

Copyright

by

Jitendra Gopaluni

2018

IMPLEMENTATION OF A GRAPHICAL USER INTERFACE FOR THREAD

PROTOCOL USING OPENTHREAD PLATFORM

by

Jitendra Gopaluni, B.Tech.

THESIS

Presented to the Faculty of

The University of Houston-Clear Lake

In Partial Fulfillment

Of the Requirements

For the Degree

MASTER OF SCIENCE

in Computer Engineering

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

DECEMBER, 2018

IMPLEMENTATION OF A GRAPHICAL USER INTERFACE FOR THREAD

PROTOCOL USING OPENTHREAD PLATFORM

by

Jitendra Gopaluni

APPROVED BY

 __
 Ishaq Unwala, Ph.D., Chair

 __
 Jiang Lu, Ph.D., Committee Member

 __
 Xiaokun Yang, Ph.D., Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

Said Bettayeb, Ph.D., Associate Dean

__
Ju H. Kim, Ph.D., Dean

Dedication

I dedicate this Thesis to my Mother, Sarada Mani Gopaluni, for her belief in me

and Grand Parents Venu Gopal Rao Kalapatapu and Lakshmi Kalapatapu for their

encouragement.

v

Acknowledgements

I express my sincere and deepest gratitude to my supervisor, Dr. Ishaq Unwala,

Assistant Professor, Department of Computer Engineering. His expertise, invaluable

guidance, constant encouragement, affectionate attitude, understanding, and patience

added considerably to my experience. Without his continual inspiration, it would not have

been possible to complete this study.

 I owe my special thanks to Dr. Jiang Lu for being part of my thesis committee.

I owe my special thanks to Dr. Xiaokun Yang for being part of my thesis committee

Special thanks to Prof. Dr. Hakduran Koc, program chair and associate professor

of Computer Engineering.

I extend my thanks to the Dean’s Office, Librarians, Writing Centre and UHCL

staff. The financial support from the Financial Aid Department in the form of a teaching

Assistantship is gratefully acknowledged

I am also very thankful to my friends Shiva, Harold, Ngyuen Ly, April, the

Francisco brothers from the Microprocessor Interfacing lab at the UHCL for their support.

I thank Harshini, Prathyusha, Jissmol, Teja, Nandini, Bhaskar, Johanna, Divya and

Mounika, my roommates Muhammad, Stuart and Andrea for their support.

Above all, I would like to thank God, my mother, Grand-parents and my family

members who with their love and encouragement have made all this possible.

vi

ABSTRACT

IMPLEMENTATION OF A GRAPHICAL USER INTERFACE FOR THREAD

PROTOCOL USING OPENTHREAD PLATFORM

Jitendra Gopaluni

University of Houston-Clear Lake, 2018

Thesis Chair: Ishaq Unwala Ph.D.

 Thread is an IPv6-based protocol introduced in July 2014. Thread is a networking

protocol for Internet of Things (IoT) for “smart" home automation devices to communicate

on a local wireless mesh network. Thread uses 6LoWPAN, IEEE 802.15.4 wireless

standard with mesh topology. Thread is IP-addressable, with AES encryption and supports

up to 250 devices in one local network mesh.

OPENTHREAD

 OpenThread is an open source implementation of the Thread Protocol. OpenThread

implements all the features defined in the THREAD 1.1.1 specification (IPv6, 6LoWPAN,

IEEE 802.15.4 with MAC security, Mesh Link Establishment, Mesh Routing).

GUI using TCL/tk

 OpenThread is currently uses a command line Interface. The Thesis research is

focused on adding a Graphical User Interface (GUI) based on Tool Control Language.

(TCL “tickle”) to OpenThread. TCL/Tk enables building a GUI natively in TCL.

OpenThread having a GUI will make working with OpenThread much easier, the use of

basic commands will not need to be memorized and additionally the user does not need to

know any programming language. GUI will make it easier for developers working on

OpenThread to visualize the Thread network and its operations.

vii

TABLE OF CONTENTS

List of Tables ... ix

List of Figures ... x

CHAPTER I: INTRODUCTION .. 1

CHAPTER II: INTERNET OF THINGS (IOT) ... 4

CHAPTER III: THREAD PROTOCOL ... 8

3. 1. Thread network Architecture .. 10
3.1.1 Border Routers ... 11
3.1.2 Leader .. 11
3.1.3 Router-eligible end devices.. 12
3.1.4 Sleepy end devices ... 12

3. 2. Thread stack Fundamentals... 13
3.2.1 Addressing ... 13
3.2.2 6Lowpan .. 13
3.2.3 UDP.. 14

3. 3. Network Address and Devices .. 14
3. 3. 1. Mesh Network ... 14

3. 4. Mesh Link Establishment ... 16
3.4.1 MLE Messages... 16
3.4.2. Path Identification and Route Updating .. 17

3.5. Join the network ... 19
3.5.1 Discovery ... 19
3.5.2 Commissioning .. 19
3.5.3 MLE data ... 20

CHAPTER IV: OPENTHREAD .. 21

4.1 Uses of OpenThread ... 21
4.2 Network Implementation .. 23
4.3 Routing Implementation ... 24
4.4 OpenThread CLI commands ... 25
4.5 Working of OpenThread ... 27
4.6 Problem Statement and Solution. .. 30

4.6.1 GUI (Graphical User Interface) for OpenThread 30

CHAPTER V: GUI USING TCL/TK FOR OPENTHREAD .. 31

5.1 Building GUI for OpenThread .. 11
5.2 Working of GUI for OpenThread ... 12

viii

5.2.1 Contents of the GUI. .. 32
5.2.2 Functioning of the GUI. ... 35

CHAPTER VI: CONCLUSION AND FUTURE WORKS.. 44

6.1 Conclusion .. 44
6.2 Future works ... 44

REFERENCES ... 46

ix

LIST OF TABLES

Table 3.1 Overview of Thread Technical Specifications .. 10

x

 LIST OF FIGURES

Figure 2.1 IOT .. 4

Figure 3.1 Thread standards with respective layers .. 8

Figure 3.2 Thread network Topology ... 11

Figure 3.3 Thread Topolgy roles .. 12

Figure 3.4 Mesh Link Establishment .. 16

Figure 3.5 Route Updating .. 17

Figure 4.1General Overview of OpenThread Module .. 23

Figure 4.2 IPV6 module in OpenThread... 24

Figure 4.3 MLE module in OpenThread... 24

Figure 4.4 Ipaddr output ... 25

Figure 4.5 Router table output .. 26

Figure 4.6 connecting Leader and Router ... 27

Figure 4.7 Commissioner function ... 28

Figure 4.8 Joiner function ... 29

Figure 5.1 OpenThread GUI ... 33

Figure 5.2 Add .. 34

Figure 5.3 Remove .. 34

Figure 5.4 Commissioner .. 35

Figure 5.5 Creating a node .. 36

Figure 5.6 State of Node 1 .. 37

Figure 5.7 State of node 2 ... 38

Figure 5.8 rloc16 of node 2 ... 39

Figure 5.9 routing tble of node 1 .. 39

Figure 5.10 Disabling node 1 .. 40

Figure 5.11 State of node 1 ... 41

Figure 5.12 State of node 2 ... 41

Figure 5.13 Configuring the Commissioner ... 42

xi

Figure 5.14 Configuring the Joiner ... 43

1

 CHAPTER I:

INTRODUCTION

People always try to find new methods to increase their comfort. This includes ideas

for making daily tasks easier or even automating some of the duties. Today people can

install smart appliances inside their homes in order to automate some of the household

tasks. Technology is becoming an increasingly important part of our everyday life. Using

new technology, many at home can be automatically controlled. Thus, home automation

has become very popular. Home automation is a term which refers to the automation of

various home, housework or household activities. Home automation for the elderly and

disabled can provide increased quality of life for user who might otherwise require

caregivers or institutional care. The research and development in this field has continued

over the years, but to actually automate a home is still a quite expensive job. These types

of intelligent devices have the possibility of remote control, which eliminates the necessity

of being near the device.

First, home automation brings convenience the temperature can be set to a certain

value according to certain conditions, lighting can be turned on, off or may be dimmed

based on daylight. Second, home automation implies remote access, such as monitoring

the house using a laptop or even the own cell phone. Nowadays, one of the hottest topics

in media is related to energy conservation. Automation systems can help the energy savings

by, for example, turning off the electronic devices automatically when they are not in use.

A house which is equipped with such a system offers much more comfort, flexibility,

elegance, security, more importunately, reduced maintenance costs through the

optimization of the consumption of electricity and heat.

For example, some of this smart house can include simple things like turning the

sprinkler at some time during the day or detecting thieves in the middle of the night; others

2

are more advanced and employ sensors for detecting the presence of a person in a room,

used to adjust the ambient light, to control the temperature or the music volume depending

on various factors.

Home Automation System needs to collect data from various sensors and make

things such as light and temperature to automatically adjust. Moreover, using these sensors,

many tasks can be accomplished, such as, controlling curtains and windows without human

intervention, opening, locking or unlocking the garage gate, controlling the climate inside

the house, providing the corresponding light in each room, starting the sprinkler when the

soil is too dry and so on. However, the concept of home automation is often heard on the

market, being a relatively new concept, which draws attention to researchers. [1]

This leads to new technologies that can perform home automation functions. Since

it is rapidly evolving and is present in many products, there is a need to understand its

meaning and challenges. The term “IoT” refers to connecting devices that are not directly

controlled by humans to the Internet. This type of devices is “things”. By connecting such

devices, an intelligent and invisible network is created, which can be accessed through the

cloud [1]. Besides the features which each device is capable of implementing, the network

must offer an interface. The smart devices are controlled and programed remotely through

an interface. All IoT [2] products benefit from embedded technology which allows them

to communicate between each other or with the users through the Internet.

Before inception of Internet of Things (IoT), personal computers and laptop were

used to handle daily tasks of individuals like Email, web surfing, access to bank portal,

observing current temperature, among others. Smart homes have been widely accepted by

individuals and organizations worldwide due to their many advantages. Many home

security systems exist, but they have some challenging issues like: delay, is non-web

enabled and difficult to handle during transfer of alerts to user in situation where any

3

unusual event occurred inside the home. If any unusual event encounters inside the home,

cameras and other latest network technologies have enabled us to remotely monitor the

home more effectively and efficiently from our smart phone.

It’s hard to get devices to talk to one another. And once they do, the connection is

often spotty and power hungry. Thread changes all that. It’s a mesh network designed to

securely and reliably connect hundreds of products around the home – without using major

amount of battery. [3]

4

CHAPTER II:

INTERNET OF THINGS (IOT)

 The Internet of Things (IoT) [1] is the biggest challenge and opportunity for the

Internet today. An interesting example of application of the IoT is a home automation

system. Using a home automation process in a household environment, we can give

additional functionality through the integration of sensors and actuators to normally non-

automated systems like lighting, heating, air conditioning and appliances. Recently, home

automation systems have been challenged with the need for high interoperability between

home devices and for accessing the system from different end points.

Figure 2.1. Internet of Things (IoT) [3]

5

The idea consists of IP-enabled embedded devices connected to the Internet using

Internet Protocol Version-6 (IPv6) [4]. The Internet Engineering Task Force (IETF) added

to this idea by defining 6LoWPAN [5] as a technique to apply IPv6 to IEEE 802.15.4 [5],

a low-power wireless network standard, which adds the potential for transparent end-to-

end communication, control and monitoring of home automation devices from anywhere

on the globe. The use of 6LoWPAN technology also helps lowers expense and decreases

complexity of home automation architecture. [5]

 IoT can be termed as the connection among various kinds of analog and digital

devices like personal computers, smart phones and tablets to the Internet that create

connection between things and people. The IoT enables items to be detected or controlled

remotely over existing system infrastructure, making open doors for more straightforward

incorporation of the physical world into PC based frameworks, and bringing about

enhanced effectiveness, exactness and financial advantage notwithstanding lessened

human intervention.[2] When IoT is enlarged with sensors and actuators, the innovation

turns into an occurrence of the broader class of digital physical frameworks, which likewise

includes advancements, for example, keen lattices, virtual power plants, shrewd homes,

insightful transportation and brilliant urban areas. [2]

"Things", in the IoT sense, can allude to a wide assortment of devices, for example,

heart observing chips, biochip transponders on creatures, cameras spilling live sustains of

wild creatures in waterfront waters, vehicles with sensors, Legal researchers propose

regarding "things" as an "inseparable blend of equipment, programming, information and

service".[1] These devices gather valuable information with the assistance of different

existing innovations and afterward autonomous stream the information between different

devices.

6

Users now may have access to a multitude of data from multiple sources that were

unavailable before, such as physiological or biometric data gathered with a wristband

device or a watch. [7] IoT opens up possibilities that were until recently only in the realm

of sci-fi movies. Today, we are starting to build smart homes, cities and vehicles that

manage and control themselves without needing user input. [2] Interfacing different sort of

devices like PDAs, individual PC and tablets to web can be used to characterized IoT.

Different things can be associated using IoT innovation. Without human effort, we can

control things via various devices through home automation fully depending on seasons.

The logic of home automation is significant for home appliances companies and

researchers. An automated device has lowest error rated which works with versatility and

diligence. [8] Different type of technologies is used in wireless-based home automation

system. Multiple devices can be connected to one medium via Wireless Fidelity (Wi-Fi)

technology which provides an excellent medium. It can operate over frequency band of

2.4GHZ which has been approved internationally.

IoT can be named as the association among different sorts of simple and

computerized devices like PC, advanced cells and tablets to the web that make approach

among things and people groups and thusly among things.

The main components of an IoT system usually are,

a. Embedded sensor/actuator devices (things);

b. A gateway (also called hub), which is required when the embedded

devices do not have native IP connectivity;

c. An Internet service/database running on an online Web server;

The gateway has two main functions:

1. Translate the packets between the embedded device protocols (e.g., ZigBee

[10] Z-Wave [9] and/or Bluetooth [8]) and the TCP/IP [11] protocol;

7

2. Provide access to the Internet. In many cases the gateway can be co-located

with the local Internet. router, sharing the utilization with conventional (non

IoT) traffic such as Web browsing.

The objectives of IoT are to,

1. Interface many devices in the home with best-in-class work organizing,

2. Use the organization's skill in low-control, obliged devices.

3. Give minimal effort connecting to existing Ethernet and Wi-Fi devices.

4. Empower cloud administrations and availability to cell phones and tablets

that will advance convenience and a typical client encounter for clients.

8

CHAPTER III:

THREAD PROTOCOL

Thread [18] is a wireless mesh networking protocol. The main aim of thread

protocol is to create the best way to connect and control products in the home. The Thread

stack is an open standard that is assembled accumulation of existing Institute for Electrical

and Electronics Engineers (IEEE) and Internet Engineering Task Force (IETF) standards,

instead of a radical new standard. [24]

Figure 3.1 Thread Protocol Standards with respective layers [12]

Thread is an IPv6-based, closed-documentation networking protocol for Internet of

Things (IoT) [12]. In July 2014, the "Thread Group" alliance was announced by the

working group with the companies Nest Labs (a subsidiary of Alphabet/Google), Samsung,

ARM Holdings, BigAss Fans, NXP Semiconductors/Freescale, Silicon Labs and Yale in

an attempt to have Thread become the industry standard by providing Thread certification

for products. [12] Thread is designed to connect products in and around the home into low-

power, wireless mesh networks.

Simple network installation, start up and operation: The basic protocols for forming,

joining, and maintaining Thread networks allow systems to self-configure and fix routing

problems. Installation is simply using a smartphone, tablet, or PC.

9

Secure: Devices don't join the Thread network unless approved and all communications

are encrypted and secure. Security is given at the network layer and can be at the

application layer. All Thread networks are encrypted using AES encryption and

smartphone authentication scheme.

Large and small networks: Home systems vary from several devices to hundreds of

devices communicating flawlessly. The network layer is intended to advance the network

operation based on the normal utilize.

Range: Typical devices using with mesh networking give adequate range to cover an

ordinary home. Spread range innovation is utilized at the physical layer to give great

resistance to impedance. [12]

No single point of failure: The thread network is intended to give secure and dependable

operations even with the loss of individual devices.

Low power: Host devices can regularly work for quite a long while on AA size batteries

utilizing appropriate obligation cycles. Devices efficiently productively impart to convey

an upgraded client involvement with long life under typical battery conditions. [12]

Cost-effective: Compatible chipsets and programming stacks from numerous merchants

are preferred for mass organization, and planned starting from the earliest stage to have to

great degree low-control utilization. Run of the mill home items keep running in the

Connected Home include: typically controlled (lighting, fans); fueled or battery-worked

(indoor regulators, and CO2 finders); and ordinarily battery-worked (window sensors,

movement sensors).

IEEE 802.15.4 Thread is based on the IEEE 802.15.4 [12] [13] Physical and MAC layers

working at 250 kbps in the 2.4 GHz band. The IEEE 802.15.4-2006 version of the

specification is utilized by the Thread stack.

The IEEE 802.15.4 MAC layer is utilized for essential message taking care of and

blockage control. This MAC layer incorporates a Carrier Sense Multiple Access (CSMA)

mechanism for devices to listen for tune in for a reasonable channel and in addition a link

layer to deal with retries and affirmation of messages for dependable interchanges between

neighboring devices. MAC layer encryption and integrity protection is utilized on

10

messages based on keys established and configured by the higher layers of the software

stack. The network layer builds on these important mechanisms to provide reliable end-to-

end communications in the network. [13]

Table 3.1 Overview of Thread Technical Specifications. [29]

3. 1. Thread network Architecture

Users can communicate with Thread network from using their own device for

example smartphone, tablet, or PC via Wi-Fi on their Home Area Network (HAN) or using

a cloud-based application. There are different types of device in the Thread network

architecture.

11

Figure 3.2 Thread network Topology. [25]

3.1.1 Border Routers:

A Border Router is sort of router that gives availability from the IEEE 802.15.4

system to neighboring systems on other physical layers, such as Wi-Fi, Ethernet, etc.

Border Routers give services for devices within the IEEE 802.15.4 network, including

routing services for off network operations. There will be least one or more Border Routers

in a Thread network. [25]

3.1.2 Leader:

A Router or Border Router can turn into a Leader router for specific capacities in

the Thread network. This Leader router is required to make decisions in the Home Area

Network (HAN) network. It deals with a registry of current node IDs and acknowledges

demands from node qualified devices to wind up nodes or the other way around. The

Leader router allocates which ought to be nodes. It also chooses node addresses and allows

new node requests. Likewise oversees and relegates node tends to utilizing DHCP.

Notwithstanding, all data present in the Leader is available in the other Thread Routers. In

this way, if the Leader fails or loses availability with the network, another Thread Router

12

is elected, and it takes over as Leader without user intervention. It is this independent

operation that ensures that there is no single point of failure. [25]

 Figure 3.3 Thread Topology Roles. [32]

3.1.3 Router-eligible end devices:

The ability to wind up a Thread Router or a Leader, however because of the system

topology or conditions these devices are not assigned as Routers. It cannot really a Border

Router that has uncommon properties, for example, various interfaces. Router qualified

device by and large forward messages or give joining or security administrations to

different device in the Home Area Network (HAN). The Thread network oversees and

elevates node qualified devices to Routers if vital without client association to Routers if

vital without user association. [32]

3.1.4 Sleepy end devices:

Sleepy end devices convey just through their Thread Router and can't hand-off

messages for others devices. They are also called as are host devices. [32]

13

3. 2. Thread stack Fundamentals

3.2.1 Addressing

Devices in the Thread stack advocates IPv6 tending to configuration demonstrated

in [RFC 4291]. Devices uses something like one Unique Local Address (ULA) or Global

Unicast Address (GUA). The device starting the framework picks a/64 prefix that is then

used all through the Thread network. The prefix is a Locally Assigned Global ID, routinely

known as a ULA prefix [RFC 4193], and can be insinuated as the work neighborhood ULA

prefix. The Device in the Thread network uses its Extended Media Access control (MAC)

convey to decide its interface identifier as portrayed in territory 6 of [RFC 4944] and from

this plans an association adjacent IPv6 address with the striking neighborhood prefix

FE80::0/64 as delineated in [RFC 4862] and [RFC 4944]. [14] The devices in like manner

advocates fitting multicast addresses. Each Device joining the Thread network is dispensed

a 16-bit short location as decided in IEEE802.15.4. For routers, this location is given using

the high bits in the location field with the lower bits set to 0, exhibiting a router address.

Child nodes are then disseminated a 16-bit short location using their Parent's high bits and

the correct lower bits for their location. This allows some other Device in the Thread

network to calculate the child's routing just by using the high bits of its location field

3.2.2 6LoWPAN:

All devices utilize 6LoWPAN as characterized in [RFC 4944] and [RFC 6282].

[15] Header compression is utilized inside the Thread network and devices transmitting

messages pack the IPv6 header however much as could be expected to limit the measure

of the transmitted parcel. The mesh header is upheld for more proficient messages inside

the work and for interface layer. End devices and REEDs are allotted short locations by

their Router Parent. This short deliver is then used to arrange the work neighborhood ULA

that is utilized for intra-organize correspondences. Additionally, subtle elements on

6LoWPAN utilization and arrangement are contained in the "Thread Usage of 6LoWPAN"

white paper. Part 3 of the Thread particular subtle elements the particular 6LoWPAN setup

utilized. [16]

14

3.2.3 UDP:

The Thread stack advocates UDP (User Datagram Protocol) as characterized in

[RFC 768] for informing between devices.

3. 3. Network Address and Devices

A network address is an identifier for a hub or system interface of a broadcast

communications network. Network addresses are intended to be good identifiers over the

system, albeit a few systems take into consideration local, private locations or privately

regulated tends to that may not be globally unique. The Thread stack advocates full Mesh

connectivity between all routers in the Thread network. The topology depends on the

quantity of routers in the Thread network. If there is just a single router or Border Router,

at that point an essential star topology with a solitary router is framed. On the off chance

that there is more than one Router then a work topology is consequently framed. There are

different types of topology available for 6LoWPAN. THREAD uses Mesh network. [12]

3. 3. 1. Mesh Network

A mesh-network is a local-network-topology in which the framework hubs (i.e.

spans, nodes and other foundation devices) associate specifically, powerfully and non-

progressively to whatever number different hubs as could reasonably be expected and

collaborate with each other to effectively course information from/to customers. This

absence of reliance on one hub considers each hub to take an interest in the transfer of data.

Work arranges powerfully self-sort out and self-design, which can lessen establishment

overhead. The capacity to self-arrange empowers dynamic conveyance of workloads,

especially if a couple of hubs ought to fizzle.

Mesh-topology might be appeared differently in relation to regular star/tree local-

network-topologies in which the scaffolds/nodes are straightforwardly connected to just a

little subset of different extensions/nodes, and the connections between these foundation

neighbors are various leveled. While star-and-tree topologies are exceptionally settled,

exceedingly institutionalized and merchant unbiased, sellers of work arrange devices have

15

not yet all conceded to regular guidelines, and interoperability between devices from

various sellers isn't yet guaranteed. [17]

Mesh networks make radio frameworks more solid by enabling radios to forward

messages for different radios. For instance, if a hub can't communicate something specific

straightforwardly to another hub, the work organize advances the message through at least

one mediator hubs. There is normally a point of confinement of 32 dynamic routers in the

Thread-network. Be that as it may, 64 router delivers are utilized to permit reusing of router

addresses. In a work organize, the languid end devices or REEDs don't route for different

devices. These devices send messages to a Parent router. This Parent router handles the

directing operations for its Child-devices.

The Thread network regularly has up to 32 active routers that use next-hop routing

for messages based on the device routing table. The routing table is maintained by the stack

to guarantee all routers have availability and forward ways for some other router in the

Thread network. The RIPng algorithm is utilized. All routers trade with other routers their

cost of routing to different routers in the Thread network in a compacted arrange utilizing

MLE (Mesh Link Establishment). From an IP viewpoint, the Thread network advocates for

routers and hosts. Hosts are either languid end devices or REEDs.

16

3. 4. Mesh Link Establishment

3.4.1 MLE Messages

MLE messages are utilized for setting up and arranging secure radio connections,

distinguishing neighboring devices, and keeping up directing expenses between devices in

the Thread network. MLE messages are transported utilizing single-hop link local unicasts

and multicasts between routers. MLE messages are utilized for distinguishing, arranging,

and securing connects to neighboring devices as the topology and physical condition

change. MLE is likewise used to disperse designs that are shared over the Thread network,

for example, the channel and Personal Area Network (PAN) ID. These messages can be

sent with basic flooding as determined by MPL. MLE messages likewise guarantee

lopsided connection costs are considered while building up routing costs between two

devices. Awry connection costs are regular in IEEE 802.15.4 systems. To guarantee two-

way communications is solid, it is vital to consider the expenses of bidirectional

connections.

Figure 3.4 Mesh Link Establishment (MLE) and its routing cost. [32]

17

3.4.2. Path Identification and Route Updating

On-demand route disclosure is normally utilized as a part of low-power

IEEE802.15.4 systems. Notwithstanding, on-demand route revelation is expensive

regarding system overhead and data transfer capacity because of routing disclosure

demands flooding the network. In a Thread network, all routers intermittently trade single-

hop MLE advertisement packets containing join cost data to all neighbor routers, and way

expenses to every single other router in the Thread network. Through these periodic, local

updates, all routers have progressive way cost data to some other router in the Thread

network; on-demand route discovery isn’t required. If that route is not usable, routers can

decide on the following most reasonable route to the goal. This self-mending steering

component enables routers to rapidly distinguish when different routers have dropped off

the Thread network, and compute the best way to keep up availability to every single other

device in the Thread network.

Figure 3.5 Route Updating. [32]

18

The link quality toward every path depends on the connection cost on approaching

messages from those neighboring devices. This approaching connection cost is mapped to

a connection quality from 0 to 3. An estimation of 0 implies obscure cost. The connection

cost is a measure of RSSI [35] of got messages over the get level achieves that hub. Nodes

screen these costs, even as the radio connection quality or topology of the system changes,

and spread the new costs through the Thread network utilizing the occasional MLE notice

messages. Routing cost depends on bi-directional connection quality between two devices.

To represent through an improved illustration, envision a pre-dispatched connect with

shared security material where all devices are controlled on in the meantime.

Every router would occasionally send a notice to initialize just with expenses to

single-jump neighbors. Inside, every router would store hop information that isn't sent in

the advertisement. The initial couple of ads would have way taken a toll equivalent to

interface cost, because the main routers that are known are quick neighbors. Be that as it

may, as routers begin hearing promotions from their neighbors that contain expenses to

different routers that are at least two jumps away, their tables populate with multi-hop way

costs which at that point spread significantly more remote, until in the long run there is

availability data between all routers in the system.

At the point when a router gets another MLE notice from a neighbor, it is possible

that it as of now has a neighbor table section for the gadget or one is included. The MLE

ad contains the approaching expense from the neighbor so this is refreshed in the router's

neighbor table. The MLE promotion likewise contains refreshed routing information for

different routers and this data is refreshed in the device routing table. routing to Child

devices is finished by taking a gander at the high bits of the Child's deliver to decide the

parent router address. Once the gadget knows the Parent router, it has the way cost data

and next-hop routing information data for that device. The quantity of dynamic routers is

constrained to the measure of steering and cost data that can be contained in a solitary IEEE

802.15.4 bundle. This breaking point is at present 32 Routers yet 64 dynamic router

delivers are given to permit maturing out of router addresses.

19

3.5. Join the network

There are different stages a joining device needs to experience before it can take and

participate in a Thread network:

1. Discovery

2. Commissioning

3. Attaching

All joining is user-initiated in Thread-Networks. Once joined, a device is of the Thread

network and can trade application layer data with different devices and administrations

inside and outside the Thread network.

3.5.1 Discovery

A joining device needs to find the Thread network and set up contact with a router

for joining. The joining device filters all channels, issues a guide ask for on each channel,

and waits for reference point signals. The signal contains a payload including the system

SSID (Service Set Identifier) and an allow joining reference point showing if the Thread

network is allowing new individuals. Once a device has found the Thread network, it

utilizes MLE messages to set up a neighboring router through which it can perform

dispatching.

Revelation isn't required if the device has just acquired charging data since it as of

now has adequate data to specifically connect to the Thread network.

3.5.2 Commissioning

Thread gives two authorizing techniques: [12]

1. Configuring authorizing data straightforwardly onto a device utilizing an out-of-

band technique. The dispatching data enables the joining device to connect to the

best possible Thread network when it is acquainted with the network

2. Establishing a dispatching session between a joining device and a charging

application on a cell phone, tablet, or the web. The appointing session safely

conveys authorizing data to the joining device, enabling it to append to the correct

Thread network in the wake of having finished the charging session.

20

The regularly utilized IEEE 802.15.4 technique for joining which allow joining banner

in the guide payload isn't utilized as a part of Thread network. This strategy is most

normally utilized for push catch sort joining where there is no User Interface (UI) or out-

of-band channel to devices. In Thread networks, all joining is client started. In the wake of

joining, a security verification is finished at the application level with an authorizing

device.

Devices join a system as either an end device or a (REED) Router-Eligible End Device.

Simply after a REED has joined and taken in the system design, would it be able to possibly

demand to end up plainly a Thread router. After joining, a device is given a 16-bit short

address in view of its parent. If a node qualified device turns into a Thread router, it is

given a node address by the Leader. Copy address discovery for Thread routers is

guaranteed by the unified node address circulation component which dwells on the Leader.

The parent is in charge of maintaining a strategic distance from copy addresses for have

devices since it finds out addresses to them after joining.

3.5.3 MLE data

Once a device has connected to a Thread network, there is an assortment of data

required for it to keep up its investment in the system. MLE gives administrations to

disseminate arrange information all through the system and trade connect expenses and

security outline counters between neighbors.

The MLE messages convey or trade the accompanying data:
 The 16-bit short and 64-bit EUI 64 long address of neighboring devices.

 Device abilities data including if it is a tired end device and the rest cycle of the

slow host device.

 Neighbor interface costs (if a router).

 Security material and casing counters between devices.

 Routing cost to every other router in the Thread network.

 Updates to route information such.

21

CHAPTER IV:

OPENTHREAD

Nest Labs, Inc. (acquired by Google in the beginning of 2014) released OpenThread

in May 2016, OpenThread is an open source implementation based on the draft Thread 1.0

specification of the Thread networking protocol. With OpenThread, Nest wants to make

the technology used in Nest products more broadly available to accelerate the development

of products for the connected home. The idea is as more silicon providers adopt Thread,

manufacturers will have the option of using a proven networking technology rather than

creating their own, and consumers will have a growing selection of secure and reliable

connected products which to choose from.

4.1 Uses of OpenThread

Deploy a Thread network: Determine the hardware and platform design the user wish to

use to build and deploy their own Thread network. Add a Border Router to connect your

Thread network to other network layers, such as Wi-Fi or Ethernet. [36]

Develop applications on top of a Thread network: Use the API Reference as a guide to

all application development. IPv6, UDP, CoAP, DHCPv6, DNSv6. [36]

Port OpenThread to a new hardware platform: Porting Guide, which goes through all

the steps necessary to port OpenThread to a new hardware platform. [36]

Get Thread Certification for your OpenThread product: OpenThread can be used for

certification by the Thread Group. As a Thread reference stack, OpenThread makes

certification easy. [36]

22

OpenThread implements all Thread networking layers including: [36]

• IEEE 802.15.4 with MAC security.

• IPv6 and 6LoWPAN.

• Mesh Link Establishment and Mesh Routing.

• Key management.

• Definitions in code of specific roles in Thread including:

o Leader.

o Router.

o End Device.

 o The Border router.

• UDP packet compression.

 • A CoAP implementation.

OpenThread is highly portable: OS and platform agnostic with a radio abstraction

layer. Is written mostly in C++. The implementation depends on a platform layer, basically

a Hardware Abstraction Layer (HAL), and if that layer is implemented, it can potentially

run on most microcontroller or 802.15.4 SoCs (essentially microcontrollers with an

integrated 802.15.4 radio) with the advantage of small memory footprint.

23

Figure 4.1 General Overview of OpenThread Modules. [32]

4.2 Network Implementation

 IPv6 includes definitions for the IPv6 network layer. IPV6 module defines the

ICMPv6 implementation the network interfaces, the multicast protocol and the IPv6

implementation itself.

24

Figure 4.2 IPV6 Module in OpenThread. [32]

4.3 Routing Implementation

OpenThread implements MLE to propagate the routing table information and RIPng to

process information and maintain routing tables. The implemented MLE module (depends

on Core) and implements MLE functionality required for the Thread router and Leader

roles. The Type Length Value (TLV) module includes definitions for generating and

processing MLE TLVs.

Figure 4.3 MLE Module in OpenThread. [32]

25

4.4 OpenThread CLI commands

The OpenThread Command Line Interface (CLI) exposes configuration and

management APIs via a command line interface. Use the CLI to play with OpenThread,

which can also be used with additional application code.

Some of the CLI available commands are:

• autostart

o autostart

o autostart true

 o autostart false

 • eui64

o eui64

• factoryreset

o factoryreset.

 • ipaddr

 o ipaddr.

Figure 4.4 Ipaddr Output.

• Joiner

o Joiner start.

o Joiner stop.

• panid

o panid.

26

o panid

• ping

o ping

• reset

o reset.

• rloc16

o rloc16

 • router

 o router list

o router

o router table

Figure 4.5 Router Table output.

• state

o state

 detached

 child

 router

 Leader.

 • thread

o thread start.

 o thread stop.

27

4.5 Working of OpenThread

a) Leader

b) Router

Figure 4.6 Connecting Leader and Router.

28

One of the features of OpenThread is configuring a Thread network using the CLI

(Command Line Interface). In Figure 4.7, the command prompt on the top is configured to

be a Leader node (node 1) and the command prompt on the bottom is configured to be a

router (node 2). By calling the functions, “panid”, “ifconfig up” and “thread start” we have

created a Leader node. The state of the nodes can be found by calling the “state” function.

To verify the thread connection, we called “rloc16” function, which gives the 16 bits End

Point Identifier (EID) of node 2. And we call “router table” function for node 1, which

gives the routing table of node 1. It is shown that the rloc16 value of node 2 is in the routing

table of the node1, proving the connection between the nodes.

We also called functions, “ipaddr” and “ping” to verify the mesh link

establishments between the nodes. The “ipaddr” functions gives the IPV6 values of the

nodes. “ipaddr” function for node 1 and called “ping” function from node 2 using the IPV6

address of node 1 which shows the output, thus proving the mesh link establishment

between the nodes.

Figure 4.7 Commissioner function.

29

Figure 4.8 Joiner function.

Thread protocol’s biggest advantage is the security it offers. A new device cannot

join a Thread network unless it has the user defined key. The key is given to the

Commissioner. A Commissioner is a Leader router that is responsible for the

commissioning of new devices that wants to join a Thread network. Figure 5.8 shows the

operation of a Commissioner and Joiner.

In Figure 4.8, the command prompt on the top is configured to be a Leader node

(node 1) and the command prompt on the bottom is configured to be a router (node 2). By

calling the functions “ifconfig up” and “thread start” we have created a Leader node. The

state of the nodes can be found by calling the “state” function. Using the “Commissioner

start” function we configured Leader node i.e. node 1 to be Commissioner and calling the

“Joiner” function we have configured node 2 to be a Joiner device.

By calling the function “commissioner Joiner add * user-key” we assigned a Joiner

key to the Commissioner. If a new device wants to join the network, it needs the same key

to join. The Commissioner verifies the key and lets the new device to join the network. For

node 2, we called “joiner start user-key” function to give the key to the new device. The

Commissioner then checks the key and if it matches, lets the Joiner join the network by

saying “join success.”

30

OpenThread, has a very strict time restraint. The user defined key given to the

Commissioner is only valid for 2 minutes. After 2 minutes, the key is expired and the

Commissioner process starts from the beginning. The user gives a new key to the

Commissioner and the new devices needs the new key to join the network. Also, Thread

network provides, no single point of failure which means that, when one of the Leader

router is disabled, the next router becomes a Leader and a REED (Router Eligible End

Device) assumes the role of the router thus removing any point of failures.

4.6 Problem Statement and Solution.

As seen, for node to be configured, user need a new command prompt. Hence, when

working with a larger network, having a command prompt for each node will complicate

and confuses the user. Since, the only way to know the state of the node is by calling “state”

function, it becomes really difficult for the user to remember the state of the node, if there

are about 20 nodes, the user cannot keep a track of 20 command prompts and remember

the state of each node.

4.6.1 GUI (Graphical User Interface) for OpenThread

Having a Graphical User Interface (GUI) for the OpenThread would make the life

of the user easier. On a single screen, user can create any number of nodes and with just a

click can get the information on the node. With a GUI, the user also need not remember

the functions that are needed to configure a node. With just the inputs that are user defined,

nodes are created and tested using the GUI.

31

CHAPTER V:

GUI USING TCL/TK FOR OPENTHREAD

This Thesis research is focused on adding a Graphical User Interface (GUI) based

on Tool Control Language (TCL “tickle”) to OpenThread. TCL is a high-level, general-

purpose, interpreted, dynamic programming language. The popular combination of TCL

with a graphical component, Tk, is referred to as TCL/Tk. TCL/Tk enables building a GUI

natively in TCL. OpenThread having a GUI will make working with OpenThread much

easier, the use of basic commands need not be memorized and additionally the user do not

need to know any programming languages. GUI will make it easier for developers working

on OpenThread to visualize the Thread network and its operations.

The GUI uses the OpenThread CLI commands and creates the nodes, connections,

Leaders, routers, End Devices. Supports Commissioning and ping functions. With just

buttons, functions like “thread start”, “thread stop”, “ifconfig up”, “panid”, “Commissioner

Joiner start”, “Joiner start” nodes are created, and a network is created based on thread

protocol.

 5.1 Building GUI for OpenThread

GUI for OpenThread is built using TCL/TK. GUI is purely written in TCL using

TK libraries for building the GUI. OpenThread is accessed using Vagrant shell on any OS.

But Ubuntu 18.04.1 LTS OS is used for building the GUI. Path for accessing OpenThread

are given below,

 $ cd ~/OpenThread/etc/vagrant

$ vagrant ssh

Once the shell is up and running, nodes are created using following path,

$ cd ~/src/openthread

$. /output/x86_64-unknown-linux-gnu/bin/ot-cli-ftd 1

32

For building the GUI, ot-cli-ftd file is used. Hence when OpenThread is accessed using

vagrant shell, ot-cli-ftd file is copied and saved at the TCL file location.

5.2 Working of GUI for OpenThread

OpenThread GUI consists of “Add”, “remove”,” Commissioner” in the menu. Add

consists of node id, and panid if the user wants to create a Leader. Remove consists of stop

which disables the selected node, and remove that removes the node. The Commissioner

consists of panid and the key assigned. The panid is used to make a Leader assume the role

of Commissioner. The left click on the node gives “state”,” rloc16”,” router table” and

“ipaddr” functions. In the bottom, we have a “result box” that displays the result after the

function is called.

5.2.1 Contents of the GUI

The GUI consists of Add, Remove and Commissioner options in the menu. It also consists

of a result box at the end, where results are viewed.

33

Figure 5.1 OpenThread GUI.

34

Figure 5.2 ADD.

Figure 5.3 Remove.

35

Figure 5.4 Commissioner.

5.2.2 Functioning of the GUI

In Figure 5.5, we create a node using the ID, panid. With these inputs from the user,

a node is created with an ID as shown in the Figure. Similarly, with the user defined

parameters a second node is created with an ID ‘2’ in Figure 5.6.

36

Figure 5.5 Creating a Node.

The node with id ‘1’ is configured to be a Leader with the panid 0x1234. And Figure

5.6 gives the state of the router. It is seen that, the node 1 is Leader. Similarly, node 2 is

created with similar panid as that of the node 1. Since, having the same id, node 2 is

connected to node 1.

37

Figure 5.6 State of Node 1.

In Figure 5.7, the state of node 2 is shown. Once connected, the state of the node 2 is

showed as router. Hence, we have configured node 1 to be a Leader and node 2 is the router

connected to the Leader.

38

Figure 5.7 State of Node 2.

Figure 5.8 and Figure 5.9 proves the connection between the Leader and the router. In

Figure 5.9 we get the Rloc16 which is the 16 bites End Point Identifier (EID) of the router

node. And in the Figure 5.9, we get the router table of node 1 i.e. Leader node.

39

Figure 5.8 rloc16 of node 2.

Figure 5.9 Routing table of Node 1.

40

Hence, we prove that the Leader and the router nodes are connected to each other

Figure 5.10 Disabling Node 1.

In Figure 5.10, we have disabled the Leader router using “stop” from “remove”. The router

table of the Leader has the has the 16 bites End Point Identifier (EID) of the router node. It

is seen from Figure 5.9; the EID value is 0x0c00 and the same value is in the router table

of the Leader router as show in Figure 5.9.

In Figure 5.11, the state of the Leader, i.e. node 1 is disabled and according to Thread

protocol, when a Leader is disabled, the next available router becomes Leader and a REED,

becomes a router, this ensuring no point of failure.

41

 Figure 5.11 State of Node 1.

 In Figure 5.12, it is observed that the node 2, which was a router when the Leader

was active became a Leader when the Leader was in a disabled state.

 Figure 5.12 State of Node 2.

42

In Figure 5.13, we demonstrate the Commissioner and Joiner functions in the thread
protocol.

Figure 5.13 Configuring the Commissioner

In Figure 5.14, we configured the node 2 to be Joiner by selecting the node id and

giving the Joiner key i.e. “joinme”. And in the result box, there is a confirmation which

shows that the connection was success and the Joiner joined the network. We created 2

nodes, where node 1 is the Leader and node 2 is the Joiner. Node 1 is configured to be a

Commissioner. In Figure 5.13, we assigned the Leader with a panid and a user defined key

i.e. “joinme”.

43

Figure 5.14 Configuring the Joiner

This shows how OpenThread works on the CLI command Line Interface level. But

instead of having a command prompt for each node, this GUI will make the research

involving OpenThread much easier to work with.

44

CHAPTER VI:

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

Thread Group Inc. began from an arrangement of necessities to create Thread. They built

up a vigorous open standard which is seller impartial. One particular confinement of

Thread is that it isn't really interoperable with other IoT structures like AllJoyn, ZigBee,

Z-Wave, and so on.

The layers characterized by Thread depend on either a current standard or an RFC.

No new norms or RFCs have been proposed by Thread. One of the studies of current

circumstance in IoT commercial center is that, IoT devices from various sellers and

conventions don't work with one another. Each IoT convention needs a different center and

application to control it. This is because of various legitimacy frameworks in the market

today.

OpenThread is an open source implementation of the thread networking protocol.

Major set back for OpenThread is, Command Line Interface (CLI) is used for configuring

nodes and each node requires a separate command prompt which will be very hard to keep

track of when the user is using large number of nodes. Hence, a GUI will not only makes

things easier for a developer but also the developer doesn’t need to remember the

commands used to configure a node using OpenThread.

6.2 Future works

This GUI gives the flexibility of adding any new commands used on Command

Line Interface using OpenThread. OpenThread has a problem of timing restraint. It takes

about 2 minutes for the node to change the state from router to the Leader. The user given

key for commissioning also expires under 2 minutes and is invalid. [31]. Hence, in order

to join a new device into the network, the user have to give a new key.

45

 These problems in the OpenThread can be a starting point for research and for

obtaining better results on the GUI. User can create nodes using OpenThread on Command

Line Interface (CLI), but cannot change the values like “next hop, channel, Link Quality

in, Link Quality out.” Adding functions that can show simulation to the OpenThread like

checking the quality of the transmission when noise is introduced, can add a great value

and increases the scope of OpenThread. Any function added to the OpenThread can be

added to the GUI hence, using the GUI as a simulator.

It also adds the flexibility of changing the simulation in the GUI according to the

requirements. OpenThread is also used in hardware, and still needs the Command Line

Interface (CLI) to operate. GUI again can make the life of the developers and tester easier

when used to operate OpenThread dumped hardware.

Since the GUI is purely written in TCL, adding TCL scripts to the OpenThread can

be more useful for extending the functions of the GUI. Increasing the functionality of the

GUI will make its operations easier.

46

REFERENCES

1. Aston, Kevin. "That 'Internet of Things' Thing", Available:

http://www.rfidjournal.com/articles/view?4986, accessed on June 2, 2017. J. Clerk

Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:

Clarendon, 1892, pp.68–73.

2. https://en.wikipedia.org/wiki/Internet_of_things.

3. https://www.google.com/search?q=iot&source=lnms&tbm=isch&sa=X&ved=0ah

UKEwiVscD6qILfAhUp8IMKHfFXA9QQ_AUIDygC&biw=1536&bih=723#im

grc=pGwtYW9WXQO6WM:

4. https://en.wikipedia.org/wiki/IPv6.

5. https://en.wikipedia.org/wiki/6LoWPAN

6. https://en.wikipedia.org/wiki/IEEE_802.15.4

7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038811/

8. Smart home automation system using Bluetooth technology, 2017 International

Conference on Innovations in Electrical Engineering and Computational

Technologies (ICIEECT), DOI: 10.1109/ICIEECT.2017.7916544, 04 May 2017.

9. https://en.wikipedia.org/wiki/Z-Wave

10. https://en.wikipedia.org/wiki/Zigbee

11. https://en.wikipedia.org/wiki/Internet_protocol_suite

12. https://www.threadgroup.org/

13. https://en.wikipedia.org/wiki/IEEE_802.15.4

14. https://tools.ietf.org/html/rfc4944

15. https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632

_2.pdf

16. https://en.wikipedia.org/wiki/Mesh_networking

47

17. Gartner, Inc. “Gartner Says 8.4 Billion Connected ‘Things’ Will Be in Use in 2017,

Up 31 Percent From 2016”, http://www.gartner.com/newsroom/id/3598917,

accessed on June 2, 2017. K. Elissa, “Title of paper if known,” unpublished.

18. Y. Dvorakian and S. Garg, "IoT-enabled distributed cyberattacks on transmission

and distribution grids," 2017 North American Power Symposium (NAPS),

Morgantown, WV, 2017, pp. 1-6. doi: 10.1109/NAPS.2017.8107363.

19. Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on

magneto-optical media and plastic substrate interface,” IEEE Transl. J. Magn.

Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics

Japan, p. 301, 1982].

20. K. Sonar H. Upadhyay "A Survey: DDOS Attack on Internet of Things Intl",

Journal of Engineering Research and Development, vol. 10 no. 11 pp.58-63.

21. S. A. P. Kumar, B. Bhargava, R. Macêdo and G. Mani, "Securing IoT-Based Cyber-

Physical Human Systems against Collaborative Attacks," 2017 IEEE International

Congress on Internet of Things (ICIOT), Honolulu, HI, 2017, pp. 9-16. doi:

10.1109/IEEE.ICIOT.2017.11

22. Ishaq Unwala, Jiang Lu, “IoT Protocols: Z-Wave and Thread”, November 17

Volume 3 Issue 11, International Journal on Future Revolution in Computer

Science & Communication Engineering (IJFRSCE), PP: 355 – 359

23. http://www.gatedepot.com/landing-category-small/accessradio-remotes/, accessed

on Feb 2, 2018

24. Lorex Technology, https://www.lorextechnology.com/

25. IEEE Standards, Part 15.4: Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks

(WPANs) IEEE Std 802.15.4 ™ -2006

48

26. Thread group Inc. website: http://threadgroup.org/Whatis-Thread/Connected-

Home

27. Ishaq Unwala, Zafar Taqvi, Jiang Lu Thread: An IoT Protocol, 2018 IEEE Green

Technologies Conference, ISSN: 2166-5478,

DOI: 10.1109/GreenTech.2018.00037, Accession Number: 17823919.

28. RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks,

“https://tools.ietf.org/html/rfc4944

29. RFC 6282, “Compression Format for IPv6 Datagrams over IEEE 02.15.4-Based

Networks,” https://tools.ietf.org/html/rfc6282

30. Humberto Gonzalez, Study of the protocol for home automation Thread.

Telecommunications Engineering, February, 22nd 2017

31. https://codelabs.developers.google.com/codelabs/openthread-simulation/#3

32. Ishaq Unwala, Zafar Taqvi, Jiang Lu, IoT security: Z-wave and Thread. 2018 IEEE

Green Technologies Conference, ISSN: 2166-5478,

DOI: 10.1109/GreenTech.2018.00040

33. https://en.wikipedia.org/wiki/Received_signal_strength_indication

34. https://openthread.io/

