + 𝑟22 𝑟 
𝐵

𝑦 + 𝑟23 𝑟 
𝐵

𝑧 + 𝑝𝐵𝑦

𝑟31 𝑟 
𝐵

𝑥 + 𝑟23 𝑟 
𝐵

𝑦 + 𝑟33 𝑟 
𝐵

𝑧 + 𝑝𝐵𝑧

] (1.9) 

Number 1 can be added to both sides of equation (1.9) 

[ 𝒓 
𝐴

1
] =

[
 
 
 
 
𝑟11 𝑟 

𝐵
𝑥 + 𝑟12 𝑟 

𝐵
𝑦 + 𝑟13 𝑟 

𝐵
𝑧 + 𝑝𝐵𝑥

𝑟21 𝑟 
𝐵

𝑥 + 𝑟22 𝑟 
𝐵

𝑦 + 𝑟23 𝑟 
𝐵

𝑧 + 𝑝𝐵𝑦

𝑟31 𝑟 
𝐵

𝑥 + 𝑟23 𝑟 
𝐵

𝑦 + 𝑟33 𝑟 
𝐵

𝑧 + 𝑝𝐵𝑧

1 ]
 
 
 
 

(1.10) 

It can then be re-written as 

[ 𝒓 
𝐴

1
] = [

𝑟11 𝑟12 𝑟13 𝑝𝐵𝑦

𝑟21 𝑟22 𝑟23 𝑝𝐵𝑦

𝑟31 𝑟23 𝑟33 𝑝𝐵𝑧

0 0 0 1

]

[
 
 
 

𝑟 
𝐵

𝑥

𝑟 
𝐵

𝑦

𝑟 
𝐵

𝑧

1 ]
 
 
 

(1.11) 

or 
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[
𝒓 

𝐴

1

] = [
𝑹𝐵 

𝐴 𝒑𝐵 
𝐴

0 0 0 1

] [
𝒓 

𝐵  

1

] = 𝑻𝐵 [
𝒓 

𝐵  

1

] 
𝐴 (1.12) 

 

To avoid confusion, [ 𝒓 
𝐴 , 1]𝑇 and [ 𝒓 

𝐵 , 1]𝑇 can be written as 𝒓 
𝐴  and  𝒓 

𝐵 , 

respectively. We then have 

𝒓 
𝐴 = 𝑻𝐵 

𝐴 𝒓 
𝐵 (1.13) 

Equation (1.12) is equivalent to (1.8) but it is in a more compact and conceptual 

form. The 4x4 matrix in (1.11) is called a homogeneous transformation matrix and for 

robots it helps to convert a rotation and translation of a transform to a single matrix. 

As an extension of equation (1.6), if we have three frames ∑𝐴, ∑𝐵 and ∑𝐶, the 

homogeneous transformation matrix from ∑𝐶 to ∑𝐴 can be described below: 

𝑻𝐶 = 𝑻𝐵 
𝐴 𝑻𝐶 

𝐵
 

𝐴 (1.14) 

 

2.2 Joint Variables and End-effector’s position 

The relation between the manipulator arm’s joint displacements and end-effector 

position is analyzed in this section. A manipulator with n degrees of freedom has joints 

numbered 1, 2, …, n from the base. The displacement of the joint (rotational 

displacement in case of revolute joints or linear displacement for prismatic joints) is 

denoted 𝑞𝑖 for 𝑖𝑡ℎ joint. 𝑞𝑖 is called joint variable and is an element of the joint vector 𝑞 

𝒒 = [𝒒1, 𝒒2, … , 𝒒𝑛 ]𝑇 

The position of the end-effector is denoted by a vector r with m dimensions 

𝒓 = [𝒓1, 𝒓2, … , 𝒓𝑚]𝑇 

Vector 𝒓 consists the information of the position and/or orientation of the end-

effector. For instance, a planar robot arm has a vector 𝒓 with m=3 which represents the 

location of the end point in an XY plane with the orientation of that end point (the angle 
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from one of the two axes). A manipulator in 3D space will need m=6, the first 3 elements 

represent the 3-dimensional position of the end-effector, the last 3 elements represent the 

3 Euler angles, roll, pitch, and yaw. 

 

Figure 1.15: n-link manipulator 

In general, the relation between q and r is non-linear due to the mechanism of the 

manipulator. The relation can be denoted by a non-linear function 𝑓 

𝒓 = 𝑓𝑟(𝒒) (1.15) 

This equation is called kinematic equation of the manipulator. The problem to 

find 𝒓 with a given 𝒒 is called the direct kinematics problem (or forward kinematics 

problem) and is rather simple since 𝒓 is unique. On the contrary, the problem to find 𝒒 

with a given 𝒓 called inverse kinematics problem, is complicated and is expressed as 

follows 

𝒒 = 𝑓𝑟
−1(𝒓) (1.16) 

Consider a manipulator with n+1 links connected by n joints in series. Each joint 

can either be prismatic or revolute and it has one degree of freedom. For each joint i in 

the case of Baxter robot, the joint axis i is defined as the rotational axis since all joints of 

Baxter are revolute joints. The common normal between two adjacent joint axes is the 

line which is perpendicular with both axes. There are an infinite number of common 

normals if joint axes i and i+1 are parallel. In this case, we select one common normal 

arbitrarily. 
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The size and shape of a link can be described by two variable: the length a of the 

common normal called link length, and the angle α between the projections of two 

adjacent joint axes onto a plane normal to the common normal called twist angle. The 

positional relation between two adjacent links can also be described by two variables: the 

distance d between the two intersecting points of a joint axis and its two common 

normals, called link offset, and the angle θ between the orthonormal projections of these 

common normals to a plane normal to the joint axis of the latter link, called joint angle.  

A coordinate frame attached to each link is now defined. The origin 𝑂𝑖 of link i is 

set as the endpoint of the mathematical model of link i on joint axis i, i.e. the foot (on link 

i) of the common normal between link i and i+1. The Z axis of ∑𝑖, denoted 𝑍𝑖, is selected 

along the joint axis of link i. The direction of 𝑍𝑖 can be chosen arbitrarily but a good 

practice is to choose it in such a way that it points to the distal end of the manipulator. 

The X axis of ∑𝑖, denoted 𝑋𝑖, is selected on the common normal pointing from joint i to 

the next joint i +1. Lastly, the Y axis of ∑𝑖, denoted 𝑌𝑖 , is chosen in such a way that ∑𝑖 

satisfies the right-hand rule of a three-dimensional coordinate frame. 

After defining all coordinate frames of all the links of the manipulator, the four 

variables of each link and joint are expressed as follows: 

𝑎𝑖−1 = the distance along the 𝑋𝑖−1 axis from 𝑍𝑖−1 to 𝑍𝑖 

𝛼𝑖−1 = the clockwise angle about the 𝑋𝑖−1 axis from 𝑍𝑖−1 to 𝑍𝑖 

𝑑𝑖 = the distance along the 𝑍𝑖 axis from 𝑋𝑖−1 to 𝑋𝑖 

𝜃𝑖 = the clockwise angle about the 𝑍𝑖 axis from 𝑋𝑖−1 to 𝑋𝑖 

For the four parameters above, if joint i is prismatic, 𝜃𝑖 is constant and 𝑑𝑖 

expresses the translational distance of joint i. On the other hand, if joint i is revolute, 𝑑𝑖 is 

constant and 𝜃𝑖 expresses the rotational angle of the joint. Therefore, the joint variable 𝑞𝑖 

is 𝑑𝑖 if joint i is prismatic and 𝜃𝑖 if joint i is revolute. 
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The notation of the four parameters 𝑎, 𝛼, 𝑑, 𝜃 is called Denavit–Hartenberg (DH in 

short). Jacques Denavit and Richard Hardenberg introduced this convention in 1955 in 

order to standardize the coordinate frames for spatial linkages. 

In this report we focus only on the Direct Kinematics Problem, for Inverse 

Kinematics please see [6] or [7]. The homogeneous transform of the attached frame of a 

link relative to the frame of the previous link is described as follows: 

𝑻𝑖 
𝑖−1 = 𝑻𝑇(𝑋𝑖−1, 𝑎𝑖−1)𝑻𝑅(𝑋𝑖−1, 𝛼𝑖−1)𝑻𝑇(𝑍𝑖, 𝑑𝑖)𝑻𝑅(𝑍𝑖, 𝜃𝑖) (1.17) 

The homogeneous transform between two adjacent links involves the translation 

and rotation of the four DH parameters. In equation (1.17), 𝑻𝑇(𝑍𝑖 , 𝑑𝑖) describes the 

translation along the Z axis for a distance d, while 𝑻𝑅(𝑍𝑖, 𝜃𝑖) describes the rotation about 

the Z axis by an angle 𝜃𝑖. The same concept applies to 𝑻𝑇(𝑋𝑖−1, 𝑎𝑖−1) and 

𝑻𝑅(𝑋𝑖−1, 𝛼𝑖−1). We then obtain: 

𝑻𝑖 
𝑖−1 = [

1 0 0 𝑎𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝑜𝑠𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1 0
0 𝑠𝑖𝑛𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1 0
0 0 0 1

]

× [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 0
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖 0 0

0 0 1 0
0 0 0 1

] (1.18)

 

In equation (1.18) above, all four matrices on the right side are in the form of 

equation (1.12). The first matrix is a translation along the X axis therefore the rotation 

part is an identity matrix and the y and z variables of the translation part are both 0. The 

second matrix a rotation about the X axis (yaw angles) hence all variables of the 

translation part are 0. The third matrix is a translation along the Z axis and the last matrix 

is a rotation about Z axis (roll angles).  Computing the right side of equation (1.18) we 

have: 
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𝑻𝑖 
𝑖−1 = [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 𝑎𝑖−1

𝑐𝑜𝑠𝛼𝑖−1𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝛼𝑖−1𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1𝑑𝑖

𝑠𝑖𝑛𝛼𝑖−1𝑠𝑖𝑛𝜃𝑖 𝑠𝑖𝑛𝛼𝑖−1𝑐𝑜𝑠𝜃𝑖 𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1𝑑𝑖

0 0 0 1

] (1.19) 

Let the homogenous transform from ∑𝑛 to ∑𝑜 be 𝑻𝑛 
0 . According to equation 

(1.14) we have 

𝑻𝑛 
0 = 𝑻1 

0 𝑻2 
1 … 𝑻𝑛 

𝑛−1 (1.20) 

When the values of the link parameters are given, 𝑻𝑖 
𝑖−1  is a function of 𝑞𝑖, which 

is 𝑑𝑖 in case of prismatic joint and 𝜃𝑖 in case of revolute joint. Consequently, 𝑻𝑛 
0  is a 

function of the joint vector q.  

Let ∑𝐸 be the frame attached to the end-effector, ∑𝑅 is the reference frame and 

∑0 is the base frame. We have: 

𝑻𝐸 
𝑅 = 𝑻0 

𝑅 𝑻𝑛 
0 𝑻𝐸 

𝑛 (1.21) 

𝑇0 
𝑅  is constant since the chosen reference frame is fixed and its homogenous 

transform to the base frame does not depend on any variable. In many cases the base 

frame can be chosen as the reference frame. 𝑻𝐸 
𝑛  is also a constant because of the way the 

end-effector connects to the last link n. When ∑𝑛 rotates ∑𝐸 rotates with the same 

orientation, 𝑂𝐸 also moves the same distance in the same direction with 𝑂𝐸 if it moves.  

The forward kinematic problem to find 𝒓 = 𝑓𝑟(𝒒) can be solved by equation (1.21) since 

many elements in 𝑻𝑛 
0  can be a function of q (d in case of a prismatic joint and 𝜃 for a 

revolute joint)  and 𝑻0 
𝑅  along with 𝑻𝐸 

𝑛  are constant as mentioned above. 

 

2.4 Baxter’s Kinematics 

In this section, we build the kinematic model of Baxter robot’s left arm starting by 

assigning a coordinate frame to each joint. Baxter’s left arm has seven revolute joints 

numbered from 0 to 7 with corresponding frames attached to them, {0} to {7}. The 
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reference frame is chosen coincident with frame {0} and a coordinate frame {EE} is 

attached to the end-effector.  

 

Figure 1.16: Frame assignments of Baxter’s left arm 

 

Figure 1.17: Simplified frame assignments of Baxter’s left arm 

The DH parameter table is then constructed based on the frame assignments. 

Variable L stands for the link length. Since Baxter’s joints are revolute, 𝜃𝑖 is non-

constant while other variables are constant. From figure 1.17  𝑋2 is perpendicular to 𝑋1 

hence the 90-degree offset in 𝜃2. 
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i 𝜶𝑖−1 𝑎𝑖−1 𝑑𝑖 𝜽𝑖 

1 0 0 𝐿0 𝜃1 

2 -90 deg 𝐿1 0 𝜃1 + 90𝑑𝑒𝑔 

3 90 deg 0 𝐿2 𝜃3 

4 -90 deg 𝐿3 0 𝜃4 

5 90 deg 0 𝐿4 𝜃5 

6 -90 deg 𝐿5 0 𝜃6 

7 90 deg 0 𝐿6 𝜃7 

EE (from joint 6) 90 deg 0 𝐿6 + 𝐿7 𝜃7 

Table 1.8: D-H parameter table of Baxter’s left arm 

 

3. Cartesian Velocity Control 

3.1 Jacobian Matrix 

In the last section, the relation between the joint variables and the end-effector 

position was analyzed. The forward kinematic problem can be solved using the 

homogenous transformation matrices. The position and orientation of an object can be 

expressed by the relation between its attached frame to the reference frame. We now 

discuss the Jacobian matrix, which relates the joint velocities to the end-effector 

velocities [8]. A Jacobian (or Jacobian matrix) defines the relationship between two 

different representations of a system. In the case of a robot arm, Jacobian matrix relates 

the joint velocity to the end-effector velocity (which includes the translational and 

rotational velocity). 

Consider the case of a k-dimensional vector 𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑘]
𝑇 and an l-

dimensional vector 𝜼 = [𝜂1, 𝜂2, … , 𝜂𝑙]
𝑇 and their relation as follows: 

𝜂𝑖 = 𝑓𝑖(𝜉1, 𝜉2, … , 𝜉𝑘) 𝑤𝑖𝑡ℎ 𝑖 = 1,2, … , 𝑙 (1.22) 

The Jacobian matrix of 𝜼 with respect to 𝝃 is a l × k matrix: 
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𝑱𝜂(𝝃) =
∂𝜼

∂𝝃𝑇
=

[
 
 
 
 
 
 
 
∂𝜂1

∂𝜉1

∂𝜂1

∂𝜉2

⋯
∂𝜂1

∂𝜉𝑘

∂𝜂2

∂𝜉1

∂𝜂2

∂𝜉2

…
∂𝜂2

∂𝜉𝑘

⋮ ⋮  ⋮
∂𝜂𝑙

∂𝜉1

∂𝜂𝑙

∂𝜉2

⋯
∂𝜂𝑙

∂𝜉𝑘]
 
 
 
 
 
 
 

(1.23) 

Differentiating equation (1.22) with respect to time we have: 

𝜼̇ = 𝑱𝜂(𝝃)𝝃̇ (1.24) 

Similarity, we can also use the Jacobian matrix to express equation (1.15) when 

taking its derivative: 

𝒓̇ = 𝑱𝑟(𝒒)𝒒̇ (1.25) 

with 

𝑱𝑟(𝒒) =

[
 
 
 
 
 
 
 
∂𝑟1

∂𝑞1

∂𝑟1

∂𝑞2

⋯
∂𝑟1

∂𝑞𝑛

∂𝑟2

∂𝑞1

∂𝑟2

∂𝑞2

…
∂𝑟2

∂𝑞𝑛

⋮ ⋮  ⋮
∂𝑟𝑚

∂𝑞1

∂𝑟𝑚

∂𝑞2

⋯
∂𝑟𝑚

∂𝑞𝑛]
 
 
 
 
 
 
 

(1.26) 

To simplify, we can denote 𝑱𝑟(𝒒) as 𝑱. For a manipulator arm, the Jacobian 

matrix can be used to calculate the end-effector velocity with respect to the joint velocity 

using formulas (1.25) and (1.26). However, for a robot arm with many degrees of 

freedom, such as the Baxter robot with seven joints, its Jacobian matrix is a system of six 

equations and seven variables hence the calculation may be highly complicated.  

A simpler method of calculating the Jacobian matrix was mentioned in [9] based 

on the geometry of the manipulator. For a robot arm with 𝑛 + 1 joints we have the 

following notations: 

𝒑𝑖 
𝑗

:𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡 𝑗 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡 𝑖 
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𝒑𝐸,𝑖 
0 :𝑉𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑗𝑜𝑖𝑛𝑡 𝑖 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑑 −

𝑒𝑓𝑓𝑒𝑡𝑜𝑟 𝑓𝑟𝑎𝑚𝑒, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 {0} 

   𝒛𝑖 
0 : 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑍 𝑎𝑥𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 {0}  

We have 

𝑱 = [
𝒛1 

0 × 𝒑𝐸,1 
0 𝒛2 

0 × 𝒑𝐸,2 
0 ⋯ 𝒛𝑛 

0 × 𝒑𝐸,𝑛 
0

𝒛1 
0 𝒛2 

0 ⋯ 𝒛𝑛 
0

] (1.27) 

We can then calculate 𝑱 from 𝑇𝑖 
0  by using the following relations: 

𝑻𝑖 
0 = [

𝑥𝑖 
0 𝑦𝑖 

0 𝑧𝑖 
0  𝒑𝑖 

0

     
0 0 0  1

] , 𝑖 = 1,2, … , 𝑛 + 1 (1.28) 

𝒑𝐸,𝑖 = 𝒑𝐸 
0

 
0 − 𝒑𝑖 

0 (1.29) 

 

3.2 Baxter’s Jacobian 

The joint angles of Baxter’s arm are denoted as 𝜃𝑖 , 𝑖 =   1,2, … ,7. The end-

effector position and orientation are denoted as 𝑟𝑗, 𝑗 = 1,2, … ,6. According to equation 

(1.15) we have: 

𝒓 = 𝑓(𝜽) (1.30) 

with  

𝒓 = [𝒓1, 𝒓2, … , 𝒓6]
𝑇 

𝜽 = [𝜽1, 𝜽2, … , 𝜽7]
𝑇 

In order to calculate the velocity of the end-effector with the given joint velocity, 

we take the derivative of equation (1.49) with respect to time: 

𝒓̇ = 𝑱𝜽̇ (1.31) 

where 𝒓̇ = 𝑑𝒓/𝑑𝑡 , 𝜽̇ = 𝑑𝜽/𝑑𝑡 and 𝑱 = ∂𝑓/ ∂𝜽 is the Jacobian matrix. 𝑱 ∈ 𝑹6×7 

As mentioned in the previous subsection, the Jacobian matrix can be calculated 

using equation (1.26). However, it is highly complicated especially in the case of Baxter 

robot with seven joints. The geometric formula (1.27) can be used instead. Figure 1.18 
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describes a Baxter’s manipulator. The Jacobian matrix of the end-effector frame {EE} 

with respect to frame {0} is calculated as follows 

 

𝑱𝐸 
0 = [

𝒛1 
0 × 𝒑𝐸,1 

0 𝒛2 
0 × 𝒑𝐸,2 

0 ⋯ 𝒛7 
0 × 𝒑𝐸,7 

0

𝒛1 
0 𝒛2 

0 ⋯ 𝒛7 
0

] (1.32) 

To compute the Jacobian matrix of the end-effector with a different reference 

frame, for instance the body frame {B} of the Baxter robot, we can use the formula 

below 

𝑱𝐸 
𝐵 = [

𝑹0 
𝐵 0

0 𝑹0 
𝐵 ] 𝑱𝐸 

0 (1.33) 

 

Figure 1.18: Presentation of a seven-joint manipulator 

In summary, for the task of finding the Baxter’s end-effector velocity 

corresponding to the joint velocity, the homogenous transforms between links can be 

computed using equations (1.19) and (1.20) based on the link frame assignment in Figure 

1.16 and the D-H parameter Table 1.8. The position vectors from the origin of the joint 

frames to the end-effector with respect to the reference frame can be found using the 

equations (1.28) and (1.29). Then the Jacobian matrix is computed using equation (1.32).  
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3.3 Cartesian Velocity Control 

Baxter robot has 3 modes for arm control which are Joint Position, Joint Velocity 

and Torque. In all three modes, data is input once, the movement is then carried out by 

applying joint angle, velocity or torque on all joints simultaneously. In this subsection, 

Cartesian Velocity Control mode is developed for the Baxter robot. The velocity of the 

end-effector is defined, and the joints will move to achieve the desired end-effector 

trajectory. The main idea of this mode is to use the Joint Velocity arm control mode to 

give sets of joint angle values to the robot over a period of time so that the end-effector 

moves with the desired velocity. 

From previous sections we know how to find the position of the end-effector for a 

given joint position and vice versa. We also know how to find the end-effector velocity 

with given joint velocity. We now consider the case of finding the joint velocity that 

results in a desired end-effector velocity. This can be viewed as a problem of inverse 

kinematic in a broader sense. From equation (1.50) we have 

𝜽̇ = 𝑱−1𝒓̇ (1.34) 

Hence, in principle we can find 𝜽̇ by calculating the inverse of 𝐽 and multiplying it with 

𝒓̇. This, however, only works in the case of 𝑛 = 𝑚, i.e. when the number of joint 

variables equals to the number of end-effector variables. 𝑱 is a squared matrix and there 

exists 𝑱−1.  

 Consider the case when 𝑛 ≥ 𝑚 + 1 and the rank of 𝑱 is 𝑚, we have the general 

solution for equation (1.50) 

𝜽̇ = 𝑱+𝒓̇ + (𝑰 − 𝑱+𝑱)𝒌 (1.35) 

where 𝐽+ is the Pseudo inverse of the Jacobian matrix [10] 

𝑱+ = 𝑱𝑇(𝑱𝑱𝑇)−1 (1.36) 
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and 𝒌 is an arbitrary n-dimensional constant vector. This 𝒌 implies that there are an 

infinite number of solutions to equation (1.34), i.e. there are an infinite number of ways 

to move the end-effector while tracking the same trajectory. If the task is only to position 

and orient the end-effector, multiple solutions to (1.34) also imply that there is some 

redundancy to the manipulator and additional goals can be achieved using the second 

term of the right side of equation (1.35). This redundancy will be discussed in later 

sections. 
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CHAPTER II: 

MANIPULARITY OF BAXTER ROBOT 

1. Measure of Manipulability 

Quantitative measure of manipulating ability of robot arm in positioning and 

orienting the end-effectors is beneficial for the design of the robots. Manipulability is the 

ability of an end-effector to move from its current position and orientation. The easier it 

can move the better (larger) the measure of manipulability. 

Consider a manipulator with n degrees of freedom, the joint variables can be 

denoted as 𝜃𝑖 , 𝑖 = 1,2, … , 𝑛. We define a class of m tasks we are interested in as 𝑟𝑗 , 𝑗 =

1,2… ,𝑚 (𝑚 ≤ 𝑛). In the scope of this report 𝒓𝑗 is the position and orientation of the 

Baxter’s end-effector. The choice of joint variable symbol 𝜃𝑖 is convenient since Baxter’s 

joints are all revolute. We have the following relation 

𝒓 = 𝑓(𝜽) (2.1) 

where 𝜃 = [𝜃1, 𝜃2, … , 𝜃𝑛]𝑇 is the joint vector and 𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑚]𝑇 is the manipulator 

vector. Differentiating the equation above with respect to time yields 

𝒓̇ = 𝑱(𝜽)𝜽̇ (2.2) 

The Jacobian 𝐽(𝜃) is a 𝑚 × 𝑛 matrix. We have the following condition 

max
𝜃

𝑟𝑎𝑛𝑘 𝑱(𝜽) = 𝑚 (2.3) 

When the condition (2.3) is satisfied, we say that the manipulator is kinematically 

redundant [11], and the degree of kinematic redundancy is (𝑛 − 𝑚). If for some 𝜽 

𝑟𝑎𝑛𝑘 𝑱(𝜽) < 𝑚 

which means that there are one or more dependent columns in 𝑱. The number of 

independent columns is less than 𝑚 and 𝑱 transforms 𝜽̇ to a lower level of dimension. We 

say that the manipulator is in a singular state. In this state, the manipulator vector r 

cannot move in certain directions therefore this state is undesirable. 
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We define a scalar value 𝑤 as the measure of manipulability of state 𝜃 with 

respect to manipulator vector 𝒓.  𝑤 is given by 

𝑤 = √det  𝑱(𝜽)𝑱𝑇(𝜽) (2.4) 

A physical presentation of this measure can be given in the following. For any 

matrix 𝑱 ∈ 𝑹𝑚×𝑛 there exist orthogonal matrices 𝑼 ∈ 𝑹𝑚×𝑚 and 𝑽 ∈ 𝑹𝑛×𝑛 [12] such that 

𝑱 = 𝑼𝚺𝑽𝑇 (2.5) 

with  

𝚺 = [

σ1  0   
 σ2   0
0  ⋱   
   σ𝑚  

] ∈ 𝑹𝑚×𝑛 𝑎𝑛𝑑 σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑚 ≥ 0 

The equation (2.5) is called the singular value decomposition [13]. From (2.4) and (2.5) 

we have 

𝑤 = σ1. σ2 …σ𝑚 

The subset of the realizable velocity 𝑟̇ in 𝑹𝑚 is an ellipsoid with principal axes 

σ1u1, σ2u2, … , σ𝑚u𝑚 using joint velocity 𝜽̇ such that ‖𝜽̇ ‖ = 𝜃̇1
2 + 𝜃̇2

2 + ⋯+ 𝜃̇𝑛
2 ≤ 1,  u𝑖 

is the 𝑖𝑡ℎ column vector of U. This ellipsoid can be called manipulability ellipsoid. The 

volume of this ellipsoid is given by 

𝑑σ1. σ2 …σ𝑚 (2.6) 

where d is constant and is given by 

𝑑 =
(2π)

𝑚
2

2 ∙ 4 ∙ 6 ∙∙∙ (𝑚 − 2) ∙ 𝑚
𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 

and 

𝑑 =
(2π)

𝑚−1
2

1 ∙ 3 ∙ 5 ∙∙∙ (𝑚 − 2) ∙ 𝑚
𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑 

For simplicity, we can call 𝑤 as the volume of the manipulability (volume of the 

ellipsoid) 
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2. Analysis of Baxter’s manipulability 

For the task moving the end-effector, 𝑚 = 6 corresponding with the velocity of 

three cartesian angles (X,Y,Z) and three Euler angles (roll, pitch, yaw) while Baxter has 7 

degrees of freedom per arm 𝑛 = 7. Therefore, Baxter manipulator arm is kinematically 

redundant for the task of moving the end-effector 

Since 𝑚 is even, we have 

𝑑 =
(2π)

𝑚
2

2 ∙ 4 ∙ 6 ∙∙∙ (𝑚 − 2) ∙ 𝑚
=

(2π)3

2 ∙ 4 ∙ 6
=

(2π)3

48
 

We then have the formula to calculate the volume of manipulability  

𝑤 =
(2π)3

48
∙ σ1 ∙ σ2 ∙∙∙ σ𝑚 (2.7) 

with σ1, σ2, … , σ𝑚: singular values of vector Σ  

To find 𝑤, we used MATLAB to compute the homogenous transformation 

matrices between links and calculate the Jacobian matrix, then we apply formula (2.7). 

To show the result, Baxter simulation was used and Python code ik_service_client.py 

from RethinkRobotics was modified to calculate different arm postures for the same end-

effector position. 

The maximum and minimum volume of manipulability and their joint 

configurations were also investigated. For an increment of 1 degree, all the combinations 

of the joint angles are 4.971 ×  1019 combinations which is 49710 trillion or forty-nine 

quadrillion seven hundred ten trillion cases. The calculation may take weeks on a 

personal workstation. To reduce the calculation time, an increment of 20 degrees was 

used, then several offsets were added to the joint angles to perform the calculation. An 

estimate of 410,572,800 cases were tested. To help speeding up the run time, a 

supercomputer was used. Comet is a dedicated XSEDE cluster designed by Dell and 

SDSC delivering ~2.0 petaflops, featuring Intel next-gen processors with AVX2, 
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Mellanox FDR InfiniBand interconnects and Aeon storage. The total cases were divided 

into several smaller sets. Each set is a “job” which gets submitted to the cluster and is 

handled by a node consisting of 20 CPU cores. The maximum and minimum volume of 

manipulability along with their joint angle configurations of each set are then 

downloaded to the local computer to compare and produce the results. 

Figure 2.1 shows four different joint configurations with the same end-effector 

position. They have different volume of manipulability ellipsoids. Manipulability volume 

W1 is largest hence it is easy for the end-effector to move from its current position. W4 is 

smallest therefore it is harder for it to move around comparing to the first joint 

configuration. We can even see the first posture looks more natural than the last one. 

Figure 2.2 shows the difference of the ellipsoid volume between two different 

joint movements with the same trajectory. We can see that Baxter has better 

manipulability in picture 2 of Figure 2.3. 

Figure 2.3 shows the volume of manipulability over time of the two different 

movements from Figure 2.3. The robot arm has better manipulability moving as picture 2 

of Figure 2.3. 

Figure 2.4 shows the joint configurations of the maximum and minimum ellipsoid 

volume. Maximum W is 0.8199 when minimum is almost zero (1.7855 × 10−6 . The 

location of the end-effector in the right picture is at the boundary which explains the 

almost zero volume of the ellipsoid. The ellipsoid at this posture squeezes into a line. 

Figure 2.5 shows the method used to find the minimum and maximum 

manipulability. The total number of sets of joint angles was divided into smaller batches 

and they were uploaded to multiple nodes of a super computer running MATLAB. 
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Figure 2.1: Different joint configurations for the same end-effector position 
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Figure 2.2: Different joint movements for the same trajectory with volume manipulability 

 

Figure 2.3: Manipulability ellipsoid volume over time of Figure 2.3 
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Figure 2.4: Maximum (left) and minimum (right) volume of manipulability 

 

 

Figure 2.5: Jobs submitted to the supercomputer to find the minimum and maximum 

volume of manipulability  
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CHAPTER III: 

SINGULARITY AVOIDANCE 

1. Order of Priority 

The concept of dividing a task into multiple subtasks and the control algorithm to 

utilize the redundancy for optimizing given performance criterion were mentioned in [14] 

Task decomposition is the basic idea for the development of the redundancy 

control algorithm. Most of the task for a multi-degree-of-freedom robot arm can be 

divided into different subtasks with different priorities. For instance, for a robot arm with 

a simple given task to press a button, this task can be divided into two subtasks: moving 

the end-effector to the location of the button and pressing the button. The first subtask is 

more important since the second subtask cannot be done without the success of the first 

one. The first subtask can also be divided into two subtasks which are hand position and 

orientation, the former is more important than the latter since the rotation of the hand is 

not as significant as the position. In the case of Baxter robot, a second subtask can be 

added to the task of moving the end-effector which is the singularity avoidance, or the 

obstacle avoidance, or both. 

For these tasks, it is natural to try to perform the first subtask with the highest 

priority. If there is any ability left for the manipulator, the second subtask with the next 

priority can be performed. The third subtask then can be picked up if there is still ability 

left after achieving the first two subtasks, and so on. The existence of the remaining 

ability in any stages means that the manipulator is redundant for the subtask up to that 

stage. 
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2. Control Algorithm for Redundancy 

We assume that the first subtask is to track a desired trajectory 𝒓∗(𝑡) of the 

manipulation vector 𝒓. We also assume that a scalar performance criterion for the second 

subtask is given by 

𝒑 = 𝑞(𝜽) 

The general solution of 𝒓̇ = 𝑱(𝜽)𝜽̇ is given by (1.54). As mentioned in section 3.3 

of chapter II, the second term (𝑰 − 𝑱+𝑱)𝒌 can be used to achieve additional subtasks. 

The time derivative of 𝑝 is given by 

𝒑̇ = 𝝃𝑇𝜽̇ (3.1) 

where 

𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑛]𝑇 

𝜉𝑙 =
𝜕𝑞(𝜽)
∂𝜃𝑙

, 𝑙 = 1,2, … , 𝑛 

If the first subtask is perfectly performed, from (1.54) and (3.1) we have 

𝒑̇ = 𝝃𝑇𝑱+𝒓̇∗ + 𝝃𝑇(𝑰 − 𝑱+𝑱)𝒌 (3.2) 

To achieve the second subtask, we select 𝑘 based on a constant 𝑘1 

𝒌 = 𝝃𝑘1 

The basic equation for the control algorithm is given as follows 

𝜽̇ = 𝑱+𝒓̇∗ + (𝑰 − 𝑱+𝑱)𝝃𝑘1 (3.3) 

The gradient vector 𝝃 can be computed so perform the redundancy task. In order 

to prevent 𝜽̇ from becoming excessive, 𝑘1 should be chosen within a limit. A condition 

can be given as follows 

𝑘1 ≤ [𝝃𝑇(𝑰 − 𝑱+𝑱)𝝃]−
1
2𝑘3𝜽̇𝐻 (3.4) 

where 𝑘3 is a constant (0 ≤ 𝑘3 ≤ 1) and 𝜽̇𝐻 is the hardware limit for the joint angle 

rates. 
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3. Singularity Avoidance          

A robot Singularity is a configuration in which the end-effector of a robot loses 

the ability to move along certain directions. Near singularity, the joint velocity becomes 

exceptionally large and the end-effector deviates from its expected trajectory. A robot at 

its singularity can be unpredictable and dangerous. Damage can be done to itself and any 

humans/objects around it. A redundant manipulator can utilize its redundancy to try to 

avoid singularity [15]. 

For the case of singularity avoidance, we try not only to avoid singularity but also 

to keep the measure of manipulability as large as possible. A technique to calculate the 

gradient vector 𝝃 was developed in [16]. Let 

𝑮 = 𝑱𝑱𝑇 = [𝑔𝑖𝑗], 𝑖, 𝑗 = 1,2, … ,𝑚 

The performance criterion is then 𝑝 = √𝑑𝑒𝑡𝐺. We have 

𝜉𝑙 =
1

2√𝑑𝑒𝑡𝑮
∑  Δ𝑖,𝑗 ∙ 𝑔𝑖𝑗

′
𝑙
 

𝑚

𝑖,𝑗=1

=
1

2
√𝑑𝑒𝑡𝑮 ∑ [𝑮−1]𝑖𝑗

𝑚

𝑖,𝑗=1

( 𝑱𝑙
 

𝑖
′𝑱𝑗

𝑇 + 𝑱𝑙
 

𝑗
′ 𝑱𝑖

𝑇) (3.5) 

where  

Δ𝑖,𝑗 = 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎𝑖𝑗 𝑓𝑜𝑟 𝐺 

𝑔𝑖𝑗
′

𝑙
 =

𝜕 (𝑔𝑖𝑗
(𝜃))

𝜕𝜃𝑙
 

[𝑮−1]𝑖𝑗 = 𝑡ℎ𝑒 (𝑖, 𝑗)𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐺 

𝑱𝑖 = 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑜𝑤 𝑜𝑓 𝐽 

𝑱𝑙
 

𝑖
′ = 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝐽𝑖  𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜃𝑙 

Substitute (3.5) to (3.3) and choose a 𝑘1 we have the joint velocity 𝜽̇. Using the 

Cartesian Velocity Control mode, we can move the end-effector of Baxter along the 

desired trajectory while avoiding the singularities. 
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4. Singularity avoidance of Baxter robot 

As shown in figure 1.10, Baxter robot has three offsets in its kinematic structure 

which complicates the analytical kinematic equations. Baxter has no three consecutive 

joints that share a common origin. According to Pieper’s principle [17], if there are three 

consecutive coordinate frames anywhere on a 6-dof robot, an analytical solution to a non-

linear inverse kinematic problem is guaranteed to exist, i.e. for an end-effector position 

and orientation the joint variables can be found. With 7-dof Baxter robot, the task to find 

joint variables based on end-effector variables is highly complicated therefore its 

singularity is challenging to find. Research has been carried out in [18] which resulted in 

the conclusion that it is essentially impossible to analyze the inverse kinematic problem 

analytically. Due to the offsets there is no closed-form analytical solution to the problem 

of finding the singularity configuration. 

A control method for equation (3.3) generally keeps the measure of 

manipulability as large as possible so that it will prevent the arm from coming close to 

the singularity where the volume of manipulability ellipsoid is close to zero. It also helps 

the arm to move away quickly from the singularity. 

Figure (3.1) shows the ellipsoid volumes of a movement of the Baxter’s left arm 

along the Y-axis of the base frame from the initial joint angles 𝜽 = [−
𝜋

4
, −

𝜋

4
, 0,

𝜋

2
, 0,

−
𝜋

4
, 0]𝑇 with different 𝑘1 . With the un-controlled movement with 𝑘1 = 0, the algorithm 

does not try to keep the volume of manipulability as large as possible. The control 

algorithm keeps the volume of manipulability of as large as possible while tracking the 

desired trajectory. The larger the constant 𝑘1 the more aggressive the robot arm tries to 

avoid the singularity 
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Figure 3.1: Controlled algorithm with different k 
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CHAPTER IV : 

OBSTACLE AVOIDANCE 

1. Obstacle Avoidance Algorithm 

A control algorithm was shown in [19] where the first subtask is to move along a 

trajectory and the second subtask is to avoid an obstacle. The former is more important 

than the latter. The velocity of the end-effector is the manipulator vector for the task of 

tracking a trajectory. For the obstacle avoidance algorithm, the main idea is to take θ as 

the second manipulation vector and to teach in advance an arm posture 𝜽𝑟 which avoids 

collision. Our goal is to move the arm as close as possible to the arm posture 𝜽𝑟 while 

tracking the desired trajectory. Let the performance criterion for the obstacle avoidance 

subtask be 

𝑝 = 𝑔(𝜽) =
1

2
(𝜽 − 𝜽𝑟)

𝑇𝐻2(𝜽 − 𝜽𝑟) (4.1) 

where 

𝑯2 = 𝑑𝑖𝑎𝑔(ℎ2𝑖) ∈ 𝑹𝑛×𝑛and ℎ2𝑖 > 0 are constants 

The performance criterion 𝑝 in equation (4.1) should be as large as possible. The 

arm should try to come as nearly as possible to the arm posture 𝜽𝑟 while satisfying the 

first subtask with the top priority which is tracking the desired end-effector tracjectory. 

From (4.1) we have 

𝝃 = −𝑯2(𝜽 − 𝜽𝑟) (4.2) 

From (3.3) and (4.2) we obtain 

𝜽̇ = 𝑱+𝒓̇∗ + (𝑰 − 𝑱+𝑱)𝑯2(𝜽 − 𝜽𝑟)𝑘1 

𝑟̇∗ is then replaced by a modified desired velocity 𝑟̇𝑀
∗  given by 

𝒓̇𝑀
∗ = 𝒓̇∗ − 𝑯1(𝒓 − 𝒓∗) (4.3) 

 

where  
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𝑯1 = 𝑑𝑖𝑎𝑔(ℎ1𝑖) ∈ 𝑹𝑛×𝑛 and ℎ1𝑖 > 0 

Equation (4.3) is used to cope with any error in the first subtask using the error 

feedback 𝐻1(𝒓 − 𝒓∗). Therefore, 𝒓̇𝑀
∗  replaces 𝒓̇∗ in the equations (4.2) and (4.3) 

 

2. Obstacle Avoidance on Baxter robot 

The control law in the previous section was applied to the Baxter robot. From the 

initial state 𝜽, the end-effector was given a commanded velocity to move along a desired 

trajectory. An obstacle was placed in the way and without control law the arm would 

collide with it. We then taught the arm the posture 𝜽𝑟 at the same end-effector position 

where the robot arm hits the object. 𝜽𝑟 was set in a way that it would not collide with the 

obstacle. The control law allowed the Baxter arm to come to the same posture while 

keeping the desire trajectory and was able to avoid the obstacle. 

Figure 3.2 and 3.3 shows the two test cases in which the robot arm moved along 

the Y-axis and Z-axis of the body frame. In both cases, without the control algorithm the 

arm would collide with the black ball. The Baxter robot avoided the obstacle with the 

control algorithm while keeping the same trajectory (which was the line in blue). 
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Figure 3.2: Obstacle avoidance – uncontrolled (left) versus controlled (right) 

 

 

Figure 3.3: Obstacle avoidance – uncontrolled (top) versus controlled (bottom) 
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CHAPTER V:  

CONCLUSION 

Kinematic redundancy plays an important part in robot design and planning. A 

manipulator is termed kinematically redundant when it has more degrees of freedom than 

it is strictly needed to execute a given task. The Baxter research robot has two 

manipulator arms, each arm possesses seven degrees of freedom. Baxter arm is 

kinematically redundant for the task of moving the end-effector which requires six 

degrees of freedom. The redundancy can be used to achieve additional goals. 

In this research, some fundamental aspects of Robotics were studied. The 

relationship between manipulator links can be showed by using Denavit-Hartenberg 

convention. The homogeneous transformation matrix between two links can be calculated 

using the DH parameter table. The Jacobian matrix relates the joint velocity and the end-

effector velocity is computed using the geometric formula. The Cartesian Velocity 

Control mode was developed for the Baxter robot using its Joint Velocity arm control 

mode. 

The focus of this research was the kinematic redundancy resolution of Baxter 

robot. The manipulability, which is the ability of the end-effector to move from a certain 

position and orientation, was investigated for Baxter. Different joint configurations of the 

same end-effector position and orientation were shown to have different volumes of 

manipulability ellipsoid.  

A manipulator arm can perform several subtasks with different priorities. In this 

thesis, the redundancy was used to perform additional subtasks after completing the first 

subtask of moving the end-effector along a desired trajectory. The second subtask can be 

the task to avoid the singularity while trying to keep the volume of manipulability as 

large as possible. The control algorithm was applied on Baxter robot to prevent the 
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manipulability ellipsoid volume of Baxter’s end-effector from getting too small, therefore 

it helps to avoid the singularity. The algorithm also helps Baxter’s end-effector to move 

away quickly from the singularity. 

Obstacle avoidance was also performed as a second subtask in this thesis. Baxter 

robot came with a function which allows it to stop the movement when it detects a 

collision. However, Baxter cannot avoid the object without a control method. In this 

work, a control algorithm was used to help Baxter to avoid the obstacle while tracking the 

desired trajectory. Baxter would try to come as close as possible to a pre-taught arm 

posture so that it would not collide with the obstacle while staying on the given trajectory 

of its end-effector. 
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