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ABSTRACT

USING SEMANTIC SIMILARITY MEASURES IN THE BIOMEDICAL DOMAIN

FOR COMPUTING FUNCTIONAL SIMILARITY BETWEEN GENES BASED ON

GENE ONTOLOGY

Elham Khabiri, M.S.
The University of Houston Clear Lake, 2007

Thesis Chair: Hisham Al-Mubaid

The size and volumes of genomic data resulting from the various genome projects are 

extremely huge and continuously increasing in very high rates. Finding gene groups with 

similar functions is one of the most important tasks in bioinformatics. More specifically,

computing the similarities between genes as numeric figures will have many benefits and 

applications in biomedical domain. We present novel techniques for measuring the 

functional similarity of genes using Gene Ontology (GO) annotations. GO is considered 

the most comprehensive resource of functional information on genes and gene products. 

The proposed methods are considered ontology-structure-based methods and rely strictly 

on ontology-structure features like depth and path length (PL) between GO nodes. We 

evaluated the proposed measures based on the correlation with gene sequence similarity

v



using Blast e-values. We conducted experiments with several genome annotation 

databases. The experimental results proved that the proposed similarity methods are fairly

efficient in estimating the functional similarity between genes, gene products, and

protein. Hence, ontology structure features can be used as good tools for determining the

genes with similar functions within a genome.
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1. INTRODUCTION

Computing the functional similarity between genes and proteins is an important and 

necessary task in the bioinformatics and biomedical fields. By comparing similarities 

between genes and proteins with known functions to those with unknown functions, the 

functions of the unknown genes and proteins can be determined to certain accuracy [54]. 

Also it is useful to measure the differences between genes and proteins in different

organisms. As an example, one can compare the proteins in yeast with the proteins in 

human and find those proteins in yeast that have the least biological and functional 

similarities with those in human. This is an approach for finding drugs and drug targets 

for human [54]. Thus, those proteins with biological processes or molecular functions, 

that are absent in human proteins, are considered as potential drug targets in biomedical

domain [54].

In general, genes and gene products are functionally similar if they have comparable 

molecular functions and are involved in similar biological processes [54], These gene 

products are not necessarily evolved from a common ancestor, and therefore, do not 

necessarily show sequence similarity. In this research we explore a number of techniques 

for measuring the similarity between terms in Gene Ontology (GO). Gene ontology [9] is
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a comprehensive and controlled ontology to describe the functional and biological 

features of genes independent of the organism. We also propose new measures of

functional similarity between genes using GO. The proposed measures have been 

implemented and evaluated with a large number of experiments using multiple sets of 

annotation databases. We have evaluated our data using three datasets that are:

o Dataset from SGD (Saccharomyces Genome Database)

o Dataset from FlyBase (Database for Fruit Fly)

o Dataset of gene pairs from Human and Yeast 

Fruit Fly and Saccharomyces are considered as model organisms. A model organism is a 

species that is appropriate to understand particular biological events in more complicated 

organisms, by providing the insight for workings of them [21]. For example, they are 

widely used to explore potential causes and treatments for human disease when

experimentation on humans would be unfeasible or unethical [21]. Some of the model 

organisms are used for human like mice and fruit fly and some are used for studying plant 

sciences like Arabidopsis thaliana [21].

1.1. Gene Similarity

Finding the similarity between genes and proteins can be done by several computational

methods and from different data sources. For example, gene expression data, statistical

computation on biological literature, sequential similarity, and semantic similarity are 

different information sources for measuring the similarity between genes and proteins

[10,32,51.54,66,69,70]. For example, in [4], Al-Mubaid and Nguyen investigated the
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effectiveness of using Medline corpus as the information source for measuring the 

semantic similarity in the biomedical domain [4]. In this thesis we focus on (1) the 

semantic similarity and (2) the sequence similarity between genes. In general, we 

compute the similarity between genes based on the similarity of their GO annotation 

The general problem of measuring gene functional similarity using GO 

annotations with semantic similarity measures can be defined as follows: Define a

terms.

genome annotation set (e.g. SGD, FlyBase) to be a set of genes of one species/organism 

with GO functional annotations for each gene in the set. That is, every gene in the set is

associated with one or more GO terms.

Let G = {Gi, G2....G„} be the set of all genome annotations {in BLAST, UniProt,

geneontology,..etc.}.

Our goal is to define a general semantic similarity function S(gi, g* G) such that if gi is 

(per blast-sequence-similarity, for example) closer to g2 than to g’2 then S(gi ,g2) > S(gi, 

g’2). Since such a similarity function is defined on all genes having GO annotations, it 

provides us a unified semantic similarity measure between genes regardless of the

organism.

I.l.t. Sequence Similarity

DNA and proteins sequences can be considered as identifiers for genes and proteins. To

look at them from the computer science side, they are sequences of alphabets that may 

have similarities in regions. They can be compared globally means all the sequence is
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considered for similarity score or locally means that only specific regions of them are

compared to each other. We call the first one global alignment and the latter local

alignment. Here is a sample of aligning the two sequences.

GAATTGAG
I I II I
GGA-TC-G

Figure l.t. Sequence Alignment

They are some score functions that give positive score to the letters that match and

negative scores to those who do not. For example one function score may give the

sequence score of+1 to the matched letters and -1 to mismatched ones. And -2 could be 

given to the gaps (indels) which are inserted to the sequence for maximizing the 

alignment score [68]. They are different methods of calculating the similarity score for

two or more sequences. One of them is BLAST [5]. The BLAST algorithm has the best

method that keeps a balance between speed of calculation and sensitiveness in sequence 

relationships [68]. Instead of relying on global alignments that is commonly used in

multiple sequence alignment programs, BLAST emphasizes regions of local alignment to 

detect relationships among sequences that have regions of similarity (Altschul et al.,

1990). The input of BLAST tool is FASTA format of the sequences of the genes or

proteins. FASTA format is a text-based format for representing either nucleic acid

sequences or protein sequences, in which base pairs or protein residues are represented

using single-letter codes.
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Since most of the bioinformatics data is in the form of sequences, the most accurate way

of comparing the genes and proteins is by sequence similarities. The homologous 

relationship between proteins could be found by sequence comparisons, but not all of the 

similarities are based on homologies [54]. Based on sequence comparison, proteins of 

unknown function are assigned to characterized protein families, generating testable 

hypotheses of their molecular function. However, this established annotation approach 

has several limitations such as; up to 30% of the function annotations made through 

sequence similarity searches might be erroneous [16] [17]. The reason is when the genes 

are not evolving from a common ancestor the sequence similarity between them are not

considerable. However they may have the similar functionality which is not reflected by

sequence similarity tools [54].

The other problem is that there is no simple relationship between sequence similarity and

function, but some general trends have been observed [54]. One other drawback for the 

sequence notation is that, it is not readable and understandable by human. Semantic

measures on the other hand uses the resource data in scientific natural language as text

which is human readable and understandable [4,32].

1.1.2. Semantic similarity

One of the common ways of finding the similarities among genes is by computing the

semantic similarities between GO functional annotations of the genes [26,31,32, 47,51,

54, 61]. The resource data used in these kinds of measures are in scientific natural

5



language format which makes it human readable and understandable. The problem with it 

is they are not easy to interpret computationally [32]. These approaches use ontology 

(e.g. Gene Ontology) as the primary information source, and can be divided into two 

categories: Ontology-Structured-Based and Information-Based measures.

Ontology-Structure-Based Measures

The ontology-structured based measures use the ontology structure features such as path 

length between nodes (in the ontology), depth of nodes in the ontology tree, and the 

number of minimum paths between nodes, for computing the semantic similarity between 

two terms in a given ontology. For example, the shortest path length between two terms 

(two nodes) in a given ontology can be considered as a good indicator (or metric) of the 

(relative) similarity between these two terms. Suppose that PL(ti, ti) is the shortest path 

length between the two terms t| and t2 in a given ontology Ox then PL(ti, t2) > PLfe, U) 

implies that the terms (ti, t2) have more similarity that the pair (ta, U) according to 

ontology Ox. In this thesis we have investigated the semantic similarity that is based on

the structure of the Gene Ontology.

Information-Content Based Measures

The information-content-based measures use the information content (IC) of gene terms

in computing the semantic similarity. Information Content can be defined as the

6



frequency of use of a term that can be computed from text corpora or estimated from the

ontology (i.e. Gene Ontology) [48].

As an example here we compare the two information based measures Resnik [48] and Lin

[30] for 30 random gene pairs selected from SGD [S3].

In Resnik measure [48] the similarity between the two terms is calculated by the

information content (frequency of use) of the common ancestors. Thus, the semantic

similarity between two terms in an ontology is:

(c,, c2) = - log P(c),c e S(c,, c2)sim Relink

S(cu C2) is the set of common ancestors of terms c\ and cj.

Lin [30] defines the similarity between two terms as the ratio of the LCA occurrence

probability of two terms to the information needed to fully describe the two terms

individually. The following equation reflects this idea.

2.log/*(c)simljn (c,,c2) = max(- ), ceS(c,,c2)
logT’Cc^ + logPfcj)

S(c\, C2) again is the set of common ancestors of terms c\ and cj.

Gcnc2 Bit Score Resnik LinGenet E-Value
AACI 4.6e-l45 1412 3.9049 1AACI

1133 3.9049AACI PET9 1.7e-115 1
AACI AAC3 3.7e-l11 1092 3.9049 1

234 1.2790 0.39S8AACI YPR0I1C 3.1e-20
1.2790 0.4096AACI LEU5 l.le-14 171

7



0.48979.9e-13 181 2.1438AAC1 OACI
169 1.2790 0.4934YEA6 3.708-11AAC1

2.1438 0.7668AAC1 CTP1 5.30E-09 130
100 1.2790 0.7073AACI ODC1 1.80E-07
100 1.2790 0.5101AACI AGC1 2.40E-07

Table 1.1. Compare Sequential and Semantic Measures in High Sequentially Related

Genes

Occurrence(out of 
184810)

LCA
OccurrenceLCA GOGO Gene2Genel Gene2

G0:0005471 2323AACI G0:0005471AACI
GO:OOOS47I 23PET9 G0:000547l 23AACI
GO:OOOS471 23AAC3 G0:0005471 23AACI
G0:00052l5 9721YPR01IC GO:OOOS21S 9721AACI
G0:0005215 97212AACI LEU5 GO:OOI5228

21.2 GO:0015291 1327G0:0008271,
G0:0000227

AACI OACI
GO:00052IS 97213,9721AACI YEA6 G0:0051724,

G0:0005215
GO:0015291 1327G0:0005371 9AACI CTP1
G0:0005215 9721ODC1 G0:0005342,

G0:0005478
850,224AACI

GO:OOOS2I5 9721AGCI GO:0015I83.
GO:OOOS3I3

9,34AACI

Tabic 1.2. LCA for genes with multiple annotated GO terms

As you see in the Table 1.2 some genes are related to more than one GO terms. Lins and

Resnik both suggest picking up the one with the maximum occurrence of Least Common

Ancestors. These terms are marked as bold in the table. Here the scores calculated from

Resnik and Lins which are semantic similarity measures are compared to the sequential

scores called Bit Score and E-value. Bit Score is the score that two sequences of genes

obtain for their structural similarities and the E-Value represents the error or the

differences between the genes

8



In the following table the Resnik and Lins measures are calculated for those genes that

have no sequential similarities with the selected gene (AAC1). These genes are selected 

from the genes that were not appearing among those that have sequential similarity with

the selected gene.

Genc2 Resnik LinsGenet
AAC1 1SS RRNA 0.1293 0.0816
AAC1 0.1293 0.0476AAD10
AAC1 YPL206C 0.1293 0.0526

0.3642AACI YPL278C 0.1293
0.0860AACI RIO I 0.1293

AACI 0.1293 0.3642R1XI
AACI 0.1293 0.0442SCS7

0.4934AACI SSOI 1.2790
0.3642AACI YPR158W 0.1293

AACI tC(GCA)Pl 0.1293 0.0668

Table 13. Semantic Measures in Low Sequentially Related Genes

1.2. How this thesis is oi^anized

This chapter provides an introduction and overview to the task of similarity between

genes and proteins using gene sequence data or gene annotation data from GO. Chapter 2

gives a review of the background about the gene ontology and the tools related to than in

addition to the related work and the existing measures of gene similarity. In chapter 3,

we propose novel measure called PL for measuring the functional similarity between 

genes using the GO annotations. One of the methods is based on calculating the simple 

path length (PL) between GO annotation terms of the genes. We evaluated our method 

with a series of experiments based on the correlation between our method and gene

sequence similarity using Blast e-values. The experimental results proved that our

9



approach has fairly impressive agreement with Blast sequence similarity. Furthermore, 

the evaluations showed that PL can be used as a tool for determining the genes with

similar functions within a genome. We used in the evaluation three genome annotation

datasets: SGD [S3], FlyBase [67] and a Human-Yeast dataset of proteins[54]. Each

dataset is divided into a number of sequence similarity ranges based on the E-value in

gene pairs. Then, we grouped the genes into genes with high sequence similarity (HSS), 

low sequence similarity (LSS) and no sequence similarity (NSS) and each one of these

three groups was tested separately.

In chapter 4 we have proposed another method of measuring the semantic similarity of 

GO terms based on path length and the number of minimum paths between GO terms in

the GO graph. This method distinguishes between two types of paths and assigns

different weights to determine the contributions of number of paths in the semantic

similarity between the GO terms. To assess the similarity between two GO terms, our

method considers all the possible paths between the two terms rather than considering

only the distance to their least common ancestor LCA or the 1C of their LCA [48], [23], 

[30], [61] . In the evaluation, we measured the semantic similarity of SGD 

(Saccharomyces Genome Database) genes from various SDG pathways (obtained from

http://www.yeastgenome.org) and compared our results with two of the leading measures 

(Resnik [48] and Wang et al. [61]). In chapter 3 we extend our PL measure and came up

to a new measure called Simpu> that uses the depth of least common ancestor of two gene

series of related term and the path length between them [25]. We used the average of all 

SimpLD for the terms annotated for each gene. The method is evaluated by a series of

10
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experiments based on the correlation between Simpuj and gene sequence similarity using

Blast e-values.
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2. BACKGROUND AND RELATED WORK

This chapter gives an introduction on the gene ontology which is one of the most 

comprehensive projects done in bioinfonmatics. It will also discuss about the tools and 

browsers available to search and navigate the terms in the gene ontology. Then the

similarity measures that are proposed in different domains will be explained.

2.1. Gene Ontology

The Gene Ontology, created in 2000 by Gene Ontology (GO) Consortium [9], is an 

ontology which shows the functional and biological terms (annotation terms) related to 

genes and proteins in a hierarchical and structured way. Gene Ontology consists of a set 

of controlled vocabularies to describe the biology of genes in any organism [9]. GO

annotations capture the available functional information of a gene or protein and can be

used as a basis for defining a measure of functional similarity between genes. Besides the

bioinformatics resources that hold data in the form of sequences, these data has

represented as scientific natural language which is easier to be modeled and is more 

readable to human [32]. Gene Ontology has provided more accessible representation of

the data related to the genes [47]. It is a dynamic evolving project of the Gene Ontology

(GO) Consortium in which different sections of the ontology are expanded or reorganized

12



as more biological information becomes available. Therefore, GO project is a 

collaborative effort to address the need for consistent descriptions of genes in different

databases. The project is collaboration between 35 model organism databases. Among 

them FlyBase (Drosophila Melanogaster), the Saccharomyces Genome Database (SGD) 

and the Mouse Genome Database (MGD), were the first groups of databases started the

collaboration and after that other databases have joined them [9]. The ontology is

represented as a network, directed acyclic graph (DAG), in which terms may have

multiple parents and multiple relationships to their parents. In addition, each term inherits 

all the relationships of its parents). GO consists of three ontologies that describe the 

molecular function of a gene, the biological process in which the gene participates, and 

the cellular component where the gene can be found; see Figure 2.1. Figure 2.1 shows

an excerpt of the gene ontology as it appears in the Amigo browser [7]. Each one of these

three ontologies (molecular function, biological process, and cellular component) can be

viewed as a root node and has children For example, as shown in Figure 2.1, the node

“molecular function” with the GO id number of G0:0003674 and has the following

children: “G0:0016209 : antioxidant activity”, “GO:0015457 : auxiliary transport

protein activity”, ”GO:0005488 : binding”, “G0:0003824 : catalytic activity”,

: signal transducer“G0:0060089 : molecular transducer activity”, “G0:0004871

activity”. The “signal transducer activity” is also the parent of “G0:0004872 : receptor

If we continue to see the next children we seeactivity” and other children.

“G0:0008188 : neuropeptide receptor activity” which is the child of “G0:0030594 :

neurotransmitter receptor activity”. This term is the last node so-called a leaf and there is

13



no other term that can be categorized under this term. It has the smallest association value

(the value inside the bracket) in compare with its parents and ancestors.

El att s aD [221913]
0 © G0:0008150 : bk>k>glcaLprocess [142636]
0 O <30:0005575 : celkilar_component [155182]
0 O G0:0003674 : molecular_function [145259]

0 © G0:0016209 : antioxidant activity [550]
0 © (30:0015457 : auxiliary transport protein activity [165]
0 o G0:0005488 : binding [43761]
0 O GO:D003824 : catalytic activity [46436]
0 © G0:0030188 : chaperone regulator activity [62]
0 O G0:0042056 : chemoattractant activity [13]
0 O G0:0045499 : chemorepellant activity [8]
0 © G0:0030234 : enzyme regulator activity [2471]
0 O G0:0016530 : metalochaperone activity [39]
0 © G0:0060089 : molecular transducer activity [7766]

0 O G0:000487l : signal transducer activity [7766]
0 O G0:0004872 : receptor activity [5726]

0 O GO:0030594 : neurotransmitter receptor activity [287]
0 O G0:0008188: neuropeptide receptor activity [176]

0 © G0:0001653 : peptide receptor activity [323]
0 O G0:0008528 : peptide receptor activity, G-protein coupled [315]

0 8 GO:00081B8 : neuropeptide receptor activity [176]
0 © GO:0004888 : transmembrane receptor activity [4885]

0 O G0:0004930 : G-protem coupled receptor activity [3889]
0 O GO:0001584 : rhodopsin-lke receptor activity [3434]

0 O GO:0008528 : peptide receptor activity, G-protein coupled [315]

Figure 2.1. Overview of Gene Ontology

Each node is specified by a GO id number which is a unique identifier for the GO terms 

in the gene ontology, a name, and the number of genes associations (i.e. the number of

genes that are annotated with this term in gene ontology) shown inside the brackets. The

more specific term, the smaller number of gene is associated with it. Therefore a big 

number of associations mean that the term is a general term. Each node’s association
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number is the summation of the association number of its children plus the association

number of itself. For example in Figure 2.2 we have “G0:0000146 microfilament motor

activity” (association number of 63) with two children of “G0:0060001: minus-end

directed microfilament motor activity”(assoc\alion number of 2) and “G0:0060002

plus-end directed microfilament motor activity” (association number of 2) . The small

value of the children shows the specificity of the two terms. Whereas the term

UGO:0000146 microfilament motor activity” have larger number than its children which

is compatible with “true path rule” that states that if a term describes a gene then all its

parents must also apply to that gene [9]).

a O GO:0003774 : motor activity [558]
B O G0:0000146 : microfilament motor activity [63]

B O G0:0060001 : minus-end directed microfilament motor activity [2] 
H O G0:0060002 : plus-end directed mlcrofflament motor activity [2]

Figure 2.2. True path rule: The two children are more specified and have smaller

association value than their parent

In GO, the terms are linked by two kinds of relationships that are IsjB and partjof. The

is_a relationship has the meaning of being a subclass. The partjof relationship means that 

if A is partjof B then whenever B exists A exists as a part of B. But A does not depend 

on B. Figure 2.3 shows some GO terms with is-a relationships between them in Gene

Ontology.
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Figure 23. A tree view of some GO terms with is_a relationships between them (Picture

is from Amigo browser [7])

2.2. GO Tools and Browsers

There are several software tools to navigate and browse through the Gene Ontology to

shows the position of the terms within the GO hierarchy. In this section we take a look

and review some of these tools.
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o GOLEM [50] is an interactive graphic visualization tool for gene ontology that

can be used for navigation and analysis of GO on the web. Users can also load

annotation for various organisms to search particular genes. GOLEM is

implemented in Java and both applet and web version of it is available. Figure 2.4

shows how this software looks like.
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Figure 2.4. Each node in GO could have more than one parent. The picture is from

GOLEM software [50]

o Amigo is a browser for gene ontology data that is used for browsing and

searching the gene ontology [7]. Users can search for genes to see the terms

associated with them. They can see a terms' position in the GO by using the

Amigo interface. Amigo can be used to view all the genes associated with a GO

term. The new added feature is BLAST search, which is useful to find the genes
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that have the highest sequence similarity with the specified gene. Amigo uses the

mySQL database. Figure 2.5 shows the genes associated with the term

G0:0008188 in Amigo browser. By pushing the BLAST button we can have the

FASTA format of the genes in addition to the genes that are sequentially similar

to that gene based on their p-value.

ilUtr.:
|PMIP:11381038[gene from Drosophila ISS 

• ' |jmetenipgBSter
AICR2
aflat ostatln C receptor 2 .

gene from Drosophila ISS 
mebnogaster

PH1P: 1X381038AlstR
APatostatln Receptor

jlSS^ gene from Drosophila 
■^JlmetenogastBr

PHIP:11381038AR-2 fr'L^yrjj

Allatostafln Receptor 2 •
"r. gene from Drosophila ISS 

mebnogaster
PMID:113B1038canaR

capa receptor PHIP:12177421IDA

Figure 2.5. Genes associated with term G0:0008188 in Amigo Browser

Here is an example of FASTA format for gene TVFV2E. FASTA format starts with a 

single line description and the lines of sequence data comes after that. The “>” symbol at

the beginning of the line distinguishes the description from the sequence data. See below:

>gi|532319|pirITVFV2EITVFV2E envelope protein

ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT

QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLRLRQAWC

HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHGEFFYCK

MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK

TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVEITPIGF
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APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNL

LAAVEAQQQMLKLTIWGVK

There are lots of other navigation and analysis tools available on gene ontology website

geneontology.org. The mentioned software tools are the ones used in this thesis.

El all : all [219358]
El O G0:0003674 : moleciilar_functIon [143593]

El O G0:0016209 : antioxidant activity [540]
E O G0:0015457 : auxiliary transport protein activity [164]

El O GO:OOl6249 : channel localizer activity [1]
El O GO: OO16247 : channel regulator activity [153]

El O 60:0005246 : calcium channel regulator activity [42] 
E O G0:0019855 : calcium channel inhibitor activity [11]

Figure 2.6. Sample of Amigo Browser output

2.3. Distance between terms in GO

In Gene Ontology finding the number of the edges between two terms has not been

automated by any software. In this thesis we have implemented a program that can

quantify the distance between the terms, using the XML format of the Gene Ontology.

The XML file is freely available and downloadable from www.geneontology.org.
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CTxmi veESion-"1.0" encoding-"UTF-8" 7> 
<rdC>

<term sbout-"http: //wire. geneontology. OEg/go#all"> 
<acce3sion>all</ecce83ion>
<nane> ell< /name>
<deCinition>This tern is the most general tern posslble</de£lnltlon>

</tern>
<tern about»"http: //vww. geneontology. OEg/go#0O15488"> 

<accea3ion>00154B8</acce3Sion>
<nane>glucuronide perneaae activity</nane> 
<synonyn>glucuxonoside pernease activity</3ynonyn> 
<de£inition>Catalysls of the reaction: glucuronide(out)

+ nonovalent cation (out) - glucuronlde(in) + nonovalent cation(in). 
</definition>

<is_a resouice-<Thttp://v«nr. geneontology. ocg/go#0015164" /> 
<is_a Ee30UEce-"http://vTO.geneontology.OEg/go#QQ15486" f> 
<dbxref parseType-,rRe30UEce,T>

<databa8e_synbol>TC</dataha9e_3ynhol>
<refierence>2. A. 2.3.l</reference>

</dbxref>
</tera>

</rdf>

Figure 2.7. XML format of Gene Ontology

In this thesis we have calculated the distances between genes and proteins from different

genomes [26]. The terms associated with each gene and protein is extracted from a

database related to that genome. The process of assigning GO terms to genes is called

annotation. The database provides us with terms that the genes are annotated with and the

references that associated the terms to the genes. It also indicates the kind of evidence

code available to support the annotation. For every evidence code, a curator judges about

the quality of the evidence. Therefore the terms that have the evidence code of TAS

(Traceable Author Statement) is completely different in terms of quality from those that

have the evidence code of NR (Not Recorded). Some of other evidence codes are NAS:

Non-traceable Author Statement, ISS: Inferred from Sequence or Structural Similarity,
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IEA: Inferred from Electronic Annotation. More detail about the evidence code can be

found in geneontology.org.

Each of these databases has downloadable files that contain all these associations. Some

of the genomes that have their annotations available are:

o SGD: This is a scientific database related to the genes of the yeast Saccharomyces

cerevisiae, which is commonly known as baker's or budding yeast. It contains

6476 annotated genes in gene ontology [53].

o FlyBase: This database contains the molecular biology and genetics of the Fruit

Fly (Drosophila melanogaster) that is used as a research tool and model organism.

It contains 10581 annotated genes [67].

o WormBase: This is a database of the model organism Caenorhabditis Elegans. It

contains 14156 annotated genes in gene ontology[63]

o Arabidopsis thaliana TAIR/TIGR: This database contains the genes from genome

Arabidopsis thaliana which is a model organism for plants [8]. It contains 34683

annotated genes in gene ontology [8].

o Trypanosoma brucei Sanger GeneDB: Contains the genetics and molecular

biology related to Trypanosoma brucei which causes the African trypanosomiasis

(or sleeping sickness) disease. There arc more than 60 million people at risk in

Afhca.[62] It contains 3921 annotated genes in gene ontology [59].

o MGI: Mouse Genome Informatics provides integrated access to data on the

genetics, genomics, and biology of the laboratory mouse [39]. It contains 18052

annotated genes in gene ontology [39].
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2.4. Similarity Measures

Ontology-based semantic similarity measures have been investigated for long time in 

different domains. First it was proposed in English domain and later it was adapted in

biomedical and bioinformatics domains. The first Ontology used for measuring the

semantic similarities between its terms was WordNet [12,37,40]. Several measures were

proposed, some were based on the structure of the ontology [32] and some were related to

information content of the terms [12,23,30,40,48].

■ Resnik Measure

Resnik [48] proposed an information-content (1C) based measure for semantic similarity

between terms and these measures were designed mainly for WordNet [12, 37].

WordNet is a freely available lexical database that represents an ontology of

approximately 100,000 general English concepts [12, 37]. These measures are proven to

be useful in natural language processing (NLP) tasks [44]. Resnik's measure calculates

the semantic similarity between two terms [t], tj in Ontology (e.g., WordNet) as the

information content (1C) of the least common ancestor (LCA) of ti, t2. The 1C of a term t

can be quantified in terms of the likelihood (probability) of its occurrence p(t).

IC(c) = -log p(c) 0)

The higher a term appears in the ontology means the lower is its information content 

because, simply, more general terms tend to occur more frequently in general than

specialized terms. For example in Figure 2.8 the information content of node 1 is less
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than all of its descendants and the leaves (nodes 10, ..IS) have the most information

content and are the most specialized terms. The probability of a term to occur is assumed

to be equal to its frequency in the annotations in a database [32] [51]. In Gene Ontology

the frequency of each term c is calculated by:

freq (c) = anno (c) + £ freq (A) (2)
hechildren (c)

where atmofc) is the number of genes annotated with this term in the database,

children(c) is the set of children for term c in GO [54]. It means that the frequency of

each term equals to the number of the time that genes are annotated by this term plus the

number of the times that its children are used to annotate a gene.

The probability of term t is then defined as:

p(t) = freq(t) /freq(root) (3)

where freqfroot) is the frequency of the root term [54].

The probability assigned to a term is defined as its relative frequency of occurrence.

sim (t,,t2) = -log p(t) (4)Rtianik
l-I.CA(t
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The minimum similarity is zero and there is no maximum for this measure.

Figure 2.8. Example of a tree structure

The more frequency of occurrence means the more general term. The power of Resnik's

measure is that both the relevance of the LCA itself and the distance to the LCA are taken

into consideration [61]. Resnik’s method only concentrates on the information content of

a term derived from the corpus statistics and it ignores the structure of the ontology

which is considered as a drawback of using his method in Gene Ontology in which the

specificity of a GO term is usually determined by its location in GO-graph and the 

biological meaning of a term is inherited from all of the term’s ancestors [61]. For this

reason Wang et. al pointed out the information content is not an appropriate measure for

the measuring the semantic similarity of the GO terms [61]. *

* Jiang and Conrath
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Jiang and Conrath [23] proposed a different approach for the WordNet ontology by

combining the edge based measure with information content calculation of node based

techniques derived from Resnik’s method. Their formula measures the distance between

two terms. The distance is the reverse of their similarity measure.

dist jc (t |, 12) * 21og p(t) -(log p(t |) + log p(t2)) (5)
l-LCA(t ,.t2)

■ Lin's Measure

Lin [30] in 1998 developed a measure that considered how close the terms are to their

least common ancestor (LCA) in the ontology. However, it disregards the level of detail

of the lowest common ancestor.

2.log P{c)smu,{ci,c2) = msx. (6)log P(c,)+log P(c2)

Here S(ci, C2) is the set of common ancestors of terms Ci and cj. In contrast to Rcsnik's

similarity, the values range between 0 and 1.

■ Other Measures

In 1994 Wu and Palmer [64] applied both the distance between each term with the LCA

of two terms and the depth of LCA of them. Later in 1998 Leacock and Chodorow [29]

proposed a formula for computing the semantic similarity or the relatedness between two

terms in WordNet ontology as follows:
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Len(l„t2)simLC(t„t2) = -log (7)2xmaxdepth(c)
ceWwdNct

in which Len is the minimum path between ti and t2.

Biomedical Domain

In the Biomedical domain, measures of semantic similarity based on ontology were

developed as early as 1989. Rada et al. [46] proposed the first semantic similarity 

measure in the biomedical domain by using path length between biomedical terms in the

MeSH ontology [36] as a measure of semantic similarity. Al-Mubaid et al. (2007) [1]

presented a technique for computing the semantic distance (similarity) between 

biomedical terms across multiple ontologies within a unified framework like UMLS. 

Also, Nguyen and AI-Mubaid (2006) [42] proposed a similarity measure for biomedical 

terms by combining both path length and depth features from biomedical ontologies.

In fact the path length is the distance between the terms in the ontology based on the 

edges needed to be traversed to reach to the other term. Path Length (PL) can be

calculated easily for a tree structured Ontology such as WordNet. But for DAG-type

ontology, like Gene Ontology, path length is more complicated, since each node may 

have multiple parents, and thus, two nodes can have several different paths between 

them. Several other biomedical ontologies, within the framework of UMLS (unified

medical language system) [60], have also been used for measuring semantic similarity in

bioinformatics [1,2,4,41], e.g. Snomed-ct [28,40] and ICD9CM [58].
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Lord et al. (2003) [32] were the First to apply a measure of semantic similarity to GO.

They proposed a technique for calculating the semantic similarity of protein pairs based 

on Resnik's measure [48]. The semantic similarity between two proteins is defined as the 

average similarity of all GO terms with which these proteins are annotated. Each protein 

pair receives three similarity values, one for each Ontology (Molecular Function,

Biological Process and Cellular Component Ontologies) [32].

Speer et al. (2004) [56] used a distance measure based on Lin's similarity for clustering

Chang et al. (2001) [14] andgenes on a microarray according to their function.

MacCallum et al. (2000) [33] showed that Similarity between annotation and literature

will augment sequence similarity searches [32]. They improved PSIBLAST (Altschul et 

al., 1997 [6]) with similarity scores calculated over the annotations and Medline [35] 

references. Sevilla et al. (2005) [51] analyzed the correlation between gene expression 

and Resnik's, Jiang and Comeths' and Lin's measures of semantic similarity [51]. They 

used microarray data analysis to determine expression levels of genes and compare them

with those annotated in GO. They concluded that Resnik's measure correlates well with

gene expression. On the other hand, Budanisky and Hirts [12] investigated the relatedness 

of Resnik [48], JC [23] and Lin’s [30] measures in WoidNet ontology and founded JC 

[23] as a superior measure to all other ones. These measures were all applied to the non­

biomedical ontologies.

More recently, Schlicker et al. (2006) [54] introduced a new measure of similarity

between GO terms in Gene Ontology that is based on Lin's and Resnik's techniques.

Their measure (sim/w) takes into account how close terms are to their least common
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ancestor as well as how detailed the LCA is, i.e., distinguishes between generic and

specific terms.

2.1og/>(c) Ml -P(c))simM(ct9c2) = max (8)log /*(C|) + log P(c2)

S(c\, a) is the set of common ancestors of terms c\ and cj.

This sintRei score is the basis for a new measure, called funSim, to compute the functional

relationship between two gene products. The score ranges from 0 to 1. A funSim score 

close to one indicates high functional similarity whereas a score close to zero indicates

low similarity. The distribution of the funSim score analyzed and compared for four

different categories of protein pairs corresponding to four levels of evolutionary

relationship: no sequence similarity (NSS), low sequence similarity (LSS), high sequence 

similarity (HSS), and orthology* 1 according to Inparanoid (10) that have more sequences 

similarity than HSS. The result is that almost 60% of the protein pairs in the 10 dataset

have the score above 0.8. Those proteins with the highest sequence similarities tend to

have similar molecular functions. However, some protein pairs in the 10 set have scores

below 0.2, indicating no functional similarity. The percentage of proteins with high 

functional similarity is highest for the 10 category, and decreases for HSS and LSS, to

almost no protein pairs without sequence similarity (NSS). These results confirm that

functionally related proteins tend to have higher sequence similarity [54].

XXVlll-

1 Orthologs art genes in different species that originate from a single gene in the last common ancestor of 
these species. Such genes have often retained identical biological roles in the present-day organism [47J.
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Wang et. al (2007) [61] proposed a measure to calculate the functional similarity of GO 

terms based on GO term's semantics (S value) which is an aggregate of the contributions

of the term’s ancestors in the GO graph. In the evaluation, they found that their method

produces results closer to human perception compared with the results of Resnik’s

measure on the same genes [61].

Although Path length measure has been applied and explored with several biomedical

ontologies [46] [44], it has never been applied or investigated with the gene ontology. 

All gene functional similarity techniques that use GO are, thus far, based on IC of terms

or node depth features [54] [23] [32] [46].
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3. A PATH LENGTH METHOD FOR GENE SIMILARITY

USING GO ANNOTATIONS

This chapter presents the first gene similarity method which estimates the gene functional 

similarity based on the semantic similarity between the GO terms annotated for genes. As

mentioned in chapter 2, Path length metric has been used in the biomedical domain as a 

good measure of term similarity [46] but has never been investigated in the context of

gene functional similarity and gene ontology. We use the ontology structure, of the GO,

for estimating the similarity between pairs of genes based on their annotated terms. More

specifically, we propose the path length between two terms in GO as an indicator of

functional similarity/relatedness of the genes annotated with these terms. For example,

suppose that two genes gi and g2 are annotated with the GO terms ti and t2, respectively,

for their molecular functions MF. Then, the shortest path length between t| and t2, PL(t|,

t2), in GO is a good measure of the functional similarity between gi and g2. In this

chapter the proposed measure is evaluated by comparing it with the sequence similarity

measure.
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3.1. Path Length Calculation

We developed an application for calculating the shortest path length between two genes

(gene pair) based on their annotated terms. The method selects the gene pairs from an

organism annotation hie (e.g. SGD), then extracts the terms that these genes are

annotated with.

These annotation terms can be from each of biological process BP, molecular function

MF, and cellular component CC ontologies. Recall that the GO is organized into these

three ontologies BP, MF, and CC. For a given pair of genes (gi and g2), in certain

annotation database like SGD, the annotation terms for gi and g2 in molecular functions

will be extracted and stored in a link list. Then we calculate the first common ancestor of

the terms related to the two genes. We used the February 2007 release of GO from the

gene ontology website [22]. The yeast gene annotations were downloaded from the SGD

site (Dec.2006) [S3], FlyBase gene annotations were obtained from the GO website

(Dec.2006) [22]. Here is simplified algorithm for the process:

1. For each pair of genes {gi, g2} in the annotation file, the terms related to each

gene are extracted from the database.

2. The path lengths between the GO terms are calculated from the GO DAG using

edge counting.

3. The distance score between two genes is measured based on the average distance

(shortest path length) between their GO annotation terms.

There were two ways for implementing our algorithm for computing the shortest path

length between two GO nodes rij and ri2'.
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1. Recording all the ancestors of each node (each node represents a GO term) till we

reach the root. Then we compare the ancestors of nj and nj to find the common

ancestors.

2. Recording just the first level ancestors of each node and comparing them to see if

they have anything in common or not.

Since the second approach uses less memory and faster compared to the first approach we

have applied it in our method. In next section the detail of the method is explained.

3.2. Algorithm for Distance Measure

To measure the distance between the genes we need to have distance (path length)

between the terms related to each gene. In section 3.2.1 we explain how the distance

between two terms is measured and in section 3.2.2 the distance between two genes are

computed.

32.1. Distance between GO terms

To calculate the distances between each 2 terms in the gene ontology we have developed

an application in .Net framework using C# language. The algorithm that is used in this

program is as follows:

1. The LCA (least common ancestor) between two nodes is calculated first:
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a. The first level ancestors of each node are extracted from the gene ontology

DAG.

b. The ancestors are then compared to each other to see if they have come up

to a common ancestor or not.

c. When the ancestors of the two target nodes had any node in common it

means that the common ancestor is found.

2. To measure the distance between two nodes we count the edges from each node to

the common ancestor found in previous stage.

Figure 3.1. GO is a kind of DAG.

As an example we explain the algorithm of finding the fist common ancestor of node 11

and node 12 in Figure 3.1. Some snapshot of the process is shown in figures3.2 and 3.3.

We have used linked list as the structure of storing the nodes in it. We have a pointer that

moves from the beginning to the end of the link list to show which node’s parent should

be calculated. Here is the algorithm:
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1- First the two nodes of 11 and 12 (the target nodes) are pushed as the first 2

elements of the link list. The pointer is now on the node 11 in the link list.

I
11 12

Figure 32. Stage 1 of the algorithm

2- The first level ancestors of the node 11 (which has the pointer on it) will be added

to the list(7,4). The pointer moves one cell Anther to the node 12.

i
11 12 7 4

Figure 3.3. Stage 2 of the algorithm

3- The first level ancestors of the node 12 which are (8 and 5) are be added to the

list. Pointer will move further on to the node 7.

11 12 7 4 8 5

Figure 3.4. Stage 3 of the algorithm

4- The first level ancestor of node 7 is node 4 which had been added to the list

before. Since there is no need to add the existing number to the list we just go to

the next element.
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I
11 12 7 4 8 5

Figure 3.5. Stage 4 of the algorithm

5- Node 4 has the node 2 as its immediate ancestor. We add it to the list The pointer

moves on node 8.

i
11 12 7 4 8 5 2

Figure 3.6. Stage 5 of the algorithm

6- The first level ancestors of node 8 are nodes 5 and 6. The node 5 is already in the

list so we just add 6 to the list.

i11 12 7 4 8 5 2 6

Figure 3.7. Stage 6 of the algorithm

7- The first level ancestor of node 5 is node 2. That has been added to the link list in

the stage 5 as the parent of node 4 and node 4 was the parent of node 11. On the

other hand node S was the ancestor of node 12. So we have reached to node 2

from two different target nodes (11 & 12) that make it the Least Common

Ancestor of them.

35



parents of 12 parent of 4

L>rur/rL4/ 8 5 2 6
T parent of 8parents of 11

Figure 3.8. Reach the fist common ancestor from two target nodes

Note: In this algorithm we keep the track of each path to see which source the ancestors

are relate to. If the program reaches a common ancestor from two different sources it

means we have reached to the first common ancestor.

\jr\jr\jynziar\ 216
11 12 11 111212 11

12

Figure 3.9. Source node(target node) of each node in the link list

Figure 3.10 shows a sample of the program run for genes AAD4 and NUP1S9 (from

SGD). Moreover, more details about the implementation of the PL method are available

in Appendix A.
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Figure 3.10. The Path Length Calculator application snapshot

3.2.2. Distance between genes

To find the distance between two genes we first calculate the distance between the GO-

terms of each gene and then we derive a similarity score that is represents all of them.

This score could be calculated by one the following ways:

■ Row Maxima and Column Maxima

This is the method that has been used by Schlicker et. al [54]. They defined their measure

of similarity between the genes based on the similarity value between their related terms

using the maximum values of all rows and columns in the similarity matrix. As an

example suppose that the Table 3.1 is the similarity matrix for GO-terms related to two

genes:
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Table 3.1. The similarity matrix between two genes

In this method, the maximum value in each row is extracted and the average of them

forms the rowScore. Then the average of maximum value for each column is calculated

that forms the columnScore. The final similarity measure is the maximum of the two

values (rowScore and columnScore) [54]

0)1 NrowScore = —V max dij
N yB] ISj&At

(2)1 McolumnScor e = —V max dij 
M ji I SjSN

SimilarityJScore - maximum(columnScore, rowScore) (3)

■ Average of all the GO-Dixtances

For the pair of genes {gi, g2} such that gi is annotated (for its MF) with the terms t],t„

while g2 is annotated with terms ti,..,tm. We calculate all the possible short paths between

the MF terms of gi and g2. Let dy be the shortest path length between term tj of gi and 

term tj of g2. The method computes the average of all paths:
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(4)avg{ dij | i : l..n, j: l..m}

For example, suppose that the 2 genes gi and g2 are annotated with the following GO

terms, gi -#■ t|, t2, t3, t4 and g2^ ti\ 4’, 4s, 4s where t[= t|’ and t2 = t2’. Then their

similarity matrix contains 16 values. To calculate the average we have:

Average = [d(ti, ti’) + d(ti, t2') + d(ti, t5’) + d(ti, 4’) +

d(t2, t,s) + d(t2. t2s) + d(t2, t5’) + d(t2,4’) +

d(t3, t,’) + d(t3, t2’) + d(t3, t5s) + d(t3, 4’) +

d(t4, t,’) + d(t4, t2’) + d(t4, 4’) + dfa, t«s)] /16

where d(a, b) means the distance(or shortest path length between the 2 terms a and b).

If we simply measure the distance between each two term as mentioned above we would

encounter a problem which is shown by example below.

Suppose that we have two genes that are annotated with exactly the same terms, that is gi

ti, t2 and g2 t|\ t2s where t|= ti* and t2 = t2s. The distance measure between the

two genes would be d(tl, tP) + d(tl, t2s) + d(t2, tP) + d(t2, t2’) = [CH-l+l+0]/4 = 0.5

which is not the desired result we expect from this measure. We expected to see the

minimum distance which is zero between these two genes. Therefore we change our

approach a little bit so that the distance of those terms that are common in two terms is 

not counted. Therefore in the above example that we had two genes of gi t|, t2, t3. U

and g2^ ti\ t2\ t5\ 4* where ti= t] * and t2=t2’ the average is calculated as follows:

Average = [0 +0 + 0 + 0 +

0+0+0+0+
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d(t3, t,’) + d(t3, t2’) + d(t3, W) + d(t3, V) +

d(U, t|f) + d(U, t2’) + d(U, ts’) + d(t4, t6’)] /16

3.3. Comparing the results with Sequence Similarity

We used Blast tool [I I] for computing sequence similarity between gene pairs. The Basic

Local Alignment Search Tool (BLAST) finds regions of local similarity between

sequences. The program compares gene sequences to sequence databases and calculates

the statistical significance of matches. [II]

In some experiments, we used another tool, WU-BLAST2 [52], to find genes having high

sequence similarity to a given gene. We changed the settings in this program so that

more genes with less sequence similarities are shown in the result Lower EXPECT

thresholds in Blast settings causes more stringent selection that lessen the chance of

matching sequences [11].

3.3.1. E-value

The Expect value (E-value) is a parameter that describes the number of hits one can

"expect” to see just by chance when searching a database of a particular size [11]. In the

gene sequence similarity results from Blast, the E-value of 0 means that the genes are

totally similar, and as the E-value increases the sequence similarity decreases. This means

that the lower the E-valuc, or the closer to 0 the more sequence similarity they have [11].

Bit-score is another metric of sequence similarity that BLAST gives and that indicates

how much alignment and sequence similarity two genes have.
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The higher the bit-score the better the alignment, and hence, higher sequence similarity.

The path length between two genes is inversely proportional with the bit score. When the

path length between two genes increases, their Blast bit score decreases; this relation is

shown in Figure 3.11. In which all the genes in groupl have high sequential similarity, all

the genes in groupl have medium sequential similarity with group2 and all the genes in

groupl have no sequential similarity with group3.

Path Distance ScoreCbits)Genelferoupl) Gene2(group1)
AAD10 AAD4 0 1379

1362AAD10 AAD14 0
AAD10 AAD3 0 1177

AAD16 0 695AAD10
531AAD10 AAD15 0

AAD10 AAD6 0 427
AAD10 YPL088W 0 227

Table 3.2. SGD genes with high sequence similarity with AAD10

Gene 1 (groupl) Gene2(group2) Path Distance ScoreCbits)
AAD10 POP3 9 39

0AAD4 GRX4 5
AAD14 RRN5 8 0

0AAD3 KAP95 8
AAD10 HUAI 5 47

NUP159 6AAD4
AADI4 8 0BFA1

YMR041C 79AADIO 5
AADIO RPL29 7 44
AADIO 63ATPIO 8

Table 3.3. Comparing Groupl with Group2 genes

Path Distance ScoreCbits)GenelCgroupl) Gene2(group2)
AADIO ABZI 8 0

9 0AADIO ACB1
0AADIO ACTI 7
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ADE17 9 0AADIO
ADE8 10 0AADIO
ADY2 10 0AADIO
AGPI 9 0AADIO
AHPI 6 0AADIO

Table 3.4. SGD genes with no similarities with AADIO

Relationship between path length and bit score

15

10 Path Length] 

Bit ScoreSe8" 5

0

Figure 3.11. Relationship between path length and bit score

As it shown in the diagram the path length have the opposite trend compare with the bit

score. The bit score values are divided into 100 to be shown easier in the diagram.

3.4. Experiments and Results

We developed a module, called PathLengthCalculator, to implement our proposed

method for measuring the similarity between GO terms and between genes. We used the
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PathLengthCaiculator module to evaluate our methodology and measure the distance

between the genes and proteins.

3.4.1. Distribution of Path Length

■ Distribution of PL in SGD Dataset

We have explored the distribution of path length between gene pairs in SGD genes.

For that, 1000 gene pairs were selected randomly from SGD. The distribution of path

length of these randomly selected gene pairs are shown in Figure 3.12. From this

experiment (Figure 3.12) we notice that the majority of these gene pairs (64%) have

path length between 3 and 7. Furthermore, 12% of these pairs have path length of at

most 2 which indicate that these genes have somewhat significant semantic similarity

(small path length) between their GO terms. Moreover, we found that 24% of these

gene pairs have path length of 8 or greater [8-13] which indicates that these pairs

have no similarity in their GO annotation terms. This leads to the observation that

there is no significant pattern or relation (by chance) of the path length feature

between these SGD genes.
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Distribution of Path length among SGD Genes

200 HP • -y'.'jS'ZK*
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2 3 4 5 6 7 8 9 10 11 12 130 1

Path Length

Figure 3.12. Distribution of path length among 1000 gene pairs randomly selected from

SGD.

■ Distribution of PL in FlyBase Dataset

To see the distribution of path length in FlyBase we have collected randomly 500

gene pairs from FlyBase annotation file. The path length distribution is illustrated in

Figure 3.13. Again, no pattern or relation exists between FlyBase genes.
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Distribution of path length among FlyBase 
genes
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Figure 3.13. Distribution of path length among 500 gene pairs randomly selected from

FlyBase

3.4.2. Evaluation based on Correlation with Sequence Similarity

In our experiments we have examined our method to test the correlation between path 

length and sequence similarity of gene pairs. For that, we extracted three datasets of gene 

pairs from SGD: HSS, LSS, NSS. The high sequence similarity (HSS) gene pairs are 

those with the Blast E-value < 10'\ The gene pairs with low sequence similarity (LSS) 

are those with the E-value > 10'5 but less than one. The gene pairs with no sequence

similarity (NSS) are those with the E-value = 1.
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0.0024ABP140 OMS1 6 98
102 1.80E-Q5ABF2 NHP10 3

0 13POP3 SIP3 8 79
2.80E-05ACE2 YPR013C 2 114

85 0.82AFT1 VAC7 3
0.02ABF1 SR09 3 89

0 86 1.00E-05ABM1 YIL102 C
ACA1 GCN4 4 68 0.83

83 0.0027ADP1 NEW1 5
62 0.99AAC1 MRS4 7

0.37AAT1 TMA7 5 52
5 70 083YMR289W IMD3

Table 3.5. Example from SGD-LSS gene pairs

Table 3.5 shows a small pari of the result for the LSS dataset as an example. We have

plotted the percentages of each group (HSS, LSS, NSS) that have PL value less than 2,

the PL value of greater than 2 but less than 7 and the PL value of greater than 7 in the

following.

The PL measure is tested on the following datasets:

o Dataset 1 contains 200 gene pairs of HSS, 200 gene pairs of LSS, and 200 gene

pairs of NSS extracted from SGD annotation database [53].
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Datasetl From SGD
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Figure 3.14. Distribution of path length between gene pairs in Dataset 1

Figure 3.14 illustrates the distribution of path length (x-axis) in HSS, LSS, and NSS

sets. More than 60% of the gene pairs in HSS have path length of 2 or less while only

15% of LSS and 4% of NSS gene pairs have the path length 2 or less. The number of

HSS gene pairs decreases as the path length increases through the x axis. We also

found that more than 40% or NSS gene pairs and only less than 10% of HSS pairs

have path length of 8 or more.

o We conducted another experiment on SGD genes using another dataset (Dataset2)

of gene pairs having certain relations in their sequence similarity. Dataset 2

includes 139 gene pairs of HSS, 469 gene pairs of LSS, and 386 gene pairs of

NSS extracted from SGD annotation. The results are illustrated in Figure 3.15.

As we can see in these experimental results, again there is a pattern or relation

between path length and sequence similarity. That is, gene pairs with high

sequence similarity (HSS) tend to have low path length between their GO terms.
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Data Set 2 From SGD

□ HSS

□ LSS 
mNSS

2<PL<=7 PL>7

Path Length

Figure 3.15. Distribution of path length between gene pairs in Dataset 2 from SGD

For example, more than 80% of HSS pairs have path length of 2 or less. Moreover, genes

with no sequence similarity (NSS) lean to have relatively higher path length between

their GO terms.

o Next, we combined Dataset 1 and Dataset 2; we call it Dataset 3 which includes

339 HSS gene pairs, 669 LSS gene pairs, and 586 NSS gene pairs. The results of

Dataset 3 are shown in Figure 3.16. Again, we have the same trend, majority of

NSS genes (93%) have path length of 3 or more which implies that there is no

significant semantic similarity in their GO terms. On the other hand, majority of

HSS genes (70%) have path length of 2 or less indicating semantic similarity in

their GO annotation terms.
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Dataset3 From SGD
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Figure 3.16. Distribution of path length between gene pairs in Dataset 3

o In another evaluation, we used genes from a different genome, the Fly Base

annotation database [67]) in a new dataset (we call it Dataset 4) of gene pairs.

Dataset 4 includes 60 gene pairs of HSS, 60 gene pairs of NSS extracted from

FlyBase annotation database. The results of path length distribution among the

FlyBase gene pairs are illustrated in Figure 3.17. Almost 80% of HSS pairs have

path length < 2 while only 13% of NSS pairs have path length < 2 which implies

that there is a correlation between sequence similarity and path length in this

dataset.
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Distribution of Path Length in RyBase dataset
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Figure 3.17. Distribution of path length between gene pairs in Dataset 4 from FlyBase

We include a listing of the gene pairs of each group (MSS, LSS, NSS) in each dataset in

Appendix B.

In summary, our evaluation experiments involved more than 1700 gene pairs (more than

3400 genes) having high, low, or no sequence similarity from two different organisms.

Furthermore, we tested our method on 1500 gene pairs (3000 genes) randomly selected

(with no particular sequence similarity) from the two organisms. All the experimental

results on various gene groups, from two different genomes, support the fact that there is

significant correlation between the sequence similarity of genes and semantic similarity

using path length. This suggests and proves that path length between gene annotation

terms using GO can be a good and reliable measure and metric for gene functional

similarity.
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3.4.3. Compare Average and Maxima methods

We introduced two methods for calculating the distance between two genes in section

3.2.2: Row Maxima and Column Maxima and Average of all the GO-Distances. To

compare between two methods, some experiments have been done. These experiments

are applied on the dataset we explained in section 3.4. We call the first approach Maxima

and the second approach PL in the figures:

PL vs. Maxima in FlyBase-HSS

id PL 0 Maxima

Figure 3.18. Comparison between PL and Maxima measure in HSS Fly Base dataset

As it is shown in the figure the maxima measure is doing very well in predicting the path

length for the genes in FlyBase HSS. The results are even better in compare with PL

measure. Near 50% of the gene pairs with high sequence similarity have the PL value of

less than one. The PL is measured by considering the maximum of the rows and columns

explained in section 3.2.2. Next we consider the diagram for FlyBase NSS. As it shown
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below the two measures are similar to each others and both shows correlation with

sequence similarity.

PL vs. Maxima in FlyBase-NSS

m PL 0 Maxima

Figure 3.19. Comparison between PL and Maxima measure in NSS FlyBase dataset

The 3 datasets of SGD is also used to compare the two approaches. As you see in figure

below both of the measures have correlation with sequence similarity. With PL measure

37 percent and with Maxima measure 42% of the gene pairs with high sequence

similarity have the PL value less than 1.
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PL vs. Maxima in SGD-HSS

□ PL b Maxima

Figure 3.20. Comparison between PL and Maxima measure in HSS SGD dataset

For LSS and NSS we also can see the difference between these two measures. As it is

shown below most of the pairs have the PL value of 6 in both measures which is

approximately a medium distance for the gene pairs. Since we consider the PL measure

less than 2 as close distance and between 2 and 7 is considered as medium distance and

the PL value of greater than 7 shows a far distance between the gene pairs.
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Different PLs in SGD-LSS

(□PL b Maxima

Figure 3.21. Comparison between PL and Maxima measure in LSS SGD dataset

As it is shown below more than 50% of the gene pairs have the PL measure greater than

7. Less than 5% have the PL value of less than 2 and the rest have the PL value between

2 and 7. Still the correlation can be seen clearly for both measures.

54

PL
<1

5

PL
<1

4

PL
<1

3

PL
<1

2

PL
< 

11

PL
<1

0

PL
<9

PL
<8

PL
<7

PL
<6

PL
<5

PL
<4

PL
<3

PL
<2

PL
<1

Pe
rc

en
ta

ge



PL vs. Maxima in SGD-NSS

□ PL @ Maxima

Figure 3.22. Comparison between PL and Maxima measure in NSS SGD dataset

We have also applied these two approaches to the datasets from [54], This dataset is

being further used in the rest of this thesis. It contains 4 groups of the protein pairs. Those

with very high sequence similarity that is called IO dataset, those with high sequence

similarity called HSS, those with low sequence similarity and no sequence similarity

called LSS and NSS respectively.
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PL vs. Maxima in Human-Yeast dataset-IO

□ PL □ Maxima

Figure 3.23. Comparison between PL and Maxima measure in IO Human-Yeast dataset

The PL and Maxima measures both show the highest percentage of protein pairs in the

PL value range of less than 1. In HSS, LSS and NSS dataset we also can see that the

result is the same as what we expected.
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PL vs. Maxima in Human-Yeast dataset-HSS

D PL b Maxima

Figure 3.24. Comparison between PL and Maxima measure in HSS Human-Yeast

dataset
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PL vs. Maxima in Human-Yeast dataset-LSS

□ PL s Maxima

Figure 3.25. Comparison between PL and Maxima measure in LSS Human-Yeast dataset
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PL vs. Maxima in Human-Yeast dataset-NSS

□ PL □ Maxima

Figure 3.26. Comparison between PL and Maxima measure in NSS Human-Yeast

dataset

3.4.4. Compare terms in Biological Process and Molecular Function ontologies

We have done some experiments to compare the Biological Process (BP) distance versus

the Molecular Function (MF) distance in the gene ontology. We have used 2 data sets for

our comparison. First we applied it to 2000 genes from FlyBase dataset.

In FlyBase HSS dataset which are those genes with high sequence similarity, it is

expected that the PL measure would be small. Therefore it is more desirable for us to

have the genes with PL = 0, 1 rather than 6, 7 and more. As shown in Figure 3.27 the MF

datasets acts as what we expected. For example, most of the gene pairs (near 70%) with
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high sequence similarity have the path length value less or equal to two. the percentage

decreases as the distance (PL value) increases.

In BP dataset as it is shown in the Figure 3.27 less than 5% have the PL value less than or

equal to two. When the path length increases the percentage of the genes with greater

distance (bigger PL value) also increases.

This shows that the PL would not be a suitable measure to be used in biological process

(BP) ontology.

PL for BP and MF in FlyBase-HSS

Figure 3.27. Comparison PL between BP and MF in HSS FlyBase dataset

For the genes with no sequence similarity both ontologies of BP and MF show correlation

with sequence similarity. See Figure 3.28.
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PL for BP and MF in FlyBase-NSS

Figure 3.28. Comparison PL between BP and MF in NSS FlyBase dataset

However the desired trend has been observed in another experiment with a dataset of

4000 protein pairs from Human-Yeast [54]. Each Biological Process and Molecular

Function datasets are shown separately in Figure 3.29 and Figure 3.30.

As it is shown in Figure 3.29 the highest percentage of the gene pairs with path length of

less than two is related to the genes with high sequence similarity (HSS) and the highest

percentage of the gene pairs with the PL value of greater than 7 is for the gene pairs with

no sequence similarity (NSS).

For those gene pairs that we measured their PL value based on their annotated terms in

MF ontology (Figure 3.30) we see that the highest percentage of the gene pairs with path

length of less than two is related to the genes with very high sequence similarity (IO set)

and the highest percentage of the gene pairs with the PL value of greater than 7 is for the

gene pairs with no sequence similarity (NSS).

This also shows that MF in dataset shows more correlation with sequence similarity.
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Path Length

Figure 3.30. Distribution of PL in Human-Yeast dataset using MF terms
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Figure 3.29. Distribution of PL in Human-Yeast dataset using BP terms
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Now we consider each dataset of gene pair based on their sequence similarity separately.

In 10 dataset high percentage (48%) of the protein pairs have the path length less than 2

for the time that we consider their molecular function (MF) terms to calculate the FL

value. The percentages of the protein pairs with the PL value between 2 and 7 and PL

value greater than 7 decreases to 35%, 18% respectively that is what we expect from the

pairs that have the very high sequence similarity (IO).

Human-Yeast Dataset path length distribution for 
IO: MF vs BP
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Figure 3.31. MF vs. BP in FIuman-Yeast IO dataset

On the other hand, both the Molecular Function and Biological Processes datasets in FISS

and LSS show high percentage of protein pairs with the path length value greater than 2

and less than 7. See Figure 3.32 and Figure 3.33.
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Path Length
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Figure 3.32. MF vs. BP in Human-Yeast HSS dataset

Human-Yeast Dataset path length distribution for 
LSS: MF vs BP

Human-Yeast Dataset path length distribution for 
HSS: MF vs BP

Figure 3.33. MF vs. BP in Human-Yeast LSS dataset
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Path Length

Figure 3.34. MF vs. BP in Human-Yeast NSS dataset

In general using BP terms in our measure to calculate the biological similarity between

the genes shows less correlation with sequence similarity in compare with the time that

we want to use MF terms to find the functional similarity between the genes.

3.5. Conclusion

Gene Ontology is considered the most comprehensive and reliable resource for functional

annotations of gene products. The existing techniques for finding gene functional
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For NSS dataset BP shows high percentage of pairs with PL value greater than 7.

Although the MF shows lesser percentage in compare with the BP, still the result is

acceptable (40% of the pairs have the PL greater than 7). See Figure 3.34.

Human-Yeast Dataset path length distribution for 
NSS: MF vs BP
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similarity based on GO rely mainly on IC or node depth. Little effort has been done for

investigating the Path length feature as a metric or indicator for gene functional

similarities. The work presented in this chapter is an attempt to fill this gap. We

presented a novel technique for finding gene functional similarity based on GO

annotation terms. The method is based on the average shortest path length between the

GO terms annotated for both genes in a given gene pair. We evaluated the proposed

method with a series of experiments on large groups of genes from two genomes SGD

and FlyBase. We have shown that this method correlates very well with gene sequence

similarity by comparing large numbers of gene pairs with sequence similarities computed

by one the most reliable algorithms for that purpose (Blast). We have shown further that

randomly selected gene pairs have no significant (by-chance) pattern with path length.
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4. A NEW GO STRUCTURE BASED MEASURE WITH

EVALUATION USING SGD PATHWAYS

The length of the shortest path (PL) between two terms in a given ontology has been

proved to be a good indicator of the semantic distance (semantic distance is the inverse of

semantic similarity) between the two terms [1, 46, 12, 13, 44]. In this chapter, we

compute path length between GO terms and modify it by considering the number of

distinct minimum-length paths between the terms. Then we measure the similarity

between two genes by using the semantic similarity values between their GO annotation

terms and also considering the number of common GO terms between the two genes.

4.1. Distance between GO terms

To measure the similarity between genes we need to compute the distance (shortest path

length) between GO terms annotated for those genes. The following are some notes that

we should consider:

1 - Each gene or protein is annotated with one or more GO terms.

2- Each two GO terms could have more than one minimum path among them. So

that there may be more than one Least Common Ancestor (LCA) between two

terms. As an example, consider the Figure 4.1 in which, each node represents a

67



GO-term. The LCAs between node_6 and node_l are node_10 and node_ll,

because, the two nodes could be reach from 2 paths of “6-10-7-5-1” and “6-10-

11-5-1”. Either of these paths has the Path Length of 4 which are the reason for

the existence of two different LCAs.

3- In this algorithm the number of LCAs affects the measure of functional similarity.

If two genes are related to each other from several different paths, it means that

they have more functional similarity that those who have only one path between

them

Figure 4.1. A graph to represent multiple paths in GO

As an example consider the following gene pair from FlyBase [67]:

The first gene InR is annotated with 4 Go-terms and the second gene Ror is annotated

with 3 GO-terms. See Tabic 4.1.
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PL PL PL PLNmp nmpnmp nmpAV

0 0 2 I 10 I 11 1

9 10 11 1 1 1 1-■;;C

fi: 3 8 29 1 3 1 1

Table 4.1. Path Length (PL) and number of minimum path (nmp) between the GO-terms

for InR and Ror genes from FlyBase organism

Let us define the path length function between two GO terms gOx and gOy as follows:

PL(gox, goy) = the minimum path length in the GO graph between

the two GO terms goxandgoy

(1)

But there might be more than one minimum-length path between gOx and gOy. We count

number of distinct paths between gox and goy in the GO hierarchy. Two GO nodes might

have several paths between them and among which there are two or more paths with the

minimum length. This means that we can have more that one Least Common Ancestor

(LCA) for two GO terms in the GO tree. The larger the number of minimum paths

between two GO terms, the more similar they are. To test this hypothesis we modified the

PL, Eq(l), by dividing it by number of minimum paths nmp between gox and goy, we call 

modified path length PLm. Then PLm (gox, goy) is defined as:
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PL(gOx, gOy) if nmp — 1

PL(gox, goy)/w/.nmp, otherwise (2)

where nmp is the number of minimum paths between gOx and goy and wj is a weight

factor to determine the contribution of nmp in PLm. In our evaluations, we found that

w, = 0.6 gives the best results.

Example: As an example, in Figure 4.2, the minimum path length between the two GO

terms G0:0042626 and G0:0004129 is 7 using edge counting:

PL(GO:0042626, G0:0004129) * 7.
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Figure 4.2. Part of the GO to illustrate the paths between two GO terms 0042626 and

0004129

We notice that there are 3 paths between G0:0042626 and G0:0004129. The first path of

length 7 is via the LCA node GO: 0003824. while the second and third paths are via the

LCA nodes GO: 0003674 and GO: 0002215 respectively.

LCA (G0:0042626, G0:0004129) - {G0:0003824, GO: 0003674, GO: 0002215}

Minimum-Paths (G0:0042626, GO: 0004129) =

{ 42626-16820-16817-16787-3824-16491 -15002-4129; 42626-43492-5215-3674-3824-

16491-15002-4129; 42626-43492-5215-15075-8324-15077-15078-4129}
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The 3824 and 5215 that have the bold format are the least common ancestor of the two

target nodes. All the relations (edges) in Figure 4.2. are an “is-a” relationship, i.e., each 

node has an “is-a” relationship with its parent node. Using Eq (2) the modified path

length (PLm) between these two GO terms is calculated as follows:

1PLm(GO: 0042626, GO: 0004129) = 7x = 3.89
0.6x3

4.2. Distance between genes

Given two genes Gp and Gq such that gene Gp is annotated with a set of n different GO

terms, we call it the set GOp: GOp - {gOp1, gop2....... gopn}, and similarly, the annotation

set for gene Gq = GOq = {go,,1, goq2...... . goqm}; that is, gene Gq is annotated with m

different GO terms. From these two sets, GOp and GOq, we compute an n x m matrix of 

PLm values between GO term pairs PL^/goJ , goj) for all i ~ \

Then we calculate the average of all PLm values in the matrix which will be the PLm for

n and j - 1...... m.9

the two genes, that is:

»-i j-iPL m (G p, G q) = (3)
n x m

Now, number of minimum paths (nmp) between the two GO terms has been considered

as a positive feature for similarity and thus contributed to similarity as we have seen in 

Eq(2). As we mentioned earlier, our method distinguishes between two different paths:
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paths of length > 0 and paths of length 0 (common terms). Paths of length > 0 has been

considered in calculating PLmof two GO terms (in Eq.2) while the contribution of paths

of length 0 will affect the PLm of two genes. That is, if there is one or more paths of

length 0 (/.&, one or more common GO terms) in the annotation terms of the two genes

then this affects their PLm value. If the two genes Gp and Gq have one or more common

terms between them, then we divide their PLm (eq.3) by 2 times the number of common

terms between Gp and Gq:

i^PL^go'.go])
«■! jm\____________________________1PLn(Gp,Gq) = (4)

2 x net nx m

where net is the number of common GO terms between Gp and Gq. If Gp and Gq have no 

common terms between them (net - 0) then we use equation (3). Notice that the number

of common terms (net) is not considered in the summation of PLm in equation (2) because

path length is 0 and dividing it by wl*nmp will not reduce the result (eq.2). To have

common terms between two genes means that the genes are closer and have common

functionality. So the distance (path length) between them should be less.

Example: Consider the following example from SGD: The two genes ABF1 and IFH1 are

annotated with the following Go-terms:

GOahfi ={3682,8301,3677,3700, 16S63, 16564}

GO™ = {3700,3704}
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The 6x2 matrix containing the pair-wise path length (PL) and nmp between their GO

terms is shown in Table 4.2. The PLm between IFH1 and ABF1 is computed as follows:

+2x-+lx-+2x-+2x-+5x-+7x-+6x-+3x- +3x- +3x- 
2x0l6 1111111111

14x

3x4M.flFHl.ABFl)- ■ 1.6
2x1

IFH1
G0:0003700 G0:0003704
PL PL Nmpnmp

G0:0003682 24 5
G0:0008301 2 I 7
G0:0003677 I 6ABFI I
G0:0003700 0 0 3
GO:0016563 32 1

2 3G0:0015564 1

Table 42. PL and nmp values between GO terms of two SGD genes (ABFI and IFH1).

4.3. Similarity between Genes

Finally, the functional similarity between two genes Gp and Gq is as follows:

Sim(G p,Gq) = maxBDJlI " PL M (G p, G q) (5)

Therefore, for the last example we have:
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Sim(Gp, Gq) = 15 - 1.6 = 13.4

The maxgo_pi in the formula above is the maximum PL value in GO, in our experiments, 

we used max^pi= IS because, according to the research done by Delfs et. al [IS] the

Gene Ontology had a depth of 13 levels based on the study they had in the year 2003.

The depth of gene ontology never remains the same and it would be gradually increasing

by the advent of new GO terms. We have used depth IS in our experiments but the depth

and the number of the words in gene ontology tend to be changed in future.

4.4. Experimental Results and Evaluation

There are few methodologies for evaluating the similarity values computed by a measure.

In NLP, for example, the two common approaches for comparing the computed semantic

similarity values of a given measure is (a) by the correlation with human scores using a

dataset of term pairs scored for similarity by human evaluators; (b) by using the measure

in an application like information retrieval (IR) system or text categorization [12,13]. In

this thesis since we are in the context of gene functional similarity using GO annotations.

the evaluation methodologies include: - comparing the computed similarity values with

gene sequence similarity [23. 13, 54, 1] with gene expression profiles [51], or using gene

pathways and clusters information to validate the results [61]. In this chapter we

followed the third approach, as in [61], and we compared our measure with two measures

[48,61].
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The semantic similarity measure of Resnik [48] calculates the similarity between two

terms [ti, tj in Ontology (e.g., WordNet) as the information content (IC) of the least

common ancestor (LCA) of ti, t2. As what Sevilla et al. (2005) [51] found from the

analysis of the correlation between gene expression and other IC based measures (Resnik,

1995[48]; Jiang and Conrath, 1997 [23]; Lin, 1998 [30]), Resnik's measure turned out to

be more accurate than the others. For this reason, we chose to compare our method

experimentally with Resnik's measure. For that, we measured the similarity of gene pairs

in SGD pathways obtained from http://pathway.yeastgenome.org/. We have obtained

pathways #5 (allantoin degradation) and #6 (arginine biosynthesis) containing 4 and 7

genes respectively (pathways 1 to 4 contains less than 3 genes each). l*he similarity

values among the gene pairs of pathways 5 & 6 are shown in Table 4.3 for both our

method and Resnik's measure. First, we notice that in pathway #5 with 4 genes (,DALI,

DAL2, DAL3, DUR1,2) and 6 gene pairs, both techniques produced consistent results.

Gene I Gene2 Resnik Proposed

2.47DALI DAL2 II
DA1J 2.47 IIDALI

Pathway S 9.5DALI DURU 1.74
5.22 13DAL2 DAL3

DAL2 DURU 1.74 9.5
9.5DAIJ DURU 1.74

ARC I AR02 0.28 8.5
AROI AR03 0.28 8

0.28AROI ARG4 8
ARG5.6 0.28 6.67AROI

0.28 8ARGI ARG8
ARGI GCM40 0.28 6.67

ARG3 1.38 7.5ARG2
ARG4 0.28 5.83ARG2

Pathway 6 6.67ARG2 AROS.6 1.01
ARG2 ARG8 1.38 7.5

5.76 14.5ARG2 ECM40
ARG4 0.28 7ARG3
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AR03 ARGS.6 8.51.01
ARG3 ARG8 91.38
ARG3 7.5ECM40 1.38
AR04 ARGS.6 0.28 7.67
ARG4 ARG8 70.28

ECM40 5.83ARG4 0.28
ARG8 1.01 8ARGS.6

AR03.6 ECM40 6.67.10
ARG8 7.5ECM40 1.38

Table 43. Comparison of our result with Resnik’s result in two pathways from SGD.

For example, both measures gave the gene pair (DAL2, DAL3) the highest similarity

whereas the 3 pairs (DALI, DUR 1,2; DAL2, DUR1.2; DAL3, DUR 1,2) received the

lowest similarity.

Pathway #6 demonstrated some differences in the similarity values produced by our

measure and Resnik’s measure. For example, if we compare the two pairs (ARG2,

ARG3) and (ARG3, ARG5,6) we see that Resnik’s measure gives higher similarity value

(1.38) for (ARG2, ARG3) than for (ARG3, ARG5,6) (1.01), however, in GO tree, the

distance between the terms annotating (ARG2, ARG3) and (ARG3, ARG5.6) are 9 and 6

respectively. Our measure gave higher similarity (8.S) for (ARG3, ARG5,6) than for the

other pair (7.S) which is more consistent with the annotations in the GO tree. Let us

consider the pair (ARG4, ARG8) with the pair (ARG1, ARG8). Both pairs have the same

similarity of 0.28 based on Resnik measure, but in GO graph we notice that the distance

between the GO terms annotating ARG4 and ARG8 is larger than the distance of the GO

terms of ARG1 and ARG8. Our measure reflects this fact and gives higher similarity for

the pair (ARG1, ARG8) than for the pair (ARG4, ARG8), see Table 4.3. Thus our

measure is closer to human sense than Resnik’s measure. Comparing (ARG1, ARG5,6)

and (ARG1, ARG2) shows that there are three paths of minimum length 7 between the
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GO terms of first gene pair, and for the second gene pair there are 2 paths with the

minimum length of 10 between them. Therefore, it is a logical perspective that the first

pair (/.e..(ARGl, ARG5,6)) is more similar than the second one. Again, Resnik’s

measure gives the same similarity value (of 0.28) for these two pairs while our measure

gives similarity values of 8.5 and 6.6 to them, respectively, which shows that the first pair

is more similar and this is closer to the human (curators) similarity estimates when they

annotated these genes. Let's examine, further, the two pairs of (ARG4, ARG5,6) and

(ARG3, ARG4). In GO hierarchy there are 3 distinct paths of length 8 between the terms

of first pair (ARG4, ARG5,6) while there is only one path, also of length 8, between the

GO terms of the second pair. Therefore the genes in the first pair are more bounded to

each other compared with the second pair. As we see in Table 4.3, both pairs have the

equal similarity value of 0.28 by Resnik’s measure whereas the proposed measure gives

the value of 7.6 to the first and 7 to the second pair which is again evidence that the

proposed measure produces better results.

In another evaluation phase, we examined the proposed measure along with a newly

published measure (Wang et al. 2007) [61]. In experimenting with the same pathways as

[61]. our measures produced results that are very competitive and sometimes closer to

human perspective which is the criteria that Wang et al. have emphasized the most [61].

ARQ8 15 7.3 7 7 7 7 7 6 7 7 7
6 7 7 7ARQ9 7.3 7 7 7 7 7

FT7*yn 14.9 14.9 14.9 7.3 7.3 6.3 7.3 7.3 7.3
15 15 7 7 6 7 7 7PDC6

PDC5 15 7 7 6 7 7 7
PPCI 7 7 6 7 7 7

14.7 14.7 14.7 14.7SFAl 11
14 15 15 15ADH5

14 14 14ADH4
15 15ADH3

15. ADH2
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Table 4.4. Similarity values among genes in tryptophan degradation pathway based on

our algorithm

In [61 J, the proposed measure is used to cluster the genes in each pathway and reported in

their paper the results for pathway #141 (tryptophan degradation pathway). We tested

our method on SGD pathway 141 and the similarity values for our measure and their

measure are shown in Tables 4.4 and 4.5, respectively. Moreover, Figures 4.3 and 4.4

show the clusters that resulted from both methods.

w.y; w l w.\ w.y m i 'i jggrgg urea wznm au j.y ■ r.> >j; n »» c ■ w.y ; «■ igreirl 1
ARQ8 1 0.22 0.20 0.20 0.199 0.199 0.199 0.199 0.199 0.173 0.199

0.173 0.199ARQ9 0.217 0.199 0.199 0.199 0.199 0.199 0.199 0.199
EUslLl 0.190 0.2170.B96 0.896 0.896 0.221 0.217 0.217 0.217

0.173 ft1991 1 0.199 0.199 0.199 0.199PDC6
0.173 0.199• ppcs 1 0.199 0.199 0.199 0.199
0.173 0.199PDC1 0.199 0.199 0.199 0.199

0.779 0.779 0.779 0.877 0.779SFA1
1ADH3 1 1

ADH4 1 1
IADH3 0.869

ADH2 0.869
APHI

Table 4.5. Similarity values among genes in tryptophan degradation pathway based

Wang et al.’s measure [61 ].

Threshold Inlta 15 14.9 14.7 7.314

£istm m
KSFH !1Eg® M
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SFA1 SFA1

PtSESi

PBC8 m®Pticto mpm XBCT
&RG'iQ

Figure 4J. Clustering genes in tryptophan degradation pathway based on our algorithm

Comparing these two measures on this particular gene group, we found that both

measures give very similar and consistent results (Tables 4.4 & 4.5) with few differences

in the resulted similarity values as follows. The similarity value by our measure is 14.7

for the pair (SFA1, ADH5) and 14.0 for the pair (ADH4, ADH5); therefore SFA1 will be

clustered with ADH5 group sooner than ADH4 according to our measure. But in Wang’s

method ADH4 is clustered with ADH5 before SFA1 is clustered with the ADH5 group,

since the similarity values are 0.87 and 0.78 for (ADH4, ADH5) and (SFA1, ADH5)

respectively.
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Threshold Initial 1.000 0.890 0.860 0.770 0.220 0.210
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Figure 4.4. Clustering genes in tryptophan degradation pathway based on [61].

By examining the GO annotation terms of these genes, we find that SFA1 and ADHS are

both annotated with the same GO term “alcohol dehydrogenase activity9, while ADH4

& ADH5 have no common terms between them; See table 4.6. This confirms that our

measure is closer to human perspective than the measure of Wang et al. [61].
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ADH5

G0:0004022 alcohol dehydrogenase activity

8FA1

G0:0004022 alcohol dehydrogenase ectavity

G0:0004327 fbnneldehyde dehydrogenase (glutathione) activKy

ADH4

60:0004024 alcohol dehydrogenase ecthrity, zinc-dependent

Table 4.6. Three SGD genes with their annotation by GO terms.

4.S. Discussion and Conclusion

We presented a simple measure for semantic similarity of GO terms and then the

functional similarity of genes. The measure is based strictly on the ontology structure

features of the GO. Specifically, our measure estimates the semantic similarity between

two GO terms using the various paths between them. We assign a higher weights in the

similarity metric for gene pairs having common GO terms (having paths of length = 0)

between their annotation sets. We also assign weights for number of minimum length

paths between two terms. The strength of our measure comes from the idea that we

consider all paths between the GO terms, and the paths of length zero (common terms)

between two genes are treated differently. If two GO terms have multiple minimum paths

between them then they have more than one LCA (least common ancestor) and hence

they share more commonalities than those GO terms with one minimum path between

them. We examined our measure with a large number of gene groups from SGD
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pathways {we cannot report all the results for space limitations). The experimental

results showed that our method performs better than the measure of Resnik in most cases

or equal in the rest of the cases, and very competitive or sometimes better than Wang et

al.’s measure.
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5. CORRELATION BETWEEN DEPTH AND PATH LENGTH OF

GO NODES WITH GENE SEQUENCE SIMILARITY

In this chapter we present another new similarity measure (SimpLD) for calculating the

semantic similarity of terms in Gene Ontology based on the depth and path length

features in GO hierarchy. That is, this method is based strictly on the ontology structure

features (/.*., depth and path length) without using any other information sources (like

biomedical text literature, or gene expression data). The method computes the similarity

between two genes as numeric figure based on the average of Simple between the GO

terms annotated for both genes in a given gene pair.

5.1. Semantic Similarity between GO terms

In Chapter 3 we proved that the length of the shortest path (PL) between two terms in a 

given ontology is a suitable measure of the semantic similarity between the two GO

annotation terms. In this chapter, we also consider the depth of the least common

ancestor of the two terms in the previous measure which was the path length between the

two terms. Then the similarity value between two genes will be the semantic similarity

values between their GO term annotations.
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The similarity between two GO terms is defined as

depth (lca(gox,goy)) PL(gox,goy)Sim pit, (gox,goy) = log( )-log(
Max _ dpth 2 x Maxdpth

(1)

PL(gOx, goy) is the minimum path length in the GO graph between the two GO terms gOx 

and goy. In formula 1, the first phrase is divided by the maximum of depth in the GO and

second phrase is divided by 2 times the maximum depth in GO which implies the

maximum PL in the gene ontology. The division operation is for the purpose of

normalization and has scaled down the value of SimpLD in our computations. There is no

bottom or upper limit for SimpLD value but in our experiment we got the values ranged

between -2 and 2.

S.2. The Semantic Similarity of Genes

Given two genes Gp and Gq such that gene Gp is annotated with a set of n different GO

terms, we call it the set GOp: GOp = {gOp1, gOp2....... gOp"}, and similarly, the annotation

set for gene Gq = GOq = {goq‘, goq2....... goqm}; that is, gene Gq is annotated with m

different GO terms. The similarity between genes are measured by calculating the

average of SimpLD between the GO terms annotated for both genes in a given gene pair.

85



(go,,goy)|x:l..n,y:l..m} (2)(gp.geneq) = avg{simsim puj PLD

5 .3. Experiments and Results

53.1. Dataset

The sample size which is used in this chapter consists of 1000 gene pairs from

SGD(Saccharomyces cerevisiae) [S3] and 2000 pairs from FlyBase (Drosophila

melanogaster) [67] genomes in one experience and 4000 protein pairs from a dataset that

is used on [54]. The sample size is consistent with those researches done on the same

similar subject. Indeed the size is not exactly the same or larger, still it is considered as a

reasonable size. We mention some examples as the proof of this claim: Schlicker et al.

2006 [54] has applied their measure on 682 protein pairs from human and saccharomyces

cerevisiae proteins with very high sequence similarity (IO set), 989 protein pairs with

high sequence similarity (HSS set) and 989 protein pairs with low sequence similarity

(LSS set). They have applied their measure to 1356 protein pairs with no sequence

similarity (NSS set). Another research done by Lord et al. [31] has applied their measure

of semantic similarity to those proteins with the evidence code of TAS extracted from

approximately 7000 human proteins in Swiss-Prot. Dolan et al. [18] investigated on the

consistency of the annotations for genes related to mouse and human. They could find

out, of the complete set of human and mouse and 11860 MGI curated genes, 3948 genes
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have only MG I GO annotation and 4994 genes have only GOA annotation and only 1572

genes are annotated by both groups. Khatri et al. [27] worked on genes from Homo

Sapiens genome. From the 11203 genes and 5201 ontology category and 58 millions

gene-function association they could extract 212 additional gene-function assignments.

out of which 161 were confirmed in later releases of gene ontology database. Therefore

the size of the dataset used in this chapter is consistent with the size of dataset used in

other researches.

In this chapter as what we did in chapter 3 for the evaluation, we divided the datasets into

different groups based on the Blast E-value of the gene pairs. Those pairs with zero

values are considered sequentially similar and the E-value of 1 shows that there is not a 

significant similarity among the genes. Remember that we grouped the gene pairs with 

the Blast E-value <10-5 as high sequence similarity (HSS). The gene pairs with low 

sequence similarity (LSS) are those with the E-value>10'5 but less than one. The gene 

pairs with no sequence similarity (NSS) are those with the E-value=l.

5.3.2. Distribution of SimpLD

As it is shown in Figure 5.1, in FlyBase dataset, nearly all of the genes that have no

sequence similarity have the Simn.D value of less than zero. Among those with high

sequence similarity more than 80% have the Simpu> of greater than zero which shows a

very high correlation of our result with the sequential similarity.
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Distribution of sim for FlyBase

—
—

■

—— OHSS 
□ NSS

-

____ .
-2<sim<0 0=<sim<2 8

Figure 5.1. Distribution of SimpLD value between gene pairs in FlyBase dataset

In Figure 5.2 which is related to the SGD dataset, more than 90% of NSS genes, have the

SimpLD value of less than zero. More than 70% of LSS genes have the SimpLD value of

less than zero and more than 60% of HSS genes have the SimPLD value of greater than

zero which still shows agreement with sequential similarity.
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Distribution of sim for SGD

O HSS

□ LSS
□ NSS

•*

-

-2<sim<0 0=<sim<2.8

Figure 5.2. Distribution of Shield value between gene pairs in SGD dataset

In Figure 5.3 more than 90% of NSS genes from the third dataset, have the SimpLD value

of less than zero. Half of the LSS proteins have the functional similarity of less than zero

and the other half have the SimpLD value of greater than zero which we expect from the

proteins with low sequence similarity. Also more than 60% of HSS genes have the

SimpLD value of greater than zero which is correlated with the sequential similarity

measure. Therefore for the most of the genes with high sequence similarity we have

found SimpLD values greater than zero and those with no sequence similarity have the

SimpLD value of less than zero.
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□ HSS
□ LSS

□ NSS

0=<sim<2.8

Distribution of sim for Human-Yeast dataset

Figure 5.3. Distribution of Siitipld value between gene pairs in Human-Yeast dataset

We also computed the average SimPLD value for all gene pairs in the SGD with high

sequence similarity (HSS) which was 0.11 whereas the average SimpLD value for all SGD

with low sequence similarity (LSS) and no sequence similarity (NSS) gene pairs were -

0.54 and -0.85 respectively. For FlyBase we had the similarity values of 0.71 and -0.92

for HSS and NSS respectively. This is also another indicator that the HSS gene pairs have

significantly higher sim values compared with the LSS and NSS.

We have also plotted the distribution of SimpLD separately for each dataset that we had.

Here we analyze it shortly. In figures below the Y axis is the value of SimpLD and the

gene pairs are along the X axis that are sorted by their SimPLD value. For example, in

Figure 5.4 FlyBase gene pairs have the minimum SimPLD value of-1.5 and the maximum

SimpLD value of 2.5. The first dataset is for FlyBase gene pairs with high sequence
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similarity. Although we have some gene pairs with Simpi.Dof negative values but most of

them have the positive value. It shows compatibility with sequence similarity.

Sim

3
2.5 —

2
1.5

1
0.5 Sim

0
-0.5

-1
-1.5

-2

Figure 5.4. SimpLD in FlyBase HSS dataset

The second dataset is for FlyBase gene pairs with low sequence similarity. Although we

have some gene pairs with SimpLD of positive values but most of them have the negative

values. It also shows correlation with BLAST value.
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Figure 5.5. SimpLD in FlyBase NSS dataset

We applied the same measure to SGD and observed that for the pairs with high sequence

similarity some of the gene pairs have the SimpLD of negative, we had lots of value zero

and some of the positive values. For the dataset with low and no sequence similarity the

number of zero and positive values decreases and the number of negative increases as we

move to the lower sequence similarity. It is also showing a good correlation with

sequence similarity.
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Figure 5.6. Simpi.D in SGD HSS dataset
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Figure 5.7. Sinicin SGD LSS dataset
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Figure 5.8. SimpLD in SGD NSS dataset

For Human-Yeast dataset HSS, LSS and NSS show the correlation with sequence

similarity but the 10 dataset with the highest sequence similarity is expected to have

higher SimpLD value in compare with HSS. But as it shown in Figure 5.9 the number of

gene pairs with positive SimpLD value is less than those in HSS. This might have the

meaning that the sequence similarity in 10 dataset does not necessarily mean that the

gene pairs are more functionally similar. It means that they are sequentially similar, but

they are not functionally similar.
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Figure 5.9. SimpLD in Human-Yeast 10 dataset
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Figure 5.10. SimpLD in Human-Yeast HSS dataset
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Figure 5.11. SimpLD in Human-Yeast LSS dataset
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Figure 5.12. SimpLD in Human-Yeast NSS dataset

Figure 5.13 shows some snapshots of the running program. The program gets the

annotation files for the three datasets (FlyBase, Human-Yeast, SGD) as its input in
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addition to the excel file that contains the name of genes in each gene pair with its

associate E-Value for later comparison and based on what is selected by the user in the

first menu of the application, the sequence similarity menu will be populated accordingly.

For example, for FlyBase we have two items of HSS and NSS in the sequence similarity

menu and for Fluman-Yeast dataset we have 10, FISS, LSS, NSS items and for SGD

dataset we have HSS, LSS and NSS items.

Report GeneratorReport Generator

Source Dataset FlyBase Source Dataset Human-Yeast

1Sequence Sm Sequence Sim EE@
10

LSS
NSSf Generate Report Exit Generate Report ] | Lxir

Report Generator U || □ || XMlnllxReport Generator

Source Dataset 'FlyBaseSource Dataset Human-Yeast
FlyBase
Human-Yeast Sequence SimSequence Sim

HSS
INSS

[ Generate Report [ Exit [ Generate Report Exit

Figure 5.13. Sample of running of the program
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The output of the program is the files in excel format that contains the path length

between the GO terms and the depth of Least common ancestor of the terms related to

each gene in a gene pair. A part of it is shown in Table 5.1. Sample of the output of

application

6/6/1/6/6/3/I/I/4/1/I/1/InR Ror 1 10E-50 0/179/1/2/ l/5/]/l 0/9/3/]/11 /10/8/1/
0/1/1/I/0/I/1/2/1/ 6/6/6/6/675/Aik Nrk I.50E-52
0/171/2/1/]/ 6/6/676/htl dnt I OOE-25
172/1/0/171/ 6/6/474/Pak slik 4 80E-43

Cad96Ca 590E-42 172/1/0/171/1/0/1/ 5/5/6/6/676/Nrk
5/6/6/5/6/6/5/6/67Cad96Ca I.IOE-41 1/0/1/1/2/1/0/1/3/2/171/Eph
6/6/6/6/675/Eph shark I 30E-39 0/171/1/2/1/2/3/1/

0/1/1/1/0/1/9/47]/ 6/6/676/1/3/Ror Ret 4 I0E-38
3.40E-54 3/1/1/1/07]/

2/1/271/1/1/

5/5/5/takl Takl I
CG5169 2.50E-21 5/4/4/takl

1/2/1/3/271/2/1/1/ 5/5/6/4/674/takl CG7097 400E-19
Pak3 CGI 1870 7 70E-25 \JV 6/
CG5169 hpo 1 40E-70 1/0/571/ 6/4/1/

CG5169 Dsorl 3 00F.-40 0/1/471/ 4/4/5/

Table 5.1. Sample of the output of application

As you see the PLList contains the list of path length between the GO terms in gene

pairs. Consider the first row of the output in table above.

Ror is a gene that is annotated with three GO-terms that are G0:0004713, G0:0004714,

G0:0005030. InR is a gene that is annotated with four GO-terms that are G0:0004713,

G0:0005009, G0:0005520, G0:0005520. The PL List for these two genes is

0/l/9/]/2/l/5/]/l 0/9/3/]/11/10/8/]/. Each three number is separated with a separator for

being used later to build a matrix. The first Go term of InR which is G0:0004713 is

compared with all the three GO terms of Ror. Then a matrix can be built from this PL­

List. See Table 5.2.
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00:000552000:0005009 00:000552000:0004713
1:0004713 in 110 2
>:0004714 9 101 I

G0:0005030 3 X9 5

Table 5.2. Path Length between Ror and InR GO-terms

The depth list (6/6/176/6/3/1/1 /4/1 /1 /1 /) also contain the depth between them. Table 5.3

shows how they are placed inside our matrix.

UUU4* /1 J) GO:UUU5UU9 G(J:U(X):>5zU GU:UUU55zUenel:In V *
Gene depth depth depth PL depthPL PL PL
00:0004/ 2 10 1 11 10 6 6
GO: 9 106 1 6 1 11
GQ:0005( 3 89 1 5 3 4 1

Table 5.3. Depth and PL between Ror and InR GO-terms

Then the formula introduces in sections 5.1 and 5.2 is applied to these values to find the

semantic similarity between two genes.

5.4. Discussion and Conclusion

We have used the path length along with the depth of LCA of two terms to measure the

semantic similarity between GO terms that leads to functional similarity measure

between genes. We called this measure Simppo ( short for Similarity measure based on

PL and Depth) The existing techniques for finding gene functional similarity based on
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GO rely mainly on information content(IC) of the terms. We presented a novel technique

for finding gene functional similarity based on GO annotation terms. The method is based

on the average of our measure (Simp^o) between the GO terms annotated for both genes

in a given gene pair. We evaluated the proposed method with a series of experiments on

large groups of genes and proteins from two genomes of SGD and FlyBase and a dataset

of Human-Yeast protein pairs. We have shown that this method correlates very well with

gene sequence similarity by comparing large numbers of gene and protein pairs with

sequence similarities computed by one the most reliable algorithms for that purpose

(BLAST).

In summary, our evaluation experiments involved more than 3000 genes and 3000

protein pairs having high, low, or no sequence similarity from three different datasets. All

the experimental results support the fact that there is significant correlation between the

sequence similarity of genes and semantic similarity using Simpu). This proves that the

depth of LCA of two terms along with the path length between gene annotation terms

using GO can be a reliable measure for gene functional similarity.
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6. CONCLUSION AND FUTURE WORK

Gene Ontology is the main and most comprehensive resources for research on gene and

protein functions and structure. It consists of a set of controlled vocabularies to describe

the biology and functions of genes and proteins in any organism [9]. GO annotations

capture the available functional information of a gene or protein and can be used as a

basis for a measure of functional similarity between genes. Besides the bioinformatics

resources that hold data in the form of sequences, these data has represented as scientific

natural language which is easier to be modeled and is more readable to human [32]. Gene

Ontology is a dynamic evolving project of the GO Consortium in which different sections

of the ontology are expanded or reorganized as more biological information becomes

In this thesis we proposed new similarity techniques for finding geneavailable.

functional similarity based mainly on the shortest path length between the GO terms

annotated for both genes in a given gene pair. For example in chapter 3 we presented a

measure based on plain path length that simply considered the distance between the GO

terms in gene ontology and then used the average of these distances to find the similarity

between the genes. In chapter 4, we considered the number of minimum paths, nmp, and

the number of common terms, net, in a given gene pair as contributing features in

computing the similarity between genes. In chapter 5. we added the depth feature of the 

least common ancestor of two terms in gene ontology to the measure introduced in
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Chapter 3. Then the similarity between the genes was calculated based on the average of

this measure between the GO terms. The existing techniques for finding gene functional

similarity based on GO rely mainly on the information content of (IC) of the GO terms.

PL has never been investigated in the context of GO to estimate the functional similarity

between genes based on GO annotation terms. PL has been used extensively as a measure

of similarity in the general English domain using, for example, the WordNet ontology

[12]. It also has been used in the bioinfbrmatics domain [Rada-1989] [13]; for MeSH

[36] ontology and from these applications proved that PL in general can be used as a

good indicator of semantic similarity between terms in a given ontology. This research

used the PL as one of the most important features in gene ontology.

The proposed measures have been fully implemented and extensively evaluated. In the

evaluation, we compared our proposed measure with the BLAST [11] sequence similarity

between the sequences of the genes in a given gene pair. We also compared our measure

with other IC measures like Resnik based on the human perception [54, 61]. Our

evaluation was similar to other research projects in this field like Schlicker et. al [54] that

evaluated their work based on the sequence similarity and Wang et. al [61] that

compared their measure with Resnik measure [49] based on the justifiability of their

result with the human perception. In chapters 3 and 5 we used the first approach of the

evaluation while in chapter 4 the second approach has been used.

The experiments were applied on large sets genes from two genomes SGD

(Saccharomyces cercvisiae) [53] and FlyBase (Drosophila melanogaster) [67]. We also

tested our measure on a dataset of proteins that Schlicker et. al [54] have used in their

experiments.
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The experimental results proved the effectiveness of the proposed techniques in

measuring the similarity in the GO and gene function domain. See for examples. Figures

3.14, 3.15, 3.16, 3.17 that shows the correlation between the plain path length and

sequence similarity. The comparison of our PLn, measure with Resnik and Wang 

measures shows better or equal estimation of similarity between the genes in several

pathways. For example see the Table 4.3. Based on PLm measure (Chapter 4) we could

cluster the genes more accurately than using Resnik measure based on the human

perception; see Table 4.4. We also showed , in Chapter 5, that the result of using depth

and path length along with each other also correlates very well with the sequence

similarity. For example see figures 5.1, 5.2 and 5.3. We applied our plain path length

measure to compute the distance between genes based on using terms in molecular

function (MF) ontology and terms in biological process (BP) ontology. We found that the

MF dataset correlates much better with sequence similarity rather that BP dataset.

6.1. Future Work

In future work of this research we would like to apply path length-based measures to

more datasets from different model organisms. For more accurate evaluation we also

would like to measure the similarity between the genes using other information sources

like the biomedical literature (e.g. Medline). Wc can also use the microarray data analysis

to determine expression levels of genes and find the correlation between gene expression

data with our semantic similarity measure. Furthermore, we would like to consider the

number of distinct paths between two GO terms as a potential feature contributing into
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the semantic distance between the genes. In this research we just considered the number

of minimum path (nmp) and not the total number of all distinct paths.

Another interesting feature that we would like to study in the future of this research is the

effect of the various evidence codes on the performance of the gene similarity measures.
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APPENDIX A: IMPLEMENTATION DETAILS

Here we want to show parts of the program that is developed to calculate the path length

between the genes. The detailed of the program is as the following: We used linked list as

the structure of storing the GO nodes in computing the shortest path length (Please refer

to Sec. 2.3 and Figure 3.2 in Chapter 3.). Each cell in the linked-list has the following

properties:

class CellArray
{

String _goID; 
String _goParent; 
int _goPathLen; 
String _goParent2; 
int _goPathLen2; 
int distance;

}

All the properties are private and we used setter and getter to acess them. Like:

public String GoID
{

get { return _goID; } 
set { _goID - value; }

1
public String GoParent
{

get { return _goParent; ) 
set { _goParent ■ value; }

>
public int GoPathLen
{

get { return _goPathLen; } 
set { _goPathLen ■ value; }

1
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We use a method of geiParent to get all the parents of a node. Details are as the

following:

private ArrayList getParents(String termlD)
(

ArrayList is_a_ArrayList ■ new ArrayListO;
XmlDocument goDoc *= new Xml Document {);
String GOPath “ Application.StartupPath + "WsummerizedGO.xml"; 
goDoc.Load(GOPath);
XiniElement root - goDoc. Document Element;
XmJNodeList goList = root.GetElementsByTagNamefterm");

IEnumerator inum ■ goList.GetEnumerator{); 
while (inum.MoveNext())
(

XmlNode node ■ {XmlNode)inum.Current;
String temp “ node.Attributes.GetNamedItem("about").Value; 
int startTrim - temp.IndexOf('#') + 1;
String term - temp.Substring(startTrim);
//if the term was the same as the input term 
if (termlD =*- term)
<

XmlNodeList list ■ node.ChildNodes; 
IEnumerator ienum - list.GetEnumerator{);

while (ienum.MoveNext())
{

XmlNode currentChild = (XmlNode)ienum.Current; 
if (currentChild.Name — "is a”)
{

String tempi -
currentChild.Attributes.GetNamedltem("resource").Value;

int startTriml =» tempi. IndexOf ('#') + 1; 
String parent - tempi.Substring(startTriml); 
is_a_ArrayList.Add(parent);

}
>

}

}
return is_a_ArrayList;
}
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This part of the code called getDistance get two terms and returns the number of

minimum paths and the distance between the two terms.

public void getDistance(String terml, String term2,ref double 
distance,ref int nrap)
//number of minimum path
{

distance ■ -1; 
nmp "0;
if (terml =»• term2)
{

distance ■ 0; 
return;

}
int counter « 0; 
int zninDistance «= 100;
ArrayList list ■ new ArrayListO;
//contains terms + the parents of each terms + the 
//parents of the each node that is being added

//calculate goID,goParent, goPathLen 
CellArray celll ■ new CellArray(terml); 
celll.GoParent - terml; 
list.Add(celll);

CellArray cel!2 - new CellArray(term2); 
cell2.GoParent - term2; 
list.Add(cell2);

CellArray currentCell - (CellArray)list[counter];
//counter and currentcell points to a cell that its parents should

be found

//minDistance keeps the minimum distance between the two GO nodes, 
while (list.Count > counter && currentCell.GoPathLen < minDistance)
(

currentCell * (CellArray)list[counter];
Array List: parents * getParents (currentCell.GoID);
//gets the first upper level parents 
bool found ■ false;
for (int i ■= 0; i < parents.Count; i++)//for i{ 

found ■ false;
String parent - parents[i].ToStringO;
lEnumerator ienuml - list.GetEnumerator();
while (ienuml.MoveNext())//to compare from the begining of

the list
//see if there exist the same GOID from before.
i

CellArray currentEnum =
(CellArray)ienuml.Current;//checker from begining to end

if (currentEnum.GoID !■ parent)//not found any goID that added
before {

// ienuml.MoveKcxt();
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}
else//.if current.60ID ==• parents[i]
{if (currentEnum.GoParent — currentCell.GoParent) 

//if 11=11//come from the same path
(
found = true; 
ienuml.MoveNext();
} else//if 111=12 //come to the same LCS: not the same path
{

found = true;
if (currentEnum.GoParent2 == "" && currentEnura.GoPathLen2 » 0)
{

currentEnum.GoParent2 - currentCell.GoParent; 
currentEnum.GoPathLen2 - currentCell.GoPathLen + 1; 
currentEnum.Distance = currentEnum.GoPathLen + 

currentEnum.GoPathLen2;
}
if (currentEnum.Distance < minDistance) 

minDistance - currentEnum.Distance; 
}//end else 

}//end else
}//end while

if (found ■■ false)//if not found the GO add it to the list.
{

CellArray cell = new CellArray(parent); 
cell.GoPathLen = currentCell.GoPathLen + 1; 
cell.GoParent *= currentCell.GoParent; 
list.Add(cell);

}
}

counter++;
}//while end
distance = minDistance;
for (int i ■ 0; i < list.Count; i++)
{

CellArray current ■ (CellArray)list[i]; 
if (current.Distance — minDistance)
{

nmp++;
)

)
//calculate number of minimum distance

}

Here is the code for getting the name of organism and the sequence simialrity of the

dataset and finding the similarity between the genes inside the dataset.
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public static void readAnnotation(String source, String seqSim){

String pathl - "WVariationlW" + source + + seqSixn +
"_variationl.csv";
String filel =■ AppiLcation.StartupPath + pathl; 
StreamKeader reader - File.OpenText(filel);

String path2 - "\\All_Output\\" + source + + seqSim + "_All.csv";
StreamWriter writer - File.CreateText(Application.StartupPath + path2);

writer.WriteLine("Genel,Gene2,Evalue,PL_List,NP_List,Depth_List,simGO,S 
in");

String filelLine - reader.ReadLineO ; 
while (!reader.EndOfStream)
{

String genel - ""/String gene2 « ""/String evalue =* 
String pl_list ■
String plvl =

•i ff ;
ii ii /String np_list = ""/String depth_list -

ii ;

genel * filelLine.Substring(0, filelLine.IndexOf(",")); 
filelLine ~ filelLine.Remove(0, filelLine.IndexOf")+l);

gene2 =» filelLine.Substring(0, filelLine.IndexOf(",")); 
filelLine - filelLine.Remove(0,filelLine.IndexOf(",") + 1);

evalue - filelLine.Substring(0,filelLine.IndexOf; 
filelLine * filelLine.Remove(0, filelLine.IndexOf(",") + 1);

plvl - filelLine.Substrings, filelLine.IndexOf (",")) / 
filelLine - filelLine.Remove(0, filelLine.IndexOf(",") + 1); 
pl_list = filelLine.Substring(0, filelLine.IndexOf(",")); 
filelLine - filelLine.Remove(0, filelLine.IndexOf4 1); 
np_list “ filelLine.Substring(0, filelLine.IndexOf(","));

filelLine ■ filelLine.Remove(0, filelLine.IndexOf(",") 4- 1); 
depth_list ■= filelLine.Substring(O);
//create pl_J.ist ArrayList
ArrayList PL_ArrayList ™ new ArrayList ();
String!] PL_List ■ pl_list .Split ('/') »* 
for (int i ■ 0; i < PL_List.Length - 1; 14-4-)

PL_ArrayList.Add(PL_List[i]];
}
//create np_list ArrayList
ArrayList NP_ArrayList - new ArrayList. ();//1/2/3/4/5/ 
String!] NP_List ■* np_list.Split('/1); 
for (int i - 0; i < NP__List.Length - 1; i++>

NP_ArrayList.Add(NP_List[i]);//2,2,3,4,5
]

//create depth_list ArrayList 
ArrayList Depth_ArrayList - new ArrayList();//l/2/3/4/5/ 
String!] Depth_List ■ depth_list.Split(1/1); 
for (int i - 0; i < Depth_List.Length - 1; i+4-)

I

(

(
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Depth_ArrayList.Add(Depth_List[i]);//!,2,3,4,5
}

//calculate similarity for GOs
//log(Depth(7jCA(gox, goy)/maxDepth)- Jog(PL(gox,

goy)/2*maxDepth)
String simGOString =• 
double simGO - 0;//similarity measure for GO terms 
double sim « 0;//similarity measure Cor Genes

If 19 ;

for (int i - 0; i < PL_ArrayList.Count; i++)
(

double depth » Double.Parse(Depth_ArrayList[i].ToStringO); 
double PL - Double.Parse(PL_ArrayList[i].ToString()); 
if (PL !- 0)
{

double aa - PL / (2 * maxDepth); 
double bb ■ (raaxDepth-depth) /maxDepth; 
double cc - aa*bb+l; 
double dist - Math.Log(cc, 2);

simGO =* 1-dist;
}
else
I

simGO - 1;
}

simGO - Math.Round(simGOf 2); 
sim +* simGO;
simGOString +» siraGO.ToString()+ ";

)
sim - sim / PL_ArrayList.Count; 
sim * Math.Round(sim,2);

writer.WriteLine(genel + + gene2 + + evalue + + pl_list +
,,f" + np_list + "f" + depth_list + ", " + simGOString + + sim);
writer.AutoFlush » true; 
filelLine « reader.ReadLineO ;

}
writer.Close(); 
reader.Close();

}
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APPENDIX B: SAMPLE OUTPUT AND RESULT TABLES

Here we show some parts of the output generated from by PathLengthCalculator

application. All the results can not be shown in here. This is only a small part of it. The

output of the program contains the name of the genes that are compared with each other.

PLJist contains the plain path length between the GO terms associated with a given 

gene pair. NP_List contains the number of minimum paths between the GO terms.

DepthJist contains the depth of the least common ancestor (LCA) of the two terms. If

there are more than 1 term related to one gene in a gene pair then we have several PLs in

our PLJAst, several NPs in our NPJist and several depths in our DepthJist that are

separated by a “slash”.

The following output is for Human-Yeast-10 dataset:
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TAP i-i^l»rrihi _ _ MhL J'ijijiLZi£lHDO
10/0/ 1/7/ 0.61; 1 0.6Q05636 Q06266 1/0/

0.61:0.97; 0.79P41227 10/1/ 2/1/ 1/7/P07347
0.56; 1; 0.05 0.811/7/3/Q96FU5 11/0/4/ 1/0/1/QQ5506
0.56; 1:0.85 0.81Q96GW9 11/0/4/ 1/0/1/ 1/7/3/P22438

0.841/8/ 0.68; 1P53041 643/ 1/0/P53043
0.58; 1 0.79Q9UKM7 11/0/ 1/0/ 1/6/P32906
0.64; 1 0.82P20339 9/0/ 1/0/ 1/8/P36017
0.51; 1; 0.58 0.761343/11/2/ 243/2/1/ 1/B/1/B/P06245 P17612

1Q00610 0/ 0/ 2/ 1:P22137
0.78/ 2/ 0.7;Q03940 Q9Y265 1/

0.7; 0.7P108Q9 6/ 1/ 2/P19882
0/ 0/ 2/ 1P41921 P0Q390 1;

0.6; 0.6060825 11/ 1/ 2/P32604
0.68 0.883/ 2/P23615 Q7KZB5 1/
0.92 0.92092611 2/ 1/ 2/
0.77 0.77P30419 6/ 2/ 2/P14743
0.81 0.81Q96G21 5/ 2/P53941 1/

0.882/ 0.88002939 092759 3/ 1/
0.84Q86YJ6 4/ 2/ 0.84P16120 1/
0.732/ 0.73P360Q7 Q9GZT4 7/ 1/

D.73, 0.73Q16773 7/ 1/ 2/P47039
0.78/ 2/ 0.7;P53686 Q9NTG7 1/

0.883/ 2/ 0.88;P061Q5 000341 1/
0.7; 0.7P38152 P53007 8/ 1/ 2/

0.7P16260 8/ 2/ 0.7;P38702 1/
2/ 0.64 0.84099437 4/ 1/P23968

0.962/ 0.96003529 Q96DK1 1/ 1/
0.73, 0.73Q9H2D1 7/ 2/P40556 1/
0.96 0.962/P53731 015144 1/ 1/
0.54 0.54P33316 13/ 2/ 2/P39706
0.67 0.672/005787 Q0WWH5 9/ 1/

2/ 0.88 0.883/ 1/P36070 P23193

Table 0.1. Human-Yeast-IO dataset
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The following output is for SGD HSS dataset:

PT: i !:ti'
EB1 6/ 0.97:166/
E31:0.9?,3/1/ 4/4/
■ifcrj2/0/ 2/5/ 184; 11PMC1 IWE01 n7.10E-127l4/0/
EE3i i | 1 \j I ill H ( 1/ 5/ D.97:T7
ET735/ D.97:ADH1 SOR2 2.20507 1/ 1/
E3B.505114 166/ 1/1/0/ 360/ 196:0.93:1:ADP1 MDU

AFT2 2.305168 D/3/ D/1 / 30/ 1:0.89;AFT1
EMDRS2 1.50570 4/1/ 2/1/ 2/4/ D.84:0.97:PMC1
EE!;1.505-70 4/1/ 2/1/ 2/4/ D.84:0.97:PMC1 0NF3
EED.B4:0.97:1.905-70 4/1/ 2/1/ 2/4/PMC1 DNF2
EE3.00570 4/1/ 2/1/ 194:0.97;DNF1 2/4/PMC1
!EO1.105193 060/ D/3/1/PMC1 PMR1 5/16/ 1:0.64; 0.94:
EH]PMC1 ENA2 B.10E-104 26/1/ 1/1/1/ 4/4/4/ 193:0.93:037:
EEDYOR291W 3.50563 5/ 3/ D.79:PMC1 1/
EET1ALD4 6.00E-97 2/ 1/ 5/ D.94;ALPS
EE1UGA2 2.70E-94 2/ 1/ 5/ D.94;ALD3
EE3:
M»M1i

2.405-93 2/2/ 1/1/ D.93; 0.93;PMC1 ENA1 4/4/
3.905-93 2/ D.94:AC01 LYS4 1/ 5/

ebIBB; 0.96;A0P1 PDR12 1.70E-83 3/1/ 1/1/ 26/

EEDI
ESI
■33
■32

D.93:AOS1 UBA1 1.60E-72 2/ 1/ 3/
P.93;XYL2 1.70506 2/ 1/ 4/ADH2

ACE2 PZF1 1.80506 2/ 1/ 2/ 0.92:
0.91:0.72;ACT1 ARPS 1.80565 2/7/ 1/3/ 1/1/
D.72;9.20540 7/ 3/ 1/ACT1 ARP5

■■ kri6.90541 8/76/7, 3/2/460/4/3/2/4/ 1/1/1/1/1/1/1/2/1/ Dm 0.72:0.6ft 0.72:0.75;0.72:0.68:0.81:0.68:1AHA1 PMR1
EE:EMC] SIMW 179:1:ACE2 AZF1 16/
EEB1:0.92:ACC1 HFA1 2.90507106/

1.005021106/132/1/1/1/
0/1/ 56/

ETH]0.61:0.94:0.97:0.93:PMC1 PCA1 16/4/4/
CESM EC3S [=221 ■nnvi366/ 1/1/1/ 166; 0.72; 0.69;

EE]6.7054218/76/ 1366/ 166:0.72:0.68:[AHA1
[AHAI

IPMA1 1/1/1/
D.68; 169:0.72:0.72:0.66:0.66:3.80540186/7/74366666/lENAi 1/1/1/1/1/1/

Table 0-2. SGD HSS dataset
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The following output is for FlyBase NSS dataset:

L1 :EQj1C

________MdiiwirHrnreflM
172: 0.72m 1/7/
168: 0.602/ 1/8/
ITS: 0.72 0.741/1/1 6/7/ 712$FakSBD 3L-B
179:0.75 0.781 586/ 2/2/1/ 1/1/1/Cad96Ca 3L-0
187:0.83 0.851/1/ 1/1/3N5 1 3/4/
175:0.72 0.743N5 1 6/7/ 2/2/ 1/1/FakSBD
179:175 0.762/2/1/ 1/1/1/Cad96Ca 3N5 1 500/

an/ 172:0.61 0.66ano/ 2/3/aloha4GT1 1
172: 164. 0.67atohaIGTI 1 3/9/9/ 2/3/2/ 3/1/1/Ror

2/2/ 3/3/ 172: iea 17abha4GTl 1 3S/shark
30/ 172:189 0.73/9/ 2/2/Fak560 abha4GT1 1

3.75:172 0.72/20/ 30/1/Cad96Ca ahha4GTl 7/80/1
2000/ 300/1/ D.7S: 163 168atoha4GTl 7/iiono/1

161:0.64. 0.62100/10/ 200/ 1/1/1/CG3277 alpha-Cat 1
D.61:164. 162100/10/100/10/ 200/1/1/1/ 1/i/inn/i/alpha-Cat 1
3.79:1753L-211-27 500/ 20/1/ 1/1/1/Cad96Ca 1
3.72:0.61 1663/10/ 20/ 3/1/alpha4GT1 1
3.72; 164, 0.67200/ 3/1/1/Ror alpha4GT1 1 300/

30/ 3.72:169. 17alpha4GT1 30/ 20/shark 1
3.72:169 0.720/ 30/Fak56D alpha4GT1 1 30/
3.75; 0.72. 0.7alpha4GT1 1 700/ 200/ aon/Cad96Ca

2000/ 300n/ 3.75:0.63 0.68alpha4GT1 17/iiono/ 200/ 1/1/1/ D.61; 0.64,CG3277 alpha-Cat 1 100/10/
3.61:0.64. 162100/10/100/10/ 2flQ/1/in/ 1/i/i/in/i/alpha-Cat 1

1/1/1/i/in/ 161:0.64; 0.6alpha-Cat 1 100/10/11/10/11/ 200000/shark
3.61:0.64. 16100/1 On 1/10/11/ 200000/ i/innnn/Fak56D alpha-Cat 1

0.63loonoooonoono/ 2Qonnn/inn/ 1/i/i/t/i/i/i/i/i/ 3.61:0.64.alpha-Cat 1Eph
1900000/1oono/4/3/4/ 2Qon/i/i/2Qon/i/i/ mnnn/in/i/ioa/3/ 164:0.68. 17slpr alpha-Cat

3.67: 0.672/ 2/1 9/
167:0.63. 0.6520/ 20/1 9/10/
163:16: 0.6220/20/IthetaTry 1 mni/[shark
3.63:16: 16220/ 20/IFak56D IthetaTry 1 10/11/

lEESJGEnzra 0.6320/4/ 2on/ 3.67; 1631 9/10/11/

Table 03. FlyBase NSS dataset
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