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ABSTRACT

USING SEMANTIC SIMILARITY MEASURES IN THE BIOMEDICAL DOMAIN
FOR COMPUTING FUNCTIONAL SIMILARITY BETWEEN GENES BASED ON

GENE ONTOLOGY

Elham Khabiri, M.S.
The University of Houston Clear Lake, 2007

Thesis Chair: Hisham Al-Mubaid

The size and volumes of genomic data resulting from the various genome projects are
extremely huge and continuously increasing in very high rates. Finding gene groups with
similar functions is one of the most important tasks in bioinformatics. More specifically,
computing the similarities between genes as numeric figures will have many benefits and
applications in biomedical domain. We present novel techniques for measuring the
functional similarity of genes using Gene Ontology (GO) annotations. GO is considered
the most comprehensive resource of functional information on genes and gene products.
The proposed methods are considered ontology-structure-based methods and rely strictly
on ontology-structure features like depth and path length (PL) between GO nodes. We

evaluated the proposed measures based on the correlation with gene sequence similarity



using Blast e-values. We conducted experiments with scveral penome annotation
databases. The experimental results proved that the proposed similarity methods are fairly
efficient in estimating the functional similarity between genes, gene products, and
protein. Hence, ontology structure features can be used as good tools for determining the

genes with similar functions within a genome.
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1. INTRODUCTION

Computing the functional similarity between genes and proteins is an important and
necessary task in the bioinformatics and biomedical fields. By comparing similarities
between genes and proteins with known functions to those with unknown functions, the
functions of the unknown genes and proteins can be determined to certain accuracy [54).
Also it is useful to measure the differences between genes and proteins in different
organisms. As an example, one can compare the proteins in yeast with the proteins in
human and find those proteins in yeast that have the least biological and functional
similarities with those in human. This is an approach for finding drugs and drug targets
for human [54]. Thus, those proteins with biological processes or molecular functions,
that are absent in human proteins, are considered as potential drug targets in biomedical
domain [54].

In general, genes and gene products are functionally similar if they have comparable
molecular functions and are involved in similar biological processes [54]. These gene
products are not necessarily evolved from a common ancestor, and therefore, do not
necessarily show sequence similarity. In this research we explore a number of techniques

for measuring the similarity between terms in Gene Ontology (GO). Gene ontology [9] is



a comprehensive and controlled ontology to describe the functional and biological
features of genes independent of the organism. We also propose new measures of
functional similarity between genes using GO. The proposed measures have been
implemented and evaluated with a large number of experiments using multiple sets of
annotation databases. We have evaluated our data using three datasets that are:

o Dataset from SGD (Saccharomyces Genome Database)

o Dataset from FlyBase (Database for Fruit Fly)

o Dataset of gene pairs from Human and Yeast
Fruit Fly and Saccharomyces are considered as model organisms. A model organism is a
species that is appropriate to understand particular biological events in more complicated
organisms, by providing the insight for workings of them [21]. For example, they are
widely used to explore potential causes and treatments for human disease when
experimentation on humans would be unfeasible or unethical [21]. Some of the model
organisms are used for human like mice and fruit fly and some are used for studying plant

sciences like Arabidopsis thaliana [21].

1.1. Gene Similarity

Finding the similarity between genes and proteins can be done by several computational
methods and from different data sources. For example, gene expression data, statistical
computation on biological literature, sequential similarity, and semantic similarity are
different information sources for measuring the similarity between genes and proteins
[10, 32, 51, 54, 66, 69, 70]. For example, in [4], Al-Mubaid and Nguyen investigated the

2



cffectiveness of using Medline corpus as the information source for measuring the
semantic similarity in the biomedical domain [4]. In this thesis we focus on (1) the
semantic similarity and (2) the sequence similarity between genes. In general, we
compute the similarity between genes based on the similarity of their GO annotation
terms. The general problem of measuring gene functional similarity using GO
annotations with semantic similarity measures can be defined as follows: Definc a
genome annotation set (e.g. SGD, FlyBase) to be a set of genes of one species/organism
with GO functional annotations for each gene in the set. That is, every gene in the set is
associated with one or more GO terms.

Let G = {G,, Ga... Ga} be the set of all genome annotations {in BLAST, UniProt,

geneontology,..etc.}.
Our goal is to define a general semantic similarity function S(g; , g2, G) such that if g, is
(per blast-sequence-similarity, for example) closer to ga than to g’ then S(g; ,g2) > S(g: ,

g’2)- Since such a similarity function is defined on all genes having GO annotations, it

provides us a unified semantic similarity measure between genes regardless of the

organism.

1.1.1. Sequence Similarity

DNA and proteins sequences can be considered as identifiers for genes and proteins. To
look at them from the computer science side, they are sequences of alphabets that may

have similarities in regions. They can be compared globally means all the sequence is



considered for similarity score or locally means that only specific regions of them are
compared to each other. We call the first one global alignment and the latter local

alignment. Here is a sample of aligning the two sequences.

GAATTCAG

N I B
GGA-TC-G

Figure 1.1. Sequence Alignment

They are some score functions that give positive score to the letters that match and
negative scores to those who do not. For example one function score may give the
sequence score of +1 1o the matched letters and -1 to mismatched ones. And -2 could be
given to the gaps (indels) which are inserted to the sequence for maximizing the
alignment score [68]. They are different methods of calculating the similarity score for
two or more sequences. One of them is BLAST [5]. The BLAST algorithm has the best
method that keeps a balance between speed of calculation and sensitiveness in sequence
relationships [68]. Instead of relying on global alignments that is commonly used in
multiple sequence alignment programs, BLAST emphasizes regions of local alignment to
detect relationships among sequences that have regions of similarity (Altschul et al.,
1990). The input of BLAST tool is FASTA format of the sequences of the genes or
proteins. FASTA format is a text-based format for representing either nucleic acid
sequences Or protein sequences, in which base pairs or protein residues are represented

using single-letter codes.



Since most of the bioinformatics data is in the form of sequences, the most accurate way
of comparing the genes and proteins is by sequence similarities. The homologous
relationship between proteins could be found by sequence comparisons, but not all of the
similarities are based on homologies [54]. Based on sequence comparison, proteins of
unknown function are assigned to characterized protein families, generating testable
hypotheses of their molecular function. However, this established annotation approach
has several limitations such as; up to 30% of the function annotations made through
sequence similarity searches might be erroneous [16] [17]. The reason is when the genes
are not evolving from a common ancestor the sequence similarity between them are not
considerable. However they may have the similar functionality which is not reflected by
sequence similarity tools [54].

The other problem is that there is no simple relationship between sequence similarity and
function, but some general trends have been observed [54]. One other drawback for the
sequence notation is that, it is not readable and understandable by human. Semantic
mcasures on the other hand uses the resource data in scientific natural language as text

which is human readable and understandable [4, 32].

1.1.2. Semantic similarity

One of the common ways of finding the similarities among genes is by computing the
semantic similarities between GO functional annotations of the genes [26, 31, 32, 47, 51,

54, 61]. The resource data used in these kinds of measures are in scientific natural



language format which makes it human readable and understandable. The problem with it
is they are not easy to interpret computationally [32]. These approaches use ontology
(e.z. Gene Ontology) as the primary information source, and can be divided into two

categories: Ontology-Structured-Based and Information-Based measures.

Ontology-Structure-Based Measures

The ontology-structured based measures use the ontology structure features such as path
length between nodes (in the ontology), depth of nodes in the ontology tree, and the
number of minimum paths between nodes, for computing the semantic similarity between
two terms in a given ontology. For example, the shortest path length between two terms
(two nodes) in a given ontology can be considered as a good indicator (or metric) of the
(relative) similarity between these two terms. Suppose that PL(t;, t) is the shortest path
length between the two terms t; and t; in a given ontology O then PL(ty, tz) > PL(t3, ts)
implics that the terms (t;, t;) have more similarity that the pair (t3, t4) according to
ontology Oy In this thesis we have investigated the semantic similarity that is based on

the structure of the Gene Ontology.

Information-Content Based Measures

The information-content-based measures use the information content (IC) of gene terms

in computing the semantic similarity. Information Content can be defined as the



frequency of use of a term that can be computed from text corpora or estimated from the

ontology (i.e. Gene Ontology) [48].

As an example here we compare the two information based measures Resnik {48] and Lin
[30] for 30 random gene pairs selected from SGD [53].

In Resnik measure [48] the similarity between the two terms is calculated by the
information content (frequency of use) of the common ancestors. Thus, the semantic

similarity between two terms in an ontology is:

Sim g (€5, €, ) =-log P(c),c € S(c,, c,)

S(c,, c2) is the set of common ancestors of terms ¢ and c;.
Lin [30] defines the similarity between two terms as the ratio of the LCA occurrence
probability of two terms to the information needed to fully describe the two terms

individually. The following equation reflects this idea.

2.log P(c)
log P(c,)+ log P(c,)

sim,, (c,,c,)=max( ), ceS(c,.c;)

S(c1, ¢2) again is the set of common ancestors of terms c) and c;.

Genel | Gene2 E-Value | Bit Score | Resnik | Lin
AACI | AACI 4.6e-145 | 1412 39049 | 1
AACI | PET9 L.7e-115 | 1133 39049 | 1
AACI | AAC3 3.7e-111 1092 359049 | 1
AAC! | YPROJIC | 3.1e-20 234 12790 | 0.3958
AAC] | LEUS l.1e-14 171 1.2790 | 0.4096




AAC1 | OACI 9.9e-13 181 2.1438 | 0.4897
AACI | YEA6 3.70E-11 169 1.2790 | 0.4934
AACIL | CTPI 530E-09 | 150 2.1438 | 0.7668
AACI | ODC1 1.80E-07 | 100 1.2790 | 0.7073
AAC1 | AGCI 2.40E-07 | 100 12790 | 0.5101

Table 1.1. Compare Sequential and Semantic Measures in High Sequentially Related

Genes
Genel | Gene2 GO Gene2 m“mﬁ;’“‘ of | Lcaco wll‘lfr‘:m
AACT [ AACT | GO:0005471 23 GO:0005471 | 23
AACI [ PET9 | GO:0005471 23 GO:0005471 | 23
AACI | AAC3 | GO:0005471 23 GO:0005471 | 23
AACI | YPROTIC | GO:0005215 9721 G0:0005215 | 9721
AACI | LEUS | GO:0015228 2 GO:0005215 | 9721
AARCT [ oact | GO:0008271, 212 GO:0015291 | 1327
GO:0000227
AACT | YEAG | GO:0051724, 39721 GO-0005215 | 9731
GO:0005215
AACI | CTPT | GO:0005371 9 GO0015291 | 1327
AACI |ODCT | GO:0005342, 850224 G0:0005215 | 9721
GO:0005478
AACT | AGCI | GO:0015183, 9,34 GO-0005215 | 9721
GO:0005313

Table 1.2. LCA for genes with multiple annotated GO terms

As you see in the Table 1.2 some genes are related to more than one GO terms. Lins and

Resnik both suggest picking up the one with the maximum occurrence of Least Common

Ancestors. These terms are marked as bold in the table. Here the scores calculated from

Resnik and Lins which are semantic similarity measures are compared to the sequential

scores called Bit Score and E-value. Bit Score is the score that two sequences of genes

obtain for their structural similarities and the E-Value represents the crror or the

differences between the genes




In the following table the Resnik and Lins measures are calculated for those genes that
have no sequential similarities with the selected gene (AAC1). These genes are selected
from the genes that were not appearing among those that have sequential similarity with

the selected gene.

Genel Gene2 Resnik | Lins

AAC1 | 158 RRNA | 0.1293 | 0.0816
AACI! | AAD10 0.1293 | 0.0476
AAC! | YPL206C | 0.1293 | 0.0526
AAC] | YPL278C | 0.1293 | 0.3642

AAC] | RIOI 0.1293 | 0.0860
AACI | RIXI 0.1293 | 0.3642
AACI | SCS7 0.1293 | 0.0442
AAC] | S80I 1.2790 | 0.4934

AACI] | YPRIS8W | 0.1293 | 0.3642
AACI | tC(GCA)PI | 0.1293 | 0.0668

Table 1.3. Semantic Measures in Low Sequentially Related Genes

1.2. How this thesis is organized

This chapter provides an introduction and overview to the task of similarity between
genes and proteins using gene sequence data or gene annotation data from GO. Chapter 2
gives a review of the background about the gene ontology and the tools related to than in
addition to the related work and the existing measures of gene similarity. In chapter 3,
we propose novel measure called PL for measuring the functional similarity between
genes using the GO annotations. One of the methods is based on calculating the simple
path length (PL) between GO annotation terms of the genes. We evaluated our method
with a series of experiments based on the correlation between our method and gene

sequence similarity using Blast e-values. The experimental results proved that our
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approach has fairly impressive agreement with Blast sequence similarity. Furthermore,
the evaluations showed that PL can be used as a tool for determining the genes with
similar functions within a genome. We used in the evaluation three genome annotation
datasets: SGD [53], FlyBase [67] and a Human-Yeast dataset of proteins[54]. Each
dataset is divided into a number of sequence similarity ranges based on the E-value in
gene pairs. Then, we grouped the genes into genes with high sequence similarity (HSS),
low sequence similarity (LSS) and no sequence similarity (NSS) and each one of these

three groups was tested separately.

In chapter 4 we have proposed another method of measuring the semantic similarity of
GO terms based on path length and the number of minimum paths between GO terms in
the GO graph. This method distinguishes between two types of paths and assigns
different weights to determine the contributions of number of paths in the semantic
similarity between the GO terms. To assess the similarity between two GO terms, our
method considers all the possible paths between the two terms rather than considering
only the distance to their least common ancestor LCA or the IC of their LCA [48], [23],
[30], [6]1] . In the evaluation, we measured the semantic similarity of SGD
(Saccharomyces Genome Database) genes from various SDG pathways (obtained from
http://www.yeastgenome.org) and compared our results with two of the leading measures
(Resnik [48] and Wang et al. [61]). In chapter 5 we extend our PL measure and came up
to a new measure called Simp. that uses the depth of least common ancestor of two gene
series of related term and the path length between them [25]). We used the average of all

Simpp for the terms annotated for each gene. The method is evaluated by a series of
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experiments based on the correlation between Simp.p and gene sequence similarity using

Blast e-values.
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2. BACKGROUND AND RELATED WORK

This chapter gives an introduction on the gene ontology which is one of the most
comprehensive projects done in bioinformatics. It will also discuss about the tools and
browsers available to search and navigate the terms in the gene ontology. Then the

similarity measures that are proposed in different domains will be explained.

2.1. Gene Ontology

The Gene Ontology, created in 2000 by Gene Ontology (GO) Consortium [9], is an
ontology which shows the functional and biological terms (annotation terms) related to
genes and proteins in a hierarchical and structured way. Gene Ontology consists of a set
of controlled vocabularies to describe the biology of genes in any organism [9]. GO
annotations capture the available functional information of a gene or protein and can be
used as a basis for defining a measure of functional similarity between genes. Besides the
bioinformatics resources that hold data in the form of sequences, these data has
represented as scientific natural language which is easier to be modeled and is more
readable to human [32]. Gene Ontology has provided more accessible representation of
the data related to the genes [47]. It is a dynamic evolving project of the Gene Ontology

(GO) Consortium in which different sections of the ontology are expanded or reorganized
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as more biological information becomes available. Therefore, GO project is a
collaborative effort to address the need for consistent descriptions of genes in different
databases. The project is collaboration between 35 model organism databases. Among
them FlyBase (Drosophila Melanogaster), the Saccharomyces Genome Database (SGD)
and the Mouse Genome Database (MGD), were the first groups of databases started the
collaboration and after that other databases have joined them [9]. The ontology is
represented as a network, directed acyclic graph (DAG), in which terms may have
multiple parents and multiple relationships to their parents. In addition, each term inherits
all the relationships of its parent(s). GO consists of three ontologies that describe the
molecular function of a gene, the biological process in which the gene participates, and
the cellular component where the gene can be found; see Figure 2.1. Figure 2.1 shows
an excerpt of the gene ontology as it appears in the Amigo browser [7]. Each one of these
three ontologies (molecular function, biological process, and cellular component) can be
viewed as a root node and has children For example, as shown in Figure 2.1, the node

“molecular function” with the GO id number of GO:0003674 and has the following
children: “GQ0:0016209 : antioxidant activity”, “GO0:0015457 : auxiliary transport
protein activity”, “GO:0005488 : binding”, “GO:0003824 : catalytic activity”,
“G0:0060089 : molecular transducer activity”, “GO:0004871 : signal transducer
activity”. The “signal transducer activity” is also the parent of “GO:0004872 : receptor
activity” and other children. If we continue to see the next children we sece
“GO:0008188 : neuropeptide receptor activity” which is the child of “G0:0030594 :

neurotransmitter receptor activity”. This term is the last node so-called a leaf and there is
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no other term that can be categorized under this term. It has the smallest association value

(the value inside the bracket) in compare with its parents and ancestors.

El alt : ab [221913]
H ©® GO:0008150 : blological_process [142636]
B © G0:0005575 : cellular_component [155182]
= © GO:0003674 : molecular_function [145259]
B O GD:0016209 : antoxidant activity [550]
E ® G0:0015457 : auxillary transport protein activity [165]
E © G0:0005488 : binding [43761)
B © GO:0003824 : catalytic activity [46436]
Bl © GD:0030188 : chaperone regulator activity {62]
E © GO:0042056 : chemoattractant activity [13]
E ® G0:0045499 : chemorepellant activity [8]
B ©® G0:0030234 : enzyme regulator activity [2471]
B © G0:0016530 : metalochaperone activity [39]
& © GO:0060089 : molecular transducer activity [7766]
B ©® GD:0004871 : signal transducer activity {7766]
B © GO:0004872 : receptor activity [5726])
EH © GO0:0030594 : neurotransmitter receptor activity [287]
H © GO:0008188 : neuropeptide receptor activity [176]
B © GO0:0001653 : peptide receptor activity [323)
& © GO:0008528 : peptide receptor activity, G-protein coupled {315)
& ® GO:0008188 : neuropeptide receptor activity [176]
# © G0:0004888 : transmembrane receptor activity [4885]
E] ©® GO:0004930 : G-protein coupled receptor activity [3889]
E ©® G0:0001584 : rhodopsin-ike receptor activity [3434]
E ©® G0:0008528 : peptide receptor activity, G-protein coupled [315]

Figure 2.1. Overview of Gene Ontology

Each node is specified by a GO id number which is a unique identifier for the GO terms
in the gene ontology, a name, and the number of genes associations (i.e. the number of
genes that are annotated with this term in gene ontology) shown inside the brackets. The
more specific term, the smaller number of gene is associated with it. Therefore a big
number of associations mean that the term is a general term. Each node’s association
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number is the summation of the association number of its children plus the association
number of itself. For example in Figure 2.2 we have “GO0:0000146 microfilament motor
activify” (association number of 63) with two children of “GO:0060001: minus-end
directed microfilament motor activity™(association number of 2) and “GO:0060002
plus-end directed microfilament motor activity” (association number of 2) . The small
value of the children shows the specificity of the two terms. Whereas the term
“G0:0000146 microfilament motor activity” have larger number than its children which

is compatible with “frue path rule™ that states that if a term describes a gene then all its

parents must also apply to that gene [9]).

[}] ® GO:0003774 : motor activity [558]

B © G0:0000146 : microfilament motor activity [63]
E ©® G0:0060001 : minus-end directed microfilament motor activity [2]
E © G0:0060002 : plus-end directed microflament motor activity [2]

Figure 2.2. True path rule: The two children are more specified and have smaller

association value than their parent

In GO, the terms are linked by two kinds of relationships that are is_a and part_of. The
is_a relationship has the meaning of being a subclass. The part_of relationship means that
if A is part_of B then whenever B exists A exists as a part of B. But A does not depend
on B. Figure 2.3 shows some GO terms with is-a relationships between them in Gene

Ontology.
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Figure 2.3. A tree view of some GO terms with is_a rclationships between them (Picture

is from Amigo browser [7])

2.2. GO Tools and Browsers

There are several software tools to navigate and browse through the Gene Ontology to
shows the position of the terms within the GO hierarchy. In this section we take a look

and review some of these tools.
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that have the highest sequence similarity with the specified gene. Amigo uses the
mySQL database. Figure 2.5 shows the genes associated with the term
GO:0008188 in Amigo browser. By pushing the BLAST button we can have the
FASTA format of the genes in addition to the genes that are sequentially similar

to that gene based on their p-value.

ration

L_lJ_L

I NawrieldSyimbol

AICR2 - i i PMID:11381038
Eﬂatosmun C receptor 2 .

AlstR ] PHID 11381038
Allatostatin Receptor

AR-2 gene from Drosophila{| ISS ﬁ?nm:nmoas
Allatostatln Receptor 2 ogaster

capaRt [BEEC e gene from Drosophila PMID:11381038
icapa receptor melanogaster IDA PMID:12177421

Figure 2.5. Genes associated with term GO:0008188 in Amigo Browser

Here is an example of FASTA format for gene TVFV2E. FASTA format starts with a
single line description and the lines of sequence data comes after that. The “>" symbol at

the beginning of the line distinguishes the description from the sequence data. See below:

>gi|532319|pir | TVFV2E|TVEV2E envelope protein

ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT
QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVT IMAGLVFHSQKYNLRLRQAWC
HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRI FFQROWGDPETANLWFNCHGEFEYCK
MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK

TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAARELDRYKLVEITPIGF
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APTEVRRYTGGHERQKRVPF VXXX XX XXX XXX XKXXXXXXVOSQHLLAGI LQOQKNL

LAAVEAQQOMLKLT INGVK

There are lots of other navigation and analysis tools available on gene ontology website

geneontology.org. The mentioned software tools are the ones used in this thesis.

E all : all [219358]
CEl © G0:0003674 : molecular_function [143593]
E © G0:0016209 : antioxidant activity [540)
E ©® G0:0015457 : auxiliary transport protein activity [164]
E © G0:0016249 : channel localizer activity [1]
E © GO:0016247 : channel regulator activity [153]
E ©® G0:0005246 : caldum channel regulator activity [42]
E ® GO0:0019855 : calcdum channel inhibitor activity [11]

Figure 2.6. Sample of Amigo Browser output

2.3. Distance between terms in GO

In Gene Ontology finding the number of the edges between two terms has not been
automated by any sofiware. In this thesis we have implemented a program that can
quantify the distance between the terms, using the XML format of the Gene Ontology.

The XML file is freely available and downloadable from www.geneontology.org.
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) 7xml version="1.0" encoding="UTF-8"7>
<rdf>
<term ahout="http://wew. geneontology.org/gofall™
<accession>all</accession>
<name>alld/name>
<definition>This term is the most general term possibled/definicion>»
</term>»
<tera ahout="http://www.geneontology.ory/gof0015488™>
<accession>0015486</accession>»
<nape>glucuronide permease activity</name>
<synonynrglucuronoside permease activity</synonynd>
<definitior>Catalysis of the reaction: glucuronide{out)
+ nonovalent cationiout) = glucuronide({in) + monovalent cation(in).
</definicion>»
<ls_a resource="http://wuw.geneontology.org/gof00L5164" />
<is_a resources"http://www.geneontoloQy.orgy/go#0015486"™ />
<dbxref parseType="Resource™
<database syabol>TC</database_symbol>
<reference>2.h.2.3.1</xeference>
</dbxret>
/tern>
</rdt>

Figure 2.7. XML format of Gene Ontology

In this thesis we have calculated the distances between genes and proteins from different
genomes [26]. The terms associated with each gene and protein is extracted from a
database related to that genome. The process of assigning GO terms to genes is called
annotation. The database provides us with terms that the genes are annotated with and the
references that associated the terms to the genes. It also indicates the kind of evidence
code available to support the annotation. For every evidence code, a curator judges about
the quality of the evidence. Therefore the terms that have the evidence code of TAS
(Traceable Author Statement) is completely different in terms of quality from those that
have the evidence code of NR (Not Recorded). Some of other evidence codes are NAS:

Non-traceable Author Statement, ISS: Inferred from Sequence or Structural Similarity,
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IEA: Inferred from Electronic Annotation. More detail about the evidence code can be

found in geneontology.org.

Each of these databases has downloadable files that contain all these associations. Some

of the genomes that have their annotations available are:

o

SGD: This is a scientific database related to the genes of the yeast Saccharomyces
cerevisiae, which is commonly known as baker’s or budding yeast. It contains
6476 annotated genes in gene ontology [53].

FlyBase: This database contains the molecular biology and genetics of the Fruit
Fly (Drosophila melanogaster) that is used as a research tool and model organism.
It contains 10581 annotated genes [67].

WormBase: This is a database of the model organism Caenorhabditis Elegans. It
contains 14156 annotated genes in gene ontology[63]

Arabidopsis thaliana TAIR/TIGR: This database contains the genes from genome
Arabidopsis thaliana which is a model organism for plants [8]. It contains 34683
annotated genes in gene ontology [8].

Trypanosoma brucei Sanger GeneDB: Contains the genetics and molecular
biology related to Trypanosoma brucei which causes the African trypanosomiasis
(or sleeping sickness) disease. There arec more than 60 million people at risk in
Africa.[62] It contains 3921 annotated genes in gene ontology [59].

MGI: Mouse Genome Informatics provides integrated access to data on the
genetics, genomics, and biology of the laboratory mouse [39]. It contains 18052

annotated genes in gene ontology [39].
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2.4. Similarity Measures

Ontology-based semantic similarity measures have been investigated for long time in
different domains. First it was proposed in English domain and later it was adapted in
biomedical and bioinformatics domains. The first Ontology used for measuring the
semantic similarities between its terms was WordNet [12, 37, 40]. Several measures were
proposed, some were based on the structure of the ontology [32] and some were related to

information content of the terms [12, 23, 30, 40, 48].

®  Resnik Measure

Resnik [48] proposed an information-content (IC) based measure for semantic similarity
between terms and these measures were designed mainly for WordNet [12, 37].
WordNet is a freely available lexical database that represents an ontology of
approximately 100,000 general English concepts [12, 37]. These measures are proven to
be useful in natural language processing (NLP) tasks [44]. Resnik’s measure calculates
the semantic similarity between two terms [t;, tz] in Ontology (e.g., WordNet) as the
information content (IC) of the least common ancestor (LCA) of t;, t;. The IC of a term ¢

can be quantified in terms of the likelihood (probability) of its occurrence p(#).

IC(c) = -log p(c) (1)

The higher a term appears in the ontology means the lower is its information content
because, simply, more general terms tend to occur more frequently in general than

specialized terms. For example in Figure 2.8 the information content of node 1 is less
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than all of its descendants and the leaves (nodes 10, ..15) have the most information
content and are the most specialized terms. The probability of a term to occur is assumed
to be equal to its frequency in the annotations in a database [32] [S1]. In Gene Ontology

the frequency of each term c is calculated by:

freq (c) = anno (c) + Z freq (h) )

hechildren (¢)

where anno(c) is the number of genes annotated with this term in the database,
children(c) is the set of children for term ¢ in GO [54]. It means that the frequency of
each term equals to the number of the time that genes are annotated by this term plus the

number of the times that its children are used to annotate a gene.

The probability of term ¢ is then defined as:

p(t) = freq(t) /freq(root) 3)

where freg(root) is the frequency of the root term [54].

The probability assigned to a term is defined as its relative frequency of occurrence.

sim o, (t,,t,)= I.'.?:% 'p(lt), @)
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The minimum similarity is zero and there is no maximum for this measure.

Figure 2.8. Example of a tree structure

The more frequency of occurrence means the more general term. The power of Resnik's
measure is that both the relevance of the LCA itself and the distance to the LCA are taken
into consideration [61]. Resnik’s method only concentrates on the information content of
a term derived from the corpus statistics and it ignores the structure of the ontology
which is considered as a drawback of using his method in Gene Ontology in which the
specificity of a GO term is usually determined by its location in GO-graph and the
biological meaning of a term is inherited from all of the term’s ancestors [61]. For this
reason Wang et. al pointed out the information content is not an appropriate measure for

the measuring the semantic similarity of the GO terms [61].

= Jiang and Conrath
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Jiang and Conrath [23] proposed a different approach for the WordNet ontology by
combining the edge based measure with information content calculation of node based
techniques derived from Resnik’s method. Their formula measures the distance between

two terms. The distance is the reverse of their similarity measure.

dist o (1,,1,) = 2log p(t) - (log p(t,) + log p(t,)) ;)
1=LCAft |.t3)

& Lin's Measure
Lin [30] in 1998 developed a measure that considered how close the terms are to their
least common ancestor (LCA) in the ontology. However, it disregards the level of detail

of the lowest common ancestor.

2.log P(c)
log P(c,) + log P(c,)

sim ;, (€,,€,) = MaX g - ( 6)
Here S(c,, c2) is the set of common ancestors of terms ¢, and c;. In contrast to Resnik's

similarity, the values range between 0 and 1.

»  QOther Measures

In 1994 Wu and Palmer [64] applied both the distance between each term with the LCA
of two terms and the depth of LCA of them. Later in 1998 Leacock and Chodorow [29]
proposed a formula for computing the semantic similarity or the relatedness between two

terms in WordNet ontology as follows:
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Len(t,, t,)
2 x max depth(c) )

ceWordNet

sim,.(t,, t,)=-log

in which Len is the minimum path between t; and t;.

Biomedical Domain

In the Biomedical domain, measures of semantic similarity based on ontology were
developed as early as 1989. Rada et al. [46] proposed the first semantic similarity
measure in the biomedical domain by using path length between biomedical terms in the
MeSH ontology [36] as a measure of semantic similarity. Al-Mubaid et al. (2007) [1]
presented a technique for computing the semantic distance (similarity) between
biomedical terms across multiple ontologies within a unified framework like UMLS.
Also, Nguyen and Al-Mubaid (2006) [42] proposed a similarity measure for biomedical
terms by combining both path length and depth features from biomedical ontologies.

In fact the path length is the distance between the terms in the ontology based on the
edges needed to be traversed to reach to the other term. Path Length (PL) can be
calculated easily for a tree structured Ontology such as WordNet. But for DAG-type
ontology, like Gene Ontology, path length is more complicated, since each node may
have multiple parents, and thus, two nodes can have several different paths between
them. Several other biomedical ontologies, within the framework of UMLS (unificd
medical language system) [60], have also been used for measuring semantic similarity in

bioinformatics [1, 2, 4, 41], e.g. Snomed-ct [28, 40] and ICD9CM [58].

26



Lord et al. (2003) [32] were the first to apply a measure of semantic similarity to GO.
They proposed a technique for calculating the semantic similarity of protein pairs based
on Resnik's measure [48]. The semantic similarity between two proteins is defined as the
average similarity of all GO terms with which these proteins are annotated. Each protein
pair receives three similarity values, one for each Ontology (Molecular Function,
Biological Process and Cellular Component Ontologies) [32].

Speer et al. (2004) [56] used a distance measure based on Lin's similarity for clustering
genes on a microarray according to their function. = Chang et al. (2001) [14] and
MacCatlum et al. (2000) [33] showed that Similarity between annotation and literature
will augment sequence similarity searches [32]. They improved PSIBLAST (Altschul et
al., 1997 [6]) with similarity scores calculated over the annotations and Medline [35]
references. Sevilla et al. (2005) [51] analyzed the correlation between gene expression
and Resnik’s, Jiang and Conraths’ and Lin's measures of semantic similarity [51]. They
used microarray data analysis to determine expression levels of genes and compare them
with those annotated in GO. They concluded that Resnik's measure correlates well with
gene expression. On the other hand, Budanisky and Hirts [12] investigated the relatedness
of Resnik [48], JC [23] and Lin’s [30] measures in WordNet ontology and founded JC
[23] as a superior measure to all other ones. These measures were all applied to the non-
biomedical ontologies.

More recently, Schlicker et al. (2006) [54] introduced a new measure of similarity
between GO terms in Gene Ontology that is based on Lin's and Resnik's techniques.

Their measure (simg.;) takes into account how close terms are to their least common
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ancestor as well as how detailed the LCA is, i.e.. distinguishes between generic and

specific terms.

(2l P(e)
ca¥la.) log P(c,) + log P(c,)

simg,,(c,,c,) = max

)1 - P(c)) (8)

S{cy, c3) is the set of common ancestors of terms ¢ and c,.

This simpe; score is the basis for a new measure, called finSim, to compute the functional
relationship between two gene products. The score ranges from 0 to 1. A funSim score
close to one indicates high functional similarity whereas a score close to zero indicates
low similarity. The distribution of the funSim score analyzed and compared for four
different categories of protein pairs corresponding to four levels of evolutionary
relationship: no sequence similarity (NSS), low sequence similarity (LSS), high sequence
similarity (HSS), and orthology' according to Inparanoid (IO) that have more sequences
similarity than HSS. The result is that almost 60% of the protein pairs in the 10 dataset
have the score above 0.8. Those proteins with the highest sequence similarities tend to
have similar molecular functions. However, some protein pairs in the IO set have scores
below 0.2, indicating no functional similarity. The percentage of proteins with high
functional similarity is highest for the 10 category, and decreases for HSS and LSS, to
almost no protein pairs without sequence similarity (NSS). These results confirm that

functionally related proteins tend to have higher sequence similarity [54].

Xxviii

! Orthologs are genes in different species that originate from a single gene in the last common ancestor of
these species. Such genes have often retained identical biological roles in the present-day organism [47].
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Wang et. al (2007) [61] proposed a measure to calculate the functional similarity of GO
terms based on GO term’s semantics (S value) which is an aggrepate of the contributions
of the term’s ancestors in the GO graph. In the evaluation, they found that their method
produces results closer to human perception compared with the results of Resnik’s
measure on the same genes [61].

Although Path length measure has been applied and explored with several biomedical
ontologies [46] [44], it has never been applied or investigated with the gene ontology.
All gene functional similarity techniques that use GO are, thus far, based on IC of terms

or node depth features [54] [23] [32] [46].
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3. A PATHLENGTH METHOD FOR GENE SIMILARITY

USING GO ANNOTATIONS

This chapter presents the first gene similarity method which estimates the gene functional
similarity based on the semantic similarity between the GO terms annotated for genes. As
mentioned in chapter 2, Path length metric has been used in the biomedical domain as a
good measure of term similarity [46] but has never been investigated in the context of
gene functional similarity and gene ontology. We use the ontology structure, of the GO,
for estimating the similarity between pairs of genes based on their annotated terms. More
specifically, we propose the path length between two terms in GO as an indicator of
functional similarity/relatedness of the genes annotated with these terms. For example,
suppose that two genes g; and g» are annotated with the GO terms (; and t;, respectively,
for their molecular functions MF. Then, the shortest path length between t, and t2, PL{(t,,
t2), in GO is a good measure of the functional similarity between g, and g>. In this
chapter the proposed measure is evaluated by comparing it with the sequence similarity

measure,
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3.1. Path Length Calculation

We developed an application for calculating the shortest path length between two genes
(gene pair) based on their annotated terms. The method selects the gene pairs from an
organism annotation file (e.g. SGD), then extracts the terms that these genes are
annotated with.
These annotation terms can be from each of biological process BP, molecular function
MF, and cellular component CC ontologies. Recall that the GO is organized into these
three ontologies BP, MF, and CC. For a given pair of genes (g) and g»), in certain
annotation database like SGD, the annotation terms for g, and g2 in molecular functions
will be extracted and stored in a link list. Then we calculate the first common ancestor of
the terms related to the two genes. We used the February 2007 release of GO from the
gene ontology website [22]. The yeast gene annotations were downloaded from the SGD
site (Dec.2006) [53], FlyBase gene annotations were obtained from the GO website
(Dec.2006) [22]. Here is simplified algorithm for the process:
1. For each pair of genes {g;, g2} in the annotation file, the terms related to each
gene are extracted from the database.
2. The path lengths between the GO terms are calculated from the GO DAG using
edge counting.
3. The distance score between two genes is measured based on the average distance
(shortest path length) between their GO annotation terms.
There were two ways for implementing our algorithm for computing the shortest path

length between two GO nodes n; and n,:
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1. Recording all the ancestors of each node (each node represents a GO term) till we
reach the root. Then we compare the ancestors of n; and n; to find the common
ancestors.

2. Recording just the first level ancestors of each node and comparing them to see if

they have anything in common or not.

Since the second approach uses less memory and faster compared to the first approach we

have applied it in our method. In next section the detail of the method is explained.

3.2. Algorithm for Distance Measure

To measure the distance between the genes we need to have distance (path length)
between the terms related to each gene. In section 3.2.1 we explain how the distance
between two terms is measured and in section 3.2.2 the distance between two genes are

computed.

3.2.1. Distance between GO terms

To calculate the distances between each 2 terms in the gene ontology we have developed

an application in .Net framework using C# language. The algorithm that is used in this

program is as follows:

1. The LCA (least common ancestor) between two nodes is calculated first:
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a. The first level ancestors of each node are extracted from the gene ontology
DAG.
b. The ancestors are then compared to each other to see if they have come up
to a common ancestor or not.
¢. When the ancestors of the two target nodes had any node in common it
means that the common ancestor is found.
2. To measure the distance between two nodes we count the edges from each node to

the common ancestor found in previous stage.

Figure 3.1. GO is a kind of DAG.

As an example we explain the algorithm of finding the fist common ancestor of node 11
and node 12 in Figure 3.1. Some snapshot of the process is shown in figures3.2 and 3.3,
We have used linked list as the structure of storing the nodes in it. We have a pointer that
moves from the beginning to the end of the link list to show which node’s parent should

be calculated. Here is the algorithm:
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1- First the two nodes of 11 and 12 (the target nodes) are pushed as the first 2

clements of the link list. The pointer is now on the node 11 in the link list.

'
el T 1 11 17

Figure 3.2. Stage 1 of the algorithm

2- The first level ancestors of the node 11 (which has the pointer on it) will be added

to the list(7, 4). The pointer moves one cell further to the node 12.

(mf2fzf«] | | [ |

Figure 3.3. Stage 2 of the algorithm

3- The first level ancestors of the node 12 which are (8 and 5) are be added to the

list. Pointer will move further on to the node 7.

11|12 | 7 | 4| 8| 6

Figure 3.4. Stage 3 of the algorithm

4- The first level ancestor of node 7 is node 4 which had been added to the list
before. Since there is no need to add the existing number to the list we just go to

the next element.
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Figure 3.5. Stage 4 of the algorithm

5- Node 4 has the node 2 as its immediate ancestor. We add it to the list. The pointer

moves on node 8.

[mf2]7[aefs]2] ]

Figure 3.6. Stage 5 of the algorithm

6- The first level ancestors of node 8 are nodes 5 and 6. The node 5 is already in the

list so we just add 6 to the list.

[1n]12]7]4]8]|s]|2]6]

Figure 3.7. Stage 6 of the algorithm

7- The first level ancestor of node 5 is node 2. That has been added to the link list in
the stage 5 as the parent of node 4 and node 4 was the parent of node 11. On the
other hand node 5 was the ancestor of node 12. So we have reached to node 2
from two different target nodes (11 & 12) that make it the Least Common

Ancestor of them.
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parents of 12 parent of 4

Wsls 2]6

parents of 11 1 parent of 8

Figure 3.8. Reach the fist common ancestor from two target nodes

Note: In this algorithm we keep the track of each path to see which source the ancestors
are relate to. If the program reaches a common ancestor from two different sources it

means we have reached to the first common ancestor.

L7 AL 5]2]6]

11 12 11 11 12 12 11
12

Figure 3.9. Source node(target node) of each node in the link list

Figure 3.10 shows a sample of the program run for genes AAD4 and NUP159 (from
SGD). Moreover, more details about the implementation of the PL method are available

in Appendix A.
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Figure 3.10. The Path Length Calculator application snapshot

3.2.2. Distance between genes

To find the distance between two genes we first calculate the distance between the GO-
terms of each gene and then we derive a similarity score that is represents all of them.

This score could be calculated by one the following ways:

»  Row Maxima and Column Maxima
This is the method that has been used by Schlicker et. al [54]. They defined their measure
of similarity between the genes based on the similarity value between their related terms
using the maximum values of all rows and columns in the similarity matrix. As an
example suppose that the Table 3.1 is the similarity matrix for GO-terms related to two
genes:
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Table 3.1. The similarity matrix between two genes

In this method, the maximum value in each row is extracted and the average of them
forms the rowScore. Then the average of maximum value for each column is calculated
that forms the columnScore. The final similarity measure is the maximum of the two

values (rowScore and columnScore) [54]

1 8))
rowScore =-— ) max dif
N ; 1s _;s.uy
M 2
columnScor ¢ = LZ max dij o
=l 1SJSN
Similarity Score = maximum{columnScore, rowScore) 3)

= Average of all the GO-Distances
For the pair of genes {g:. g2} such that g, is annotated (for its MF) with the terms t,, .., t,
while g; is annotated with terms t,,..,tn. We calculate all the possible short paths between
the MF terms of g, and g2. Let d;; be the shortest path length between term t; of g and

term t; of g;. The method computes the average of all paths:
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avg{ dij |i:1l..n, j:l.m} @)

For example, suppose that the 2 genes g; and g, are annotated with the following GO
terms. g1 P t, t, t3. 4 and g t°, 2’ t5°, t’ where t=t," and tz =t;’. Then their
similarity matrix contains 16 values. To calculate the average we have:
Average = [d(t), t;") + d(ti. 2") + d(t, t5”) + d(ty, t67) +

d(ta, 1,") + d(ta. 2°) + d(ta, ts°) + d(t, ts*) +

d(ts, ti°) + d(ta. ©27) + d(t3, ts”) + d(13, t6°) +

d(t, 1)) + d(te, t2°) + d(ts, ts) + d(ts, 167)] /16

where d(a, b) means the distance(or shortest path length between the 2 terms a and b).

If we simply measure the distance between each two term as mentioned above we would
encounter a problem which is shown by example below.

Suppose that we have two genes that are annotated with exactly the same terms, that is g,
2 t, and g2 P t,°, 12’ where t,=1¢," and t, = t;’. The distance measure between the
two genes would be d(tl, t1°) + d(tl, 12°) + d(t2, tI°) + d(tz, 12°) = [0+1+1+0]/4 = 0.5
which is not the desired result we expect from this measure. We expected to see the
minimum distance which is zero between these two genes. Therefore we change our
approach a little bil so that the distance of those terms that are common in two terms is
not counted. Therefore in the above example that we had two genesof g 2 t), ta, t3. &4
and g9 t,’, to°, ts°, ts’ where t;=t;’ and t2=t,’ the average is calculated as follows:
Average= [0 +0+0+0+

0+0+0+0+
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d(t.'h tl,) + d(t:h t2’) + d(tJl ts’) + d(t3: tﬁ’) +

d(ty, ;") + d(ts, 1) + d(ts, ts”) + d(ts, 16°)] /16

3.3. Comparing the results with Sequence Similarity

We used Blast tool [11] for computing sequence similarity between gene pairs. The Basic
Local Alignment Search Tool (BLAST) finds regions of local similarity between
sequences. The program compares gene sequences to sequence databases and calculates
the statistical significance of matches. [11]

In some experiments, we used another tool, WU-BLAST2 [52], to find genes having high
sequence similarity to a given gene. We changed the settings in this program so that
more gencs with less sequence similarities are shown in the result. Lower EXPECT
thresholds in Blast settings causes more stringent selection that lessen the chance of

matching sequences [11].

3.3.1. E-value

The Expect value (E-value) is a parameter that describes the number of hits one can
"expect” to see just by chance when searching a database of a particular size [11]. In the
gene sequence similarity results from Blast, the E-value of 0 means that the genes are
totally similar, and as the E-value increases the sequence similarity decreases. This means
that the lower the E-value, or the closcr 1o 0 the more sequence similarity they have [11].
Bit-score is another metric of sequence similarity that BLAST gives and that indicates

how much alignment and sequence similarity two genes have.
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The higher the bit-score the better the alignment, and hence, higher sequence similarity.

The path length between two genes is inversely proportional with the bit score. When the
path length between two genes increases, their Blast bit score decreases; this relation is
shown in Figure 3.11. In which all the genes in groupl have high sequential similarity, all
the genes in groupl have medium sequential similarity with group2 and all the genes in

groupl have no sequential similarity with group3.

Genel(groupl) | Gene2(groupl) | Path Distance Score(bits)
AADI0 AAD4 0 1379
AADI10 AAD14 0 1362
AADI1O AAD3 0 1177
AADIL0 AADIS 0 695
AADIO AADIS 0 531
AADI10 AAD6 0 427
AADIO YPLOBSW 0 227

Table 3.2. SGD genes with high sequence similarity with AAD10

Genel(groupl) | Gene2(group2) | Path Distance | Score(bits)
AADIO POP3 9 39
AAD4 GRX4 5 0
AAD14 RRNS 8 0
AAD3 KAP95 8 0
AADIO HUAI 5 47
AAD4 NUP159 6 -
AADI14 BFAIl 8 0
AADI10 YMROMIC 5 79
AADIO RPL29 7 44
AADI) ATPI0 8 63

Table 3.3. Comparing Group] with Group2 genes

Genel(groupl) | Gene2(group2) | Path Distance Score(bits)
AADI0D ABZ1 8 0
AADI10Q ACB! 9 0
AADI0 ACTI 7 0
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AADIO ADE17 0
AADILO ADES 0
AADIO ADY2 10 0
AAD1D AGPI 9 0
AADID AHPI 6 0

Table 3.4. SGD genes with no similarities with AAD10

Relationship between path length and bit score

15|
e 0N T T T o AN [P e
§ 5 —a—Bit Score |
0.

1 3 5 7 9 111315 17 19 21 23 25
Gene

Figure 3.11. Relationship between path length and bit score

As it shown in the diagram the path length have the opposite trend compare with the bit

score. The bit score values are divided into 100 to be shown easier in the diagram.

3.4. Experiments and Results

We developed a module, called PathLengthCalculator, to implement our proposed

method for measuring the similarity between GO terms and between genes. We used the

42



PathLengthCalculator module to evaluate our methodology and measure the distance

between the genes and proteins.

3.4.1. Distribution of Path Length

» Distribution of PL in SGD Dataset

We have explored the distribution of path length between gene pairs in SGD genes.
For that, 1000 gene pairs were selected randomly from SGD. The distribution of path
length of these randomly selected gene pairs are shown in Figure 3.12. From this
experiment (Figure 3.12) we notice that the majority of these gene pairs (64%) have
path length between 3 and 7. Furthermore, 12% of these pairs have path length of at
most 2 which indicate that these genes have somewhat significant semantic similarity
(small path length) between their GO terms. Moreover, we found that 24% of these
gene pairs have path length of 8 or greater f8-13] which indicates that these pairs
have no similarity in their GO annotation terms. This leads to the observation that
there is no significant pattern or relation (by chance) of the path length feature

between these SGD genes.
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similarity based on GO rely mainly on IC or node depth. Little effort has been done for
investigating the Path length feature as a metric or indicator for gene functional
similarities. The work presented in this chapter is an attempt to fill this gap. We
presented a novel technique for finding gene functional similarity based on GO
annotation terms. The method is based on the average shortest path length between the
GO terms annotated for both genes in a given gene pair. We evaluated the proposed
method with a series of experiments on large groups of genes from two genomes SGD
and FlyBase. We have shown that this method correlates very well with gene sequence
similarity by comparing large numbers of gene pairs with sequence similarities computed
by one the most reliable algorithms for that purpose (Blast). We have shown further that

randomly selected gene pairs have no significant (by-chance) pattern with path length.



4. A NEW GO STRUCTURE BASED MEASURE WITH

EVALUATION USING SGD PATHWAYS

The length of the shortest path (PL) between two terms in a given ontology has been
proved to be a good indicator of the semantic distance (semantic distance is the inverse of
semantic similarity) between the two terms [1, 46, 12, 13, 44]. In this chapter, we
compute path length between GO terms and modify it by considering the number of
distinct minimum-length paths between the terms. Then we measure the similarity
between two genes by using the semantic similarity values between their GO annotation

terms and also considering the number of common GO terms between the two genes.

4.1. Distance between GO terms

To measure the similarity between genes we need to compute the distance (shortest path
length) between GO terms annotated for those genes. The following are some notes that
we should consider:
1- Each gene or protein is annotated with one or more GO terms.
2- Each two GO terms could have more than one minimum path among them. So
that there may be more than one Least Common Ancestor (LCA) between two

terms. As an example, consider the Figure 4.1 in which, each node represents a
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GO-term. The LCAs between node 6 and node_1 are node_10 and node_l11,
because, the two nodes could be reach from 2 paths of “6-10-7-5-1” and “6-10-
11-5-1". Either of these paths has the Path Length of 4 which are the reason for
the existence of two different LCAs.

3- In this algorithm the number of LCAs affects the measure of functional similarity.
If two genes are related to each other from several different paths, it means that
they have more functional similarity that those who have only one path between

them

Figure 4.1. A graph to represent multiple paths in GO

As an example consider the following gene pair from FlyBase [67]:
The first gene InR is annotated with 4 Go-terms and the second gene Ror is annotated

with 3 GO-terms. See Tablc 4.1.
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Table 4.1. Path Length (PL) and number of minimum path (nmp) between the GO-terms

for InR and Ror genes from FlyBase organism

Let us define the path length function between two GO terms gox and goy as follows:

PL(goy, £0y) = the minimum path length in the GO graph between
the two GO terms go,and goy
(1)

But there might be more than one minimum-length path between go, and goy,. We count
number of distinct paths between goy and goy in the GO hierarchy. Two GO nodes might
have several paths betwecn them and among which there are two or more paths with the
minimum length. This means that we can have more that one Least Common Ancestor
(LCA) for two GO terms in the GO tree. The larger the number of minimum paths
between two GO terms. the more similar they are. To test this hypothesis we modified the
PL, Eq(1), by dividing it by number of minimum paths nmp between go, and goy, we call

modified path length PL,,. Then PLy, (gox, goy) is defined as:
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r PL(gox, goy) if nmp = 1

1

\ PL(goyx, goy)/w;.nmp, otherwise 2

where nmp is the number of minimum paths between gox and go, and w; is a weight

factor to determine the contribution of nmp in PL,. In our evaluations, we found that

w, =0.6 gives the best results.
Example: As an example, in Figure 4.2, the minimum path length between the two GO

terms G0O:0042626 and GO:0004129 is 7 using edge counting:
PL(GO:0042626 , GO:0004129) = 7.
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Figure 4.2. Part of the GO to illustrate the paths between two GO terms 0042626 and

0004129

We notice that there are 3 paths between GO:0042626 and GO:0004129. The first path of

length 7 is via the LCA node GO: 0003824, while the second and third paths are via the

LCA nodes GO: 0003674 and GO: 0002215 respectively.

LCA (GO:0042626, GO:0004129) = {GO:0003824, GO: 0003674, GO: 0002215}

Minimum-Paths (G0O:0042626, GO: 0004129) =

{ 42626-16820-16817-16787-3824-16491-15002-4129; 42626-43492-5215-3674-3824-

16491-15002-4129; 42626-43492-5215-15075-8324-15077-15078-4129 }
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The 3824 and 5215 that have the bold format are the least common ancestor of the two
target nodes. All the relations (edges) in Figure 4.2. are an “is-a” relationship, i.e., each
node has an “is-a” relationship with its parent node. Using Eq (2) the modified path

length (PL,,) between these two GO terms is calculated as follows:

1
0.6x3

=3.89

PL (GO :0042626,G0:0004129) = 7x

4.2. Distance between genes

Given two genes G, and G, such that gene G, is annotated with a set of n different GO
terms, we call it the set GO,: GO, = {go,,', gopz, .--- B0p"}, and similarly, the annotation
set for gene Gq = GO,y = {gog', 8042 ..., g0g™}; that is, gene Gq is annotated with m
different GO terms. From these two sets, GO, and GO,, we compute an n x m matrix of
PL,, values between GO term pairs PLn(go,’ . goj) foralli=1, .,nandj=1, ..., m.
Then we calculate the average of all PL,, values in the matrix which will be the PL,, for
the two genes, that is:
Y3 L (gl

PLm(Gpqu)= e nxm 3)

Now, number of minimum paths (nmp) between the two GO terms has been considered
as a positive feature for similarity and thus contributed to similarity as we have seen in

Eq(2). As we mentioned earlier, our method distinguishes between two different paths:
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paths of length > 0 and paths of length 0 (common terms). Paths of length > 0 has been
considered in calculating PL,, of two GO terms (in Eq.2) while the contribution of paths
of length 0 will affect the PL, of two genes. That is, if there is one or more paths of
length 0 (i.e., one or more common GO terms) in the annotation terms of the two genes
then this affects their PL, value. If the two genes G, and G4 have one or more common
terms between them, then we divide their PL, (eq.3) by 2 times the number of common

terms between G, and Gg:

> f: PL_(gof.go?)
1 =l jw] m
@

PL_(G_,G_ )=
n (G Go) 2 x nct nxm

where nct is the number of common GO terms between Gy and Gq. If Gp and Gq have no
common terms between them (nct = 0) then we use equation (3). Notice that the number
of common terms (nct) is not considered in the summation of PL,, in equation (2) because
path length is 0 and dividing it by wl*nmp will not reducc the result (eq.2). To have
common terms between two genes means that the genes are closer and have common

functionality. So the distance (path length) between them should be less.

Example: Consider the following example from SGD: The two genes ABF1 and IFH1 are

annotated with the following Go-terms:

GOasr1 ={3682, 8301, 3677, 3700, 16563, 16564}

GOwr1 = {3700, 3704}
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The 6x2 matrix containing the pair-wise path length (PL) and »mp between their GO

terms is shown in Table 4.2. The PL,, between IFH1 and ABF1 is computed as follows:

1 1.1 ] 1 1 1 1 l

4x + 2%~ +1X=+2%= +2x~+5%- + Tx= +6x-4+3x- +3x—l +3x1
2x06 11 1 1 1 1 1 | 1 1
PL.(IFH1, ABF1)= 3x4 =1.6
2x]
IFHI1
GO:0003700 | GO:0003704
PL nmp PL | Nmp
GO:.0003682 4 2 5 1
GO:0008301 2 1 7 1
ABF1 | GO:0003677 1 1 6 1
GO:0003700 0 0 3 1
GO:0016563 2 1 3 1
GO:0015564 2 1 3 |

Table 4.2, PL and nmp values between GO terms of two SGD genes (ABF1 and IFH1).

4.3. Similarity between Genes

Finally, the functional similarity between two genes G, and G, is as follows:

Sim(G ,,G,)=max _ , -PL,(G,.G,) (5)

Therefore, for the last example we have:
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Sim(Gp, Gg) = 15- 1.6 = 13.4

The meocg, prin the formula above is the maximum PL value in GO, in our experiments,
we used maxg, o= 15 because, according to the research done by Delfs et. al [15] the
Gene Ontology had a depth of 13 levels based on the study they had in the year 2003.
The depth of gene ontology never remains the same and it would be gradually increasing
by the advent of new GO terms. We have used depth 15 in our experiments but the depth

and the number of the words in gene ontology tend to be changed in future.

4.4. Experimental Results and Evaluation

There are few methodologies for evaluating the similarity values computed by a measure.
In NLP, for example, the two common approaches for comparing the computed semantic
similarity values of a given measure is (a) by the correlation with human scores using a
dataset of term pairs scored for similarity by human evaluators; (b) by using the measure
in an application like information retrieval (IR) system or text categorization [12, 13]. In
this thesis since we are in the context of gene functional similarity using GO annotations,
the evaluation methodologies include: - comparing the computed similarity values with
gene sequence similarity [23. 13, 54, 1] with gene expression profiles [51]. or using gene
pathways and clusters information to validate the results [61]. In this chapter we
followed the third approach, as in [61], and we compared our measure with two measures

[48, 61] .
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The semantic similarity measure of Resnik [48] calculates the similarity between two
terms [t;, tz] in Ontology (e.g.. WordNet) as the information content (IC) of the least
common ancestor (LCA) of t, t>. As what Sevilla et al. (2005) [51] found from the
analysis of the correlation between genc expression and other IC based measures (Resnik,
1995[48]; Jiang and Conrath, 1997 [23]; Lin, 1998 [30]), Resnik's measure turned out to
be more accurate than the others. For this reason, we chose to compare our method
experimentally with Resnik’s measure. For that, we measured the similarity of gene pairs
in SGD pathways obtained from http://pathway.yeastgenome.org/. We have obtained
pathways #5 (allantoin degradation) and #6 (arginine biosynthesis) containing 4 and 7
genes respectively (pathways 1 to 4 contains less than 3 genes each). The similarity
values among the gene pairs of pathways 5 & 6 are shown in Table 4.3 for both our
method and Resnik’s measure. First, we notice that in pathway #5 with 4 genes (DALI,

DAL2, DAL3, DUR1,2) and 6 gene pairs, both techniques produced consistent results.

Genel Gene2 Resnik | Proposed
| DAL DAL2 | 247 I
DALl DAL3 247 11
Pathway § DAL DURL.2 1.74 9.5
| DAL2 DAL3 522 13
DAL2 DUR12 1.4 9.5
DAL3 DURI 1.74 9.5
ARGI ARG2 0.28 4.5
ARGI ARG3 0.28 3
| ARGI ARG4 0.28 8
ARGl ARGS.6 0.28 6.67
| ARGI ARGS 0.28 8
ARGI ECM40 0.28 6.67
| ARG2 ARG3 1.38 7.5
ARG2 ARG4  0.28 5.83
Pathway 6 | ARG2 ARGS.6 101 6.67
ARG2 ARGS 1.38 75
ARG2 ECM40 5.76 14.5
| ARG ARG4 .28 ?
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| ARG3 ARGS6 | 101 8.5
ARG3 ARGS 138 |9

| ARG3 ECM40 | 138 15
ARG4 ARGS6 | 028 7.67
ARG4 ARGS 0.28 7
ARG4 ECM40 | 0.28 5.83
| ARG5.6 ARGS 1.01 8
ARGS.6 EcMa0 | 110 6.67
_ARGR ECM40 | 138 75

Table 4.3. Comparison of our result with Resnik’s result in two pathways from SGD.

For example, both measures gave the gene pair (DAL2, DAL3) the highest similarity
whereas the 3 pairs (DAL1, DURI,2; DAL2, DURI,2; DAL3, DURI,2) received the
lowest similarity.

Pathway #6 demonstrated some differences in the similarity values produced by our
measure and Resnik’s measure. For example, if we compare the two pairs (ARG2,
ARG?3) and (ARG3, ARGS,6) we see that Resnik’s measure gives higher similarity value
(1.38) for (ARG2, ARG3) than for (ARG3, ARGS5,6) (1.01), however, in GO tree, the
distance between the terms annotating (ARG2, ARG3) and (ARG3, ARG5,6) are 9 and 6
respectively. Our measure gave higher similarity (8.5) for (ARG3, ARG5,6) than for the
other pair (7.5) which is more consistent with the annotations in the GO tree. Let us
consider the pair (ARG4, ARG8) with the pair (ARG1, ARGS). Both pairs have the same
similarity of 0.28 based on Resnik measure, but in GO graph we notice that the distance
between the GO terms annotating ARG4 and ARGS is larger than the distance of the GO
terms of ARG1 and ARGS. Our measure reflects this fact and gives higher similarity for
the pair (ARG1, ARGS) than for the pair (ARG4, ARGB), see Table 4.3. Thus our
measure is closer to human sense than Resnik’s measure. Comparing (ARG1, ARGS5,6)

and (ARG1, ARG2) shows that there are three paths of minimum length 7 between the
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GO terms of first gene pair, and for the second gene pair there are 2 paths with the
minimum length of 10 between them. Therefore, it is a logical perspective that the first
pair (i.e..(ARG1, ARGS5,6)) is more similar than the second one. Again, Resnik’s
measure gives the same similarity value (of 0.28) for these two pairs while our measure
gives similarity values of 8.5 and 6.6 to them, respectively, which shows that the first pair
is more similar and this is closer to the human (curators) similarity estimates when they
annotated these genes. Let’s examine, further, the two pairs of (ARG4, ARGS5,6) and
(ARG3, ARG4). In GO hierarchy there are 3 distinct paths of length 8 between the terms
of first pair (ARG4, ARGS5,6) while there is only one path, also of length 8, between the
GO terms of the second pair. Therefore the genes in the first pair are more bounded to
each other compared with the second pair. As we see in Table 4.3, both pairs have the
equal similarity value of 0.28 by Resnik’s measure whereas the proposed measure gives
the value of 7.6 to the first and 7 to the second pair which is again evidence that the
proposed measure produces better results.

In another evaluation phase, we examined the proposed measure along with a newly
published measure (Wang et al. 2007) [61]. In experimenting with the same pathways as
[61]. our measures produced results that are very competitive and sometimes closer to

human perspective which is the criteria that Wang et al. have emphasized the most {61].

-AROS | ARDO | AROIO | PDC6 | PDGS-] PDCL | SFAY | ADHS | ADH4 | ADH3 | ADH2 | ADHI |

I AROS 15 7.3 7 7 7 7 7 ] 7 7 7|
[ ARO9 73 7 7 7 | 7 | 7 6 7 7 7

AROI0 149 | 149 [ 149 | 73 | 73 | 63 | 73 | 73 | 73 |
[ PDCG 18 | 6 | 7 7 8 7 7 7

PDC B | 7 7 8 7 7 | 7 |
[ PRC 7 7 | 6 7 | 7 | 7
SFA 147 | 11| 147 | 147 | 147
[ ADHS 14 15 | 15 | 15

[ ADEHA 14 | 14 14|
ADH: 15 15
_ ADH2 15
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[CADRL] | | | | | | | ] | | | |

Table 4.4. Similarity values among genes in tryptophan degradation pathway based on

our algorithm

In [61], the proposed measure is used to cluster the genes in each pathway and reported in
their paper the results for pathway #141 (iryptophan degradation pathway). We tested
our method on SGD pathway 141 and the similarity values for our measure and their
measure are shown in Tables 4.4 and 4.5, respectively. Moreover, Figures 4.3 and 4.4

show the clusters that resulted from both methods.

AROS | ARO9 | AROID ['PDCS'|" "] PDCI _|"SFA1 | ADHS | ADH4 | ADH3 | ADHZ | ADHI
ARDB 1 0.2 020 | 020 | 0199 | 0.189 { 0.196 | 0.189 | 0.198 | 0.173 | 0.188
ARO9 0.217_| 0.199 | 0.199 | 0.199 | 0.199 | 0.199 | 0.199 | 0.199 | 0.173 | 0.109 |
AROI0 0.896 | 0.896 | 0.896 | 0.221 | 0.217 | 0.217 | 0.217 | 0.180 | 0217
[ PDC6 1 1 0.199 | 0.199 | 0.199 | 0.199 | 0.173 | 0.199 |
“PDCS 1 0.199 | 0.199 | 0.198 | 0.198 | 0.173 | 0.199
PDCI 0.199 | 0.199 | 0.199 | 0.199 | 0.173 | 0.199 |
SFAIL 0.779 | 0.779 | 0.779 | 0.677 | 0.779
ADHS 1 1 0.869
ADHA 1 D.869
ADH3 0.869 ]
ADH2 0.869
|_ADH!

Table 4.5. Similarity values among genes in tryptophan degradation pathway based

Wang et al.’s measure [61].




Figure 4.3. Clustering genes in tryptophan degradation pathway based on our algorithm

Comparing these two measures on this particular gene group, we found that both
measures give very similar and consistent results (Tables 4.4 & 4.5) with few differences
in the resulted similarity values as follows. The similarity value by our measure is 14.7
for the pair (SFA1, ADHS5) and 14.0 for the pair (ADH4, ADHYS); therefore SFA1 will be
clustered with ADHS group sooner than ADH4 according to our measure. But in Wang’s
method ADH4 is clustered with ADHS5 before SFA1 is clustered with the ADHS group,
since the similarity values are 0.87 and 0.78 for (ADH4, ADHS) and (SFA1, ADH5)

respectively.
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Threshold Initial | 1.000 | 0.890 | 0.860 | 0.770 | 0.220 | 0.210

v LS i
A A4 | ADPE | AnH3

Figure 4.4. Clustering genes in tryptophan degradation pathway based on [61].

By examining the GO annotation terms of these genes, we find that SFA1 and ADHS5 are
both annotated with the same GO term “alcohol dehydrogenase activity” , while ADH4
& ADHS have no common terms between them; See table 4.6. This confirms that our

measure is closer to human perspective than the measure of Wang et al. [61].
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GO:0004022 | ,\-rnol dehydrogenass activity

SFA1

Q00004022 aicohol dehydrogenase aclivity

GO:0004327 formakiehyde dehydrogenase (glutathione) activity

ADH4

GO:0004024 | 4\conol dehydrogenass activiy, zinc-dependent

Table 4.6. Three SGD genes with their annotation by GO terms.

4.5. Discussion and Conclusion

We presented a simple measure for semantic similarity of GO terms and then the
functional similarity of genes. The measure is based strictly on the ontology structure
features of the GO. Specifically, our measure estimates the semantic similarity between
two GO terms using the various paths between them. We assign a higher weights in the
similarity metric for gene pairs having common GO terms (having paths of length = 0)
between their annotation sets. We also assign weights for number of minimum length
paths between two terms. The strength of our measure comes from the idea that we
consider all paths between the GO terms, and the paths of length zero (common terms)
between two genes are treated diffcrently. If two GO terms have multiple minimum paths
between them then they have more than one LCA (least common ancestor) and hence
they share more commonalities than those GO terms with one minimum path between
them. We examined our measure with a large number of gene groups from SGD
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pathways (we cannot report all the results for space limitations). The experimental
results showed that our method performs better than the measure of Resnik in most cases
or equal in the rest of the cases, and very competitive or sometimes better than Wang et

al.’s measure.
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5. CORRELATION BETWEEN DEPTH AND PATH LENGTH OF

GO NODES WITH GENE SEQUENCE SIMILARITY

In this chapter we present another new similarity measure (Simp;p) for calculating the
semantic similarity of terms in Gene Ontology based on the depth and path length
features in GO hierarchy. That is, this method is based strictly on the ontology structure
features (i.e., depth and path length) without using any other information sources (like
biomedical text literature, or gene expression data). The method computes the similarity
between two genes as numeric figure based on the average of Simp;p between the GO

terms annotated for both genes in a given gene pair.

5.1. Semantic Similarity between GO terms

In Chapter 3 we proved that the length of the shortest path (PL) between two terms in a
given ontology is a suitable measure of the semantic similarity between the two GO
annotation terms. In this chapter, we also consider the depth of the least common
ancestor of the two terms in the previous measure which was the path length between the
two terms. Then the similarity value between two genes will be the semantic similarity

values between their GO term annotations.
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The similarity between two GO terms is defined as

depth (Ica(gox , goy ))) ~ log( PL(gox, goy ))
Max _dpth 2 x Maxdpth

Sim p,p, (go ., 80,) = log(

)

PL(goy, g0y) is the minimum path length in the GO graph between the two GO terms go,
and goy. In formula 1, the first phrase is divided by the maximum of depth in the GO and
second phrase is divided by 2 times the maximum depth in GO which implies the
maximum PL in the gene ontology. The division operation is for the purpose of
normalization and has scaled down the value of Simp.p in our computations. There is no
bottom or upper limit for Simp p value but in our experiment we got the values ranged

between -2 and 2.

5.2. The Semantic Similarity of Genes

Given two genes Gp and Gq such that gene Gp is annotated with a set of n different GO
terms, we call it the sct GO,: GO, = {gop', g0y’ ..., £0p"}, and similarly, the annotation
set for gene G, = GO, = {go,', g0g%, ...., BOq"}; that is, gene Gq is annotated with m
different GO terms. The similarity between genes are measured by calculating the

average of Simpp between the GO terms annotated for both genes in a given gene pair.
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simy, (8,, gene ) =avg {simp, (go,,go, )| x:l.n, y:l.m}  (2)

5.3. Experiments and Results

53.1. Dataset

The sample size which is used in this chapter consists of 1000 gene pairs from
SGD(Saccharomyces cerevisiac) [53] and 2000 pairs from FlyBase (Drosophila
melanogaster) [67] genomes in one experience and 4000 protein pairs from a dataset that
is used on [54). The sample size is consistent with those researches done on the same
similar subject. Indeed the size is not exactly the same or larger, still it is considered as a
reasonable size. We mention some examples as the proof of this claim: Schlicker et al.
2006 [54] has applied their measure on 682 protein pairs from human and saccharomyces
cerevisiae proteins with very high sequence similarity (10 set), 989 protein pairs with
high sequence similarity (HSS set) and 989 protein pairs with low sequence similarity
(LSS set). They have applied their measure to 1356 protein pairs with no sequence
similarity (NSS set). Another research done by Lord et al. [31] has applied their measure
of semantic similarity to those proteins with the evidence code of TAS extracted from
approximately 7000 human proteins in Swiss-Prot. Dolan et al. [18] investigated on the
consistency of the annotations for genes related to mouse and human. They could find

out, of the complete set of human and mouse and 11860 MGI curated genes, 3948 genes
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have only MGI GO annotation and 4994 genes have only GOA annotation and only 1572
genes are annotated by both groups. Khatri et al. [27] worked on genes from Homo
Sapiens genome. From the 11203 genes and 5201 ontology category and 58 millions
gene-function association they could extract 212 additional gene-function assignments,
out of which 161 were confirmed in later releases of gene ontology database. Therefore
the size of the dataset used in this chapter is consistent with the size of dataset used in
other researches.

In this chapter as what we did in chapter 3 for the evaluation, we divided the datasets into
different groups based on the Blast E-value of the gene pairs. Those pairs with zero
values are considered sequentially similar and the E-value of 1 shows that there is not a
significant similarity among the genes. Remember that we grouped the gene pairs with
the Blast E-value <10”° as high sequence similarity (HSS). The gene pairs with low
sequence similarity (LSS) are those with the E-value>10 but less than one. The gene

pairs with no sequence similarity (NSS) are those with the E-value=1.

5.3.2. Distribution of Simprp

As it is shown in Figure 5.1, in FlyBase dataset, nearly all of the genes that have no
sequence similarity have the Simpp value of less than zero. Among those with high
sequence similarity more than 80% have the Simp.p of greater than zero which shows a

very high correlation of our result with the sequential similarity.
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GO rely mainly on information content(IC) of the terms. We presented & novel technique
for finding gene functional similarity based on GO annotation terms. The method is based
on the average of our measure (Simp;p) between the GO terms annotated for both genes
in a given gene pair. We evaluated the proposed method with a series of experiments on
large groups of genes and proteins from two genomes of SGD and FlyBase and a dataset
of Human-Yeast protein pairs. We have shown that this method correlates very well with
gene sequence similarity by comparing large numbers of gene and protein pairs with
sequence similarities computed by one the most reliable algorithms for that purpose
(BLAST).

In summary, our evaluation experiments involved more than 3000 genes and 3000
protein pairs having high, low, or no sequence similarity from three different datasets. All
the experimental results support the fact that there is significant correlation between the
sequence similarity of genes and semantic similarity using Simp.p. This proves that the
depth of LCA of two terms along with the path length between gene annotation terms

using GO can be a reliable measure for gene functional similarity.
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6. CONCLUSION AND FUTURE WORK

Gene Ontology is the main and most comprehensive resources for research on gene and
protein functions and structure. It consists of a set of controlled vocabularies to describe
the biology and functions of genes and proteins in any organism [9]. GO annotations
capture the available functional information of a gene or protein and can be used as a
basis for a measure of functional similarity between genes. Besides the bioinformatics
resources that hold data in the form of sequences, these data has represented as scientific
natural language which is easier to be modeled and is more readable to human [32]. Gene
Ontology is a dynamic evolving project of the GO Consortium in which different sections
of the ontology are expanded or reorganized as more biological information becomes
available. In this thesis we proposed new similarity techniques for finding gene
functional similarity based mainly on the shortest path length between the GO terms
annotated for both genes in a given gene pair. For example in chapter 3 we presented a
measure based on plain path length that simply considered the distance between the GO
terms in gene ontology and then used the average of these distances to find the similarity
between the genes. In chapter 4, we considered the number of minimum paths, nmp, and
the number of common terms, ncl, in a given gene pair as contributing features in
computing the similarity between genes. In chapter 5. we added the depth feature of the

least common ancestor of two terms in gene ontology to the measure introduced in
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Chapter 3. Then the similarity between the genes was calculated based on the average of
this measure between the GO terms. The existing techniques for finding gene functional
similarity based on GO rely mainly on the information content of (IC) of the GO terms.
PL has never been investigated in the context of GO to estimate the functional similarity
between genes based on GO annotation terms. PL has been used extensively as a measure
of similarity in the general English domain using, for example, the WordNet ontology
[12]. 1t also has been used in the bioinformatics domain [Rada-1989] [13]; for MeSH
[36] ontology and from these applications proved that PL in general can be used as a
good indicator of semantic similarity between terms in a given ontology. This research
used the PL as one of the most important features in gene ontology.

The proposed measures have been fully implemented and extensively evaluated. In the
evaluation, we compared our proposed measure with the BLAST [11] sequence similarity
between the sequences of the genes in a given gene pair. We also compared our measure
with other IC measures like Resnik based on the human perception [54, 61]. Our
evaluation was similar to other research projects in this field like Schlicker et. al [54] that
evaluated their work based on the sequence similarity and Wang et. al [61] that
compared their measure with Resnik measure [49] based on the justifiability of their
result with the human perception. In chapters 3 and 5 we used the first approach of the
evaluation while in chapter 4 the second approach has been used.

The experiments were applied on large sets genes from two genomes SGD
(Saccharomyces cercvisiae) [53] and FlyBase (Drosophila melanogaster) [67]. We also
tested our measure on a dataset of proteins that Schlicker et. al [54] have used in their

experiments.

102



The experimental results proved the cffectiveness of the proposed techniques in
measuring the similarity in the GO and gene function domain. See for examples, Figures
3.14, 3.15, 3.16, 3.17 that shows the correlation between the plain path length and
sequence similarity. The comparison of our PLn measure with Resnik and Wang
measures shows better or equal estimation of similarity between the gencs in several
pathways. For example see the Table 4.3. Based on PL,, measure (Chapter 4) we could
cluster the genes more accurately than using Resnik measure based on the human
perception; see Table 4.4. We also showed , in Chapter 5, that the result of using depth
and path length along with each other also correlates very well with the sequence
similarity. For example see figures 5.1, 5.2 and 5.3. We applied our plain path length
measure to compute the distance between genes based on using terms in molecular
function (MF) ontology and terms in biological process (BP) ontology. We found that the

MF dataset correlates much better with sequence similarity rather that BP dataset.

6.1. Future Work

In future work of this research we would like to apply path length-based measures to
more datasets from different model organisms. For more accurate evaluation we also
would like to measure the similarity between the genes using other information sources
like the biomedical literature (e.g. Medline). We can also use the microarray data analysis
to determine expression levels of genes and find the correlation between gene expression
data with our semantic similarity measure. Furthermore. we would like to consider the

number of distinct paths between two GO terms as a potential feature contributing into
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the semantic distance between the genes. In this research we just considered the number
of minimum path (nmp) and not the total number of all distinct paths.
Another interesting feature that we would like to study in the future of this research is the

effect of the various evidence codes on the performance of the gene similarity measures.
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APPENDIX A: IMPLEMENTATION DETAILS

Here we want to show parts of the program that is developed to calculate the path length
between the genes. The detailed of the program is as the following: We used linked list as
the structure of storing the GO nodes in computing the shortest path length (Please refer

to Sec. 2.3 and Figure 3.2 in Chapter 3.). Each cell in the linked-list has the following

properties:

class CellArray
{

String _golD;
String _goParent;
int _goPathLen;
String _goParent2;
int _goPathLen2;
int _distance;

All the properties are private and we used setter and getter to acess them. Like:

public String GoID

{
get { return _golID; }
set { _goID = value; }

}

public 5tring GoParent

{
get { return _goParent; }
set { _goParent = value; }

}

public int GoPathLen

{
get { return _goPathlLen; }
set { _goPathlLen = value; }

1




We use a method of getParent to pget all the parents of a node. Details are as the

following:

private ArrayList getParents(String termID)
{
ArrayList is_a ArrayList = new ArrayList();
¥mlDocumenrit goDoc = new XmlDocument(};
String GOPath = Application.StartupPath + "\\summerizedGO.xml";
goDoc.Load {GOPath) ;
YmlElement root = goDoc.DocumentElement;
¥mlNodeList goList = root.GetElementsByTagName("term”);

IEnumerator inum = goList.GetEnumerator({):
while (inum.MoveNext())
{
¥mlMode node = {¥mldode) inum.Current:;
String temp = node.Attributes.GetNamedItem("about"™).Value;
int startTrim = temp.IndexOf('%¥') + 1:
String term = temp.Substring(startTrim);
//if the term was the same as the input term
if (termID == term)}
{
AmlNodeList list = node.ChildNodes;
JTEnumerator ienum = list.GetEnumerator({).;

while (ienum.MoveNext())
{
AmlNode currentChild = (AmlNode) ienum.Current;
if (currentChild.Name == "jis a")
{
String templ =
currentChild.Attributes.GetNamedItem(™"resource”) .Value;
int startTriml = templ.IndexOf('#') + 1;
String parent = templ.Substring(startTriml):
is_a_ArrayList.Add(parent);

t
return is_a ArrayList;
}
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This part of the code called gerDistance get two terms and returns the number of

minimum paths and the distance between the two terms.

public void getDistance(String terml, Scring term2,ref double
distance, ref int nmp)
//number of minimum pach
{
distance = -1;
nmp = 0;
if (terml == term2}
{
distance = 0;
return;
}
int counter = Q;
int minDistance = 100;
ArrayList list = new ArrayList():
//contains terms + Lhe parents of each terms + the
//parenta of the each node that is being added

//calculate golID,goParent, goPathLen
CellArray celll = new CellArray(terml);
celll.GoParent = terml;
list.Add({celll);

Cal lArray cell2 = new CellArray(term2);
cell?Z.GoParent = term2;
list.Add(cell2);

CellArray currentCell = (CellArray)list[counter];
//counter and currentcell points to a cell that its parents should
be found

//minDistance keeps the minimum distance bectween the two GO nodes.
while {list.Count > counter && currentCell.GoPathLen < minDistance}
{
currentCell = (CellArray)list{counter};
ArrayList parents = getParents (currentCell.GoID);
//gets the first upper level parents
bool found = false;
for {int i = 0; i < parents.Count; i++)//for i{
found = false;
String parent = parents[i].ToString{):
IEnumerator ienuml = list.GetEnumerator():;
while (ienuml.MoveNext())//to compare from the begining of
the list
//see if there ezist the sam2 GOID frem before.
{
CellArray currentEnum =
(CellArray)ienuml.Current;//checker from begining to @nd
if (currentEnum.GoID != parent)//not found any goID that added
before {
// iznuml.MoveHex: ();:
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}
else//if current.GQID == parencs[i]
{if (currentEnum.GoParent == currentCell.GoParent)
//if 11=11//come from the same path
{
found = true;
ienuml .MoveNext({);
} else//if 11!=12 //come to the same LCS: not the same path
{
found = true;
if (currentEnum.GoParent2 == "" g¢ currentEnum.GoPathLen2 == Q)
{
currentEnum.GoParent2 = currentCell.GoParent;
currentEnum.GoPathLen2 = currentCell.GoPathLen + 1;
currentEnum.Distance = currentEnum.GoPathlLen +
currentEnum.GoPathLen2;
}
if (currentEnum.Distance < minDistance)
minDistance = currentEnum.Distance;
}//end else
}//end alse
}//end while
if (found == false)//if not found the GO add it to the list.
{
CellArray cell = new CellArray(parent);
cell.GoPathlLen = currentCell.GoPathlLen + 1;
cell.GoParent = currentCell.GoParent;
list.Add{cell);

counter++;

}//while =2nd

distance = minDistance;

for (int i = 0; 1 < list.Count; i++)

{
CellArray current = {(CellArray)listi);
if (current.Distance == minDistance)

{
}

nmp++;

}
//calculate number of minimum distance

Here is the code for getting the name of organism and the sequence simialrity of the

dataset and finding the similarity between the genes inside the dataset.
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public static void readAnnotation(String source, String seqSim}{

String pathl = "\\Variationl\\" + source + "_" + seqSim +
" variationl.csv";

String filel = Appllication.StartupPath + pathl;
StreamReader reader = File.OpenText (filel):;

String path2 = "\\All_Output\\"” + source + "_" + seqSim + "_All.csv";
StreamWriter writer = File.CreateText (Application.StartupPath + path2);

writer.WritelLine("Genel,Gene2, Evalue, PL_List,NP_List, Depth_List, simGO, S
im");

String filelline = reader.ReadLine();

while (!reader.EndOfStream)

{
String genel = "";String gene2 = "";String evalue = "";
String pl_list = "";String np_list = "";5tring depth_list = "";
String plvl = "";

genel = filellLine.Substring(0, filelLine.IndexOf({",")):;
filelLine = filelline.Remove{0, filellLine.IndexOf({",")+1):;

gene2 = filelLine.Substring(0, filelLine.IndexOf(",")):
filelLine = filelLine.Remove(0, filellLine.IndexOf(",™) + 1}:

evalue = filelline.Substring(0,filelLine.IndexOf(","));
filelLine = filelline.Remove(0, filelline.IndexOf(",") + 1);

plvl = filelLine.Substring({0, filelLine.IndexQf(™,")):
filellLine = filellLine.Remove(0, filelLine.IndexOQf(",") + 1);
pl_list = filelLine.Substring(0, filelLine.IndexOf(",")):
filelLine = filellLine.Remove (0, filelline.IndexQf(",") + 1);
np list = filelLine.Substring(0, filelLine.IndexOf(","));

filelLine = filelLine.Remove(0, filelline.IndexOf(",") + 1);
depth_list = filelLine.Substring(0);
//create pl_list ArrayList
ArrayLisc PL ArrayList = new Arvaylist():
String[] PL_List = pl list.Split('/'):
for (int i = 0; i < PL_List.Length - 1; i++)
{

PL ArrayList.Add(PL _List[i]):
}
//create np_list ArrayList
ArrayList NP_ArrayList = new ArrayList();//1/2/3/4/5/
String[] NP_List = np list.Split('/');
for (int i = 0; i < NP_List.Length - 1; i++)
{

NP_ArrayList.Add(NP_List[i])};//3,2,3,4,5
}
/=reate depth_list ArraylList
ArrayList Depth_ArrayList =~ new Arrayiist();//1/2/3/4/5/
String(] Depth_List = depth list.Split('/'):
for {int i = 0; i < Depth _List.Length - 1; i++)
{
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Depth_ArrayList.Add(Depth List{i]);//1,2,3,4,5
}

//calculate similarity for GOs

//lag{Depth (LCA{goxz, goy)/maxilenth)-log(PL(gox,
goy} /2 *maxDepth)

String simGOString = "";

double simGQ = 0;//similarity measure for GO terms

double sim = 0;//similarity measure for Genes

for (int i = 0; i < PL_ArrayList.Count; i++)
{

double depth = Double.Parse{Depth_ArrayList([i].ToString()):
double PL = Dcuble.Parse(PL ArrayList[i].ToString());
if (PL = 0)
{
double aa = PL / (2 * maxDepth);
double bb = (maxDepth-depth}/maxDepth;
double cc = aa*bb+l;
double dist = Math.Log(cc, 2);

simGO = l-dist;
}
els=

{
H

s5imGO = 1;

simGO = Math.Round{simGO, 2);
sim += simGO;
simGOString += simGO.ToString()+ "; ";
}
sim = sim / PL_ArrayList.Count;
sim = Math.Round(sim, 2);
writer.WriteLine(genel + "," + gene2 + "," + evalue + ",” + pl_list +
"." + np_list + "," + depth_list + "," + 3imGOString + "," + sim);
writer.AutoFlush = true;
filelline = reader.ReadLine();

}
writer.Close();
reader.Close();
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APPENDIX B: SAMPLE OUTPUT AND RESULT TABLES

Here we show some parts of the output generated from by PathLengthCalculator
application. All the results can not be shown in here. This is only a small part of it. The
output of the program contains the name of the genes that are compared with each other.
PL_List contains the plain path length between the GO terms associated with a given
gene pair. NP_List contains the number of minimum paths between the GO terms.
Depth_List contains the depth of the least common ancestor (LCA) of the two terms. If
there are more than | term related to one gene in a gene pair then we have several PLs in
our PL_List, several NPs in our NP_List and several depths in our Depth_List that are
separated by a “slash”.

The following output is for Human-Yeast-1O dataset:
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Simgs|
0.8

Q06265 10/0/ 117! 0.61; 1; ;
IP07347 P41227 1041/ 21! A 0.64:0.97; | 0.79
|Q05506 QO6FUS 1100/4/ 10MF 7R |0.58:; 1; 0.85] 0.81
(P22438 QO6GWS  [11/044/ 101! \7a |0.58: 1; 0.85] 0.81
P53043 P53041 (807 10 |18/ |o.68; 1: 0.84
|1=329t|5 QBUKM? |11/ 1 [1e/ [0.58: 1; 0.79
[P36017 P20339 lex¢ 10 1%/ |0.64; 1: 0.82
IP0G245 P17612 13011727 202111816 |0.51: 1: 0.58] 0.76
[P22137 Q00610 lo/ o7 2/ 1; 1
(03940 Q9Y2%5 |8/ 1/ 2/ 0.7: 0.7
[P19882 P10809 Y] 1 2/ j0.7; 0.7
[P41921 P00390 lof 07 2/ 1; 1
IP32604 060825 11/ 1/ 2 [0.5; 0.6
P23615 Q7KZB5 3¢ 14 2/ 10.88; 0.88
36668 Q92611 21 1/ 2 082 0.92
P14743 P30419 |67 2/ 2 l0.77 0.77
P53941 QBG21 |6f 14 2 jo.B1; 0.81
Q82759 3/ 1/ P jo88: 0.88
{P16120 QBBYJ6 Al 1 2/ |0.84; 0.84
(P36007 QOGZT4 71 14 2/ 10.73; 0.73
|P47039 Q16773 7! 1/ 2 10.73; 0.73
|P53688 QONTG? |8/ 14 2/ 10.7: 0.7
[PO&105 Q00341 3 1/ 2 {0.88; 0.88
[P38152 P53007 18/ 14 2/ 0.7 0.7
(P38702 P16260 &/ 1/ 2/ |0.7: 0.7
(P23268 (99437 A 1 2 10.84; .84
(Q03529 Q96DK1 12 1/ 2 10.96; 0.96
{P40556 QSH2D1 7! 1/ 2/ {0.73; 0.73
{P53731 015144 1/ 1/ 2 {0.98: 0.96
|P38706 P33316 13/ 2/ 2 [0.54; 0.54
{Q05787 QBWWHS |5/ 1/ 2 j0.67: 0.67
{P36070 P23193 3f 1 2/ j0.88; 0.88

Table 0.1. Human-Yeast-10 dataset
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The following output is for SGD HSS dataset:

S
P1__ |MNN3  3.00E-164[tAV 114/ B/ 97; 1; 0.98
F2___ |XRt 5.40E-09]01/ / d/al 1;0.97; 0.98
PMC1___ INEO1  |7.10E 127|400/ 2/5/ B4; 1; 0.92
0.97; 0.97
5/ 097, 0.97
38/ 96; 0.93; 1; 0.96
1,0.88; 0.94
4/ .84; 0.97; 0.9]
24 0.84; 0.97; 09
& 0.84; 0.97; 0.9
4/ 0.84; D.97; 09

1
13/
| ]
1574141
1na!
1A
NANNANT

Table 0.2. SGD HSS dataset
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The following output is for FlyBase NSS dataset:
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ama hetadG 117/ 1 72 0.72
CG11670 |betaTubd7] 1 17 _ 0.68
Faks6D |3L-B 1|67/ A7 75; D.72] 0.74
CaddGCa [3L-D 1|55/ AN .79: 0.75, 0.78
gk NG 1|37/ 7 87- 0.83 0,65
FakS60_ [aNS 11677 17 .75; 0. 0.74
Cad96Ca | 1|sEAl 14177 .79 0.7 0.78
btl aiphadGTH__1j8/V 3/ .72 D61 0.66
Ror |alphedGTY 1 3N/ .72; 0.64] 0.67
shark __ lalphadGTY 1 33/ 72 0. 0.7
FakS60 |alphadGT1 303/ 72 0. 0.7
CadS5Ca [alphadGT1 1 [7AVH 3N/ .75; 0. 0.7
slpr a GT1 1[f7manu/ ! .75: 0. 0.68
CGI277_|alpha-Cat | 1]10//10/ A7 0.51: 0.64 0.62
btl [aiphe-Cat | 1[108A0AGSNN 1AARAA] D.61; 0.64 0.62
Cadd6Ca [3L-21127] 1 17147 0.79: B.75 0.78
bti |a|pha4 1jany/ 7 0.72: 0.61 0.66
Ror alphad 1 Al 0.72: 0.64 0.67
shark _ |alphedGTY 1 0.72: 0.69 0.7
FakoD |alphadGT1 1|87 0.72; 0.69, 0.7
Cadd6Ca |alphsdGTY _ 1/7/8/9/ kN7 D.75; 0.72 0.7
8l alphad 7IiBAY ] 0.75; 0.63] 0,69
C©G3277 |alpha-Cat | 1/10810/ 1177 61; 0.54 0,62
bt alphe-Cat | 11081010810/ 1AAAAA] 61; 0.64 0.62
shark  lalpha-Cal | 1/10BA0A1A0/1/ 1ARNANT 61 0.54 06
[FaiD_|alpha-Cat | 1]108/10/1171011/ 1AAANAT 61; 0.54 06

1[10AA0BRBNGBAY _ [2R2RANAANNT WiAnNARRAA] 61 0.64 0.6

1 OBNDARAT [2RRANARRRANATNAAAARRANDAAI _J0.64; 0.6 07

1 7 2 67; 0.67

11940/ 27/ 22/ 67, 0.63 0.685

101/ 2727 272/ .63; 0.6; 052

101/ 272/ 272/ .63; D.6; 062

11910717 20040 N7 .67; . 0.63

Table 0.3. FlyBase NSS dataset



