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ABSTRACT

GEOMETRIC SPINORS

Jordan Gemmill

University of Houston-Clear Lake, 2021

Thesis Chair: Samina Masood, PhD

Geometric Algebra is a unique variant of what is otherwise known as Clifford

Algebra. In this work we show that the geometric algebra provides better tools to

visualize physical problems, benefited by our natural geometric intuition. Geometric

algebra provides a routine and systematic way to analyze physical systems. It is

demonstrated that the calculations of magnetic moment with constant magnetic field

and that of the oscillating magnetic field, can both be expressed in a single expression.

Using the geometric algebra we reproduce the solutions of Schrodinger’s equation

in quantum mechanics, and show that the spacetime algebra can express Dirac’s

equation without the use of imaginary numbers or matrices.
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CHAPTER 1

INTRODUCTION

Geometric algebra is a mathematical approach to Clifford algebra that has not yet

been fully appreciated. Often, geometric algebra is viewed as Clifford algebra but by

another name. From a purely mathematical standpoint this could be argued. After

all, the equivalence between Hestenes’ geometric algebra and the universal Clifford

algebra of signature (p, q) has already been proven[2]. That is two mathematical

systems, with two different sets of axioms, can be shown to be equivalent. However,

the approaches are markedly different.

In [2], the authors state that a key difference between the two approaches, lies

with the bilinear form used in their construction. In the Clifford algebra approach

discussed in [2], a bilinear form is assumed a priori, and it remains static. Whereas,

in the geometric algebra approach, the bilinear form is obtained from the geometric

product, or as they state a posteriori. Which, in this case means that the bilinear

form can be modified by choosing a different geometric product. The bilinear form

being discussed here is of course

B(x, y) = x · y, (1.1)

the familiar dot product. In the Clifford approach the bilinear form is assumed.

In Hestenes’ construction, it is defined in terms of the more fundamental geometric

product

a · b = 1

2
(ab+ ba), (1.2)

where ab is the geometric product. As trivial as this may appear at first glance, it has

profound implications concerning the conceptual and technical hurdles practitioners

must over come before implementing such a system.

1



The authors of [2] argue that Hestenes’ approach is full of geometric significance,

free of any basis, and that it only requires basic concepts of linear algebra. Contrast

this with the background needed to approach Clifford algebra in its more traditional

presentations, which usually require advanced mathematical concepts just to state

definitions. These definitions are important for those interested in pure mathematics,

but for those interested in applications to physics and engineering, they serve only as

an unnecessary barrier.

1.1 The Development of Geometric Algebra

In this work, we introduce geometric algebra in detail and demonstrate its rele-

vance for calculating physical quantities in an effective way. We show that we can use

geometric algebra to help develop our understanding of physical systems, in a way

that is benefited by our natural geometric intuition.

Clifford Algebra begins with Hermann Grassmann. Grassmann had more to

do with the creation of Clifford algebra than Clifford did himself. Grassmann, was

a German school teacher whose mathematical works garnered little attention in his

own time, so much so that he eventually stepped away from the field of mathematics

altogether. In 1844 Grassmann published his most important work, Die lineale Aus-

dehnungslehre (Linear Extension Theory). The work was suffered one major problem,

it was too far ahead of its time. Grassman’s genius was an island unto its own. Within

Ausdehnungslehre, Grassmann laid out the ideas and notions for vector spaces, span,

basis, subspaces, dimensions, join and meet of subspaces, and the projection of onto

these subspaces [9]. He even obtains the formula for a change of coordinates under

a change of basis, all at a time before the language even existed to speak of such

ideas. In fact rigorous definitions for many of his ideas, such as vector spaces, did not

appear until the 1920’s, when Hermann Weyl and others work gave formal definitions
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for such ideas [9]. It is then little wonder why his work went mostly unappreciated in

his lifetime. Of the few well known mathematicians of Grassmann’s day who did come

into contact with his work, nearly all failed to appreciate its content. The well know

German mathematician Möbius deemed Grassmann’s work unreadable. Hamilton,

Irish mathematician and physicists, wrote to De Morgan that to read Grassmann’s

work he would have to take up smoking, some rather harsh words [5]. However, not

everyone of the time shared these views.

Figure 1.1: “I remain completely confident that the labour I have expended on
the science presented here and which has demanded a significant part of my life as
well as the most strenuous application of my powers, will not be lost. It is true that
I am aware that the form which I have given the science is imperfect and must be
imperfect. But I know and feel obliged to state (though I run the risk of seeming
arrogant) that even if this work should again remain unused for another seventeen
years or even longer, without entering into the actual development of science, still
that time will come when it will be brought forth from the dust of oblivion and when
ideas now dormant will bring forth fruit. I know that if I also fail to gather around
me (as I have until now desired in vain) a circle of scholars, whom I could fructify
with these ideas, and whom I could stimulate to develop and enrich them further, yet
there will come a time when these ideas, perhaps in a new form, will arise anew and
will enter into a living communication with contemporary developments. For truth is
eternal and divine.” -Hermann Grassmann

(preface to the 1862 2nd Edition of Ausdehnungslehre as translated in [5])
Attribution: Public Domain Source:Grassmann Portrait
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Clifford, an English mathematician and philosopher, was one of the few of his

day to be both aware of Grassmann’s work and of Hamilton’s work on the quaternions

[5]. Clifford, its seems, possessed an almost supernatural ability to anticipate the

future. In 1870, Clifford submitted an abstract to the Proceedings of the Cambridge

Philosophical Society, in which he makes bold speculation about the nature of reality

as it relates to geometry, anticipating Einstein’s general relativity, as pointed out in

[12]. Another instance his vision, can be seen in his praise of Grassmann’s work. A

quote from Clifford’s 1878 work is given in figure 1.2. In that same work, Clifford goes

on to show how Hamilton’s quaternions fit within Grassmann’s theory of extension,

uniting the two, calling the union of their systems geometric algebra [4].

Unfortunately, Clifford’s life was cut short the following year due to tuberculosis,

at the age of 33 and was unable to advance the system he helped create. In the years

following his death, mathematicians categorized and classified, what they now called,

Clifford Algebras, stripping away the link between Grassmann and Clifford. Who

knows how the system might have developed with Clifford at the helm?

What did happen is geometric algebra, and Hamilton’s quaternions, faded into

the background, being eclipsed by the vectorial system developed by English physicist

Oliver Heaviside and American physicist Josiah Willard Gibbs.

Physicists began employing Clifford algebras just before the 1930’s, when Pauli,

who was incorporating spin into Schrodinger’s matrix mechanics, found it necessary

to introduce his famous spin matrices, and subsequently, when Dirac introduced its

relativistic extension.
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Figure 1.2: “Until recently I was unacquainted with the Ausdehnungslehre, and
knew only so much of it as is contained in the author’s geometrical papers in Crelle’s
Journal and in Hankel’s Lectures on Complex Numbers. I may, perhaps, therefore
be permitted to express my profound admiration of that extraordinary work, and
my conviction that its principles will exercise a vast influence upon the future of
mathematical science.” - William Clifford

(Introductory paragraph of Clifford’s 1878 work Applications of Grassmann’s Exten-
sive Algebra [4])
Attribution: Public Domain Source:Clifford Portrait

1.2 Geometric Algebra

In this section we introduce some necessary terminology and operations needed

to develop geometric algebra, which will be crucial for understanding the next section,

where we define the geometric product of two vectors.

Geometric algebras are graded algebras, meaning they contain elements of dif-

ferent grades. The elements of a geometric algebra are called multivectors. Every

multivector is a distinct sum of k-vectors. A k-vector is also referred to as a multi-

vector of grade-k. Every k-vector is a sum of k-blades, and finally, a k-blade is any

multivector Ak that can be factored into a product of k anticommuting vectors, such

as

Ak = a1a2...ak, with aiaj = −ajai for i ̸= j. (1.3)
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This can be very confusing in the beginning and it is difficult to see the need for

both of the terms k-vectors and k-blades. However, the distinction is an important

one because geometric algebra represents subspaces with blades. For instance, when

working in the geometric algebra Blades are the most basic building blocks of geomet-

ric algebra. They represent the different subspaces that together make up a geometric

algebra. Blades allow us to represent points, lines, planes, volumes, etc., as a product

of vectors. For instance, in G3 a 3-blade (a1 ∧ a2 ∧ a3) represents an oriented volume.

A scalar is represented by a product of zero vectors.

A general multivector can be represented as a unique sum of its k-vector con-

stituents. As an analogy, take an arbitrary quadratic polynomial

f(x) = a0 + a1x+ a2x
2. (1.4)

We say that f(x) is a polynomial function of degree-2, and that it is a sum of degree-0,

degree-1, and degree-2 independent terms. Written as as sum, f(x) takes the form

f(x) =
2∑

n=0

anx
n. (1.5)

Similarly, any multivector may be written as a sum of k-vectors

M =M0 +M1 +M2 + . . .+Mn =
n∑

k=0

⟨M⟩k, (1.6)

where we have introduced the notation ⟨ ⟩k for the grade-projection operator. Appli-

cation of the grade-k projection operator to a multivector M selects out the k-vector

term in M as such

⟨M⟩k =

〈∑
n=0

⟨M⟩n

〉
k

= ⟨M0 +M1 + . . .Mk + . . .⟩k (1.7)

⟨M⟩k = ⟨M⟩n=k = ⟨Mk⟩k =Mk (1.8)

6



Thus we can say that the grade-k projection operator applied to the multivector M

is equal to the k-vector term in M or

⟨M⟩k =Mk. (1.9)

Polynomials are often referred to as being constant, linear, quadratic, etc. Often

times though, we instead refer to polynomials by their degree, with it being under-

stood that a constant is zeroth degree polynomial, a first degree polynomial is linear,

and so on. In much the same way, a 0-vector is called a scalar, a 1-vector, simply

vector, a 2-vector is called a bivector, and so on. Every element of G is a multivector.

To make things more concrete, we give a few examples of multivectors, in different

forms, from different geometric algebras. A general multivector M belonging to the

space G3 can be written as

M = s+ v +B+T. (1.10)

Where, s is a scalar, v is a vector, B is a bivector, and T is a trivector. The table

below recaps this notational information.

Object Grade Symbol Notation

Multivector All M uppercase Latin
scalar 0 s lowercase Latin
vector 1 v lowercase Latin,bold
Bivector 2 B uppercase Latin, bold
Trivector 3 T uppercase Latin, bold

Table 1.1: Terminology and Notations for M ∈ G3

In general, a geometric algebra is denoted by G(p, q), where the signature {p, q}

denotes the number of basis vectors that generate the space. The number of basis

vectors which have positive square are given by p, and the number of basis vectors

which have negative square are given by q. When working with geometric algebras

in which q = 0, we denote G(p, 0) by the shorthand Gp .

7



1.3 Geometric Product of Vectors

We now develop the fundamental product of geometic algebra, the geometric

product of vectors. The geometric product of two vectors is foundational because

from this simple product, we may construct the entire algebra.

Starting with a vector space Vn over the field of real numbers R, where a,b, c... ∈

V , the geometric product for vectors is defined by the following properties:

(ab)c = a(bc) associative (1.11)

a(b+ c) = ab+ ac left distributive (1.12)

(b+ c)a = ba+ ca right distributive (1.13)

a2 = aa = a2. contraction (1.14)

The first property, associativity, is all but too familiar. Properties, two and three,

must be specified as the geometric product is not commutative. These first three

properties taken together, are rather mundane, no different than the rules defining

matrix multiplication, which is associative and also lacks commutativity, but the final

property, contraction, makes geometric algebra distinct from every other associative

algebra, and simple as it may seem, it is the source of geometric algebra’s rich struc-

ture. An immediate consequence is the existence of multiplicative inverses for every

non-zero vector. This allows to divide by vectors, a property that greatly aid and

facilitates computations.

We can determine a vectors inverse by starting with,

r−1r = 1 (1.15)

right multiplying by r gives

r−1 =
r

r2
, (1.16)

8



after applying the contraction property and dividing by the result. Notice that r−1r =

rr−1 = 1, that is the geometric product of any vector and it’s inverse is commutative.

While the geometric product is not defined to be commutative, it is better to think

of the product as not necessarily commutative. This is a special case of the following,

more general result.

Consider the case where a and b are parallel to one another. Recall, two vectors

are said to be parallel if one can be written as a scalar multiple of the other i.e.

b = ca . In this case

ab = a(ca) = ca(a) = ba, (1.17)

and so the product of parallel vectors is commutative, and therefore a vector and it’s

inverse are parallel. In the opposite extreme, consider the vector equation

a+ b = c (1.18)

where a and b are orthogonal. This is a vector equation defining a right triangle.

Squaring both sides of (1.18) results in

a2 + ab+ ba+ b2 = c2. (1.19)

By (1.14), the square of every vector must reduce to a real scalar. Therefore,

a2 + b2 = c2, (1.20)

we recognize the only way can satisfied is if

ab+ ba = 0, (1.21)

the geometric product of orthogonal vectors is anticommutative

ab = −ba. (1.22)

9



We have now established the two most important special case for geometric mul-

tiplication. Since, in general the product of vectors is neither commutative nor anti-

commutativ, but using these two special cases we can always split a general product

into two terms, a parallel term and an orthogonal term. The loss of commutativity

may seem like a burden, but it is actually a great source of strength.

The fundamental identity of geometric algebra is

ab = a · b+ a ∧ b. (1.23)

The geometric product, when it takes two vectors as inputs, returns a scalar and a

bivector. The scalar portion is the symmetric term, and is a measure of how colinear

the vectors are. The bivector term is a new object, and is the antisymmetric portion

of the product. Bivectors, like vectors, posses both magnitude and orientation. They

may be interpreted as oriented plane segment, with the orientation coinciding with

rotating a onto b. The symmetric portion is called inner product, or “dot” prod-

uct, and the antisymmetric term is called outer product or “wedge” product. These

products are defined by the geometric product itself, a feature unique to geometric

algebra. This has several advantages. First both of these products are geometrically

motivated, meaning that they have physical consequences when applied in real space.

Second, by defining these products with the more fundamental geometric product, we

will be able to obtain important results much easier than if we worked with two sepa-

rate products. Examples of this will demonstrated in the sections covering reflections

and rotations. The inner product for two vectors is defined by

a · b =
1

2
(ab+ ba), (1.24)

and similarly the outer product is be defined as

a ∧ b =
1

2
(ab− ba). (1.25)

10



The results of this section apply to geometric algebras of every dimension and sig-

nature. In the following section we introduce an important multivector, the pseu-

doscalar. It is similar to a volume-form, from the formalism of differential forms.

1.3.1 Pseudoscalar

Pseudoscalars, by definition, are grade-n multivectors belonging to Gn, and are

therefore the highest grade objects within the algebra. This gives the pseudoscalar

some rather interesting algebraic and geometric properties, regardless of the specific

geometric algebra. For instance, for any vector a, its geometric product with the

pseudoscalar

aI = a · I, (1.26)

always results in an n − 1 vector, since a ∧ I is necessarily zero. This will be an

important fact when we discuss duality. Also, this facet of the pseudoscalar is not

limited to its interactions with vectors, for any k-blade Ak we have

AkI = ⟨AkI⟩n−k, (1.27)

where 1 ≤ k ≤ n. The reason grade-n multivectors are termed pseudoscalars comes

from their commutation properties when multiplying other elements of the algebra.

Depending on whether n is even or odd, pseudoscalars are imbued with different

commutation properties. When n is odd, the pseudoscalar commutes with all grade-1

multivectors, and by extension every multivector belonging to the space [10]. This

is especially important in G3 where we take advantage of the fact that I commutes

with all elements of the algebra, and so behaves like a usual scalar. When n is even

however, the pseudoscalar anticommutes with all odd grade multivectors, and so the

term pseudoscalar is fitting because when n is odd it commutes with all multivectors

11



and so behaves like a scalar. But when n is even it anticommutes with all odd

multivectors. Whether, n is even or odd the pseudoscalar commutes with all even

grade multivectors [6]. These relations are all summarized by

IAk = (−1)k(n−1)AkI (1.28)

Other suitable names for I are volume-form or oriented n-volume, but the term pseu-

doscalar is preferred within geometric algebra, as it emphasizes the fact that depend-

ing on the dimension of the space we are working with, it will either behave entirely

like a scalar, or it may behave like an additional anticommuting vector for the odd

grade elements.

In the next chapter we show how to construct a canonical basis for G2 and G3.

12



CHAPTER 2

GEOMETRIC ALGEBRA

We introduce two specific geometric algebras, G(2, 0) and G(3, 0). Their relation to

other mathematical structures and how geometric algebra encompassed and extends

these systems is shown as well.

2.1 Plane Geometric Algebra

Before extending the Euclidean basis {σ1,σ2} to the canonical basis of G2, we

note several interesting propertiers of G2 before moving on and demonstrating these

properties with a basis. The basis free form of a general multivector belonging to G2

has the form

A = a+ v +B, (2.1)

and as we will demonstrate in the following sections, this can also be represented as

A = a+ v + ib. (2.2)

We have introduced a single exception to the notation used throughout this work,

but it is well motivated. That is, it is customary to represent the pseudoscalar of

the plane, a bivector, with i. This is done intentionally because is behaves almost

identically to the imaginary scalar i, from the complex plane. However, we should

not forget that geometric algebra is defined to be an extension of the real numbers

to incorporate oriented subspaces. There is no need to introduce complex scalars as

their is plenty of complex structure within the real geometric. This complex structure

is given by higher grade objects that square to −1. By working with only real scalars,

we are able to maintain clear geometric interpretations of the objects involved, this

is done by identifying blades with geometric primitives, and including uninterpreted

13



imaginary scalars would only lead to obscuring the geometric picture provided by the

blades.

There is an important structure nested within G2. This substructure is technically

an algebra all on its own, and this algebra is identical to the algebra of the complex

numbers. Notice that if we only take the even grade multivectors of the above equation

we have

Z = a+ ib. (2.3)

Because Z is a sum of even grade elements, we say it belongs to the even subalgebra

of G2, which is denoted by G+2 , and so it is not uncommon to find expressions like

A = v + Z, (2.4)

for a general multivector in G2, especially as this form calls attention the even and

odd grading of the multivector. In terms of a basis this is written as

A = a+ v1σ1 + v2σ2 + bσ1 ∧ σ2. (2.5)

We now demonstrate how a canonical basis for G2 can be constructed by starting

with an orthonormal basis for the Euclidean vector space R2. These basis vectors

satisfy,

σi · σi = 1 for i = 1, 2 (2.6)

σi · σj = 0 for i ̸= j (2.7)

by definition since they are assumed orthonormal. We now take all possible combi-

nations of geometric products between basis vectors, such that the result is linearly

independent from any other basis element. The total number of basis elements in

any geometric algebra is always 2n, where n is the dimension of the generating vector
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space. Therefore, we expect to generate two additional basis elements. Similar to

(2.6), the geometric product allows us to write

σ2
i = 1 for i = 1, 2. (2.8)

Notice the lack of the dot product, only the contraction property has been used,

generating a scalar. Taking the only independent product left, we obtain

σ1σ2 = σ1 · σ2 + σ1 ∧ σ2 = σ1 ∧ σ2. (2.9)

The inner product is zero since σ1 and σ2 are orthogonal. The term σ1 ∧ σ2, the

grade-2 term, is geometrically interpreted as an oriented, unit plane-segment, and

in this case the unit pseudoscalar for the entire space. There are no more unique

products to take, and so we have generated the canonical basis of G2. Table 2.1 gives

a multiplication table for the basis blades of G2.

Squaring the pseudoscalar

(σ1σ2)
2 = σ1σ2σ1σ2 = −σ2

1σ
2
2 = −1, (2.10)

where the associativity of the geometric product and the fact that orthogonal vectors

anticommute has been used. In light of (2.10), we denote the unit-pseudoscalar of G2

by

i = σ1σ2. (2.11)

Every bivector in this space is necessarily a scalar multiple of the unit pseudoscalar

B = βi, (2.12)

where β is a real number, and so the square of every bivector in G2 is negative

B2 = (bi)2 = −b2, (2.13)
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where b is a real number. In order to calculate the magnitude of B we use

|B| =
√
BB†, (2.14)

where we have introduced the dagger notation † for the operation of taking the reverse.

It has the effect of reversing the order of product of multivectors. For a product of

vectors it has the effect or reversing the order of the product

(ab...c)† = c†...b†a† = c...ba, (2.15)

where the last equality holds because the reverse of any vector is equal to itself. In

relation to (2.14) the reverse of a bivector B

B† = (bi)† = bi†, (2.16)

where, like vectors, scalars also reverse to themselves. The pseudoscalar however,

i† = (σ1σ2)
† = σ2σ1 = −σ1σ2 = −i (2.17)

picks up an overall negative sign. Thus, i† is the inverse of i. Since,

ii† = (σ1σ2)(σ1σ2)
† = σ1σ2σ2σ1 = 1 (2.18)

This is how we were able to compute the magnitude of B,

|B| =
√
BB† =

√
(bi)(bi†) =

√
b2ii† = b (2.19)

where b is a positive real number. The geometric product of two vectors a and b in

terms of their coordinate vectors has the form

ab = (a1σ1 + a2σ2)(b1σ1 + b1σ2) (2.20)

= a1b1 + a2b2 + (a1b2 − a2b1)i. (2.21)
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The scalar portion as

a · b = |a||b| cos θ = a1b1 + a2b2, (2.22)

with θ the angle between a and b. The bivector portion of (2.21 ) is

a ∧ b = |a||b| sin θ i = (a1b2 − a2b1)i, (2.23)

and is interpreted as an oriented plane segment, whose magnitude is equal to the

area spanned by the parallelogram having sides a and b . The orientation is given by

rotating a onto b. Since a ∧ b is a bivector, its magnitude can be calculated using

(2.14). Which, in this case gives

|a ∧ b| =
√
|a|2|b|2 sin2(θ)ii†. (2.24)

The magnitude is simply equal to the unoriented area of of the parallelogram

|a ∧ b| =
√
|a|2|b|2 sin2(θ) = |a1b2 − a2b1|. (2.25)

Note the loss of the pseudoscalar between (2.23) and (2.25).

2.1.1 Left and Right Action

Here we note the action of the pseudoscalar on each of the basis vectors. of the

basis. Left multiplication gives

iσ1 = σ1σ2σ1 = −σ2 (2.26)

iσ2 = σ1σ2σ2 = σ1, (2.27)

rotating each basis vector by π
2
in the clockwise direction. Likewise, right multipli-

cation by i generates a positive rotation. The effect of right multiplying each basis

vector by i generates a rotation by π
2
in the positive sense. It is also interesting to
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note that we have multiplied a grade-1 multivector, by a grade-2 multivector, and as

a result the geometric product has returned another vector, preserving the grade of

the vector. This is not the case when we multiply our other basis element, the scalar

basis element 1. Since the scalars, grade-0 multivectors, commute with all elements

of the algebra, left or right multiplication by i results in

i(1) = i, (2.28)

taking a grade-0 multivector to a grade-2, not preserving grade. The parenthesis of

course are not necessary but have been added for visibility. This little asymmetry

will be important when, in the next section, we discuss a connection between vectors

and complex numbers.

Another important property of the pseudoscalar can be ascertained from (2.26).

If we choose not to contract, but instead write

iσ1 = σ1(σ2σ1) = σ1i
† = −σ1i, (2.29)

we see that the pseudoscalar anticommutes with basis vector σ1. The same can also

be shown for σ2, and so anticommutes with all vectors in the G2.

We end this section by giving a multiplication table for G2’s basis blades. As well

as a table summarizing the different notations introduced in this chapter.

G2 1 σ1 σ2 i

1 1 σ1 σ2 i
σ1 σ1 1 i σ2

σ2 σ2 −i 1 −σ1

i i -σ2 σ1 −1

Table 2.1: Multiplication table for G2 basis blades.
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Notation Description
a, b Scalars (real numbers)
v Vector
B Bivector
i Unit Pseudoscalar
ib Pseudoscalars
A Multivector
Z = a+ ib Complex Scalar
A = v + Z Vector + Complex Scalar
A = a+ v1σ1 + v2σ2

+bσ1 ∧ σ2 Basis Form Multivector

Table 2.2: Notations for G2 multivectors

2.1.2 Complex Algebra

We now look to replicate results of complex algebra by finding the appropiate

ways to express them using the operations of geometric algebra.

Consider the space of all scalars and denote them by x. This is just the real

number line. Now consider the space of all bivectors, which from (2.12) we know to

be all multiples of i, denote them by yi. Their sum, which we denote Z,

Z = x+ iy, (2.30)

has the form of a complex variable z = x+ iy, z ∈ C. If we restrict ourselves from the

full algebra of G2, to only working with elements that can be represented as sums of

products, where the products can only contain an even number of vectors, we know

this to be the even subalgebra, and as previously mentioned, it is isomorphic to that

of C. Mathematically, this is written as

G+2 ∼ C, (2.31)

where the tilde denotes the isomorphism, meaning that all the elements of one set may

be put into a one-to-one correspondence with the other. It should also be mentioned
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that there is no such “odd subalgebra”, as the odd elements do not form an algebra.

To see that Z belongs in the even subalgebra, first consider the position vector r in

two dimensions

r = xσ1 + yσ2. (2.32)

If we left multiply r by σ1

σ1r = σ1(xσ1 + yσ2) = x+ iy, (2.33)

we have that

Z = σ1r, (2.34)

showing Z as an even product of vectors. We can express Z as an even product of

vectors, and we can also express the position vector r as a geometric product of

σ1Z = r. (2.35)

This provides an easy way to visualize spinors in two dimensions by associating them

with their complementary vector.

The analogue of complex conjugation, typically denoted z∗ or z, in geometric

algebra is reversion. Thus, we have the correspondence

z∗ = (x+ iy)∗ = x− iy ↔ Z† = (x+ i)† = x− iy. (2.36)

The modulus of a complex number |z| is given by

|z| =
√
zz∗ =

√
x2 + y2, (2.37)

which means, we can similarly calculate the magnitude of our even multivector Z in

essentially the same way we calculated the magnitude of a bivector in (2.19), which

is

|Z| =
√
ZZ† =

√
x2 + y2. (2.38)
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One of the strengths of complex algebra is the different representations of complex

numbers it makes possible. One can easily switch between the Cartesian and polar

forms of a complex number when the need arises. Geometric algebra is no different.

In fact one might argue that it is even more enlightening, given the relation of vectors

to spinors in geometric algebra. Consider, the two dimensional position vector again

r = xσ1 + yσ2. (2.39)

Factor σ1 to the left

r = σ1(x+ iy). (2.40)

We can replace the scalars x and y by their polar equivalents. Letting ϕ be the angle

between r and the σ1-axis, we can write (2.40) as

r = σ1(r cosϕ+ ir sinϕ), (2.41)

where r is the magnitude of the position vector or the associated spinor. That is

r =
√
r2 =

√
x2 + y2 =

√
ZZ† = |Z|. (2.42)

To put (2.39) fully in polar form, we factor out the scalar r and identify cosϕ+ i sinϕ

as a “complex” exponential and write

r = σ1(re
iϕ). (2.43)

When written in this way, reiϕ may be viewed as an operator acting upon σ1, with

the operator carrying instructions to rotate and dilate σ1 into the position vector r

[10]. It should also be mentioned that technically eiϕ is a mixed grade multivector

since it contains scalar and bivector terms, and is defined by the usual power series

eiϕ =
∞∑
n=0

(iϕ)n

n!
(2.44)
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To close out this section on complex numbers, we give a taste of how geometric

algebra can easily absorb results from complex analysis. Consider the multivector

functionW (x, y) = u(x, y)+ i v(x, y), where u(x, y) and v(x, y) are scalar functions of

the real variables x and y. The geometric product of the two dimensional del-operator

∇ with W results in

∇W =

(
∂

∂x
σ1 +

∂

∂y
σ2

)(
u(x, y) + i v(x, y)

)
. (2.45)

Simple geometric multiplication gives

∇W =

(
∂u

∂x
− ∂v

∂y

)
σ1 +

(
∂v

∂x
+
∂u

∂y

)
σ2. (2.46)

If we then require ∇W = 0, since σ1 and σ2 (2.46) are linearly independent of one

another, the equations

∂u

∂x
= −∂v

∂y
and

∂v

∂x
=
∂u

∂y
(2.47)

must be satisfied independently, and we obtain the well known Cauchy-Riemann

equations.

In the next section we construct G3 and discuss the nested algebraic structures

embedded within.

2.2 Geometric Algebra in Three Dimensions

A general multivector M in G3 contains grades from zero to three

M =
3∑

k=0

⟨M⟩k = ⟨M⟩0 + ⟨M⟩1 + ⟨M⟩2 + ⟨M⟩3. (2.48)

When working with a basis, a general multivector has the form

M = α + a1σ1 + a2σ2 + a3σ3 +B1σ2σ3 +B2σ3σ1 +B3σ1σ2 + βσ1σ2σ3, (2.49)
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where α, ai, Bi, and β are real scalars. This can also be written in the basis free form

M = s + v + B + T

M = “scalar” + “vector” + “bivector” + “trivector”
(2.50)

Although, in practice it is usually more convenient to work with the form

M = α + a+ Ib+ βI = α + a+ I(β + b). (2.51)

Here α and β are real scalars, a and b are vectors, and I is the unit pseudoscalar for

the space, a trivector. The term Ib is the geometric product of the vector b and the

unit pseudoscalar, resulting in a bivector. Figure (2.1) gives a visual representation

for the geometric primitives that make up G3.

B = Ib. (2.52)

By representing geometric primitives with basis blades, we are able to carry our

geometric intuition into higher dimensions, as the concept generalizes to any number

of dimensions.

2.2.1 Multivector Basis

The geometric algebra of three dimensional space is spanned by the set

{1,σi, Iσi, I} with i = 1, 2, 3. (2.53)

A canonical basis can be gernerated for G3 The geometric algebra of three dimensions,

G3, can be generated the same way as G2, by taking all possible combinations of the

generators. This process, in two dimensions, generated a canonical basis containing

four elements. In three dimensions an extra vector generator results in G3’s canonical

basis having a total of 23 = 8 basis blades. In general, a geometric algebra having n-

generating vectors has a canonical basis consisting of 2n basis blades, with the number
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Figure 2.1: Visualization of G3 k-blades.
Source:k-blades

of basis blades in any given subspace given by the binomial coefficient. Summing up

the basis blades from all sub-spaces gives

n∑
k=0

 n

k

 = 2n, (2.54)

total basis blades. Table 2.3 gives the multiplication table for G3’s basis blades.

Since we are dealing with G3 the pseudoscalars of the space are trivectors, and

as a consequence every trivector is necessarily then a scalar multiple of the unit

pseudoscalar

T = βI . (2.55)
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1 σ1 σ2 σ3 σ12 σ13 σ23 I

σ1 1 σ12 σ13 σ2 σ3 I σ23

σ2 −σ12 1 σ23 −σ1 −I σ3 −σ13

σ3 −σ13 −σ23 1 I −σ1 −σ2 σ12

σ12 −σ2 σ1 I −1 −σ23 σ13 −σ3

σ13 −σ3 −I σ1 σ23 −1 −σ12 σ2

σ23 I −σ3 σ2 −σ13 σ12 −1 −σ1

I σ23 −σ13 σ12 −σ3 σ2 −σ1 −1

Table 2.3: Multiplication table for G3 basis blades.

2.2.1.1 The Dual

An important idea in both physics and mathematics is the concept of duality.

Within geometric algebra duality has an especially simple manifestation. The dual

of a multivector A is

A∗ = AI−, (2.56)

as in [3] and [11]. Taking the dual of a k-blade Bk, results in an (n − k)-blade B∗
k.

As a subspace B∗
k represents the orthogonal complement of Bk [11]. Care must be

taken when dealing with the dual as this definition is not universal, and some prefer

the definition to be given by A∗ = AI, as in [10] and [6]. Thankfully these definitions

differ by at most a sign, and it must be mentioned that many authors, regardless of

their preferred definition, simply use the term dual of a multivector to refer to the

subspace that represents the orthogonal complement, regardless of the orientation

of that subspace. This practice is much more akin to use of duality in differential

forms, where the Hodge dual of a k-form is an n−k-form, and if you were to take the

Hodge dual again, the result is the initial k-form. This slightly differs from duality

in geometric algebra. For example based on our definition, the dual of σ1 is

σ∗
1 = σ1I

†. (2.57)
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If we take the dual again

(σ∗
1)

∗ = −σ1, (2.58)

we see we pick up an extra negative sign. Geometric algebra, not to be outdone, can

actually define the Hodge dual algebraically. For any multivector A the Hodge dual

is [3]

⋆ A = A†I. (2.59)

If take the Hodge dual again

⋆ (⋆A) = ⋆(A†I) = (A†I)†I, (2.60)

we see that

⋆ (⋆A) = I†AI = A, (2.61)

where we have made use of the fact that that pseudoscalars commute with all elements

of the algebra in three dimensions, and (A†)† is returned to itself. This makes the

Hodge dual better suited for discussing the relation between two subspaces when

one is only interested in the dimensional aspect, rather than the relative orientation

between the two subspaces, as is often the case. Nevertheless, geometric algebra’s

concept of duality is more suitable for programming. This is due to the fact that

duality is now a consequence of multiplication with I†, and does not require any extra

rules or special cases to be programmed.

If we take the dual of each {σi}:

σ∗
1 = σ1I

† = σ3σ2

σ∗
2 = σ2I

† = σ1σ3

σ∗
3 = σ3I

† = σ2σ1,

(2.62)
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we find that a right handed set of vectors are mapped to a set of left handed bivectors.

If we now take the products

σ∗
1σ

∗
2 = σ∗

3

σ∗
2σ

∗
3 = σ∗

1

σ∗
3σ

∗
1 = σ∗

2,

(2.63)

we see a very striking resemblance to Hamilton’s quaternions. The quaternions, more

specifically the unit pure quaternions, {i, j, k} satisfy

ij = k

jk = i

ki = j.

(2.64)

They are defined by the equations

i2 = j2 = k2 = ijk = −1. (2.65)

If we multiply together the three {σ∗
k} we find

σ∗
1σ

∗
2σ

∗
3 = −1, (2.66)

which explains a great deal why Hamilton and others struggled to establish the quater-

nions. They were trying to interpret the quaternions as vectors, which is where the

word from, but here we see the real quaternions are a set of left handed bivectors.

The product of two pure quaternions p⃗ and q⃗ is

p⃗q⃗ = (ai+ bj + ck) (xi+ yj + zk)

p⃗q⃗ = −p⃗ · q⃗ + p⃗× q⃗,
(2.67)

where {a, b, c, x, y, z} are real scalars. This is where Gibbs borrowed from to create

his vectorial system, essentially taking everything except the quaternions and their

negative inner product. This allowed him to create a conceptually simpler system

that was ready for immediate applications. In the next section we show how to cross

product relates the two systems.
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Figure 2.2: The vector a× b is dual to the plane spanned by vectors a and b .
Source:Cross product

2.2.1.2 Cross Product

The cross product takes as inputs two vectors, a and b, and produces a third

vector c, orthogonal to both inputs.

In index notation, with Einstein summation convention in effect

c = σici, (2.68)

where the i-th components of c is given by

ci = (a× b)i = εijkajbk. (2.69)

Inserting (2.69) into (2.68) and summing over i gives

c = σ1 (a2b3 − a3b2) + σ2 (a3b1 − a1b3) + σ3 (a1b2 − a2b1) . (2.70)
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Figure 2.3: The addition of bivectors B and C. Compare with vectors b and c.
Attribution: John Blackburne, CC BY-SA 3.0 Source:Bivector Sum

Compare this with the wedge product of a and b in three dimensions

a∧b = σ1 ∧σ2 (a1b2 − a2b1)+σ2 ∧σ3 (a2b3 − a3b2)+σ3 ∧σ1 (a3b1 − a1b3) . (2.71)

To obtain an equality between the cross product and outer product, we simply take

the dual of a ∧ b, from which we obtain

Ic = Ia× b = a ∧ b. (2.72)

Figure (2.2) illustrates these relations, graphically.

2.2.2 The Bivector Algebra of G3

Just as we have three basis vectors in three dimensional space, we have three basis

bivectors, and similarly just as we may take a linear combination of basis vectors to

form any vector in the space, we may take a linear combination of basis bivectors to

form any plane within the space. Bivectors, themselves, satisfy the axioms of a vector

space and so can be added and subtracted in the same way, as illustrated in figure

(2.3).
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We know from equation (2.62) that our basis bivectors have the dual represen-

tation {Iσi}. The dual representation provides an excellent means for carrying out

calculations with bivectors. This is because we can take advantage of the fact that

the pseudoscalar commutes with all elements. For instance, if we take the geometric

product of the basis bivectors σ1σ2 and σ3σ1 it is typically easier to write

(Iσ3)(Iσ2). (2.73)

The geometric product between basis vectors in G3 can be written in the

compact form

σiσj = δij + Iσk, (2.74)

where I = σ1σ2σ3 is the unit pseudo-scalar for the space. It should be noted that

(2.74) is only true for unit vectors in G3, and could equally well be written as

σiσj = δij + σi ∧ σj, (2.75)

but the form of (2.74) has been chosen for its resemblance to the formula

σ̂iσ̂j = δij1+ iεijkσ̂k, (2.76)

where 1 is the (2 × 2) identity matrix and εijk is the Levi-Civita symbol. This is of

course the well known formula for the product of Pauli matrices. The striking similar-

ity between (2.74) and (2.76) goes far beyond a mere cosmetic resemblance. In fact,

the Pauli matrices are nothing more, and nothing less than a matrix representation

for the basis vectors of G3 [8].
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CHAPTER 3

SOME TOOLS

3.1 Reflections

Reflections are easily handled within geometric algebra. To reflect a vector x in

some hyperplane B, we first represent the hyperplane by its normal vector n. Let us

also assume n is a unit vector, which is a rather reasonable assumption since we can

always normalize any vector we are given. Now we decompose x into parts parallel

and perpendicular with respect to n:

x = x∥ + x⊥. (3.1)

The portion of x which is parallel to n, must also be orthogonal to B. The portion

of x perpendicular to n must lie withing the hyperplane. Thus, we can represent x’s

reflection in B by

x′ = x⊥ − x∥. (3.2)

Using the associativity of the geometric product, and the fact that n is a unit vector,

we can find explicit expressions for x⊥ and x∥:

x = xn2 = (xn)n

x∥ + x⊥ = (x · n)n+ (x ∧ n)n.

(3.3)

The parallel portion of x is given by

x∥ = (x · n)n, (3.4)

which is the projection of x onto n, which makes x⊥ the rejection of x by n and is

given by

x⊥ = (x ∧ n)n. (3.5)
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If we now insert (3.4) and (3.5) into (3.2)

x′ = (x ∧ n)n− (x · n)n, (3.6)

and by noting that the inner product of vectors is commutative while the outer

product is anticommutative, we obtain

x′ = −(n ∧ x)n− (n · x)n, (3.7)

which we recognize as the geometric product of:

x′ = −nxn. (3.8)

Nowhere else can such a simple and compact formula be found. Such a compact

formulation is not to be undervalued, especially as we compound reflections in the

next section to form rotations. It must also be mentioned that (3.8) is valid in any

dimension and any signature.

We now make contact with the traditional vector expression for a reflection. Start-

ing with (3.2), we can replace x⊥ by rearranging (3.1), which allows us to obtain

x′ = x− 2(x · n)n, (3.9)

the best Gibb’s vector algebra has to offer. If we rewrite the dot product in terms of

the geometric product

x′ = x− 2

(
xn+ nx

2

)
n = x− xn2 − nxn = −nxn, (3.10)

we obtain (3.8).

3.1.1 A Simple Example

To give the reader a feel for how computations involving reflections are carried

out, we work a simple example with an explicit basis. Suppose we would like to reflect
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the vector x = aσ1 + bσ2 + cσ3 in the xy-plane, where a, b, and c are real constants.

The appropriate normal vector to take in this case is n = σ3. Plugging these into

(3.8) gives

x′ = −σ3 (aσ1 + bσ2 + cσ3)σ3. (3.11)

This reduces to

x′ = aσ1 + bσ2 − cσ3. (3.12)

Notice how the anti-commutativity of our basis vectors seamlessly handles the re-

flection and has the effect of negating only the part of x that is orthogonal to the

plane. In fact, this simple example is just a specific case of a much broader idea a

work. The product of orthogonal vectors anti-commute, while the product of parallel

vectors commute.

Reflections are an important subset of orthogonal transformations, and as such

we should verify that (3.8) does not destroy the invariance of the scalar product.

Following [6], we put the grade projection operator to good use and show that the

inner product between two reflected vectors remains unchanged. The inner product

between two reflected vectors a′ and b′ is given by

a′ · b′ = (−nan) · (−nbn). (3.13)

Since the above equation is a scalar we may use the scalar grade projection operator

as follows

a′ · b′ = ⟨nannbn⟩ = ⟨nabn⟩. (3.14)

The second equality follows since n is a unit vector. Next, we take advantage of the

cyclic reordering property of the scalar grade projection operator, and permute the

terms such that

a′ · b′ = ⟨abnn⟩ = ⟨a · b+ a ∧ b⟩, (3.15)
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and finally, we have

a′ · b′ = a · b. (3.16)

Again, the second equality in (3.15) follows by use of the scalar grade projection

operator.

3.2 Rotations

Rotations are implemented with the double sided formula,

x′ = RxR†. (3.17)

Here, R is an even multivector called a rotor. Rotors themselves are the product of

two unit vectors, and can be written as

R = mn = m · n+m ∧ n. (3.18)

The rotation can be thought of first reflecting x through n, and then reflecting the

result through m. That is rotations are built from double reflections. The double

sided construction of the rotation formula allows the formula to be generalized to any

number of dimensions.
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CHAPTER 4

QUANTUM MECHANICS

In this section we make contact with traditional quantum mechanics. We show

how complex column spinors, referred to as Pauli spinors, can instead be repre-

sented with multivectors. This allows us to give a new interpretation to for bra

and ket-vectors, when dealing with two state systems. We then move onto to solving

Schrödinger’s equation, for a spin-1
2
particle in a magnetic field, making it basis free

and opening up new routes to obtaining its solution. We also demonstrate how to ob-

tain particular solutions for different initial input data, allowing us to check solutions

against traditional methods.

4.1 Pauli Spinors

A Pauli spinor is an element of the complex linear space of two-component column

matrices [1], and [3],

Ψ =

ψ1

ψ2

 ∈ C2 with ψ1, ψ2 ∈ C. (4.1)

Another way of handling spinors within quantum mechanics, apart from the column

vector representation, is that of ideal spinors, or square matrix spinors given by

Ψ =

 ψ1 0

ψ2 0

 ∈ C(2) with ψ1, ψ2 ∈ C. (4.2)

The square matrix spinors have an added benefit of being able to represent vectors

and spinors within the same algebra. C(2) is of course the algebra of (2× 2) matrices
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with entries over the complex field. Ideal spinors have the property u11 u12

u21 u22


 ψ1 0

ψ2 0

 =

 φ1 0

φ2 0

 , (4.3)

that is, for any u ∈ C(2), the product uΨ, results in another square matrix spinor.

These elements form a subspace known as a left ideal of C(2).

Geometric algebra offers a third option for representing spinors. Using the even

subalgebra G3, we may express them as.

ψ = a0 + akIσk (4.4)

Contact can be made with the complex column vector approach using the map [7]

Ψ =

 a0 + ia3

−a2 + ia1

 ↔ ψ = a0 + akIσk. (4.5)

As explained in [6], the ↔ denotes a one-to-one map between traditional quantum

mechanical objects and their multivector equivalents. To see this, we can write Ψ in

Dirac notation as

|ψ⟩ =
(
a0 + ia3

) ∣∣z+〉+ (
−a2 + ia1

)
|z−⟩ , (4.6)

where |z±⟩ represents the spin-up and down states respectively, we can see that the

corresponding multivector expression would require the factorization

ψ = a0 + a1Iσ1 + a2Iσ2 + a3Iσ3

= a0 + a3Iσ3 +
(
−a2 + a1Iσ3

)
(−Iσ2) .

(4.7)

The last equality of (4.7), when compared with (4.5), shows that the traditional i of

quantum mechanics is actually the unit bivector Iσ3 = σ1σ2, which represents the

xy-plane. Comparison with (4.6) shows that our spin states are

∣∣z+〉←→ 1 and
∣∣z−〉←→ −Iσ2. (4.8)
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We may now express ψ as

|ψ⟩ = c+|z+⟩+ c−|z−⟩ ⇐⇒ ψ = c+ + c−(−Iσ2). (4.9)

The “complex” coefficients c+ and c−, within geometric algebra, are of the form

c = a+ Iσ3b.

The eigenstates of the spin operators Ŝx and Ŝy, expressed in the Ŝz-basis, are∣∣x+〉 =
1√
2

(∣∣z+〉+ ∣∣z−〉) ,∣∣x−〉 = 1√
2

(∣∣z+〉− ∣∣z−〉) ,∣∣y+〉 = 1√
2

(∣∣z+〉+ i
∣∣z−〉) ,∣∣y−〉 = 1√

2

(∣∣z+〉− i ∣∣z−〉) .
(4.10)

Using our results from (4.8), we find the eigenstates of Ŝx and Ŝy to be

∣∣x+〉 ⇐⇒ X+ =
1√
2
(1− Iσ2) =

1√
2
(1 + σ13) ,∣∣x−〉 ⇐⇒ X− =

1√
2
(1 + Iσ2) =

1√
2
(1− σ13) ,

(4.11)

where we have used the short hand notation σjk = σjσk. It is worth mentioning that

geometric algebra also allows us to write the equivalent expressions

X± = exp(±π
4
σ13),

Y ± = exp(±π
4
σ23).

(4.12)

These are the rotors that one would use to align a vector initially in the x-direction

(or y-direction) with the z-axis. Thus we see by choosing the spin operator Ŝz to be

diagonal, we have also chosen the x and y basis kets to be rotors that work to align

vectors with our preferred chosen axis.
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4.2 Spinor Differential Equation

In this section we demonstrate some of the more powerful benefits geometric

algebra has to offer Schrödinger’s equation

iℏ
d

dt
|ψ⟩ = Ĥ|ψ⟩, (4.13)

for a spin-1
2
particle in a magnetic field, becomes

iℏ
d

dt
|ψ⟩ = −µ̂ ·B|ψ⟩, (4.14)

if we ignore spatial dynamics. Here, B is the magnetic field vector, going against our

convention of reserving bold uppercase letters for grade-2 multivectors and higher,

but for the good reason of being inline with with long established electromagnetic

notational conventions. The magnetic moment operator µ̂ is related to spin operator

ŝ by

µ̂ = γŝ, (4.15)

where γ is the gyromagnetic ratio, and is given by

γ = g
q

2m
. (4.16)

Here, g is the experimentally determined spin g-factor, q is the charge of the particle,

and its mass is given by m. Using (4.15) and some basic algebra, we can rewrite

(4.14) as

d

dt
|ψ⟩ = iγ

ℏ
ŝ ·B |ψ⟩ (4.17)

Since, ŝ is just ℏ
2
times the Pauli spin matrices, we can write

d

dt
|ψ⟩ = iγ

2
σ̂kBk|ψ⟩, (4.18)

using the Einstein summation notation. In order to switch from |ψ⟩ to multivector

ψ, the action of Pauli matrices, as well as the complex scalar i, upon |ψ⟩ must be
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exchanged with its corresponding multivector expression. This correspondence can

be found in [7], and is given by

σ̂k | ψ⟩ ←→ σkψσ3. (4.19)

The appearance of σ3 on the right side of ψ, is required to keep ψ within the even

subalgebra. There is nothing special about the choice of σ3, and is analogous to

choosing a basis in which σ̂3 is diagonal. To determine the action of i|ψ⟩, first recall

from the Pauli matrix algebra

σ̂1σ̂2σ̂3 = i. (4.20)

Substituting (4.20) into (4.19) results in

i|ψ⟩ = σ̂1σ̂2σ̂3|ψ⟩ ←→ σ1σ2σ3ψ(σ3)
3 = Iψσ3, (4.21)

and finally, combining (4.19) and (4.20) gives the final action

iσ̂k|ψ⟩ ←→ I (σkψσ3)σ3 = Iσkψ. (4.22)

We can now write the geometric Schrödinger equation for a spin-1
2
particle in a mag-

netic field as

ψ̇ =
γ

2
IBkσkψ , (4.23)

where the over dot denotes a derivative with respect to time. Geometric algebra then

shows us that we can write Bkσk = B, allowing us to put (4.23) in the basis free form

ψ̇ =
γ

2
IBψ . (4.24)

This form offers a number of attractive features. One, geometric algebra allows for

the decomposition of ψ into the product

ψ =
√
ρR , (4.25)
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where ρ is a scalar, and R is a rotor satisfying RR† = 1 [7]. The derivative of ψ is

then

d

dt
(ψ) =

(
ρ̇

2
√
ρ
R +
√
ρṘ

)
. (4.26)

Equating (4.26) to (4.24) and replacing ψ on the right hand side by (4.25) gives

ψ̇ =

(
ρ̇

2
√
ρ
R +
√
ρṘ

)
=
γ

2
IB(
√
ρR) . (4.27)

Note that

ψ† = (
√
ρR)† = R†(

√
ρ)† =

√
ρR† , (4.28)

and since ρ is a scalar, it is unaffected by reversion and commutes with all multivec-

tors. Right multiplying (4.27) by ψ† leads to

ψ̇ψ† =

(
ρ̇

2
+ ρṘR†

)
=
γρ

2
IB . (4.29)

The grade projection operator separates (4.29) into〈
ψ̇ψ†

〉
0
=
ρ̇

2
= 0 and

〈
ψ̇ψ

†
〉
2
= ρṘR† =

γρ

2
IB . (4.30)

The scalar portion, being equal to zero, implies〈
ψ̇ψ†

〉
0
= 0 ⇒ ρ = a constant . (4.31)

The grade-2 term simplifies to〈
ψ̇ψ†

〉
2
= ṘR† =

γ

2
IB . (4.32)

Right multiplying by R gives

Ṙ =
γ

2
IBR . (4.33)

Now, if the magnetic field is independent of time, (4.33) can be solved by integration,

yielding the solution [6]

ψ(t) = eγIBt/2ψ(0) . (4.34)
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To determine how states evolve with time from (4.34), we will need to know how the

quantum inner product, typically given by

⟨ψ | ϕ⟩ = (ψ∗
1 ψ

∗
2)

 ϕ1

ϕ2

 , (4.35)

translates into geometric algebra. This is given in [6], and the product translates as

⟨ψ | ϕ⟩ ↔
〈
ψ†ϕ

〉
0
−
〈
ψ†ϕIσ3

〉
0
Iσ3 (4.36)

Care must be taken not to confuse the quantum inner product ⟨ψ | ϕ⟩, and the scalar

grade projection operator ⟨ψ†ϕ⟩0, which both make use of angled brackets. Sticking

with the notation in [6], the quantum inner product within geometric algebra is

denoted 〈
ψ†ϕ

〉
q
=

〈
ψ†ϕ

〉
0
−
〈
ψ†ϕIσ3

〉
0
Iσ3. (4.37)

We see the product picks out the scalar portion of the geometric product, as well as

projecting out the portion in the quantization plane Iσ3.

Returning to the problem of a spin-1
2
particle in a magnetic field, if the state is

initially known to be in the spin state |ψ(0)⟩ = |x+⟩ = 1√
2
(|z+⟩+ |z−⟩) and we take

B = B0σ3, we can determine the state at some later time t using (4.34). Typically,

this is done using the time evolution operator Û(t) and would be written

|ψ(t)⟩ = Û(t)|ψ(0)⟩ . (4.38)

Comparing with (4.34), we see that the rotor R(t) = eγIBt/2 plays the role of time

evolution operator, and so the state function at some later time t is then

ψ(t) = eσ12ω0t/2ψ(0) = eσ12ω0t/2X+ = eσ12ω0t/2 (1− Iσ2) /
√
2. (4.39)

where we have written γB0 = ω0. As an example, say we are interested in determin-

ing the probability of finding the particle in the state |x+⟩. First we calculate the
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probability amplitude using (4.37)

〈(
X+

)†
ψ(t)

〉
q
=

〈
(X+)†ψ(t)

〉
0
− Iσ3

〈
(X+)†ψ(t)Iσ3

〉
0
. (4.40)

To simplify the calculation, we can first write ψ(t) = R(t)X+ and then use the cyclic

reordering property of the scalar grade projection operator. This simplifies the scalar

term of (4.40) to〈(
X+

)†
R(t)X+

〉
0
=

〈
R(t)X+

(
X+

)†〉
0

= ⟨R(t)⟩0 =
〈
eσ12ω0t/2

〉
0
= cos (ω0t/2) .

(4.41)

The Iσ3 term of (4.40) contains no scalar portion and so vanishes. The probability

|⟨x+ | ψ(t)⟩|2 is then obtained by squaring the result of (4.41), giving

|⟨x+ | ψ(t)⟩|2 = cos2 (ω0t/2) , (4.42)

as expected.

The expectation value of spin in the k-direction is usually given the expression

⟨sk⟩ = ⟨ψ(t) |ŝk|ψ(t)⟩ . (4.43)

This is easily ported over to geometric algebra by first using (4.19) to obtain

ŝk | ψ(t)⟩ ←→ skψ(t)σ3, (4.44)

and then using (4.37) as before. This result of which is

⟨ψ(t) |ŝk|ψ(t)⟩ ←→
〈
ψ†σkψσ3

〉
0
− Iσ3

〈
ψ†σkψσ3Iσ3

〉
0
. (4.45)

Since the pseudoscalar commutes with all elements in three dimensions, this may be

simplified to 〈
ψ†σkψσ3

〉
0
− Iσ3

〈
ψ†Iσkψ

〉
0

(4.46)
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Under reversion, the term
〈
ψ†Iσkψ

〉
0
is equal to the negative of itself, and so cannot

be a scalar and therefore vanishes. The remaining term can be cyclically permuted

to give 〈
σkψσ3ψ

†〉
0
. (4.47)

In [7] the quantity ψσ3ψ
† is used to define the spin vector

s = ψσ3ψ
†. (4.48)

Rewriting (4.47) with this definition gives a compact form for the spin expectation

value 〈
σkψσ3ψ

†〉
0
= ⟨σk s⟩0 = σk · s. (4.49)

Aside from being compact, the quantum expectation also carries with it a slightly

different interpretation than its traditional counterpart. The traditional expression is

thought of as an expectation for a quantum operator, whereas in geometric algebra

we are simply projecting out the component of spin vector along the k-direction.

Returning once again to our spin-1
2
particle in a magnetic field, we can now calcu-

late the spin expectation value, say for the x-direction. We first form the spin vector

using (4.48), with ψ(t) = R(t)ψ(0). Since our initial state is given as X+, and we

determined R(t) = exp(Iσ3ω0t/2), our spin vector is then

s = ψσ3ψ
† =

(
RX+

)
σ3

(
RX+

)†
= R

(
X+σ3(X

+)†
)
R†. (4.50)

We recognize
(
X+σ3(X

+)†
)
as the transformation taking σ3 → σ1, reducing the spin

vector to

s = Rσ1R
†. (4.51)

Expanding the above, the spin vector is then

s = ℏ
2
cos(ω0t)σ1 − ℏ

2
sin(ω0t)σ2. (4.52)
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The expected value of spin in the x-direction is then

⟨s1⟩ = σ1 · s =
ℏ
2
cos (ω0t) . (4.53)

4.3 Variable Magnetic Field

We now move on to another example of a rotor differential equation. The setup is the

same as the preceding problem, but now suppose the magnetic field is a function of

time and is given by B(t) = (B1 cos(ωt), B1 sin(ωt), B0). Taking (4.24) as our starting

point, we have

ψ̇ =
γ

2
IBψ =

γ

2
I (B1σ1 cos(ωt) +B1σ2 sin(ωt) +B0σ3)ψ. (4.54)

Again, geometric algebra offers a unique route to the solution not available to tra-

ditional methods. The strategy here is again to lock up the time dependence, and

hence the dynamics, into a rotor R(t). We begin by factoring the magnetic field into

B = B1σ1 (cos(ωt) + σ1σ2 sin(ωt)) +B0σ3

= B1σ1 exp (Iσ3ωt) +B0σ3.

(4.55)

Since, σ1 lies in the plane represented by the bivector σ1σ2, it anticommutes with

exp(Iσ3ωt), which generates rotations in the σ1σ2- plane. This allows us to write B

as

B = exp (−Iσ3ωt/2)B1σ1 exp (Iσ3ωt/2) +B0σ3 (4.56)

The fact that σ3 is orthogonal to the plane of rotation allows us to write the term

B0σ3 as

B0σ3 = exp(−Iσ3ωt/2)B0σ3 exp(Iσ3ωt/2). (4.57)

As in [6], we can define

S = exp(−Iσ3ωt/2), (4.58)
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which allows us to write the magnetic field as

B = S(B1σ1 +B0σ3)S
†. (4.59)

If we let Bc = B1σ1 +B0σ3, then (4.54) takes the simple form

ψ̇ = γ
2
ISBcS

†ψ. (4.60)

Again, we have locked up the time-dependence in a rotor. To solve this rotor differ-

ential equation, first note that

d

dt

(
S†ψ

)
= Ṡ†ψ + S†ψ̇. (4.61)

We can easily form the first term Ṡ†ψ after finding

d

dt

(
S†) = 1

2
Iσ3ωS

†. (4.62)

The second term S†ψ̇ is found by left multiplying (4.60) by S†, resulting in

S†ψ̇ = γ
2
IBcS

†ψ. (4.63)

Combining (4.62) and (4.63) we can rewrite (4.61) as

d

dt
(S†ψ) = 1

2
I (σ3ω + γBc)S

†ψ, (4.64)

a first order differential equation. Yet again, geometric algebra has allowed us to

find a first order differential equation. In the typical approach, one is forced to work

with the complex components of the column spinor |ψ⟩. Doing so, then forces one

to work with a pair of coupled, second-order differential equations as a consequence.

By working with the first order equation (4.64) we can immediately solve again by

inspection. The solution is

S†ψ = exp (I (ωσ3 + γBc) t/2)ψ(0). (4.65)
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Solving for ψ, plugging in the explicit expression for Bc, and writing ω1 = γB1 and

ω0 = γB0, we arrive at

ψ(t) = exp (−Iσ3ωt/2) exp (I (ω1σ1 + (ω0 + ω)σ3) t/2)ψ(0). (4.66)

4.4 Spacetime Algebra

The geometric algebra G1,3 is known as the spacetime algebra (STA). It is gener-

ated by the four vectors {γµ}. Similar to Dirac’s gamma matrices, they satisfy the

equations

γ20 = 1, γ2k = −1, and γµ · γν = 0 (µ ̸= ν). (4.67)

One of the more interesting aspects of this algebra is its bivector algebra. There are

a total of six bivectors. They fall into two classes

(γk ∧ γ0)2 = +1 and (γj ∧ γk)2 = −1, (4.68)

those with positive square and those with negative square. The positive squaring

bivectors contain the timelike vector γ0. They are interpreted as representing a rela-

tive vector in the time frame defined by γ0.

An event in spacetime is represented by the four dimensional vector

x = xµγµ = ctγ0 + xiγi. (4.69)

When right multiplied by γ0

xγ0 = ct+ xiγiγ0. (4.70)

they become a multivector equivalent to a four-vector. Four vectors are a combination

of scalar and three dimensional vector. Multiplying a vector in the spacetime algebra

by γ0 is known as the spacetime split. It splits a homogenous spacetime vector into
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a sum of a scalar and spacetime bivector. Spacetime bivectors generated through the

spacetime split are taken as defining a rest frame of relative vectors. This motivates

the following notation

xγ0 = ct+ xiγiγ0 = ct+ xiσi, (4.71)

and so we arrive at the expression

xγ0 = ct+ x, (4.72)

which contains the same amount of information as a four vector. The spacetime

split makes it explicit whether or not an expression is observer dependent. Any

expression containing a timelike vector defines an observer for that frame. This makes

determining whether or not an expression represents an invariant nearly trivial. Our

version of a four vector is obviously observer dependent, but if we are interested in

an invariant lenght, independent of any observer, we simply write

x2 = xγ0γ0x = (ct+ x)(ct− x) = (c2t2 − x2), (4.73)

making contracting four-vectors as easy as multiplying polynomials.

The identification of σk = γkγ0 mean that we can interpret spacetime bivectors as

relative vectors in three dimensional space, so we are aided by being able to maintain

meaningful notation. This also allows us to write the 16 dimensional basis for the

STA as

1, {γµ} , {σk, Iσk} , {Iγµ} , I. (4.74)

The even subalgebra of this basis

1, {σk}, {Iσk} , I, (4.75)

will be recognized as a basis for G3, and so geometric algebra provides incredible tool

not only for performing calculations, but is also invaluable for the way it seamlessly

transitions between relativistic and non-relativistic arenas.
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The Dirac equation for a free particle is given by the equation

(iℏγµ∂µ −mc)ψ = 0, (4.76)

which in natural units (ℏ = c = 1) has the simplified form

iγµ∂µψ = mψ. (4.77)

The STA version of the Dirac equation is written

∇ψIσ3 = mψγ0 (4.78)

The Dirac operator ∇, when viewed through the lens of geometric algebra, is the

simple the vector derivative. We can take the ∇ and expand it relative to the frame

vectors {γµ}, along with appropriate coordinates as

∇ = γµ
∂

∂xµ
= γ0

∂

∂t
+ γi

∂

∂xi
. (4.79)

It may be noticed that γµ vectors now appear with an upper index. The upper

index indicates that these vectors belong to the reciprocal frame. These vectors are

necessary as {γ1, γ2, γ3} have negative square. Taking γ1 as an example, to find its

reciprocal vector we can simply solve

γ1γ
1 = 1, (4.80)

left multiplication gives

γ1 = −γ1. (4.81)

This ensures the proper spacetime split

∇γ0 = ∂t + γiγ0∂i = ∂t −∇. (4.82)
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We have shown that the robust approach to Clifford algebra, geometric algebra,

inspires new ways of visualizing, interpreting, and understanding quantum mechanics.

We traced how geometric algebra leads one to consider a new definition of spinor, one

in which it is represented by the multivectors of G+3 , and can be visualized as planes

of rotation. The use of basis free representations of multivectors was seen to open

up new avenues, providing routes unavailable to other formalisms, to solve quantum

mechanical problems. We also uncovered a new way of understanding and visualizing

Dirac’s bra-ket formalism. Geometric algebra revealed these to be rotors, the rotors

necessary to align a spin vector perpendicular to a quantization plane, determined by

some measuring apparatus.

5.1 Future Work

Geometric algebra proved to be an excellent tool for understanding the quantum two-

state system. An important two-state system is that of the ammonia molecule NH3.

One might think that studying the ammonia molecule should be no different than

the two state systems presented in this paper. However, the Hamiltonian associated

with this problem, is considerably different than those presented here. This is due to

the fact that once it represented in geometric algebra, the Hamiltonian is actually a

scalar plus a vector. The Hamiltonians presented here turned out to be purely vectors,

which made obtaining solutions easier within geometric algebra than their traditional

counterparts. Recall, in the case of the oscillating magnetic field, the tools and tech-

niques of geometric algebra made it possible to obtain a linear, first order differential

equation, which is not possible using traditional techniques, where one works with
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the components of the spinor separately, resulting in a pair of coupled, second order

differential equations. Aside from being easier to solve, first order equations are also

numerically more stable than second order, a very attractive feature. The ammonia

molecule does not yield a solution as easily as one might expect. This is due to an

extra scalar term in the Hamiltonian, which is seen to arise from the symmetry of

the molecule. Due to the presence of this term, the associated differential equation

is somewhat more complicated. However, it may be possible to ‘̀rotateẗhese terms

away, such that they vanish all together, making it possible to obtain a first order

equation for the ammonia molecule as well.

The algebras presented in this work, all have one thing in common. They are

all nested within G(1, 3), known as the spacetime algebra. We saw that the algebra

of the complex numbers, could be identified with the even subalgebra of G2. The

extension of the complex numbers, the quaternions, are the even subalgebra of G3,

the algebra of three dimensional space. The algebra of space is nested within the

algebra of Minkowski spacetime. What important structure might G(1, 3) be nested

in, and what implications might be determined from identifying this structure. Could

this suggest a route to Grand Unification, or at the very least, rule some paths out?
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GLOSSARY

grade The grade of a multivector is a nonnegative integer ‘ ‘. 5

grade-projection operator The grade-projection operator has the following prop-

erties

⟨A+B⟩k = ⟨A⟩k + ⟨B⟩k

⟨λA⟩k = λ⟨A⟩k = ⟨A⟩kλ

⟨⟨A⟩k⟩k = ⟨A⟩k,

where A and B are general multivecotrs, and λ is a real number. 6

hyperplane A hyperplane is the subspace whose dimension is one less than that of

its ambient space.These subspaces are represented by (n− 1)-blades Bn−1. 31

k-blade A k-blade (k > 0) Ak in Gn is a geometric product of k distinct, orthogonal

vectors

Ak = a1...ak.

A 0-blade is a nonzero scalar. 5

k-vector A k-vector is a linear combination of k-blades. 5

multivector Multivectors are elements of a geometric algebra. 5

reverse For a k-blade Ak the reverse is defined by

A†
k = akak−1...a2a1

The formula below allows us to quickly calculate the reverse of Ak

A†
k = (−1)k(k−1)/2Ak.

For a general multivector A apply † to each k-vector term. 16
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