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ABSTRACT 

THE EFFECTS OF QUANTUM TUNNELING ON THE CONFORMATIONAL 

ENTROPY OF THE CAS9 PROTEIN 

 
 
 
 

James Edward Jennings  
University of Houston-Clear Lake, 2019 

 
 
 

Thesis Chair: Van Eric Mayes 
 

The Cas9 protein is a protein that is used in bacteria to edit out viral DNA. Cas9 is very 

precise and is used in laboratories all over the world for the purposes of editing gene 

sequences. In order for Cas9 to function properly it needs to fold into a specific shape. 

These shapes are referred to as conformations and the entropy corresponding to the 

number of conformations that a polymer chain can fold into is referred to as the 

conformational entropy. Until recently, the current model used for calculating the 

conformational entropy failed to incorporate the effects due to hydrogen bonds. Now a 

research group from Chicago has constructed a model that incorporates these effects. It 

has been demonstrated that the effects due to quantum interactions without tunneling 

effects influence the conformational entropy by an order of magnitude of 0.7% for 

backbone interactions and 10% for sidechain interactions respectively. The effects due to 

tunneling further influence the backbone entropy by an order of magnitude of 0.08%.  
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CHAPTER I: 

THE CLASSICAL CONFORMATIONAL ENTROPY 

Introduction 

One very important concept in the field of Polymer Physics is the concept of 

hydrogen bonds. In the field of Polymer Physics, Hydrogen bonds are what maintain a 

protein’s conformation. Proteins are made up of 20 types of amino acids. All amino acids 

contain two components. These components are the side chain and the backbone 

respectively. The backbone of every amino acid has the same structure. The side chain of 

every amino acid however is different. Some side chains can form hydrogen bonds while 

other side chains are incapable of forming hydrogen bonds. Hydrogen bonds come in four 

different varieties. These varieties are N—H bonds, O—H bonds, S—H bonds and 𝜋—H 

bonds respectively. For the purposes of this research only the N—H and O—H bonds 

will be taken into account. The interactions due to the S—H bonds and 𝜋—H bonds will 

be set to zero. There are two different types of hydrogen bonds that form between the 

components of the amino acids. They are hydrogen bonds between side chains and 

hydrogen bonds between backbones. In addition to these bonds, hydrogen bonds can 

form between side chains and solvents. For the purposes of this research the system under 

study will be constrained so that the only solvent-sidechain interactions are those 

involving water. 
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Background 

The conformational entropy of a polymer chain is the entropy due to the number 

of geometries that the polymer chain can assume. These geometries are referred to as 

conformations. As the number of possible geometries increases so does the 

conformational entropy. There are two different models for computing the 

conformational entropy. These models are referred to as the bead spring model and the 

lattice model. Both models treat the polymer as an ideal chain where it is assumed that 

there are no interactions between the amino acids. 

In the bead spring model, the polymer is broken into a set of sub chains which are 

treated as harmonic springs. Each sub chain is a series of identical sequences of amino 

acids called repeat units. The ends of these sub chains are referred to as the beads within 

the model. A diagram pertaining to this model is given below.  

 
Figure 1: Bead Spring Model 

 
The number of conformations that a polymer chain can assume is dependent on 

the distance between the ends of the polymer chain. This is referred to as the end to end 

distance. As the end to end distance is constrained to a larger value, the number of ways 

in which the polymer chain can fold up become increasingly limited. Hence, the number 

of available conformations decreases as a result as well as the entropy. Since higher 

values for the conformational entropy correspond to lower end to end distances, lower 

values for the end to end distance are more probable than high values. The probability 

that the end to end distance will be some specified value 𝑅 is given by the formula 𝑃(𝑅). 
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In a nutshell, the bead spring model is an approximation which treats the polymer 

chain as a sequence of harmonic springs. These harmonic springs represent the sub 

chains. The sub chains in turn are a series of repeat units, where the repeat units are 

sequences of amino acids. Each harmonic spring is held together by beads, where each 

bead is an amino acid at the end of each sub-chain. The distance between the two ends of 

the polymer is constrained to a specific value 𝑅. The segments of the polymer chain are 

free to move about randomly since it is treated as an ideal chain. 

In the lattice model the polymer chain is constrained so that each of the amino 

acids occupy a site on a 3-dimensional lattice. Since the polymer is treated as an ideal 

chain, the amino acids do not interact with each other in the model. As a result, the 

probabilities for each bond vector to take on a certain value are all equal for every amino 

acid. The amino acids in the polymer chain are each held together by harmonic springs. 

So long as the number of amino acids in this model is sufficiently large the lattice model 

is equivalent to the bead spring model. A diagram pertaining to the lattice model is given 

below for the two-dimensional case. 

 
Figure 2: Lattice Model 
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Within this model the end to end distance is constrained to some specified 

constant 𝑅, just like in the bead spring model. Within the lattice model there is an 

equation corresponding to the probability that the polymer chain will take on a certain 

specified distance. This is the same equation as that corresponding to the bead spring 

model. Both equations are referred to as 𝑃(𝑅) where 𝑃(𝑅) is the probability for the end 

to end distance to take on some specified value 𝑅. As stated previously the end to end 

distance is the distance between both ends of the polymer chain. 

To sum it all up, the lattice model is a model in which the amino acids are each 

fixed onto points on a three-dimensional lattice. These amino acids are linked together by 

peptide bonds which are treated as harmonic springs in the model. Just like in the bead 

spring model, the distance between the ends of the polymer chain are constrained to a 

specific distance 𝑅. Within the lattice model the amino acids are free to move onto 

different lattice sites, while the end to end distance is fixed. 

In summary, there are two models for approximating the classical conformational 

entropy of a protein. These models are referred to as the bead spring model and the lattice 

model. The bead spring model treats the polymer as a series of sub chains held together 

by the amino acids at their ends. The sub chains as well as the amino acids mentioned are 

referred treated as harmonic springs and beads respectively.  

The lattice model on the other hand treats the polymer as a chain of amino acids 

held together by peptide bonds. The peptide bonds are treated as harmonic springs within 

this model. Within this model the amino acids are constrained to occupy sites on a three-

dimensional lattice. Both models will be used to calculate the entropy of the Cas9 protein. 
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The Bead Spring Model 

The Classical Conformational Entropy is given by the following equation. 

𝑆((𝑅) = 𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 

 Where 𝑍( is the number of conformations that a polymer can take on regardless of 

constraints. 𝑃(𝑅) is the probability that the distance between both ends of the polymer 

will take on a distance 𝑅. This is referred to as the end to end vector. The number of 

conformations that a polymer can take on when constraints are taken into account is 

dependent on the end to end vector. Large distances correspond to less possible 

conformations and small distances correspond to more possible conformations. The 

formula for 𝑃(𝑅) is given below. 

𝑃(𝑅) = 1𝑑𝑟( …1𝑑𝑟5𝛿(𝑟5 − 𝑟( − 𝑅)𝑃({𝑟9}) , 𝑃({𝑟9}) =
1
𝑍(
𝑒>?ℋA 

Where 𝑃({𝑟9}) is the probability of finding the conformation of an ideal chain. 

The Dirac delta 𝛿(𝑟5 − 𝑟( − 𝑅) requires that the polymer be constrained such that the 

only geometries that are considered when computing the conformational entropy 𝑆((𝑅) 

are the geometries where the distance between the vectors 𝑟5 and 𝑟( is equal to 𝑅. In 

order to accomplish this task, one must abandon the notion of certainty. Instead of 

assuming that the total number of conformations 𝑍( is fixed, there is a probability 𝑃(𝑅) 

that there will be a certain number of conformations 𝑍(. This is due solely to the fact that 

the set of conformations 𝑍( corresponding to the case where 𝑟5 − 𝑟( = 𝑅 is not the only 

possible outcome. There are plenty of other conformations that correspond to cases where 

𝑟5 − 𝑟( ≠ 𝑅. In other words the case where 𝑟5 − 𝑟( = 𝑅 is not the only probability. One 

must give up certainty when calculating the entropy 𝑆((𝑅).  
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The probability that the total number of conformations will be 𝑍( is given by the 

formula Ω(𝑅) = 𝑍( × 𝑃(𝑅). The formula for 𝑍( is given below along with the 

Hamiltonian ℋ((𝑟(, … , 𝑟5). 

𝑍( = 1𝑑𝑟( …1𝑑𝑟5𝑒>?ℋA(DA,…,DE) ,ℋ( = 	
3𝑘I𝑇
2𝑏M N|𝑟9 − 𝑟9PQ|M

5>Q

9R(

 

Where 𝑍( is the total number of conformations regardless of the constraint 𝑟5 −

𝑟( = 𝑅. Likewise, ℋ((𝑟(, … , 𝑟5) is the Hamiltonian of the system.. This Hamiltonian is 

equivalent to the potential energy of the peptide bonds. In the equation ℋ((𝑟(, … , 𝑟5) 

above 𝑁 is the total number of sub chains and 𝑟9 and 𝑟9PQ are the end to end vectors 

corresponding to the 𝑖𝑡ℎ sub chain. 𝑇 is the temperature of the system. 𝑘I is the 

Boltzmann constant and 𝑏 is the average length of the sub-chains. Next the terms 𝑍( and 

𝑃(𝑅) will be evaluated. With the use of a gaussian integral given to the left, we obtain the 

following calculations for 𝑍(. 

1𝑑𝑟𝑒>W|D>X|Y = Z
𝜋
𝑎\

]/M
, 𝑍( = 𝒱 _

2𝜋𝑏M

3 `
]5/M

 

 Likewise, the calculations for 𝑃(𝑅) are given below. Since the integral for 𝑃(𝑅) 

is computationally intensive the following equations for the Dirac Deltas 𝛿(𝑟), 𝛿(𝑟5 −

𝑟( − 𝑅) will be employed to streamline these calculations. These equations are given 

below. 

𝛿(𝑟) =
1

(2𝜋)] 1 𝑑𝑞𝑒9b∙(D>W)
Pd

>d
, 𝛿(𝑟5 − 𝑟( − 𝑅) =

1
(2𝜋)] 	1 𝑑𝑞𝑒9b∙(DE>DA>e)

Pd

>d
 

In the equations above the term 𝛿(𝑟) corresponds to the integral form of the Dirac 

delta in three dimensions. Likewise, the integral for	𝛿(𝑟5 − 𝑟( − 𝑅) is also given above 

in the top right. This equation will appear frequently for the calculations for the integral 

term 𝑃(𝑅). Another integral that will be used repeatedly will be the Fourier transform of 

a gaussian, which is given by the following equation below. 

1𝑑𝑟𝑒>W|D>f|Y𝑒>9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW >9b∙f 
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As stated previously the formulas for 𝑃(𝑅) and 𝑃({𝑟9}) are given by the following 

equations below. In the bottom equation the Dirac Delta function 𝛿(𝑟5 − 𝑟( − 𝑅) is 

converted into an integral, as stated previously in the paragraphs above. 

𝑃(𝑅) = 1𝑑𝑟( …1𝑑𝑟5𝛿(𝑟5 − 𝑟( − 𝑅)𝑃({𝑟9}), 𝑃({𝑟9}) =
1
𝑍(
𝑒>?ℋA 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒9b∙(DE>DA>e)
Pd

>d

1
𝑍(
𝑒>?ℋA 

Below are the calculations for the integral 𝑃(𝑅). While these are mostly 

simplifications, they are necessary in order to avoid miscalculations. This will be 

explained later when the formula for the Fourier transform is displayed. These 

calculations are continued in the following pages. 

Below are the calculations for the 𝑃(𝑅) integral. In order to streamline 

calculations even further the Fourier transform of a gaussian will be employed in order to 

evaluate 𝑃(𝑅). 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒9b∙(DE>DA>e)

Pd

>d
𝑒>?ℋA 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒9b∙(DE>DA>e)

Pd

>d
𝑒>?

]hij
MXY

∑ |Dl>Dlmn|YEon
lpA  

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒>9b∙(>DEPDAPe)

Pd

>d
𝑒>?

]hij
MXY

∑ |Dl>Dlmn|YEon
lpA  

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒>?

]hij
MXY

∑ |Dl>Dlmn|YEon
lpA 𝑒>9b∙(>DEPDAPe)

Pd

>d
 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟( …1𝑑𝑟5 1 𝑑𝑞𝑒>?

]hij
MXY

∑ |Dl>Dlmn|YEon
lpA 𝑒>9b∙DA𝑒9b∙DE𝑒>9b∙e

Pd

>d
 

Again, the Fourier transform of a gaussian is given by the following equation for 

convenience. 

1𝑑𝑟𝑒>W|D>f|Y𝑒>9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW >9b∙f 
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As stated in the previous pages this equation will be deployed repeatedly in order 

to obtain accurate results for the integral 𝑃(𝑅). Since 𝑒>9b∙D is given to the left of the 

gaussian term 𝑒>W|D>f|Y in the integral ∫𝑑𝑟𝑒>W|D>f|
Y𝑒>9b∙D, the term 𝑒9b∙(DE>DA>e) in the 

integral 𝑃(𝑅) was shifted to the left in order to prevent confusion and avoid 

miscalculations. The calculations for 𝑃(𝑅) are continued below and will be continued in 

the following pages. 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟Q …1𝑑𝑟5 1 𝑑𝑞 _

2𝜋𝑏M

3 `
]/M

𝑒>
|b|YMXY
g∙] >9b∙Dn𝑒9b∙DE𝑒>9b∙e

Pd

>d

× 𝑒>?
]hij
MXY

∑ |Dl>Dlmn|YEon
lpn  

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟Q …1𝑑𝑟5 ,𝑒

>?]hijMXY
∑ |Dl>Dlmn|YEon
lpn 𝑒>9b∙Dn0

× _
2𝜋𝑏M

3 `
]/M

𝑒>
|b|YMXY
g∙] 𝑒9b∙(DE>e) 

As was stated in the previous pages the formula for the Fourier transform of a 

gaussian is given below along with the integral for 𝑃(𝑅). 

1𝑑𝑟𝑒>W|D>f|Y𝑒>9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW >9b∙f 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟M …1𝑑𝑟5 r_

2𝜋𝑏M

3 `
]/M

𝑒>
|b|YMXY
g∙] >9b∙DYs × 

,𝑒>?
]hij
MXY

∑ |DY>Dlmn|YEon
lpY 0 × r_

2𝜋𝑏M

3 `
]/M

𝑒>
|b|YMXY
g∙] 𝑒9b∙(DE>e)s 

After multiple integrations are performed for 𝑃(𝑅), the integral is distilled to the 

following equation given below. 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟5>Q …1𝑑𝑟5 r_

2𝜋𝑏M

3 `
](5>Q)/M

𝑒>(5>Q)
|b|YMXY
g∙] 𝑒>9b∙DEon𝑒9b∙(DE>e)s 

× 𝑒>?
]hij
MXY

|DEon>DEmn|Y 
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The equations for the Dirac delta term as well as the Fourier transform are 

displayed below for convenience. The first term below corresponds to the Fourier 

transform displayed previously. Beneath this equation are the integrals for the Dirac delta 

equations 𝛿(𝑟5 − 𝑟( − 𝑅) and 𝛿(𝑟5>Q − 𝑟( − 𝑅) respectively. 

1𝑑𝑟𝑒>W|D>f|Y𝑒>9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW >9b∙f 

𝛿(𝑟5 − 𝑟( − 𝑅) =
1

(2𝜋)] 	1 𝑑𝑞𝑒9b∙(DE>DA>e)
Pd

>d
 

𝛿(𝑟5>Q − 𝑟( − 𝑅) =
1

(2𝜋)] 	1 𝑑𝑞𝑒9b∙(DEon>DA>e)
Pd

>d
 

With the use of the equations given above for the Fourier transform and the Dirac 

Delta terms 𝛿(𝑟5 − 𝑟( − 𝑅) and 𝛿(𝑟5>Q − 𝑟( − 𝑅) the integral 𝑃(𝑅) is reduced to the 

following equation below. The calculations for 𝑃(𝑅) will be continued on the following 

pages along with the computation for the classical conformational entropy 𝑆((𝑅). 

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟5 r_

2𝜋𝑏M

3 `
](5>Q)/M

𝑒>(5>Q)
|b|YMXY
g∙] 𝑒>

|b|YMXY
g∙] 𝑒>9b∙e𝑒9bDEs 

 In order to compute the classical conformational entropy 𝑆((𝑅) it is necessary to 

make use of the equations for both 𝑍( and 𝑃(𝑅). These equations, along with 𝑆((𝑅) are 

displayed beneath the calculations for 𝑃(𝑅).  

𝑃(𝑅) =
1

(2𝜋)]𝑍(
1𝑑𝑟5 r_

2𝜋𝑏M

3 `
]5/M

𝑒>5
|b|YMXY
g∙] 𝑒>9b∙e𝑒9bDEs 

𝑃(𝑅) =
1

(2𝜋)] t
6𝜋
𝑁𝑏Mv

]/M

𝑒>
|e|Yw
g5XY, 𝑃(𝑅) =

1
(2𝜋)w/M t

6
𝑁𝑏Mv

]/M

𝑒>
]

M5XY
|e|Y 

As stated in the previous pages 𝑃(𝑅) is the probability for the end to end vector of 

the polymer chain to have a value of 𝑅. Likewise, 𝑍( is the total number of 

conformations for the polymer chain when the constraint 𝑃(𝑅) is not taken into account. 

 Below are the calculations for 𝑍(, 𝑃(𝑅) and 𝑆((𝑅). 

𝑍( = 𝒱 _
2𝜋𝑏M

3 `
]5/M

, 𝑃(𝑅) = t
3

2𝜋𝑁𝑏Mv
]/M

𝑒>
]

M5XY
|e|Y, 𝑆((𝑅) = 𝑙𝑛 ,

𝑍(
𝒱 × 𝑃(𝑅)0 
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This in turn gives us the following calculations for the conformational entropy. 

The term 𝐶(𝑁) is a constant that is given in terms of the number of amino acids. 𝑏 is the 

average length of the sub chain. The number of sub chains is given by the term 𝑁. As 

stated previously 𝑅 is the end to end vector of the polymer chain. 𝑘I is Boltzmann’s 

constant and 𝑆((𝑅) is the classical conformational entropy. 

𝑆((𝑅) = 𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 , 𝑆((𝑅) = 𝑙𝑛 r_

2𝜋𝑏M

3 `
]5/M

t
3

2𝜋𝑁𝑏Mv
]/M

𝑒>
]

M5XY
|e|Ys 

𝑆( = −
3𝑘I
2𝑁𝑏M

|𝑅|M + 𝐶(𝑁) 

  Hence the length of the end to end vector 𝑅 decreases the conformational entropy 

as expected. While the bead spring model appears relatively simple it has its limits. First 

of all, it only applies when the number of sub chains is large. More importantly however 

it cannot be used to incorporate the effects due to Hydrogen bonds. This is due to the fact 

that the entropy is described in terms of the vectors corresponding to the amino acid 

segments instead of the vectors corresponding to the peptide bonds, otherwise known as 

the bond vectors. The lattice model however does describe the conformational entropy in 

terms of the bond vectors. This is the model that will be discussed in the following pages. 
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The Lattice Model 

Since the Perturbation term corresponding to the Hydrogen bonds is in terms of 

the bond vectors the bead spring model, which treats the sub chains as single units, is 

insufficient for taking into account the quantum mechanical effects due to hydrogen 

bonds. Among these effects are the breaking of hydrogen bonds due to quantum 

tunneling. In order to incorporate quantum mechanical effects, a different model will be 

used. This model is referred to as the lattice model and it is equivalent to the bead spring 

model when the number of amino acids is large. Below is the formula for 𝑃(𝑅) where 

𝑃(𝑅) is the probability for the end to end vector to have a value of 𝑅. 

𝑃(𝑅) = 1𝑑𝑢( …1𝑑𝑢5>Q 𝛿 {𝑅 −N 𝑢9

5>Q

9R(

|𝑃5({𝑢9}) 

Likewise, 𝑃5({𝑢9}) is the probability of finding a certain chain conformation. 𝑢9 

is the bond vector for the 𝑖𝑡ℎ peptide bond, where the peptide bonds are the bonds 

between each amino acid in the polymer chain. The equation 𝑃(𝑅) is equal to the product 

of the probabilities for each of the 𝑁 bond vectors 𝑏 to take on a certain value. These 

bond vectors correspond to the peptide bonds between the amino acids. Hence the 

formula for 𝑃5({𝑢9}) is given below. 

𝑃5({𝑢9}) =}𝑃Q~𝑢��
5>Q

�R(

 

In the equation above 𝑃Q~𝑢�� is the likelihood for the bond vector of the 𝑗th amino 

acid to take on a specific value. Since it is assumed that the peptide units do not interact 

the probabilities associated with each value of the 𝑗th bond vector are all equal, where the 

peptide units are the amino acids. When the number of amino acids is sufficiently large 

the probabilities for the directions of the bond vectors are all equal. Since there are six 

total directions that the bond vector 𝑎 can take on the value of 𝑃Q~𝑢�� is equal to Q
w
. The 

set corresponding to these bond vectors is given by 𝑏 = �±𝑏�, ±𝑏�, ±𝑏��. 
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Within the set 𝑏 = �±𝑏�, ±𝑏�, ±𝑏��, 𝑏�, 𝑏�, 𝑏� and −𝑏�,−𝑏�, −𝑏� are the positive 

and negative values of the bond vector. The bond vectors are the directions for the 

peptide bonds between each peptide unit. As mentioned earlier each peptide unit is an 

amino acid in the Cas9 polymer chain. 

Since the calculations for 𝑃(𝑅) are computationally intensive, the Dirac Delta 

term within 𝑃(𝑅) for the lattice model must be rewritten as an integral. Since the Dirac 

Delta equation within 𝑃(𝑅) is given in three dimensions, the integral formula for the 

Dirac Delta must also be written in three dimensions. The integral formulation for the 

Dirac Delta function is given below. The formula for 𝑃(𝑅) is also given below for 

convenience. 

𝛿(𝑟) =
1

(2𝜋)] 1 𝑑𝑞𝑒9b∙D, 𝑃(𝑅) = 1𝑑𝑢( …1𝑑𝑢5>Q 𝛿 {𝑅 − N 𝑢9

5>Q

9R(

|𝑃5({𝑢9})	
Pd

>d
 

In the equation for 𝑃(𝑅) above, the term 𝑃5({𝑢9}) is the product of the 

probabilities for each bond vector 𝑏 to take on a specific value out of the set of the bond 

vectors 𝑏 = �±𝑏�, ±𝑏�, ±𝑏��. The equation for 𝑃5({𝑢9}) is given below where 𝑃5({𝑢9}) 

is the joint probability distribution for the 𝑁 bonds.  

𝑃5({𝑢9}) = 𝑃Q(𝑢()𝑃Q(𝑢Q)…𝑃Q(𝑢5>Q) 

Likewise the terms 𝑃Q(𝑢(), 𝑃Q(𝑢Q)…𝑃Q(𝑢5>Q) are the probability distributions for 

a single bond corresponding to the bond vectors 𝑢(, 𝑢Q and 𝑢5>Q. 

Since the polymer in the lattice model is treated as an ideal chain, the probabilities 

for each bond vector to take on a specific value are all equal to each other, where there 

are a total of six bond vectors. This in turn leads to the following equation for 𝑃Q(𝑢) 

where 𝑃Q(𝑢) is the probability distribution for any of the bond vectors. 

𝑃Q(𝑢) = �
1
6
	(𝑢 ∈ 	𝑛𝑒𝑎𝑟𝑒𝑠𝑡	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

0	(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
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Since the cas9 polymer is going to be treated as an ideal chain, the terms 

𝑃Q(𝑢(), 𝑃Q(𝑢Q)…𝑃Q(𝑢5>Q) are all equal to 𝑃Q(𝑢), whereas stated previously 𝑃Q(𝑢) is the 

probability distribution for any of the bond vectors. This in turn leads to the following 

formula for 𝑃5({𝑢9}) below. 

𝑃5({𝑢9}) = ~𝑃Q(𝑢)�
5 

This in turn makes it possible to rewrite the formula for 𝑃(𝑅) as the following equation. 	

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞 𝑒
9be}1𝑑𝑢�𝑒>9b��𝑃Q~𝑢��

5>Q

�R(

 

The formulas for 𝑃Q~𝑢�� and 𝑃5({𝑢9}) are also given below for convenience along 

with 𝛿(𝑟). 

𝑃(𝑅) = 1𝑑𝑢( …1𝑑𝑢5>Q 𝛿 {𝑅 − N 𝑢9

5>Q

9R(

|𝑃5({𝑢9}), 𝑃Q~𝑢�� = 𝑃Q(𝑢) 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞 𝑒
9be}1𝑑𝑢�𝑒>9b��𝑃Q~𝑢��

5>Q

�R(

 

𝛿(𝑟) =
1

(2𝜋)] 1 𝑑𝑞𝑒9b∙D
Pd

>d
 

The equation for 𝑃(𝑅) above is really just the inverse Fourier transforms of many 

Fourier transforms. The equations corresponding to these Fourier transforms are given 

below. 𝑃�Q(𝑞) is the Fourier transform for a single probability distribution 𝑃Q(𝑢). 

Likewise, [𝑃�Q(𝑞)]5 is the product of 𝑁 such transforms. 

𝑃�Q(𝑞) = 1𝑑𝑢𝑃Q(𝑢)𝑒>9b∙� , [𝑃�Q(𝑞)]5 =}1𝑑𝑢�𝑒>9b��𝑃Q~𝑢��
5>Q

�R(

 

This leads to the following equation for 𝑃(𝑅) given below. 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞 𝑒
9be[𝑃�Q(𝑞)]5 

 The formulas for [𝑃�Q(𝑞)]5 and 𝑃�Q(𝑞) are both given below for convenience. The 

computations for 𝑃(𝑅) will be continued in the following pages. 



 
 

14 

𝑃�Q(𝑞) = 1𝑑𝑢𝑃Q(𝑢)𝑒>9b∙� , [𝑃�Q(𝑞)]5 =}1𝑑𝑢�𝑒>9b��𝑃Q~𝑢��
5>Q

�R(

 

 As was stated in the previous page the formula for 𝑃(𝑅) is given in the following 

form. 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞 𝑒
9be}1𝑑𝑢�𝑒>9b��𝑃Q~𝑢��

5>Q

�R(

 

 Next the equation for 𝑃Q(𝑢) will be computed along with the formulas for 𝑃�Q(𝑞) . 

As stated previously the formula for 𝑃Q(𝑢) is given by the following equation. 

𝑃Q(𝑢) = �
1
𝑧 	
(𝑢 ∈ 	𝑛𝑒𝑎𝑟𝑒𝑠𝑡	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

0	(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
 

This in turn can be rewritten as the following series where 𝑎 sums through the set 

of the nearest neighboring vectors 𝑏. 

𝑃�Q(𝑢) =
1
6N𝛿(𝑢 − 𝑎)

W

, 𝑏 = �±𝑏�, ±𝑏�, ±𝑏�� 

In order to streamline the calculations for [𝑃�Q(𝑞)]5, approximation techniques 

will need to be employed. The approximations that follow in these pages hold so long as 

𝑁 ≫ 1. 

In order to make use of such approximations, the following series for 𝑒� will be deployed 

for the purposes of calculating 𝑃(𝑅). The calculations for 𝑃�Q(𝑞) are also given beneath 

the series for 𝑒� below and will be continued in the following pages. 

𝑒� = N
𝑥�

𝑛! = 1 + 𝑥 +
𝑥M

2! +
𝑥]

3! + ⋯
d

�R(

 

𝑃�Q(𝑞) = 1𝑑𝑢𝑃Q(𝑢)𝑒>9b∙� , 𝑃�Q(𝑞) = 1𝑑𝑢 r
1
6N𝛿(𝑢 − 𝑎)

W

s 𝑒>9b∙� 
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The equations for 𝑃�Q(𝑞) that were stated in the bottom of the previous page are 

restated below for convenience.	

𝑃�Q(𝑞) = 1𝑑𝑢𝑃Q(𝑢)𝑒>9b∙� , 𝑃�Q(𝑞) = 1𝑑𝑢 r
1
6N𝛿(𝑢 − 𝑎)

W

s 𝑒>9b∙� 

These integrals in turn lead to the following equation for the Fourier transform 𝑃�Q(𝑞). As 

stated previously the function 𝑃�Q(𝑞) is the Fourier transform of the probability 

distribution 𝑃Q(𝑢) where 𝑃Q(𝑢) is the probability distribution for a single bond vector 𝑎. 

𝑃�Q(𝑞) =
1
6N 𝑒>9b∙W

W
 

Since it is assumed that 𝑁 ≫ 1, [𝑃�Q(𝑞)]5 can be reduced to the result 𝑒>
E�A

Y|�|Y

�  

with the use of the following approximation scheme given below. 

[𝑃�Q(𝑞)]5 = ,
1
6N 1− 𝑖𝑞 ∙ 𝑎 −

1
2
(𝑞 ∙ 𝑎)M + ⋯

W
0
5

 

~ ,
1
6 t6 −

1
2 �2𝑞�

M𝑏(M + 2𝑞�M𝑏(M + 2𝑞�M𝑏(M�v0
5

~{1 −
𝑏(M

6 ~𝑞�
M𝑏(M + 𝑞�M𝑏(M + 𝑞�M𝑏(M�| 

~  1 −
𝑏(M|𝑞|M

6 ¡
5

~𝑒>
5XAY|b|Y

w  

Hence [𝑃�Q(𝑞)]5 is given by the following equation for 𝑁 ≫ 1. 

[𝑃�Q(𝑞)]5 = 𝑒>
5XAY|b|Y

w  

 Just like in the previous case for the lattice model the Fourier Transform of a 

Gaussian will be employed to streamline calculations. The formulas corresponding to this 

transform are given below. The calculations for 𝑃(𝑅) will be carried out in the next page. 

As stated previously 𝑃(𝑅) is the probability for the end to end vector to have a value 𝑅. 

1𝑑𝑟𝑒>W|D>f|Y𝑒>9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW >9b∙f , 1𝑑𝑟𝑒>W|D|Y𝑒>9b∙D = Z

𝜋
𝑎\

]/M
𝑒>

|b|Y
gW  

, 1𝑑𝑟𝑒>W|>D|Y𝑒9b∙D = Z
𝜋
𝑎\

]/M
𝑒>

|b|Y
gW , 1 𝑑𝑟𝑒>W|D|Y𝑒9b∙D = Z

𝜋
𝑎\

]/M
𝑒>

|b|Y
gW  
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The calculations for the term 𝑃(𝑅) are given below. 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞𝑒
9b∙e𝑒>

5XAY|b|Y
w =

1
(2𝜋)] _

6𝜋
𝑁𝑏(M

`
]/M

𝑒
>w|b|

Y

g5XAY 

𝑃(𝑅) =
1

(2𝜋)] 1𝑑𝑞𝑒
9b∙e𝑒>

5XAY|b|Y
w =

1
(2𝜋)w/M _

6𝜋
𝑁𝑏(M

`
]/M

𝑒
>w|b|

Y

g5XAY 

𝑃(𝑅) = _
3

2𝜋𝑁𝑏(M
`

]
M
𝑒
>]|e|

Y

M5XAY 

  While both the bead spring model and the lattice model have their uses, they are 

not without limits. The partition function 𝑍( in the bead spring model is not written in 

terms of the position vectors of the amino acids. Since the hydrogen bonds are 

interactions between these amino acids any model that incorporates hydrogen bonds must 

be in terms of these position vectors. While The lattice model is written in terms of these 

position vectors it fails to account for the energies due to the peptide bonds. Since the 

quantum mechanical interaction is a sum of the energies of the hydrogen bonds, the 

lattice model is not sufficient either. Another model must be obtained for incorporating 

the quantum mechanical perturbation. In order to construct such a model, the strengths of 

both the bead spring model as well as the lattice model must be combined into a single 

model. This model will be written in terms of the position vectors of the amino acids; 

however, it will also account for the potential energy of the peptide bonds. In order to 

achieve such a model, the partition function 𝑍( will be rewritten in terms of the position 

vectors of the amino acids 𝑟(¢, … , 𝑟5¢  as well as the potential energy for the peptide bonds 

ℋ(′. Below are the equations for position vectors of the amino acids 𝑢9, 𝑖 = 0,… ,𝑁 − 1 

as well as the partition function 𝑍(. The Hamiltonian ℋ( is also given below. 

𝑍( = 1𝑑𝑟( …1𝑑𝑟5𝑒>?ℋA(DA,…,DE) , ℋ( = −
3
2𝑏M N

|𝑟9 − 𝑟9PQ|M
5>Q

9R(

 

𝑢9 = 𝑟9PQ′ − 𝑟9′ 

In order to convert from one model to the other a coordinate transformation must 

be performed on the integral 𝑍(. This will be done in the following page. 
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The coordinate transformation from the coordinates 𝑟( … 𝑟5 to the coordinates 

𝑢(, …𝑢5>Q is given below. 

𝑑𝑟( …𝑑𝑟5 = ¤
𝜕(𝑟(, … , 𝑟5)

𝜕(𝑟(, 𝑢(, … 𝑢5>Q)
¤ 𝑑𝑟(𝑑𝑢( …𝑑𝑢5>Q = 𝑑𝑟(𝑑𝑢( …𝑑𝑢5>Q 

 In order to convert the bead spring model to the lattice model the Hamiltonian ℋ( 

must be rewritten in terms of the bond vectors 𝑢(, … , 𝑢5>Q. This is due to the fact that the 

Hamiltonian ℋ( is in terms of the position vectors for the ends of the sub chains. The 

calculations below correspond to the conversions of ℋ( from the bead spring model to 

the lattice model where the indices 𝑖′ and 𝑁′ are dummy indices. As stated previously 𝑅 

is the end to end vector. These calculations are continued on the next page. 

ℋ( = −
3
2𝑏M N

|𝑟9 − 𝑟9PQ|M
5>Q

9R(

= −
3
2𝑏M N

|𝑟9PQ − 𝑟9|M
5>Q

9R(

= −
3
2𝑏M

|𝑟5 − 𝑟(|M 

−
3
2𝑏M

|𝑟5 − 𝑟(|M = −
3
2𝑏M

|𝑟5′ − 𝑟(′|M, −
3
2𝑏M

|𝑟5′ − 𝑟(′|M = −
3
2𝑏M N

|𝑟9PQ¢ − 𝑟9′|M
5>Q

9R(

 

ℋ( = −
3
2𝑏M N

|𝑟9PQ¢ − 𝑟9′|M
5>Q

9R(

, ℋ( = −
3
2𝑏M N

|𝑢9|M
5>Q

9R(

 

ℋ( = −
3
2𝑏M N

|−𝑢9|M
5>Q

9R(

, ℋ( = −
3
2𝑏M N

|𝑟9′ − 𝑟9PQ′|M
5>Q

9R(

 

 Next the partition function 𝑍( is rewritten in terms of the position vectors of the 

amino acids 𝑟(¢, … , 𝑟5′. The following Jacobian is given below along with the following 

equation for 𝑢9. 

𝑢9 = 𝑟9PQ¢ − 𝑟9¢, ¤
𝜕(𝑟(, 𝑢(, … , 𝑢5>Q)
𝜕(𝑟(′, 𝑟Q′, … , 𝑟5′)

¤ = 1 

 This in turn leads to the following equations for 𝑍( and ℋ( where 𝑍( and ℋ( are 

rewritten in terms of the position vectors for the amino acids 𝑟(¢, 𝑟Q¢, … , 𝑟5. 

𝑍( = 1𝑑𝑟( …1𝑑𝑟5𝑒>?ℋA(DA,…,DE) , ℋ( = −
3
2𝑏M N

|𝑟9′ − 𝑟9PQ′|M
5>Q

9R(
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Hence when the number of sub chains is large the two models have the same 

formalism. The main difference is that one model sums over sub chains while the other 

sums over the position vectors of the amino acids. Since the number of amino acids is 

very large for each protein it is necessary to break it down into sub structures in order to 

understand it, this is especially the case for Cas9 which contains 1368 amino acids. These 

substructures are referred to as the primary structure, secondary structure and primary 

structure respectively. These structures will be discussed in the following pages below. 
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Protein Structure 

The primary structure is the sequence of the amino acids in the polymer chain. 

The secondary structures are referred to as beta strands and alpha helices respectively. 

The tertiary structure is the structure of an entire conformation.  

Every amino acid can be broken up into two sections. These sections are the 

backbone and the sidechain. Another name for the sidechain is the R group. The 

backbone of every amino acid is identical. The sidechains, however, are different for 

every amino acid. 

There are three different cases in which hydrogen bonds can form. In the first 

case, hydrogen bonds form between the backbones of two different amino acids. This is 

possible for each and every pair of amino acids. In the second case hydrogen bonds form 

between the sidechains of two different amino acids. In the third case side chains form 

hydrogen bonds with a solvent. In each of these cases certain requirements need to be met 

in order for a hydrogen bond to form. 

In order for two backbones to form a hydrogen bond there are two conditions that 

must be met. In the first condition the vectors pertaining to the side chains of each amino 

acid must be parallel to each other. In the second condition, the sequence of amino acids 

containing the two amino acids that are adjacent to each other must be in a strand state. 

This will be explained in detail later. 

While the hydrogen bonds pertaining to backbones can occur between each amino 

acid, this is not the case for sidechains. Only certain combinations of sidechains are 

capable of forming hydrogen bonds. Even when two such sidechains are in contact it is 

not guaranteed that a hydrogen bond will form. Depending on the form of the sidechain, a 

hydrogen bond may or may not form. If the sidechain only comes in one form, then the 

probability is equal to one. The same cases hold if the form of the sidechain is irrelevant. 

If the form of the side chain of an amino acid determines whether or not a hydrogen bond 

will form, then the probability that a hydrogen bond will form is less than one. So long as 

the number of amino acids is sufficiently large these probability terms hold. 
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Just like for the sidechain interactions there are only certain amino acids that can 

interact with solvents. In addition, the only component of an amino acid that can interact 

with the solvent is the side chain. The sidechains must also be pointing towards an empty 

lattice site within the lattice model. In order to streamline calculations, the system will be 

constrained so that the only solvent interacting with the side chains will be water. 

In a nutshell there are three different forms of hydrogen bonds. These are referred 

to as backbone interactions, side chain interactions and solvent interactions. The 

backbone interactions occur between the backbones of the amino acids. The side chain 

interactions occur between sidechains of the amino acids. Likewise, the solvent 

interactions occur between the side chains of the amino acids and a corresponding 

solvent. In this case study the solvent will be water. These terms together make up a 

correction that will be referred to as the quantum mechanical perturbation and it accounts 

for the effects due to the hydrogen bonds. Among these effects are the effects due to 

quantum tunneling. These corrections will be discussed in the following pages. Then the 

quantum mechanical correction computed. 
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CHAPTER II: 

QUANTUM MECHANICAL PERTURBATION 

Quantum Mechanical Interactions 

The term that accounts for the quantum mechanical interactions is given by 𝐺§¨, 

where 𝐺§¨ is the Gibbs free energy corresponding to the hydrogen bonds. This includes 

both the potential energy of the peptide bonds as well as the total energy pertaining to the 

hydrogen bonds. There are three different forms of hydrogen bonds that will be discussed 

in more detail later on. These are the hydrogen bonds due to the backbone interactions, 

sidechain interactions and solvent interactions. In addition to these interactions are steric 

interactions which will be explained in detail later. The equation for the Gibbs free 

energy 𝐺§¨ is given below. 

𝐺§¨ = 𝑏 ∙ Δ𝐺ª«¬® + 𝑐 ∙ Δ𝐺ª«¬¯ + 𝑑 ∙ Δ𝐺°X + 𝑒 ∙ Δ𝐺±X«�² + 𝑔 ∙ Δ𝐺h«� 

+ℎ ∙ 𝑇Δ𝑆³f + 𝑘 ∙ 𝑇Δ𝑆ªf + 𝑎 ∙ Δ𝐺²° + 𝑓 ∙ Δ𝐺µ¬ + 𝑙 ∙ Δ𝐺f¬Wª± 

In the equation above Δ𝐺ª¶µD9f = 𝑎 ∙ Δ𝐺²° + 𝑓 ∙ Δ𝐺µ¬ + 𝑙 ∙ Δ𝐺f¬Wª±	is the 

contribution to the free energy due to steric effects. 𝑎 ∙ Δ𝐺²° is the Gibbs free energy 

due to the Van der Waals forces, 𝑓 ∙ Δ𝐺µ¬ is the Gibbs free energy due to the electrostatic 

interactions and 𝑙 ∙ Δ𝐺f¬Wª± is the Gibbs free energy due to steric clashes. The equation 

𝐺§¨ is rewritten below in terms of the substitution Δ𝐺ª¶µD9f = 𝑎 ∙ Δ𝐺²° + 𝑓 ∙ Δ𝐺µ¬ + 𝑙 ∙

Δ𝐺f¬Wª± for convenience. 

𝐺§¨ = 𝑏 ∙ Δ𝐺ª«¬® + 𝑐 ∙ Δ𝐺ª«¬¯ + 𝑑 ∙ Δ𝐺°X + 𝑒 ∙ Δ𝐺±X«�² + 𝑔 ∙ Δ𝐺h«� 

+ℎ ∙ 𝑇Δ𝑆³f + 𝑘 ∙ 𝑇Δ𝑆ªf + Δ𝐺ª¶µD9f 

The terms ℎ ∙ 𝑇Δ𝑆³f and 𝑘 ∙ 𝑇Δ𝑆ªf are the contributions to the free energy due to 

the hydrogen bonds between the backbones of the amino acids as well as the sidechains 

of the amino acids.  
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The substitutions 𝑇Δ𝑆XX = ℎ ∙ 𝑇Δ𝑆³f, and 𝑇Δ𝑆ªf = 𝑘 ∙ 𝑇Δ𝑆ªf are included below 

in the term corresponding to the free energy 𝐺§¨ for convenience. 

𝐺§¨ = Δ𝐺ª¶µD9f + 𝑏 ∙ Δ𝐺ª«¬® + 𝑐 ∙ Δ𝐺ª«¬¯ + 𝑑 ∙ Δ𝐺°X + 𝑒 ∙ Δ𝐺±X«�² 

+𝑔 ∙ Δ𝐺h«� + 𝑇Δ𝑆XX + 𝑇Δ𝑆ªf 

In the equation above 𝑇Δ𝑆XX is the entropic penalty due to backbone interactions. 

𝑇Δ𝑆ªf likewise, is the entropic penalty due to the sidechain interactions, where the 

constant 𝑘 has been absorbed into the equation for 𝑆ªf. 

The terms 𝑏 ∙ Δ𝐺ª«¬® and 𝑐 ∙ Δ𝐺ª«¬¯ together account for the interactions 

between the amino acid side chains as well as the solvent. This in turn gives us the 

following equation below, where Δ𝐺ª«¬µ�¶ = 𝑏 ∙ Δ𝐺ª«¬® + 𝑐 ∙ Δ𝐺ª«¬¯. In order to 

constrain the model even further it is assumed that the only amino acids that interact with 

water are the polar amino acids. Therefore 𝑏 ∙ Δ𝐺ª«¬® = 0. The modifications for 𝐺§¨ 

are given below. 

𝐺§¨ = Δ𝐺ª¶µD9f + Δ𝐺ª«¬µ�¶ + 𝑑 ∙ Δ𝐺°X + 𝑒 ∙ Δ𝐺±X«�² + 𝑔 ∙ Δ𝐺h«� + 𝑇Δ𝑆XX + 𝑇Δ𝑆ªf 

Since the term 𝑔 ∙ Δ𝐺h«� is only applicable for interactions between different 

polypeptide chains it is set to 0. The term 𝐺§¨ can then be rewritten in the following 

form below. 

𝐺§¨ = Δ𝐺ª¶µD9f + Δ𝐺ª«¬µ�¶ + 𝑑 ∙ Δ𝐺°X 

+𝑒 ∙ Δ𝐺±X«�² + 𝑇Δ𝑆XX + 𝑇Δ𝑆ªf 

 The model will now be further constrained so as to assume that the water 

molecules form up to one bond each with the cas9 protein. The term that accounts for 

multiple hydrogen bonds (see the paper The FoldX web server: an online force field) with 

water is given by 𝑑 ∙ Δ𝐺°X. Since the model is constrained so as to assume that the water 

molecules form up to one bond each with the cas9 protein the term 𝑑 ∙ Δ𝐺°X is set to zero 

such that 𝑑 ∙ Δ𝐺°X = 0. This leads to the following equation below. 

𝐺§¨ = Δ𝐺ª¶µD9f + Δ𝐺ª«¬µ�¶ 

+𝑒 ∙ Δ𝐺±X«�² + 𝑇Δ𝑆XX + 𝑇Δ𝑆ªf 
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 The model will be further constrained so as to assume that the amino acids each 

only form one hydrogen bond with each other. The term that accounts for such 

interaction is given by Δ𝐺±X«�². Δ𝐺±X«�² is therefore set to zero. Therefore Δ𝐺±X«�² = 0. 

This leads to the following equation below for Δ𝐺§¨. As stated previously Δ𝐺§¨ is the 

difference in the free energy due to the quantum mechanical interactions.  

Δ𝐺§¨ = Δ𝐺ª¶µD9f + Δ𝐺ª«¬µ�¶ + ℎ ∙ 𝑇Δ𝑆XX + 𝑘 ∙ 𝑇Δ𝑆ªf 

In the equation for Δ𝐺§¨ above, Δ𝐺ª¶µD9f is the free energy due to steric 

hinderance, Δ𝐺ª«¬µ�¶ is the free energy due to the solvent interactions and 𝑇Δ𝑆XX and 

𝑇Δ𝑆ªf are the free energy penalties due to the backbone-backbone and sidechain-

sidechain interactions respectively. In the following pages the quantum mechanical 

perturbation ∆𝑆§¨ will be obtained from Δ𝐺§¨. 

This leads to the following equations below for Δ𝐺§¨ and Δ𝑆§¨. 

Δ𝐺§¨ = Δ𝐺ª¶µD9f + Δ𝐺ª«¬µ�¶ + 𝑇Δ𝑆XX + 𝑇Δ𝑆ªf, Δ𝐺§¨ = −𝑇Δ𝑆§¨ 

Δ𝑆§¨ = −
1
𝑇 Δ𝐺ª¶µD9f −

1
𝑇 Δ𝐺ª«¬µ�¶ − Δ𝑆XX − Δ𝑆ªf, −

1
𝑇 Δ𝐺ª«¬µ�¶ = Δ𝑆ª«¬µ�¶ 

Δ𝑆§¨ = Δ𝑆ª¶µD9f + Δ𝑆ª«¬µ�¶ − Δ𝑆XX − Δ𝑆ªf, −
1
𝑇 Δ𝐺ª¶µD9f = ∆𝐻ª¶µD9f − Δ𝑆ª¶µD9f 

 The calculations for the total conformational entropy 𝑆¶«¶W¬ are given below. 

𝑆¶«¶W¬ = 𝑆( + 𝑆§¨, 𝑆¶«¶W¬ = 𝑆( − 𝑆XX − 𝑆ªf + 𝑆°W¶µD + 𝑆¹¶µD9f,

𝑆W³9�« = 𝑆XX + 𝑆ªf, 𝑆¶«¶W¬ = 𝑆( − 𝑆W³9�« + 𝑆°W¶µD + 𝑆¹¶µD9f,

𝐺W³9�« = 𝐻XX − 𝑇𝑆ªf, 𝐺W³9�« = −𝑇𝑆W³9�« 

−
𝐺W³9�«
𝑇 = −

𝐻XX
𝑇 + 𝑆ªf, 𝐺W³9�« = −𝑘I𝑇𝑙𝑛(𝑄W³9�«), 𝑙𝑛(𝑄W³9�«) = −𝛽𝐺W³9�« 

		𝑄W³9�« = 𝑒>?¼½¾l¿À, 𝑄W³9�« = 𝑒>?®��P?j¹ÁÂ, 𝑇𝑆W³9�« = −𝐺W³9�« 

𝑆W³9�« =
−𝐺W³9�«

𝑇 , 𝑆W³9�« = 𝑘I𝑙𝑛(𝑄W³9�«) 

𝑆¶«¶W¬(𝑅) = 𝑘I𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 − 𝑘I𝑙𝑛(𝑄W³9�«) + 𝑆°W¶µD + 𝑆¹¶µD9f,

𝑆¶«W¬(𝑅) = 𝑘I𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)

1
𝑄W³9�«

0 + 𝑆°W¶µD + 𝑆¹¶µD9f 
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 As stated previously the formula for the total conformational entropy 𝑆¶«¶W¬ is 

given by the equation below.  

𝑆¶«¶W¬ = 𝑆( − 𝑆XX − 𝑆ªf + 𝑆°W¶µD + 𝑆¹¶µD9f 

In the term 𝑆¶«¶W¬ above, 𝑆XX is the entropy corresponding to the backbone penalty 

and 𝑆ªf is the entropy corresponding to the sidechain penalty. The sum 𝑆W³9�« = 𝑆XX +

𝑆ªf is a function of the partition function 𝑄W³9�«. The entropy 𝑆W³9�« is derived from the 

free energy equation 𝐺W³9�«, and 𝐺W³9�« is the free energy corresponding to the 

backbone and sidechain interactions. Likewise, 𝐻XX is the potential energy corresponding 

to the backbone conformation. As we will see later, when quantum mechanical effects are 

taken into account a kinetic energy term 𝐾𝐸 is added to the potential energy 𝐻XX such 

that 𝐻XX → 𝐾𝐸 + 𝐻XX. In the following pages the equations for 𝑆ªf, 𝑆XX, 𝑆ª«¬µ�¶  and 

𝑆ª¶µD9f will be calculated in order to derive the formula for the total entropy 𝑆¶«¶W¬ =

𝑆ÆD«¶µ9� + 𝑆°W¶µD. 

Below are the calculations for the side chain conformational entropy 𝑆ªf. 

𝑆ªf = −𝑘IN 𝑝9𝑙𝑛𝑝9
9

, 𝑝9 =
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

, 𝑖 = 0,… ,1367 

𝑆ªf = −𝑘IN
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

𝑙𝑛 _
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

`
9

 

𝑆ªf = −𝑘IN
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

𝑙𝑛 _
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

`
9

 

𝑆ªf = −𝑘IN
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

𝑙𝑛~𝑒>?ÈÁÂ,l� + 𝑘IN
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

𝑙𝑛 tN 𝑒>?ÈÁÂ,l
9

v
99

 

𝑆ªf = −
1
𝑇N

𝐸ªf,9𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

+ 𝑘IN
𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

𝑙𝑛 tN 𝑒>?ÈÁÂ,l
9

v
99

 

𝑆ªf = −
1
𝑇N

𝐸ªf,9𝑒>?ÈÁÂ,l
∑ 𝑒>?ÈÁÂ,l9

+ 𝑘I𝑙𝑛 tN 𝑒>?ÈÁÂ,l
9

v
9

 

In the calculations above the term 𝐸ªf,9 is the hydrogen bonding energy 

corresponding to the 𝑖th amino acid.  
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When the 𝐸ªf,9’s are all very small this equation reduces to the following 

approximation below. 

𝑆ªf ≅ −
1
𝑇
∑ 𝐸ªf,9𝑒>?ÈÁÂ,l9

∑ 𝑒>?ÈÁÂ,l9
= −

1
𝑇 𝐸
Ëªf 

Assuming that 𝐸ªf,9 is small the entropy 𝑆ªf reduces to the following equation 

below. The formula for the total energy due to the sidechain interactions 𝐸Ëªf is also given 

below. 

𝑆ªf = −
1
𝑇N 𝐸ªf,9

9
, 𝐸Ëªf =

1
𝑇N 𝐸ªf,9

9
 

This in turn leads to the following equation for 𝑆ªf below. 

𝑆ªf = −
1
𝑇 𝐸
Ëªf 

The free energy 𝐺W³9�« = 𝐻XX − 𝑇𝑆ªf where 𝐺ªf = −𝑇𝑆ªf can then be rewritten 

in the following form below. 

𝐺W³9�« = 𝐻XX + 𝐸Ëªf 

In the equation for 𝐺W³9�« above, 𝑆ªf and 𝑝9 =
µoÌÍl
∑ µoÌÍll

 both sum over all of the 

1367 amino acids of the cas9 protein, 𝑆°W¶µD. The calculations pertaining to the 𝑆°W¶µD 

term will be given in the following pages. 

 As stated previously the solvent interaction term 𝑆°W¶µD is constrainted so as to 

assume that the only solvent that interacts with the amino acids is water. In the 

calculations below,	Δ𝐺W→X is the change in the Gibbs free energy due to the water 

interactions. Likewise, 𝑄X and 𝑄W are the partition functions corresponding to the terms 

𝐺X and 𝐺W respectively. The Hamiltonians for the partition functions 𝑄X and 𝑄W are given 

by both 𝐻X and 𝐻W. The calculations for the entropy contribution for the solvent 

interactions 𝑆°W¶µD are given below. These calculations will be continued in the following 

pages. 

Δ𝐺W→X = 𝐺X − 𝐺W, Δ𝐺W→X = −𝑘I𝑇𝑙𝑛 t
𝑄X
𝑄W
v , Δ𝐺W→X = −𝑘I𝑇𝑙𝑛~𝑒>(®�>®½)/hij� 

Δ𝐺W→X = −𝑘I𝑇𝑙𝑛 _𝑒
> ®�
hij𝑒

®½
hij` = −𝑘I𝑇𝑙𝑛 _𝑒

> ®�
hij/𝑒>

®½
hij` 
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 The calculations corresponding to the free energy are continued below. 

Δ𝐺W→X = −𝑘I𝑇  𝑙𝑛 _𝑒
> ®�
hij` + 𝑙𝑛 _1/𝑒>

®½
hij`¡ 

Δ𝐺W→X = −𝑘I𝑇  𝑙𝑛 _𝑒
> ®�
hij` − 𝑙𝑛 _𝑒>

®½
hij`¡ 

𝐺X = −𝑘I𝑇𝑙𝑛 _𝑒
> ®�
hij` , 𝐺W = −𝑘I𝑇𝑙𝑛 _𝑒

> ®½
hij` 

 Where Δ𝐺W→X is the change in the binding energy between a given molecule and 

amino acid. This is the energy required to break a bond with a water molecule. The 

formulas pertaining to the entropy due to the hydrogen bonds with water are given below. 

𝑆°W¶µD = −
𝐺°W¶µD
𝑇 , 𝐺°W¶µD = 𝐻°W¶µD, 𝑆°W¶µD = −

𝐻°W¶µD
𝑇  

In the equations above, 𝐻°W¶µD is the Hamiltonian corresponding to the hydrogen 

bonds between the sidechains and water. 

The partition function 𝑄°W¶µD is given by the following equation below, where 

𝑄°W¶µD is the partition function corresponding to the energies between the sidechains and 

water.  

𝑄°W¶µD = 𝑒>
®Î½ÏÐÑ
hij  

This in turn gives leads to the following calculations for the total conformational 

entropy 𝑆¶«¶W¬ below, which will be continued in the following page. 

𝑆¶«¶W¬ = 𝑆((𝑅) + 𝑘I𝑙𝑛(𝑄W³9�«) + 𝑘I𝑙𝑛(𝑄°W¶µD) + 𝑆ª¶µD9f 

𝑆¶«¶W¬ = 𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 − 𝑘I𝑙𝑛(𝑄W³9�«) + 𝑘I𝑙𝑛(𝑄°W¶µD) + 𝑆ª¶µD9f 

𝑆¶«¶W¬ = 𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 − 𝑘I𝑙𝑛 t

𝑄°W¶µD
𝑄W³9�«

v + 𝑆ª¶µD9f 

𝑆¶«¶W¬ = 𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)𝑒?È��P?ÈÁÂ>?ÈÎ½ÏÐÑ0 + 𝑆ª¶µD9f 

𝑆¶«¶W¬ = 𝑙𝑛  
𝑍(
𝒱 × 𝑃(𝑅)

𝑒>?ÈÎ½ÏÐÑ
𝑒È��>ÈÁÂ ¡ + 𝑆ª¶µD9f 
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For the purposes of this paper the value of 𝑆ª¶µD9f will be set to some unknown 

constant 𝐶(𝑁). This in turn leads to the following equation for 𝑆¶«¶W¬. 

𝑆¶«¶W¬ = 𝑙𝑛  
𝑍(
𝒱 × 𝑃(𝑅)

𝑒>?ÈÎ½ÏÐÑ
𝑒È��>ÈÁÂ ¡ + 𝐶

(𝑁). 

 Where 𝐸°W¶µD is the quantum mechanical energy due to the interactions with 

water. 𝐸XX is the correction due the interactions between the backbones and 𝐸ªf is the 

correction due to the interactions between the sidechains. Only certain sidechains are 

allowed to interact with each other and are different for every amino acid. The backbones 

however are the same for every amino acid and the backbone interactions can take place 

between any amino acid pair. Likewise, for the water interactions only some of the amino 

acids are capable of interacting with water. In order to streamline calculations, the system 

will be constrained so that the only solvent that will be interacting with the amino acids 

will be water. The first term that will be discussed will be the energy due to the backbone 

interactions 𝐸XX. Then the energy corresponding to the side chain interactions 𝐸ªf will be 

evaluated. Afterwards the energy corresponding to the interactions between the amino 

acids with water 𝐸°W¶µD will be computed. Then the entropies for the cases corresponding 

to the quantum mechanical corrections with and without tunneling will be computed and 

the extent effects will be determined on the total conformational entropy of the Cas9 

protein. In the following pages the energy due to the backbone interactions 𝐸XX will be 

computed and its overall influence on the conformational entropy of Cas9 determined. 
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Backbone-Backbone Interactions 

The Hamiltonian corresponding to the interactions between the amino acids is 

given below. 

ℋW³9�« = 𝐸XX + 𝐸ªf 

Where 𝐸XX is the energy corresponding to the hydrogen bonds between the 

backbones and 𝐸ªf is the energy corresponding to the hydrogen bonds between the 

sidechains. Each term is a linear combination of tensor elements. These tensor elements 

determine whether or not a hydrogen bond will form based upon the factors that where 

discussed earlier. The following series was obtained from the research paper “A Simple 

Model that Captures Protein Folding, Aggregation and Amyloid Formation”. 

𝐸XX =
1
2NN𝜖±X𝐻9�𝐶9�

5

�

5

9

 

In the equation above, 𝐻9� = 1 if the 𝑖th and 𝑗th amino acids have formed a 

hydrogen bond, otherwise 𝐻9� = 0. Likewise, the term 𝐶9� = 1 if, the ith and 𝑗th amino 

acids are in contact, and the ith and 𝑗th amino acids are not adjacent to each other on the 

polymer chain. If on the other hand the ith and 𝑗th amino acids are not in contact, then 

𝐶9� = 0. Both of these matrix elements are given below. 

𝐻9� = Ó1	𝑖𝑓	𝑠9, 𝑠� = 𝑠𝑡𝑟𝑎𝑛𝑑	𝑎𝑛𝑑	𝑑Ô9 = 𝑑Ô�
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐶9� = Ó1	𝑖𝑓	Õ𝑝9 − �⃑��Õ = 1	𝑎𝑛𝑑	|𝑖 − 𝑗| > 1
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Within the definitions for the matrix elements 𝐻9� and 𝐶9� above, the terms	𝑑Ô9 and 

𝑑Ô� are the vectors for the ith and 𝑗th side chain. Likewise, 𝑝9 and 𝑝� are the position 

vectors for the 𝑖th and 𝑗th amino acids. The terms 𝑠9 and 𝑠� are elements within the set 

𝐴ªµf,ª = {𝑠𝑡𝑟𝑎𝑛𝑑, 𝑐𝑜𝑖𝑙} such that 𝑠9, 𝑠� ∈ {𝑠𝑡𝑟𝑎𝑛𝑑, 𝑐𝑜𝑖𝑙}, where 𝐴ªµf,ª is the set of 

secondary structures. The elements 𝑠𝑡𝑟𝑎𝑛𝑑 and 𝑐𝑜𝑖𝑙 are the beta strands and alpha 

helices respectively. Likewise, the terms 𝑠9 and 𝑠� are the states containing the 𝑖th and 𝑗th 

amino acid respectively. Each state corresponds to a secondary structure. These 

secondary structures are the beta strand and the alpha helix respectively. 



 
 

29 

 
Figure 3: The structure of an Alpha helix 

 

 Likewise, a diagram for the structure of a beta strand is given below. 

 

 
Figure 4: The structure of a Beta strand 

 
 

While the model for the energy 𝐸XX is simple it is limited. It is only useful when 

one can take into account the directions in which the side chains are pointing. This is 

computationally intensive. In order to streamline calculations an approximation will be 

employed that allows for the directions 𝑑Ô9, 𝑑Ô� of the bond vectors to be ignored. So long 
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as the number of amino acids is sufficiently large this approximation holds, as the 

directions of the bond vectors which are assumed to be random cancel each other out. 

The Energy corresponding to the hydrogen bonds between the backbones is 

rewritten below as the series 𝐸XX. The terms 𝐵9�, 𝑋9� and 𝑌9� are also displayed below for 

convenience and will be discussed in detail in the following paragraph. 

𝐸XX =
1
2NN𝐴9�𝐵9�𝑋9�𝑌9�𝐸ËÜ�

5>M

�RQ

5>M

9RQ

 

𝐵9� =
1
2 𝛿Dlmn>D�mn,�, 𝐴9� = 𝛿DlmY>D�mA,� 

𝑋9� = 	𝛿Dl>D�,�, 𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 The term 𝐴9�𝐵9� accounts for whether or not the sub chain containing the 𝑖th and 

𝑗th amino acid is in a strand state. Together with the fraction Q
M
 these terms replace the 

matrix element 𝐻9� given in the previous page. Likewise the terms 𝑌9� and 𝛿Dl>D�,�, both 

take the place of the matrix element 𝐶9�. In order for the sub chain containing the 𝑖th and 

𝑗th amino acid to be in a strand state there must be at least two or three consecutive pairs 

of amino acids that are in contact. Below are diagrams corresponding to the term 

𝐴9�𝐵9�𝑋9�. 

𝑟9P( ⟶ 𝑟9PQ ⟶ 𝑟9PM ⋯ ↘, 𝑟�P( ⟶ 𝑟�PQ ⟶ 𝑟9PM ⋯ ↘ 

𝑟�PM ⟵ 𝑟�PQ ⟵ 𝑟�P( ⋯ ↙, 𝑟9PM ⟶ 𝑟9PQ ⟶ 𝑟9P( ⋯ ↙ 

 In both of these diagrams, the position vectors 𝑟9P( and 𝑟�PM are both adjacent to 

each other. The position vectors 𝑟9PQ and 𝑟�PQ are adjacent to each other. The same case 

holds for the position vectors 𝑟9PM and 𝑟9P( which are also adjacent to each other. This is 

the structure of a beta strand. 

 The equation for the term 𝐵9� is stated below for convenience. 

𝐵9� =
1
2 𝛿Dlmn>D�mn,� 
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Within the term 𝐵9� above the fraction accounts for the likelihood that the bond 

vectors will be parallel to each other and oriented in the same direction. If the sub chain is 

in a strand state then 𝐴9�𝐵9�𝑋9� is equal to one, otherwise it is equal to zero. 

 

Within the term 𝐴9�𝐵9�𝑋9�, 𝐴9� = 1 if 𝑟9PM − 𝑟�P( = 𝑢. Likewise if  

𝑟9PM − 𝑟�P( ≠ 𝑢 then 𝐴9� = 0. This leads to the following relation below. 

𝐴9� = Ó
1	𝑖𝑓	𝑟9PM − 𝑟�P( = 𝑢
0	𝑖𝑓	𝑟9PM − 𝑟�P( ≠ 𝑢 

 Just like the matrix element 𝐴9�, the term 𝐵9� =
Q
M
 if 𝑟9PQ − 𝑟�PQ = 𝑢. Likewise if 

𝑟9PQ − 𝑟�PQ ≠ 𝑢 then 𝐵9� = 0. This leads to the following relation below for 𝐵9�. 

𝐵9� = Ó
1	𝑖𝑓	𝑟9PQ − 𝑟�PQ = 𝑢
0	𝑖𝑓	𝑟9PM − 𝑟�P( ≠ 𝑢 

 Within the term 𝐴9�𝐵9�𝑋9� the matrix element 𝑋9� = 1 if 𝑟9 − 𝑟� = 𝑢. Likewise if 

𝑟9 − 𝑟� ≠ 𝑢 then 𝑋9� = 0. This leads to the following relation below. 

𝑋9� = Ó
1	𝑖𝑓	𝑟9 − 𝑟� = 𝑢
0	𝑖𝑓	𝑟9 − 𝑟� ≠ 𝑢 

In order to account for double counting a term Q
M
 was introduced in the equation 

for 𝐸XX. The equation 𝐸XX is restated below for convenience. 

𝐸XX =
1
2NN𝐴9�𝐵9�𝑋9�𝑌9�𝐸ËÜ�

5>M

�RQ

5>M

9RQ

 

 As stated previously the matrix element 𝑌9� is given by the following relation 

below.  

𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The term 𝑌9� = 0 when the 𝑖th and 𝑗th amino acids are adjacent to each other on the 

polymer chain, otherwise the term 𝑌9� = 1. The term 𝑌9� was introduced in the summation 

𝐸XX because amino acids that are adjacent to each other on the polymer chain do not 

interact with each other. Hence even if 𝐴9�𝐵9�𝑋9� is equal to Q
M
 a hydrogen bond may not 
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be present between the 𝑖th and 𝑗th amino acids. This is precisely the case for 𝑌9� = 0. 

This corresponds to the case where the 𝑖th and 𝑗th amino acids are adjacent on the 

polymer chain. 

 If all of these conditions mentioned above are met, then the likelihood of a 

hydrogen bond forming is equal to 1/2. For a large number of amino acids, the energy for 

a single hydrogen bond can be set to the average of all of the eigenstates. These 

eigenstates correspond to the different possible energies of the O—H bond between the 

ith and 𝑗th backbone. The average energy for these eigenstates is given by the equation 

for 𝐸ËÜ� below. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

 

Where 𝑂9� = 1 if the hydrogen bond pertaining to the 𝑖th and 𝑗th amino acid 

contains an Oxygen atom and equals zero otherwise. Likewise, 𝑁9� = 1 if the hydrogen 

bond pertaining to the 𝑖th and 𝑗th amino acid contains a Nitrogen atom and equals zero 

otherwise. 

In summary there are two different types of interactions between the amino acids. 

These are referred to as backbone interactions and sidechain interactions. In the case of 

backbone interactions, the sidechains corresponding to the pair of amino acids in a 

hydrogen bond must be pointing in the same direction. The term that accounts for this is 

given by the fraction 1/2. Also, the sequences of amino acids containing the hydrogen 

bond must be in the form of a beta strand. The term that accounts for this is given by 

𝐴9�𝐵9�. Likewise the term that accounts for whether or not the 𝑖th and 𝑗th amino acid are 

adjacent to each other is given by 𝑋9�. In order to ensure that the 𝑖th an 𝑗th amino acids 

are not adjacent to each other in the polymer chain the term 𝑌9� is included in the 

summation 𝐸XX, where 𝐸XX is the equation for the sum of the backbone interactions. A 

similar term holds for the side chain interactions and is given by the following equation 

below. 
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𝐸ªf =
1
2NN𝐶9�𝐾9�𝑀WlW�

5

�

5

9

 

This equation will be discussed in the following pages and the energy 𝐸ªf will be 

evaluated. 
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Sidechain-Sidechain Interactions 

The Energy corresponding to the hydrogen bonds between the sidechains is given 

by the following equation. 

𝐸ªf =
1
2NN𝐶9�𝐾9�𝑀WlW�

5

�

5

9

 

The term 𝐶9� determines for whether or not the 𝑖th and 𝑗th amino acid are in 

contact. The matrix 𝐾9� determines whether or not the 𝑖th and 𝑗th amino acid are facing 

each other or parallel to each other. The matrix elements 𝐶9� and 𝐾9� are both given 

below. 

𝐶9� = Ó1	𝑖𝑓	Õ𝑝9 − �⃑��Õ = 1	𝑎𝑛𝑑	|𝑖 − 𝑗| > 1
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝐾9� = æ
1	𝑖𝑓	𝑑Ô9 = −𝑑Ô�	𝑎𝑛𝑑	Õ~�⃑�9 + 𝑑Ô9� − ~�⃑�� − 𝑑Ô��Õ = 1
1	𝑖𝑓	𝑑Ô9 = 𝑑Ô�	𝑎𝑛𝑑	Õ~𝑝9 + 𝑑Ô9� − ~𝑝� − 𝑑Ô��Õ = 1

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In the equations above, term 𝐾9� accounts for whether or not the sidechains are 

pointing in the same direction or are parallel to each other. If the 𝑖th and 𝑗th side chains 

are parallel to each other then 𝑑Ô9 = 𝑑Ô�	𝑎𝑛𝑑	Õ~�⃑�9 + 𝑑Ô9� − ~�⃑�� − 𝑑Ô��Õ = 1 and the term 

𝐾9� = 1. Likewise if the 𝑖th and 𝑗th side chains are pointing towards each other then 𝑑Ô9 =

𝑑Ô�	𝑎𝑛𝑑	Õ~�⃑�9 + 𝑑Ô9� − ~�⃑�� − 𝑑Ô��Õ = 1 and 𝐾9� = 1.  

Just like the term 𝐶9� within the summation for 𝐸XX the matrix element 𝐶9� within 

𝐸ªf accounts for whether or not the 𝑖th and 𝑗th amino acids are adjacent to each other on 

the amino acid chain. If this is the case, then 𝐶9� = 0. Otherwise Õ𝑝9 − �⃑��Õ = 1 and 

|𝑖 − 𝑗| > 1 thereby setting 𝐶9� = 1. 

Lastly, the matrix element 𝑀WlW� corresponds to the binding energies between the 

𝑖th and 𝑗th amino acid. 
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Since this model accounts for the directions of the bond vectors for each of the 𝑖th 

and 𝑗th amino acids, this model is insufficient for the purposes of this study which ignore 

such effects. In order to create a less computationally intensive model these effects must 

be ignored. This approximation holds so long as the number of amino acids is large. The 

equation corresponding 𝐸ªf corresponding to this approximation where the directions of 

the amino acids are ignored is given below. 

𝐸ªf =
1
2N𝑅9�𝑀9�𝑌9�ℋ9�
5>Q

�R(

 

Where the terms 𝑅9�, 𝑌9� and ℋ9� are given below. 𝑀9� is the probability that a 

hydrogen bond will form between the 𝑖th and 𝑗th amino acid. The matrices ℋ9� and 𝑀9� 

were both calculated in the python interpreter. The matrix elements corresponding to the 

summation 𝐸ªf are given below. These matrices will be discussed in detail later. 

𝑅9� =
3
16 𝛿Dl>D�,�, 𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1

1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

ℋ9� = 𝑂9�𝐸ËÜ� + 𝑁9�𝐸Ë59 

 In the equation for the term ℋ9� above, 𝑂9� is equal to one if an O—H bond can 

form between the 𝑖th and 𝑗th amino acid and is equal to zero otherwise. Likewise, the 

term 𝑁9� is equal to one if an N—H bond can form between the 𝑖th and 𝑗th amino acid 

and is equal to zero otherwise. The fraction Q
M
 accounts for double counting. The 

equations for 𝐸ËÜ� and 𝐸Ë59 are both given below. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

, 𝐸Ë59 =
∑ 𝐸�59𝑒>?È¿

ElQ
�R(

∑ 𝑒>?È¿ElQ
�R(

 

In the relations above the term 𝐸ËÜ� is the average value for the O—H bonds and 

the term 𝐸Ë59 is the average value for the N—H bonds. So long as the number of 

hydrogen bonds is sufficiently high these approximations hold. There are three 

eigenvalues corresponding to the O—H bond and two eigenvalues corresponding to the 

N—H bond. The term 𝐸ËÜ� sums through the energy eigenstates for the O—H bond, 



 
 

36 

meanwhile the term 𝐸Ë59 sums through the energy eigenstates for the N—H bond. These 

eigenstates will be discussed later in the section “Energy Eigenstates”. 

The term 𝑅9� is equal to ]
Qw

 when the amino acids are one-unit vector apart and is 

equal to 0 otherwise. This is due to the fact that there are three different combinations for 

the directions of the adjacent side-chain vectors to arrange themselves in order for the 

hydrogen bond to form. These correspond to the two cases where the side chains of the  

𝑖th and 𝑗th amino acids are parallel along with the case where the side chains are pointing 

towards each other. There are 16 total different combinations of arrangements for these 

side chain vectors assuming they are adjacent to each other, where the side chain vectors 

are the vectors corresponding to the side chains discussed previously. Likewise, 𝑀9� is 

the likelihood that a hydrogen bond will form between the 𝑖th and 𝑗th amino acid. This is 

due to the fact that just because two sidechains are in contact does not mean a hydrogen 

bond will form between them. This is due to the following reasons. First of all, in order 

for a hydrogen bond to form between two sidechains the hydrogen atom in one of the 

sidechains must be in contact with either the nitrogen atom or the oxygen atom in the 

other sidechain. In some cases, only the hydrogen atom in the 𝑖th sidechain can form a 

hydrogen bond with the nitrogen or oxygen atom within the 𝑗th side chain. There are 

other cases in which only the nitrogen atom or oxygen atom in the 𝑗th chain can form a 

hydrogen bond with the hydrogen atom within the 𝑖th side chain. In order to account for 

these facts, probabilities are assigned to each of the elements within the 𝑀9� matrix 

element given in the summation 𝐸ªf. Also, there are cases where the amino acids need to 

come in specific forms in order to form hydrogen bonds at all. The matrix element 𝑀9� 

accounts for this fact as well. So long as the number of amino acids is large this 

approximation holds. Likewise, the term ]
Qw

 accounts for the probability that the side 

chains will either be facing each other or be parallel to each other. For more information 

consult the tables in the appendix. 
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 In summary the hydrogen bonds between the side chains must meet certain 

requirements in order to form. First of all, the amino acids must either be pointing 

towards each other or be parallel to each other. Second of all, the amino acids in question 

must be capable of forming hydrogen bonds. Third of all, if necessary, the amino acid(s) 

that are in contact must be in the right form, the matrix that accounts for this is given by 

𝑀9�. The matrix 𝑀9� accounts for whether or not the 𝑖th and 𝑗th amino acid can form a 

hydrogen bond. If they can then the matrix is equal to the probability that that hydrogen 

bond will form for the reasons discussed earlier. The matrix 𝑅9� is equal to ]
Qw

 when the 

amino acids are in contact and is equal to 0 otherwise. The fraction ]
Qw

 is the probability 

that the side chains corresponding to the 𝑖th and 𝑗th amino acid will either be parallel or 

facing each other. Likewise, the matrix ℋ9� is equal to the hydrogen bonding energy 

between the 𝑖th and 𝑗th amino acids. Lastly the series 𝐸ªf is the total energy 

corresponding to the hydrogen bonds between the sidechains. I order to account for all of 

the interactions due to hydrogen bonds, the interactions between the amino acids with 

water must be computed along with the backbone interactions and side chain interactions. 

Just like with the side chain interactions there are only certain side chains that can 

interact with water. This term will be computed in the following pages. 
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Solvent Interactions 

 The 𝐸ª«¬µ�¶ term accounts for the interactions of the side chains of the amino 

acids with water. These amino acids are referred to as hydrophilic amino acids. There are 

three different types of hydrophilic amino acids each corresponding to three different 

types of R groups. These are positively charged side chains, negatively charged 

sidechains and side chains with alcohol groups. These groups of amino acids correspond 

to the sets 𝐸P, 𝐸> and 𝐸? and are displayed below. 

𝐸? = {𝐸¹µD, 𝐸j±D}, 𝐸P = �𝐸ç�ª, 𝐸èDé, 𝐸®9ª�, 𝐸> = �𝐸èªÆ, 𝐸¼¬�� 

𝐸¯ê = {𝐸èª�, 𝐸¼¬�} 

 Where 𝐸P and 𝐸> are sets containing the energies for the positively and 

negatively charged R groups. Likewise, the term 𝐸? is the set containing the amino acids 

with beta-hydroxyl groups. Lastly the term 𝐸¯ê is the set containing the energies of the 

amino acids with polar uncharged groups. Since Serine and Threonine contain Hydrogen, 

Carbon and Oxygen atoms in their sidechains the only hydrogen bond that can form 

between them and water is the O—H bond. Hence the energy 𝐸? is given by the 

following equation. 

𝐸? =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

 

 Likewise, Lysine, Arginine and Histidine are positively charged. Therefore, the 

Hydrogen atoms and only the hydrogen atoms on these sidechains can interact with 

water. Hence the energy corresponding to the set 𝐸P is given by the following equation. 

𝐸P =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

 

Since Aspartate and Glutamate are negatively charged, only the Oxygen atoms are 

going to interact with water. Hence the energy for 𝐸èªÆ are 𝐸¼¬� corresponds to the O—H 

bond and only the O—H bond. 

𝐸> =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(
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The calculations for these terms will be continued in the following pages along 

with the energy 𝐸ª«¬µ�¶ corresponding to the solvent interactions  

Asparagine and Glutamine both contain a N—H dipole and an O—H dipole. Both 

of these dipoles can interact with water. Because of this, the energy for 𝐸¯ê must be set 

to the likelihood that an N—H bond will form plus the likelihood that an O—H bond will 

form. This is the average energy corresponding to the amino acids 𝐸èª� and 𝐸¼¬� 

respectively.  

The equation corresponding to this energy is given below 

𝐸¯ê =
∑ 𝐸¬¯ê𝑒>?Èë

ìíQ
�R(

∑ 𝑒>?ÈëìíQ
�R(

 

In the term for 𝐸¯ê above the energies 𝐸(¯êand 𝐸Q¯ê are given by the following 

equations below. 

𝐸Ë(¯ê =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

, 𝐸ËQ¯ê =
∑ 𝐸�59𝑒>?È¿

ElM
�R(

∑ 𝑒>?È¿ElM
�R(

 

These relations are the same as those for the energies 𝐸Ü� and 𝐸59. These 

equations are restated below for convenience. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

, 𝐸Ë59 =
∑ 𝐸�59𝑒>?È¿

ElM
�R(

∑ 𝑒>?È¿ElM
�R(

 

 The equation pertaining to the energy 𝐸ª«¬µ�¶ is given below. The calculations 

for this term will be completed in the following page. 

𝐸ª«¬µ�¶ =
1
2 N N𝑀Wl,ª«¬ ∙ 𝐾9,ª«¬

5

9

5ÁÀëî

ª«¬

 

In the summation 𝐸ª«¬µ�¶ above, the term 𝑀Wl,ª«¬ is the energy between the 

solvent and the 𝑖th amino acid 𝑎9. Likewise, the term 𝐾9,ª«¬ indicates whether or not an 

interaction between the solvent and the 𝑖th amino acid 𝑎9 occurs.  
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The equation for the matrix element 𝐾9,ª«¬ is given below. 

𝐾9,ª«¬ = Ó1	𝑖𝑓	~�⃑�9 + 𝑑
Ô9� = 𝑝ª«¬

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In the matrix element 𝐾9,ª«¬ above the term �⃑�9 is the position vector for the 𝑖th 

amino acid. Likewise, 𝑑Ô9 is the vector for the sidechain of the 𝑖th amino acid. 

𝐸ª«¬µ�¶ = N 𝐸9 −
5>Q

9R(

NN𝑌9�𝑊9�𝐸9

5>Q

�R(

5>Q

9R(

 

 In the equation above, 𝐸9 is the energy for the hydrogen bonds with water. 𝑊9� 

accounts for how many amino acids are touching the 𝑖th amino acid. These terms along 

with the usual 𝑌9� term are given below. 

𝑊9� =
1
4 𝛿Dl>D�,�, 𝐸9 = æ

𝐸ËÜ�	𝑖𝑓	𝐸9 ∈ 𝐸? ∪ 𝐸P ∪ 𝐸>
𝐸Ë®X	𝑖𝑓	𝐸9 ∈ 𝐸¯ê
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 In the set of equations above the term 𝑊9� = Q
g
 if the 𝑖th and 𝑗th amino acids are 

in contact otherwise 𝑊9� = 0. This accounts for how many empty lattice sites are 

adjacent to the 𝑖th amino acid. If there are 4 amino acids adjacent to the 𝑖th amino acid, 

then the likelihood that a hydrogen bond will form is zero. If there are 3 adjacent amino 

acids, then the likelihood that a hydrogen bond will form is equal to 1/4. Likewise, if 

there are 2 adjacent amino acids then the likelihood that a hydrogen bond will form is 

equal to 2/4. If there are 3 adjacent amino acids, then the likelihood that a hydrogen bond 

will form is equal to 3/4. Lastly if there are 4 adjacent amino acids, then the likelihood 

that a hydrogen bond will form is equal to 4/4. 
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In summary there are four different sets of amino acids that can form hydrogen 

bonds. These sets are the positively charged amino acids 𝐸P, negatively charged amino 

acids 𝐸>, polar uncharged amino acids 𝐸¯ê as well as the set of amino acids containing 

beta hydroxyl groups 𝐸?. In order for a hydrogen bond to form between the 𝑖th amino 

acid and water, there must be an empty lattice site adjacent to 𝑖th amino acid. This is 

accounted for by the term 𝑊9�. The term 𝑊9� accounts for the probability that the 

sidechain will be facing an empty lattice site. So long as the number of amino acids is 

large this approximation holds. Lastly the term 𝐸ª«¬µ�¶ is the total energy for the 

hydrogen bonds between the amino acid side chain and water, where water is the solvent 

of choice for this system. 

You may have noticed that there were terms 𝐸ËÜ� and 𝐸Ë59 that were given in 

𝐸XX, 𝐸ªf and 𝐸ª«¬�µ¶ when computing the quantum tunneling correction. The terms  𝐸ËÜ� 

and 𝐸Ë59 are displayed below for convenience. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

, 𝐸Ë59 =
∑ 𝐸�59𝑒>?È¿

ElM
�R(

∑ 𝑒>?È¿ElM
�R(

 

 These terms correspond to the average energies of the eigenstates. In order to make sense 

of the terms 𝐸ËÜ� and 𝐸Ë59 it is necessary to compute the energies of these eigenstates. 

These eigenstates correspond to the different possible energies that the hydrogen bonds 

can take on. These energy eigenstates are given by integrals and these integrals are 

written in terms of a potential referred to as the Morse potential. The Morse potential 

accounts for the breaking of the hydrogen bonds. However, it does not account for the 

effects due to quantum tunneling. Another set of equations must be employed for these 

purposes. This will be discussed in the following pages. Afterwards the quantum 

mechanical perturbation will be added to the term given by 𝑆((𝑅). This term was 

discussed in the previous sections of this text and it corresponds to the classical 

conformational entropy due to the peptide bonds. These corrections will be discussed in 

the following section “Energy Eigenstates”.  
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Energy Eigenstates 

In order to evaluate the energy corresponding to the hydrogen bonds it is 

necessary to evaluate the eigenstates pertaining to them. These are referred to as the 

energy eigenstates. The equation for the nth eigenstate of a hydrogen bond is given by the 

equation 𝑬𝒏 below. 

𝐸� =
∫ Ψ�∗𝐻ö¨Ψ�𝑑𝑦
�³W�
�³9�

∫ Ψ�∗Ψ�𝑑𝑦
�³W�
�³9�

 

Within the term 𝐸� above, Ψ� and Ψ�∗ are the wavefunction and conjugate 

wavefunction and 𝐻ö¨ is the Hamiltonian for the hydrogen bond. The Hamiltonian 𝐻ö¨ for 

the hydrogen bonds is given below. This is the Hamiltonian corresponding to the Morse 

potential which accounts for the breaking of the hydrogen bonds. 

𝐻ö¨ = −
𝛽MℏM

2𝜇
𝜕M

𝜕𝑦M + 𝐷µ~𝑒
>M~�>�Ð�� − 2𝑒>~�>�Ð��� 

In the equation for 𝐻ö¨ above, 𝐷µ is the disassociation energy, ℏ is the planck 

constant, 𝑦µb = 𝛽𝑥µb where 𝑥µb is the internuclear equilibrium distance and 𝜇 is the 

reduced mass of the system. The internuclear equilibrium distance 𝑥µb is the distance 

between the nuclei of the two atoms engaged in a hydrogen bond. The term 𝛽 is an 

arbitrary constant related to the width of the potential well. Below is the wavefunction 

Ψ(𝑦)�
(Q) for the nth state. 

Ψ(𝑦)�
(Q) ≅

1
û𝑉�PQ(𝑦) − 𝜖((�PQ)

𝑒∫
ýþ¿mn(�)>ÿA(¿mn)²� 

 In the term for Ψ(𝑦)�
(Q) above, 𝑉�PQ(𝑦) and 𝜖((�PQ) are the potential and total 

energies for the nth excited state. The equations for these formulas are given below. 

𝑉�PQ(𝑦) = ΛM~𝑒>M~�>�Ð�� − 2𝑒>~�>�Ð��� + 2𝑛Λ𝑒>~�>�Ð�� 

𝜖((�PQ) = −tΛ−
2𝑛 + 1
2 v

M

 

In the following pages the terms 𝑃¶«¶W¬({𝑟9}) and 𝑃¶«¶W¬(𝑅) will finally be 

computed and their corresponding values determined. 
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.  Below is the equation 𝑃¶«¶W¬({𝑟9}) for the probability of finding a certain 

conformation. This term takes into account the quantum mechanical corrections 𝐸XX, 𝐸ªf 

and 𝐸ª«¬µ�¶. 

𝑃¶«¶W¬({𝑟9}) =
1

𝑍(𝑒>?È��>?ÈÁÂ
𝑒>?ℋA(DA,…,DE)>?ÈÁÀëîÐ¿Ï 

Likewise the equation for 𝑃¶«¶W¬(𝑅) is given by the following integral below.	

𝑃¶«¶W¬(𝑅) = 1𝑑𝑟( …1𝑑𝑟5𝛿(𝑟5 − 𝑟( − 𝑅)
1
𝑍(
𝑒>?ℋA 

Just like in the previous case for 𝑃¶«¶W¬(𝑅) in order to compute 𝑃¶«¶W¬(𝑅) it is 

necessary to deploy the equations for the Dirac delta and the Fourier transform. The 

familiar equations for the Dirac delta as well as the Fourier transform for a Gaussian are 

displayed below for convenience.  

1 𝑑𝑞𝑒9b∙� = 2𝜋𝛿(𝑥), 1𝑑𝑟𝑒>W|D>X|Y𝑒>9b∙D = Z
𝜋
𝑎\

]
M 𝑒>t

|b|Y
gW P9b∙Xv

Pd

>d
 

Whereupon the terms 𝑍( and 𝑃¶«¶W¬(𝑅) are combined to produce the following 

calculations for the total conformational entropy 𝑆¶«¶W¬(𝑅). As stated previously 𝐶(𝑁) is 

an arbitrary constant in terms of 𝑁. 

𝑆¶«¶W¬(𝑅) = 𝑘I𝑙𝑛 ,
𝑍(
𝒱 × 𝑃¶«¶W¬(𝑅)0 

𝑆¶«¶W¬(𝑅) = 𝑘I𝑙𝑛  
𝑍(
𝒱 × 𝑃(𝑅)

𝑒>?ℋA(DA,…,DE)>?ÈÁÀëîÐ¿Ï

𝑒>?È��>?ÈÁÂ
¡ 

𝑆¶«¶W¬(𝑅) = 𝑘I𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 − 𝛽𝑘I𝐸ª«¬µ�¶ + 𝛽𝑘I𝐸XX + 𝛽𝑘I𝐸ªf + 𝐶(𝑁) 

𝑆¶«¶W¬(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M −
𝐸ª«¬µ�¶
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇 + 𝐶(𝑁) 

 In a summary the hydrogen bonds do in fact influence the conformational entropy 

of the Cas9 protein. In the following pages the effects due to quantum tunneling will be 

computed along with the effects due to the hydrogen bonds. The effects due to quantum 

tunneling are a further approximation on the effects due to the hydrogen bonds. Both 

interactions are quantum mechanical in nature and the tunneling correction is a correction 
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to the effects due to the hydrogen bonds. Both of these interactions will be calculated in 

the following pages for a specific case in which the Cas9 protein is in the form of a giant 

beta strand.  

  



 
 

45 

CHAPTER III:  

COMPARISON OF THE CLASSICAL AND SEMI-CLASSICAL ENTROPIES 

Conformational Entropy Correction 

The equations for the total conformational entropy 𝑆¶«¶W¬(𝑅) are given below. The 

constants for 𝑏 and 𝑘I are also displayed. 

𝑆¶«¶W¬(𝑅) = 𝑆((𝑅) −
𝐸ª«¬µ�¶
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇 + 𝑆ª¶µD9f + 𝐶(𝑁) 

𝑆¶«¶W¬(𝑅) = 𝑘I𝑙𝑛 ,
𝑍(
𝒱 × 𝑃(𝑅)0 −

𝐸ª«¬µ�¶
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇 + 𝑆ª¶µD9f + 𝐶(𝑁) 

𝑏 = 1.32 ∙ 10>Q(	𝑚, 𝑘I = 1.38064852 ∙ 10>M]𝐽 ∙ 𝐾>Q 

 This leads to the following formula below. 

𝑆¶«¶W¬(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M 

−
𝐸ª«¬µ�¶
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇 + 𝑆ª¶µD9f + 𝐶(𝑁) 

𝑆¶«¶W¬(𝑅) = 1.0092377196 ∙ 10>M] 

−
𝐸ª«¬µ�¶
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇 + 𝑆ª¶µD9f + 𝐶(𝑁) 

 The terms 𝐸XX, 𝐸ªf and 𝐸ª«¬µ�¶ are the energies of the hydrogen bonds due to 

backbone interactions, sidechain interactions and solvent interactions. 𝐸¹¶µD9f is the steric 

energy penalty. For the purposes of this paper water will be the only solvent that interacts 

with the Cas9 protein. The steric energy accounts for those cases where the sidechains of 

adjacent amino acids on the sidechain clash. For the purposes of this paper the steric term  

𝑆ª¶µD9f will be absorbed into the constant 𝐶(𝑁). The following pages contain the 

corrections due to both the hydrogen bonds as well as the tunneling corrections. These 

terms are given by the equations ℋb³_¨ and ℋb³_j. Where ℋb³_¨ is the correction due 

to the Morse potential and ℋb³_j is the correction duet to quantum tunneling. These 

terms will be computed in the following pages.  
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Tunneling Corrections 

Below are the equations for the energy corresponding to the backbone hydrogen 

bonds. 

𝐸XX =
1
2NN𝐴9�𝐵9�𝑋9�𝑌9�

5>Q

�R(

5>Q

9R(

𝐸ËÜ� 

𝐵9� =
1
2 𝛿Dlmn>D�on,�, 𝐴9� = 𝛿Dlon>D�mn,� 

𝑋9� = 𝛿Dl>D�,�, 		𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

Where the equation for 𝐸ËÜ� is given below. The average energies of the hydrogen 

bonds for the O—H and N—H pairs are given at the end of this study. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãQ
�R(

∑ 𝑒>?È¿âãM
�R(

 

In the equation for 𝐸ËÜ� above 𝐸�Ü� is the equation for the nth energy eigenstate for 

the O—H bond. The calculations for the term 𝐸XX/𝑇 are given below where È��
j
= 𝑆XX is 

the entropic penalty for the backbone interactions. These values are given below along 

with the value for 𝐸ËÜ�. 

𝐸XX
𝑇 =

1
2𝑇

1
2N N𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

∑ 𝐸�Ü�𝑒>?È¿
âãM

�R(

∑ 𝑒>?È¿âãM
�R(

 

𝐸ËÜ� = −6.66101 × 10>Q(𝐽 

This leads to the following summations for È��
j

 below. 

𝐸XX
𝑇 = (−6.66101 × 10>Q(𝐽)

1
2𝑇

1
2N N𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

 

𝐸XX
𝑇 = −1.66525 × 10>Q(𝐽

1
𝑇NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

𝑂9� 

𝐸XX
𝑇 = −5.58810 × 10>MM𝐽	𝐾>Q NN 𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

𝑂9� 

The following pages contain the calculations for the side chain contribution 𝐸ªf.  
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Below is the summation for the energy corresponding to the sidechain hydrogen 

bonds. 

𝐸ªf =
1
2NN𝑅9�𝑀9�𝑌9�ℋ9�

5>Q

�R(

5>Q

9R(

 

𝑅9� =
3
16 𝛿Dl>D�,�, 𝑆9� =

3
16 𝛿Dl>D�,�, 𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1

1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Whereupon substituting the equation for ℋ9� one obtains the following equation 

for ÈÁÂ
j

 where ÈÁÂ
j
= 𝑆ªf is the entropic penalty for the side chain interactions. 

𝐸ªf
𝑇 =

1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�𝐸Ë�Ü�
5>Q

�R(

5>Q

9R(

 

+
1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9�𝐸Ë�59
5>Q

�R(

5>Q

9R(

 

This in turn leads to the following summations below. The values for 𝐸Ë�Ü� and 

𝐸Ë�59 are also given beneath the summations for ÈÁÂ
j

 

𝐸ªf
𝑇 =

1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

5>Q

�R(

5>Q

9R(

 

+
1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9� ∑ 𝐸�59𝑒>?È¿
ElM

�R(

∑ 𝑒>?È¿ElM
�R(

5>Q

�R(

5>Q

9R(

 

𝐸ªf
𝑇 =

1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�𝐸Ë�Ü�
5>Q

�R(

5>Q

9R(

 

+
1
2
3
16NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9�𝐸Ë�59
5>Q

�R(

5>Q

9R(

 

𝐸ËÜ� = −6.66101 × 10>Q(𝐽, 𝐸Ë59 = −5.21342 × 10>Q(𝐽 

The calculations for ÈÁÂ
j

 will be continued in the pages below. 
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Given the values for 𝐸ËÜ� and 𝐸Ë59 in the previous page the equation for ÈÁÂ
j

 is 

equal to the following summation below. 

𝐸ªf
𝑇 = −6.66101 × 10>Q(𝐽

1
2
3
16𝑇NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�
5>Q

�R(

5>Q

9R(

 

+− 5.21342 × 10>Q(𝐽
1
2
3
16𝑇N N𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9�
5>Q

�R(

5>Q

9R(

 

The values for 𝐸ËÜ� and 𝐸Ë59 are restated below for convenience. 

𝐸ËÜ� = −6.66101 × 10>Q(𝐽, 𝐸Ë59 = −5.21342 × 10>Q(𝐽 

With the computation of basic arithmetic, the above equation ÈÁÂ
j

 above is distilled 

to the following summation below. 

𝐸ªf
𝑇 = −2.09554 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�
5>Q

�R(

5>Q

9R(

 

−1.64013 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

The calculations for the energy 𝐸°W¶µD will be carried out in the following pages. 

The calculations corresponding to the 𝐸°W¶µD term are given below along with the 

matrices 𝐸9, 𝑌9� and 𝑊9�. 

𝐸°W¶µD
𝑇 = N 𝐸9 −

5>Q

9R(

NN𝑌9�𝑊9�𝐸9

5>Q

�R(

5>Q

9R(

 

𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑊9� =
1
4 𝛿Dl>D�,�, 𝐸9 = 𝐸ËÜ�𝑂9 + 𝐸Ë®X𝐻9 

The calculations for 𝐸ª«¬µ�¶ will be continued on the  
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This leads to the following expansion for the summation 𝐸ª«¬µ�¶ given above. 

The values for 𝐸ËÜ� and 𝐸Ë®X are also given below.  

𝐸°W¶µD
𝑇 =

1
𝑇N 𝐸ËÜ�𝑂9 +

1
𝑇N 𝐸Ë®X𝐻9

5>Q

9R(

−
1
𝑇N 𝐸ËÜ�𝑌9�𝑊9�𝑂9 −

1
𝑇N𝐸Ë®X𝑌9�𝑊9�𝐻9

5>Q

9R(

5>Q

9R(

5>Q

9R(

 

𝐸ËÜ� = −6.66101 × 10>Q(𝐽, 𝐸Ë®X = −5.21342 × 10>Q(𝐽 

Given the values for 𝐸ËÜ� and 𝐸Ë59 above the equation for ÈÁÂ
j

 is equal to the 

following summation below. 

𝐸ª«¬µ�¶
𝑇 = −6.66101 × 10>Q(𝐽

1
𝑇N𝑂9 − 5.21342 × 10>Q(𝐽

1
𝑇N𝐻9

5>Q

9R(

5>Q

9R(

 

−6.66101 × 10>Q(𝐽
1
4
1
𝑇N 𝑌9�𝛿Dl>D�,�𝑂9 − 5.21342 × 10

>Q(𝐽
1
4
1
𝑇N 𝐸Ë®X𝑌9�𝛿Dl>D�,�𝐻9

5>Q

9R(

5>Q

9R(

 

This in turn leads to the following quantum mechanical perturbation term for 
ÈÁÀëîÐ¿Ï

j
 below, whereas stated previously 𝑇 = 298	𝐾. 

𝐸ª«¬µ�¶
𝑇 = −2.2354 × 10>MQ

𝐽
𝐾N𝑂9 − 1.74947 × 10>MQ

𝐽
𝐾N𝐻9

5>Q

9R(

5>Q

9R(

 

−5.58810 × 10>MM
𝐽
𝐾N 𝑌9�𝑊9�𝑂9 − 4.37367 × 10>MM

𝐽
𝐾N𝐸Ë®X𝑌9�𝑊9�𝐻9

5>Q

9R(

5>Q

9R(

 

These calculations will be continued on the next page. 
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Summing up all of the terms 𝐸XX, 𝐸ªf and 𝐸ª«¬µ�¶ such that ℋ§¨ = 𝐸XX + 𝐸ªf +

𝐸ª«¬µ�¶ leads to the following summation for ℋb³_j below. 

ℋb³_j = −5.58810 × 10>MM𝐽	𝐾>Q NN 𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

𝑂9� 

−2.09554 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−1.64013 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

(−2.2354 × 10>MQ𝐽	)N 𝑂9 − (1.74947 × 10>MQ𝐽)N 𝐻9

5>Q

9R(

5>Q

9R(

 

−(5.58810 × 10>MM𝐽	)N 𝑌9�𝑊9�𝑂9 − (4.37367 × 10>MM𝐽)N 𝐸Ë®X𝑌9�𝑊9�𝐻9

5>Q

9R(

5>Q

9R(

 

Where the equation above ℋb³_j corresponds to the tunneling correction for the 

energies of the hydrogen bonds within the Cas9 protein. As stated previously the term 

corresponding the Morse potential is given by ℋb³_¨ and its energies are lower than 

those corresponding to the correction ℋb³_j. The perturbation ℋb³_¨ corresponding to 

the Morse potential will be discussed in the next pages. 
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Corrections due to the Morse Potential 

Below are the calculations for all of the different possible energies corresponding 

to the 𝐸XX term for the quantum corrections that ignore tunneling. Just like in the case for 

tunneling it is is assumed that 𝑇 = 298	𝐾 

 The equation corresponding to the energy of the backbone hydrogen bonds is 

given below. The equation for 𝐸ËÜ� is also given below where 𝐸ËÜ� is the average energy 

for the O—H bonds. This equation holds so long as the number of amino acids is large. 

𝐸XX =
1
2NN𝐴9�𝐵9�𝑋9�𝑌9�𝐸ËÜ�

5

�RQ

5

9RQ

 

𝐵9� =
1
2 𝛿Dlmn>D�on,�, 𝐴9� = 𝛿Dlon>D�mn,� 

𝑋9� = 𝛿Dl>D�,�, 𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãQ
�R(

∑ 𝑒>?È¿âãM
�R(

 

In the set of equations above, 𝐸ËÜ�is the average energy eigenvalue corresponding 

to the nth energy state. Its value is given at the end of this study. 

 Below are the calculations for the Hydrogen bonding energies where the equation 

for 𝐸ËÜ� has been substituted into È��
j
, where as stated previously È��

j
 is the entropic 

penalty for the backbone interactions. The value for the constant 𝐸ËÜ� is also given below. 

𝐸XX
𝑇 =

1
2𝑇

1
2NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

𝑂9�
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

 

𝐸ËÜ� = −6.66651 × 10>Q(𝐽 

This leads to the following summation for È��
j
. 

𝐸XX
𝑇 = −6.66651 × 10>Q(𝐽

1
2𝑇

1
2NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

 

 These calculations will be continued in the following pages below. 
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After the computation of basic arithmetic, the following summation is obtained for È��
j
. 

𝐸XX
𝑇 = −5.59271 × 10>MM𝐽 ∙ 𝐾>Q NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

 

Below are the calculations for all of the different possible energies corresponding 

to the 𝐸ªf term for the case where the effects due to tunneling are ignored. The equation 

for ℋ9� is also displayed below. 

𝐸ªf =
1
2NN𝑅9�𝑀9�𝑌9�ℋ9�

5>Q

�R(

5>Q

9R(

 

𝑅9� =
3
16 𝛿Dl>D�,�, 𝑆9� =

3
16 𝛿Dl>D�,�, 𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1

1	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

ℋ9� = 𝑂9�𝐸Ë�Ü� + 𝑁9�𝐸Ë�59 

Next the term 𝐸ªf is expanded by substituting the value for the matrix element 

ℋ9� into ÈÁÂ
j

 where ÈÁÂ
j

 is the entropic penalty for the side chain interactions. 

𝐸ªf
𝑇 =

3
16

1
2𝑇NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�𝐸ËÜ�
5>Q

�R(

5>Q

9R(

 

+
3
16

1
2𝑇NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9�𝐸Ë59
5>Q

�R(

5>Q

9R(

 

In the following pages the term ÈÁÂ
j

  will be expanded even further to include the 

equations for 𝐸Ë�Ü� and 𝐸Ë�59. These equations are given below, along with the values for 

𝐸Ë�Ü� and 𝐸Ë�59. 

𝐸ËÜ� =
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

, 𝐸Ë59 =
∑ 𝐸�59𝑒>?È¿

ElM
�R(

∑ 𝑒>?È¿ElM
�R(

 

𝐸ËÜ� = −6.66651 × 10>Q(𝐽, 𝐸Ë59 = −5.21342 × 10>Q(𝐽 

The calculations for ÈÁÂ
j

 will be continued in the following pages. 
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Below is the expansions for the term ÈÁÂ
j

. The values for the average energies 𝐸ËÜ� 

and 𝐸Ë59 are also inserted into the bottom equation for ÈÁÂ
j
, where the values for 𝐸ËÜ� and 

𝐸Ë59 are 𝐸ËÜ� = −6.66651 × 10>Q(𝐽 and 𝐸Ë59 = −6.66651 × 10>Q(𝐽 respectively. 

𝐸ªf
𝑇 =

3
16𝑇

1
2NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�
∑ 𝐸�Ü�𝑒>?È¿

âãM
�R(

∑ 𝑒>?È¿âãM
�R(

5>Q

�R(

5>Q

9R(

 

+
3
16𝑇

1
2NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑁9� ∑ 𝐸�59𝑒>?È¿
ElM

�R(

∑ 𝑒>?È¿ElM
�R(

5>Q

�R(

5>Q

9R(

 

𝐸ªf
𝑇 = −6.66651 × 10>Q(𝐽

3
16𝑇

1
2NN𝑅9�𝑀9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−5.21342 × 10>Q(𝐽
3
16𝑇

1
2NN𝑅9�𝑀9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

With the computation of basic arithmetic, the term ÈÁÂ
j

 is rewritten as the following 

equation below. As stated previously it is assumed that 𝑇 = 298	𝐾. 

𝐸ªf
𝑇 = −2.09727 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀

9�𝑌9�𝑂9�
5>Q

�R(

5>Q

9R(

 

−1.64013 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

Below are the calculations corresponding to the 𝐸ª«¬µ�¶ term. The formula for 

𝐸ª«¬µ�¶ is given by the equation below. 

𝐸°W¶µD = N 𝐸9 −
5>Q

9R(

NN𝑌9�𝑊9�𝐸9

5>Q

�R(

5>Q

9R(

 

𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑊9� =
1
4 𝛿Dl>D�,�, 𝐸9 = 𝐸ËÜ�𝑂9 + 𝐸Ë®X𝐻9 

 The calculations for 𝐸ª«¬µ�¶ will be continued in the following pages. 
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Below are the calculations for ÈÎ½ÏÐÑ
j

 below, where 𝐸9 = 𝐸ËÜ�𝑂9 + 𝐸Ë®X𝐻9 has been 

substituted into ÈÎ½ÏÐÑ
j

. The values for 𝐸ËÜ� and 𝐸Ë59 are also given below. 

𝐸°W¶µD
𝑇 =

1
𝑇N 𝐸ËÜ�𝑂9 +

1
𝑇N 𝐸Ë®X𝐻9

5>Q

9R(

+
1
𝑇
1
4N 𝐸ËÜ�𝑌9�𝑊9�𝑂9

5>Q

9R(

5>Q

9R(

+
1
𝑇
1
4N 𝐸Ë®X𝑌9�𝑊9�𝐻9

5>Q

9R(

 

𝑌9� = Ý0	𝑖𝑓	𝑖 = 𝑗 + 1	𝑜𝑟	𝑗 = 𝑖 + 1
𝐸	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,𝑊9� =
1
4 𝛿Dl>D�,�, 𝐸9 = 𝐸ËÜ�𝑂9 + 𝐸Ë®X𝐻9 

𝑊9� =
1
4 𝛿Dl>D�,�, 𝑂9 = Ó1	𝑖𝑓	𝐸9 ∈ 𝐸? ∪ 𝐸P ∪ 𝐸>

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸ËÜ� = −6.66651 × 10>Q(𝐽, 𝐸Ë59 = −5.21342 × 10>Q(𝐽 

This in turn leads to the following equations below where the values for 𝐸ËÜ� =

−6.66651 × 10>Q(𝐽 and 𝐸Ë59 = −5.21342 × 10>Q(𝐽 have both been substituted into the 

formula for ÈÎ½ÏÐÑ
j

 where ÈÎ½ÏÐÑ
j

 is the entropic penalty for the interactions with water. 

𝐸°W¶µD
𝑇 = −6.66651 × 10>Q(𝐽

1
𝑇N𝑂9 − 5.21342 × 10>Q(𝐽

1
𝑇N𝐻9

5>Q

9R(

5>Q

9R(

 

−6.66651 × 10>Q(𝐽
1
4𝑇NN𝑌9�𝛿Dl>D�,�𝑂9

5>Q

�R(

5>Q

9R(

− 5.21342 × 10>Q(𝐽
1
4𝑇NN𝑌9�𝛿Dl>D�,�𝐻9

5>Q

�R(

5>Q

9R(

 

With the computation of basic arithmetic, the above equation is reduced to the 

following summation below. 

𝐸°W¶µD
𝑇 = −2.23708 × 10>MQ𝐽 ∙ 𝐾>Q N 𝑂9 − 1.74947 × 10>MQ𝐽 ∙ 𝐾>Q N 𝐻9

5>Q

9R(

5>Q

9R(

 

+5.59271 × 10>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝑂9 + 4.37367 × 10
>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝐻9

5>Q

9R(

5>Q

9R(
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This in turn leads to the following equation for the quantum mechanical 

correction below. 

ℋb³

𝑇 = −5.59271 × 10>MM𝐽 ∙ 𝐾>Q NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

 

−2.09727 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−1.64013 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

−2.23708 × 10>MQ𝐽 ∙ 𝐾>Q N 𝑂9 − 1.74947 × 10>MQ𝐽 ∙ 𝐾>Q N𝐻9

5>Q

9R(

5>Q

9R(

 

+5.59271 × 10>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝑂9 + 4.37367 × 10
>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝐻9

5>Q

9R(

5>Q

9R(

 

 It is important to note that the formula for the conformational entropy provides 

entropy values for specific protein geometries. Depending upon the conformation that the 

protein takes on, certain hydrogen bonds will form while other hydrogen bonds will fail 

to form. The hydrogen bonds between the amino acids correspond to specific values for 

the Kronecker Delta matrix elements in the 𝐸°W¶µD, 𝐸XX and 𝐸ªf terms respectively. In 

order to allow the data in this model to be compared to experimental results the model 

will be constrained so as to assume that the conformation that the protein assumes is that 

of a beta strand. This means that backbone, sidechain and solvent interactions will all be 

at play. Since the shape of the protein is that of a beta strand, all the backbone 

interactions are present between every adjacent amino acid. The same holds for both the 

sidechain interactions as well as the solvent interactions. The entropy formulas 

corresponding to these geometries are given below. 

𝑆§¨(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M −
𝐸°W¶µD
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇  

𝑆j(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M −
𝐸°W¶µD
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇  
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The equations 𝑆§¨(𝑅) and 𝑆j(𝑅) are restated below for convenience. 

𝑆§¨(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M −
𝐸°W¶µD
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇  

𝑆j(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M −
𝐸°W¶µD
𝑇 +

𝐸XX
𝑇 +

𝐸ªf
𝑇  

In the set of equations above 𝑆§¨(𝑅) is the entropy corresponding to the Morse 

potential and 𝑆j(𝑅) is the entropy corresponding to the tunneling correction. 

Likewise, ℋ®MÜ,j is the perturbation corresponding to tunneling and ℋ®MÜ,§¨ is the 

perturbation corresponding to the Morse potential. In order to determine the impact of 

both the quantum mechanical effects as well as the tunneling corrections, it is necessary 

to compare the two results. As stated previously these results are given by both ℋb³_j as 

well as ℋb³_¨.  
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Comparison of the two quantum mechanical corrections 

Below are the expansions corresponding to the 𝑆§¨(𝑅) term and the 𝑆j(𝑅) term 

respectively. 

𝑆§¨(𝑅) = (0.00057922750	𝑘𝑔𝑠>M𝐾>Q)|𝑅|M

− 5.59271 × 10>MM𝐽 ∙ 𝐾>Q 1
𝑇NN𝛿Dlmn>D�on,�𝛿Dlon>D�mn,�	𝛿Dl>D�,�𝑌9�

5>Q

�R(

5>Q

9R(

 

−2.09727 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−1.64013 × 10>MM	𝐽 ∙ 𝐾>Q NN𝛿Dl>D�,�𝑀
9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

−2.23708 × 10>MQ𝐽 ∙ 𝐾>Q N 𝑂9 − 1.74947 × 10>MQ𝐽 ∙ 𝐾>Q N𝐻9

5>Q

9R(

5>Q

9R(

 

+5.59271 × 10>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝑂9 + 4.37367 × 10
>MM𝐽 ∙ 𝐾>Q N 𝑌9�𝛿Dl>D�,�𝐻9

5>Q

9R(

5>Q

9R(

 

 With the use of the Python interpreter the calculations of the entropies for  

∆𝑆XX, ∆𝑆ªf and ∆𝑆ª«¬ for the quantum mechanical and tunneling corrections are given 

below. 

𝑆XX_¨ = −7.65083 ∙ 10>Q(	𝐽/𝐾 

𝑆ªf_¨ = −1.67133 ∙ 10>Q(	𝐽/𝐾 

𝑆°W¶µD_¨ = −1.17391 ∙ 10>Q)	𝐽/𝐾 

 

𝑆XX_j = −7.64451 ∙ 10>Q(	𝐽/𝐾 

𝑆ªf_j = 1.67133 ∙ 10>Q(	𝐽/𝐾 

𝑆°W¶µD_j = −1.17767 ∙ 10>Q)	𝐽/𝐾 
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Likewise, the calculations for the entropies from the experimental data are given 

below. 

𝐺XX = −48.30
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 , 𝐺ªf = −18.40

𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 , 𝐺ª«¬>Æ«¬WD = 73.62	

𝑘𝑐𝑎𝑙
𝑚𝑜𝑙  

𝐺W³9�« = 𝐺XX + 𝐺ªf, 𝐺°W¶µD = 𝐻°W¶µD, 𝐺W³9�« = 𝐻XX + 𝐸Ëªf 

𝐺ªf = −𝑇𝑆ªf, 𝑆ªf = −
1
𝑇 𝐸
Ëªf, 𝐸Ëªf = −𝑇𝑆ªf, 𝐺ªf = 𝐸Ëªf 

𝐺W³9�« = 𝐺XX + 𝐸Ëªf, 𝐺XX + 𝐺ªf = 𝐻XX + 𝐸Ëªf, 𝐺XX + 𝐺ªf = 𝐻XX + 𝐺ªf 

This leads us to the following equations for the free energy. 

𝐺XX = 𝐻XX, 𝐺ªf = 𝐸Ëªf, 𝐺°W¶µD = 𝐻°W¶µD 

The Hamiltonians corresponding to the experimental data are therefore given by 

the following equations below. 

𝐻XX = −48.30
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 , 𝐸Ëªf = −18.40

𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 , 𝐻°W¶µD = 73.62	

𝑘𝑐𝑎𝑙
𝑚𝑜𝑙  

This leads to the following values for the Hamiltonians for 1 hydrogen bond.  

𝐻XX = −48.30
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 ∙

𝑚𝑜𝑙
6.02214076 ∙ 10M]	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∙ 1	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = −8.020 ∙ 10>M]𝑘𝑐𝑎𝑙 

𝐻XX = −8.020 ∙ 10>M]𝑘𝑐𝑎𝑙 ∙
4184	𝐽
1	𝑘𝑐𝑎𝑙 = −3.356 ∙ 10>Q(	𝐽 

 

𝐸Ëªf = −18.40
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 ∙

𝑚𝑜𝑙
6.02214076 ∙ 10M]	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∙ 1	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = −3.055 ∙ 10>M]𝑘𝑐𝑎𝑙 

𝐸Ëªf = −3.055 ∙ 10>M]𝑘𝑐𝑎𝑙 ∙
4184	𝐽
1	𝑘𝑐𝑎𝑙 = −1.278 ∙ 10>Q(	𝐽 

 

73.62 ∙
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙 ∙

𝑚𝑜𝑙
6.02214076 ∙ 10M]	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∙ 1	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 1.223 ∙ 10>MM	𝐽	𝑘𝑐𝑎𝑙 

𝐻°W¶µD = 1.223 ∙ 10>MM	𝐽	𝑘𝑐𝑎𝑙 ∙
4184	𝐽
1	𝑘𝑐𝑎𝑙 = 5.117032 ∙ 10>Q(	𝐽 
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In order to make sure that the calculations for 𝑆XX_¨, 𝑆ªf_¨, 𝑆°W¶µD_¨, 𝑆XX_j, 𝑆ªf_j 

and 𝑆°W¶µD_j have any validity they must be compared to results from the FoldX model. 

In order to accomplish this the values for 𝐻XX, 𝐸Ëªf and 𝐻°W¶µD must be inserted into the 

equations for 𝐸XX, 𝐸ªf and 𝐸ª«¬µ�¶ respectively. Remember that 𝐻XX, 𝐸Ëªf and 𝐻°W¶µD are 

the constants for the energies pertaining to the backbone, side chain and solvent 

interactions respectively. The values for these constants are given below along with the 

summations 𝐸XX, 𝐸ªf and 𝐸ª«¬µ�¶. 

𝐸XX =
1
2
1
2NN𝐴9�𝐵9�𝑋9�𝑌9�𝐸ËÜ�

5

�RQ

5

9RQ

, 𝐸ª«¬µ�¶ = N 𝐸9 −
5>Q

9R(

NN𝑌9�𝑊9�𝐸9

5>Q

�R(

5>Q

9R(

 

𝐸ªf =
1
2
3
16NN𝑅9�𝑀9�𝑌9�𝑂9�𝐸ËÜ�

5>Q

�R(

5>Q

9R(

+
1
2
3
16NN𝑅9�𝑀9�𝑌9�𝑁9�𝐸Ë59

5>Q

�R(

5>Q

9R(

 

 

𝐻XX* = −3.356 ∙ 10>Q(	𝐽	 

𝐻ªf* = −1.278 ∙ 10>Q(	𝐽 

𝐻°W¶µD* = 5.117 ∙ 10>Q( 

 

 This in turn leads to the following equations for 𝐸XX_Èand 𝐻ªf_È below.  

𝐸XX* = −3.356 ∙ 10>Q(	𝐽
1
2𝑇NN𝐴9�𝐵9�𝑋9�𝑌9�

5

�RQ

5

9RQ

 

𝐸ªf* = −1.278 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−1.278 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

Remember that since the experimental data was taken for a large volume of 

hydrogen bonds, the effects due to the directions of the side chains, which are 

incorporated into 𝐸XX and 𝐸ªf by means of the fractions Q
M
 and ]

Qw
 respectively are included 

within the values for 𝐻XX_È and 𝐻ªf_È. 
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In other words, the terms 𝐻XX_È and 𝐻ªf_È are roughly equal to the following 

values below for 𝑁 ≫ 1 hydrogen bonds, as is the case when using reduced units. 

𝐻XXÈ ≅
1
2𝐸
ËÜ�, 𝐻ªfÈ ≅

3
16𝐸

ËÜ�, 𝐻XXÈ ≅
3
16𝐸

Ë59 

 For convenience a comparison between the equations for 𝐸XX_È, 𝐸XX_¨	and 𝐸XX_j, 

as well as 𝐸ªf_È, 𝐸XX_¨ and 𝐸ªf_j is given below. 

𝐸XX* = −3.356 ∙ 10>Q(	𝐽
1
2𝑇NN𝐴9�𝐵9�𝑋9�𝑌9�

5

�RQ

5

9RQ

 

𝐸XX¨ = −3.333 ∙ 10>Q(	𝐽
1
2𝑇NN𝐴9�𝐵9�𝑋9�𝑌9�

5

�RQ

5

9RQ

 

𝐸XXj = −3.333 ∙ 10>Q(	𝐽
1
2𝑇NN𝐴9�𝐵9�𝑋9�𝑌9�

5

�RQ

5

9RQ

 

 

𝐸ªf* = −1.278 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−1.278 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

𝐸ªf¨ = −1.250 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−10.00 ∙ 10>Q(
1
2NN𝑅9�𝑀9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(

 

𝐸ªfj = −1.250 ∙ 10>Q(	𝐽
1
2NN𝑅9�𝑀9�𝑌9�𝑂9�

5>Q

�R(

5>Q

9R(

 

−10.00 ∙ 10>Q(
1
2NN𝑅9�𝑀9�𝑌9�𝑁9�

5>Q

�R(

5>Q

9R(
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Likewise, the average energies corresponding to a single hydrogen bond are given 

below. Keep in mind that these estimations hold so long as the number of amino acids is 

hydrogen bonds is sufficiently large. 

𝐻XXj = −6.66101 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
1
2 = −2.079	𝑒𝑉 

𝐻ªfj = −6.66101 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
3
16 = −0.780	𝑒𝑉 

𝐻°W¶µDj = −6.66101 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
3
4 = −3.123	𝑒𝑉 

 

𝐻XX¨ = −6.66651 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
1
2 = −2.080	𝑒𝑉 

𝐻ªf¨ = −6.66651 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
3
16 = −0.780	𝑒𝑉 

𝐻°W¶µD¨ = −6.66651 ∙ 10>Q(𝐽 ∙
6.242 ∙ 10Q)	𝑒𝑉

1	𝐽 ∙
3
4 = −3.123	𝑒𝑉 

 

 For convenience the equations above are distilled to the following formulas 

below. The values from the FoldX model are also displayed below. 

 

𝐻XX* = −2.095	𝑒𝑉, 𝐻XX¨ = −2.080	𝑒𝑉, 𝐻XXj = −2.079	𝑒𝑉 

𝐻ªf_* = −0.798	𝑒𝑉, 𝐻ªf¨ = −0.780	𝑒𝑉, 𝐻ªfj = −	0.780	𝑒𝑉 

 

𝐻°W¶µD_* = 3.192	𝑒𝑉, 𝐻°W¶µD¨ = −3.121	𝑒𝑉, 𝐻°W¶µDj = −3.121	𝑒𝑉 
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 The following values for the entropy where obtained from the python interpreter 

corresponding to the value for the energy obtained from the FoldX model. 

 

𝑆XX* = −4.8078554
𝑒𝑉
𝐾 , 𝑆ªf* = −1.165934

𝑒𝑉
𝐾 , 𝑆°W¶µD* = −5.85547

𝑒𝑉
𝐾  

  

 For convenience the values for the entropies 𝑆XX¨, 𝑆XXj, 𝑆ªf¨, 𝑆ªfj, 𝑆°W¶µD¨ and 

𝑆°W¶µDj are all given below. 

𝑆XX_¨ = −4.77527
𝑒𝑉
𝐾 , 𝑆ªf+ = −	1.0432

𝑒𝑉
𝐾 , 𝑆°W¶µD_¨ = −7.356

𝑒𝑉
𝐾  

𝑆XX_j = −4.77133
𝑒𝑉
𝐾 , 𝑆ªf, = −1.0432

𝑒𝑉
𝐾 , 𝑆°W¶µD_j = −7.3504

𝑒𝑉
𝐾  

  

 The tables corresponding to the results are given below. 

Table 1: Entropies for the FoldX model, the Morse Potential, and the quantum tunneling 
model. 

 FoldX Model Morse Potential Tunneling 

Backbone Entropy −7.70303 ∙ 10>Q(𝐽/𝐾 −7.65083 ∙ 10>Q(𝐽/𝐾 −7.64451 ∙ 10>Q(𝐽/𝐾 

Sidechain Entropy −9.38828 ∙ 10>Q(𝐽/𝐾 −1.67133 ∙ 10>Q(𝐽/𝐾 −1.67133 ∙ 10>Q(𝐽/𝐾 

Solvent Entropy −9.38828 ∙ 10>Q(𝐽/𝐾 −1.17391 ∙ 10>Q)𝐽/𝐾 −1.17767 ∙ 10>Q)𝐽/𝐾 

 

Table 2: Total energies for the FoldX model, the Morse Potential, and the quantum 
tunneling model. 

 FoldX Model Morse Potential Tunneling 

Backbone Energy −3.356 ∙ 10>Q(𝐽 −3.333 ∙ 10>Q(𝐽 −3.331 ∙ 10>Q(𝐽 

Sidechain Energy −1.278 ∙ 10>Q(𝐽 −1.250 ∙ 10>Q(𝐽 −1.250 ∙ 10>Q(𝐽 

Solvent Energy −5.117 ∙ 10>Q(𝐽 −5.000 ∙ 10>Q(𝐽 −5.000 ∙ 10>Q(𝐽 
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CHAPTER IV: 

Conclusion 

Below are the percent changes corresponding to the entropic corrections for the backbone 

interactions, side chain interactions and solvent corrections respectively. 
(−4.8078554 + 4.77527)

−4.8078554 × 100% = −0.677753% 

(−1.165934 + 1.0432)
−1.16435 × 100% = 10.5409885% 

(−5.85547 + 7.356)
−5.85547 × 100% = −25.626123949% 

When the effects due to quantum tunneling are taken into account one obtains an increase 

in the conformational entropy. This is to be expected since quantum tunneling has the 

potential to break hydrogen bonds. This has already been shown to be the case with water 

molecules. Not only does quantum tunneling have an influence on the breaking of 

hydrogen bonds but the more hydrogen bonds form, the greater the influence of quantum 

tunneling effects. It must be stated however that steric interactions were not taken into 

account. When the effects due to steric interactions are accounted for it may very well be 

the case that tunneling ceases to have an influence. What we do know however is that in 

certain cases the effects due to quantum tunneling have more of an influence than the 

effects due to the potential energy between the peptide bonds. It is thus still inconclusive 

whether or not quantum tunneling overall has any significant impact. Further advances in 

the research could take into account the effects of quantum tunneling on the Van der 

Waals forces as well as the electrostatic forces if any are present. This would be a way of 

establishing whether or not quantum tunneling has an overall impact on the total 

conformational entropy. The results however still hold that quantum mechanical effects 

still have an overall positive impact on the total conformational entropy. Again, however 

this is only the case when the Van der Waals interactions are set to zero. The benefits of 

this research are that the algorithms for calculating the conformational entropy may be 

further optimized by taking into account the effects due to quantum tunneling. 
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APPENDIX A:  

AMINO ACID TABLES 

Table A1: Hydrogen bond probabilities. 
 A I L M V F W Y N C Q S T D E R H K G P 
A 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 1 0 0 0 0 2 0 0 0.6 0 0.6 1 1 0.5 0.5 0 0 1 1 0 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N 1 0 0 1 0 0.6 0 0 2 1 1 1 1 1 1 0 0 1 0.8 0 
C 1 0 0 1 0 0 0 0 1 2 1 1 1 1 1 0 0 1 1 0 
Q 1 0 0 1 0 0.6 0 0 1 1 2 1 1 1 1 0 0 1 0.8 0 
S 0 0 0 1 0 1 0 0 1 1 1 2 1 1 1 0 0 1 1 0 
T 1 0 0 1 0 1 0 0 1 1 1 1 2 1 1 0 0 1 1 0 
D 1 0 0 1 0 0.5 0 0 1 1 1 1 1 2 1 0 0 1 1 0 
E 1 0 0 1 0 0.5 0 0 1 1 1 1 1 1 2 0 0 1 1 0 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
K 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 2 1 0 
G 1 0 0 1 0 1 0 0 0.8 1 0.8 1 1 1 1 0 0 1 0 0 
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table A1contains the probability that a Hydrogen bond will form between the 

sidechains of two amino acids. The top row and the left column contain all 20 amino 

acids. The elements in each cell correspond to the probability that a hydrogen bond will 

form between the two amino acids when their sidechains are in contact. 
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Table A2: Hydrogen acceptors. 
 A I L M V F W Y N C Q S T D E R H K G P 
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M O 0 0 0 0 0 0 0 O O O O O O O 0 0 O O 0 
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F P 0 0 0 0 P 0 0 P 0 P P P P P 0 0 P P 0 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N N 0 0 0 0 N 0 0 N N N N N N N 0 0 N N 0 
C O 0 0 0 0 0 0 0 O O O O O O O 0 0 O O 0 
Q N 0 0 0 0 N 0 0 N N N N N N N 0 0 N N 0 
S O 0 0 0 0 O 0 0 O O O O O O O 0 0 O O 0 
T O 0 0 0 0 O 0 0 O O O O O O O 0 0 O O 0 
D O 0 0 0 0 O 0 0 O O O O O O O 0 0 O O 0 
E O 0 0 0 0 O 0 0 O O O O O O O 0 0 O O 0 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
K N 0 0 0 0 n/a 0 0 N N N N N N N 0 0 N N 0 
G O 0 0 0 0 0 0 0 O O O O O O O 0 0 O O 0 
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table A2 contains the hydrogen acceptors for each amino acid pair. Both the top 

row and the left column contain all 20 amino acids. Each cell corresponds to the 

hydrogen bond acceptors where N, O and P stand for the nitrogen bond, hydrogen bond 

and (Pi bond?) respectively. 
  



 
 

68 

Table A3: Sidechain vector combinations. 

 ↑ → ↓ ← 

↑ ✓ ✗ ✗ ✗ 

→ ✗ ✗ ✗ ✓ 

↓ ✗ ✗ ✓ ✗ 

← ✗ ✗ ✗ ✗ 

Table A3 lists the sidechain vector combinations that permit a hydrogen bond. 

The up and down arrows correspond to side chains pointing up and down respectively. 

The x’s correspond to side chains pointing into the page. The *’s correspond to the side 

chains pointing out of the page. In order to remove the conformations with the sidechains 

pointing in the same direction for the consecutive side chains, a steric penalty is applied. 

This corresponds to the cases where the sidechains are pointing in the same direction.  

 
 

 

 

 
 


