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ABSTRACT
THE EFFECTS OF QUANTUM TUNNELING ON THE CONFORMATIONAL
ENTROPY OF THE CAS9 PROTEIN

James Edward Jennings
University of Houston-Clear Lake, 2019

Thesis Chair: Van Eric Mayes

The Cas9 protein is a protein that is used in bacteria to edit out viral DNA. Cas9 is very
precise and is used in laboratories all over the world for the purposes of editing gene
sequences. In order for Cas9 to function properly it needs to fold into a specific shape.
These shapes are referred to as conformations and the entropy corresponding to the
number of conformations that a polymer chain can fold into is referred to as the
conformational entropy. Until recently, the current model used for calculating the
conformational entropy failed to incorporate the effects due to hydrogen bonds. Now a
research group from Chicago has constructed a model that incorporates these effects. It
has been demonstrated that the effects due to quantum interactions without tunneling
effects influence the conformational entropy by an order of magnitude of 0.7% for
backbone interactions and 10% for sidechain interactions respectively. The effects due to

tunneling further influence the backbone entropy by an order of magnitude of 0.08%.
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CHAPTER I:
THE CLASSICAL CONFORMATIONAL ENTROPY

Introduction

One very important concept in the field of Polymer Physics is the concept of
hydrogen bonds. In the field of Polymer Physics, Hydrogen bonds are what maintain a
protein’s conformation. Proteins are made up of 20 types of amino acids. All amino acids
contain two components. These components are the side chain and the backbone
respectively. The backbone of every amino acid has the same structure. The side chain of
every amino acid however is different. Some side chains can form hydrogen bonds while
other side chains are incapable of forming hydrogen bonds. Hydrogen bonds come in four
different varieties. These varieties are N—H bonds, O—H bonds, S—H bonds and =—H
bonds respectively. For the purposes of this research only the N—H and O—H bonds
will be taken into account. The interactions due to the S—H bonds and 7—H bonds will
be set to zero. There are two different types of hydrogen bonds that form between the
components of the amino acids. They are hydrogen bonds between side chains and
hydrogen bonds between backbones. In addition to these bonds, hydrogen bonds can
form between side chains and solvents. For the purposes of this research the system under
study will be constrained so that the only solvent-sidechain interactions are those

involving water.



Background

The conformational entropy of a polymer chain is the entropy due to the number
of geometries that the polymer chain can assume. These geometries are referred to as
conformations. As the number of possible geometries increases so does the
conformational entropy. There are two different models for computing the
conformational entropy. These models are referred to as the bead spring model and the
lattice model. Both models treat the polymer as an ideal chain where it is assumed that
there are no interactions between the amino acids.

In the bead spring model, the polymer is broken into a set of sub chains which are
treated as harmonic springs. Each sub chain is a series of identical sequences of amino
acids called repeat units. The ends of these sub chains are referred to as the beads within

the model. A diagram pertaining to this model is given below.

i (old)

Figure 1. Bead Spring Model

The number of conformations that a polymer chain can assume is dependent on
the distance between the ends of the polymer chain. This is referred to as the end to end
distance. As the end to end distance is constrained to a larger value, the number of ways
in which the polymer chain can fold up become increasingly limited. Hence, the number
of available conformations decreases as a result as well as the entropy. Since higher
values for the conformational entropy correspond to lower end to end distances, lower
values for the end to end distance are more probable than high values. The probability

that the end to end distance will be some specified value R is given by the formula P(R).



In a nutshell, the bead spring model is an approximation which treats the polymer
chain as a sequence of harmonic springs. These harmonic springs represent the sub
chains. The sub chains in turn are a series of repeat units, where the repeat units are
sequences of amino acids. Each harmonic spring is held together by beads, where each
bead is an amino acid at the end of each sub-chain. The distance between the two ends of
the polymer is constrained to a specific value R. The segments of the polymer chain are
free to move about randomly since it is treated as an ideal chain.

In the lattice model the polymer chain is constrained so that each of the amino
acids occupy a site on a 3-dimensional lattice. Since the polymer is treated as an ideal
chain, the amino acids do not interact with each other in the model. As a result, the
probabilities for each bond vector to take on a certain value are all equal for every amino
acid. The amino acids in the polymer chain are each held together by harmonic springs.
So long as the number of amino acids in this model is sufficiently large the lattice model
1s equivalent to the bead spring model. A diagram pertaining to the lattice model is given

below for the two-dimensional case.

olo|elofofo|o]o]o
olo|¢|lo|o]|o|o]o]o
o|o ‘-—0—-? (O} l o el o)
olofo]o|e]|o]o]o]o0
YT olo|o|o|ererele]|o
o—¢|/ofofofo|o|¢]0
o|¢|o|o|etetels]|o
o| e—et+e+&|0c|lo|o]0
ololo|lo|lo|o|lo|o]|o
—>| { |e—
=5

Figure 2: Lattice Model



Within this model the end to end distance is constrained to some specified
constant R, just like in the bead spring model. Within the lattice model there is an
equation corresponding to the probability that the polymer chain will take on a certain
specified distance. This is the same equation as that corresponding to the bead spring
model. Both equations are referred to as P(R) where P(R) is the probability for the end
to end distance to take on some specified value R. As stated previously the end to end
distance is the distance between both ends of the polymer chain.

To sum it all up, the lattice model is a model in which the amino acids are each
fixed onto points on a three-dimensional lattice. These amino acids are linked together by
peptide bonds which are treated as harmonic springs in the model. Just like in the bead
spring model, the distance between the ends of the polymer chain are constrained to a
specific distance R. Within the lattice model the amino acids are free to move onto
different lattice sites, while the end to end distance is fixed.

In summary, there are two models for approximating the classical conformational
entropy of a protein. These models are referred to as the bead spring model and the lattice
model. The bead spring model treats the polymer as a series of sub chains held together
by the amino acids at their ends. The sub chains as well as the amino acids mentioned are
referred treated as harmonic springs and beads respectively.

The lattice model on the other hand treats the polymer as a chain of amino acids
held together by peptide bonds. The peptide bonds are treated as harmonic springs within
this model. Within this model the amino acids are constrained to occupy sites on a three-

dimensional lattice. Both models will be used to calculate the entropy of the Cas9 protein.



The Bead Spring Model

The Classical Conformational Entropy is given by the following equation.
Zo
So(R) = In [7 x P(R)]

Where Z, is the number of conformations that a polymer can take on regardless of
constraints. P(R) is the probability that the distance between both ends of the polymer
will take on a distance R. This is referred to as the end to end vector. The number of
conformations that a polymer can take on when constraints are taken into account is
dependent on the end to end vector. Large distances correspond to less possible
conformations and small distances correspond to more possible conformations. The

formula for P(R) is given below.

PR) = [ dry.. [ s = = OPD), P = e

Where P({r;}) is the probability of finding the conformation of an ideal chain.
The Dirac delta §(ry — 1y — R) requires that the polymer be constrained such that the
only geometries that are considered when computing the conformational entropy S, (R)
are the geometries where the distance between the vectors 1y and 7y is equal to R. In
order to accomplish this task, one must abandon the notion of certainty. Instead of
assuming that the total number of conformations Z, is fixed, there is a probability P(R)
that there will be a certain number of conformations Z,. This is due solely to the fact that
the set of conformations Z, corresponding to the case where 1y — 1, = R is not the only
possible outcome. There are plenty of other conformations that correspond to cases where
Ty — 1o # R. In other words the case where 1y — 1y = R is not the only probability. One

must give up certainty when calculating the entropy S, (R).



The probability that the total number of conformations will be Z, is given by the
formula Q(R) = Z, X P(R). The formula for Z, is given below along with the

Hamiltonian # (ry, ..., y)-

N-1
3kgT
Zy = jdro j drye~FHo(oTn) 3, = Z—Zfzzm — 141 l?
i=0

Where Z,, is the total number of conformations regardless of the constraint ry —
1o = R. Likewise, H(ry, ..., y) is the Hamiltonian of the system.. This Hamiltonian is
equivalent to the potential energy of the peptide bonds. In the equation (1, ..., Ty)
above N is the total number of sub chains and 7; and 7;,; are the end to end vectors
corresponding to the ith sub chain. T is the temperature of the system. kj is the
Boltzmann constant and b is the average length of the sub-chains. Next the terms Z, and
P(R) will be evaluated. With the use of a gaussian integral given to the left, we obtain the

following calculations for Zj,.

3/2 27Tb2 3N/2
fowor G, (2

Likewise, the calculations for P(R) are given below. Since the integral for P(R)

is computationally intensive the following equations for the Dirac Deltas §(r), 6 (ry —
1o — R) will be employed to streamline these calculations. These equations are given

below.

o(r) = j dqe't=®, §(ry—1o—R) = j dqe'a(rv=ToR)

(2m)? (2 )3

In the equations above the term §(r) corresponds to the integral form of the Dirac
delta in three dimensions. Likewise, the integral for §(ry — 1, — R) is also given above
in the top right. This equation will appear frequently for the calculations for the integral
term P(R). Another integral that will be used repeatedly will be the Fourier transform of
a gaussian, which is given by the following equation below.

. m\3/2 _lal*_,
jdre‘a“‘dze'lq'r = (_) e 4a "
a



As stated previously the formulas for P(R) and P({r;}) are given by the following
equations below. In the bottom equation the Dirac Delta function §(ry —ry — R) is

converted into an integral, as stated previously in the paragraphs above.

P(R) = j dry j dry6(ry — 1y — R)P({r;}), P({{r}) = Zioe‘ﬁ}[o
P(R) = LJ dry ... j dry j+wdqeiq'(TN‘TO‘R) 1 e~Po
(2m)3 —w Zy

Below are the calculations for the integral P(R). While these are mostly
simplifications, they are necessary in order to avoid miscalculations. This will be
explained later when the formula for the Fourier transform is displayed. These
calculations are continued in the following pages.

Below are the calculations for the P(R) integral. In order to streamline

calculations even further the Fourier transform of a gaussian will be employed in order to

evaluate P(R).

1 to )
R) = iq-(rN—To—R) g—=BHy
P(R) (2n)3ZOJdr0 jdrN j_oo dqge e

1 +00 ' 3kET <N-1 ,
= ‘(rny—1o—R) -B Yico ITi—Ti
p(R) = (2ﬂ)3Z0jdr0 j drN j_oo dqelq N—To e 2b2 0 +1

P(R) = 1 * ; 3kpT <N-1 2
( ) - (2 )320,[(110 ,[drNj_ dqe iq-(-rn+71o e 2b2 ) +1

1 +oo 3kpT wN-1 .
_ BB SN i1 P i (—r o +R)
P(R) (2n)3ZOJdTO ...jdrN j_oo dqge " 2p? “i=0 +11% g ~iq-(=ry+7o

1 o 3kpT N-1 . . '
_ _3 Zi= | i—ri | —ig- . —iq-
P(R) = 2z, j dry j dry j_oo dge " 2b? o Mi=Ti+1l® 5 —iqro piqrh p—iq'R

Again, the Fourier transform of a gaussian is given by the following equation for

convenience.

. m\3/2 _lal*_,
jdre—ah‘—clze—lq-r — (_) e aq lac
a



As stated in the previous pages this equation will be deployed repeatedly in order
to obtain accurate results for the integral P(R). Since e %97 is given to the left of the
gaussian term e~ ¢1* in the integral [ dre~@"=¢"e~147 the term e "N=T0~R) in the
integral P(R) was shifted to the left in order to prevent confusion and avoid
miscalculations. The calculations for P(R) are continued below and will be continued in

the following pages.

1 v opp2\¥? jePan?_ .
P(R) = ——— 43 lAT1piqTN g—ia R
(R) (271)3Zojdr1 jdrNj_oo dq( 3 ) e e e

3kgT
-B Zlfz Z |Tz Tig1l?

Xe

3kpT 5

P(R) = 2n )3ZOJdr1 jdrN[ ~Bpr ist Tl -ltm]

2 3/2 259p2
X<21;b ) . Iql43 pid ()

As was stated in the previous pages the formula for the Fourier transform of a

gaussian is given below along with the integral for P(R).

. m\3/2 _lal*_,
jdre—ah‘—clze—lq-r — (_) e aq lac

a
2b2\*/?  lq2p? . ]
P(R) = (2 )3Z jdrz deN [( ) 6_ 4-3 —1q:1 X
2\ 3/2 T
e st ] [ 2mb?\T a2 )

After multiple integrations are performed for P(R), the integral is distilled to the

following equation given below.

wh2\ >/ a2t .
P(R) = (2 )3Z jdrN 1 - jdrN [( ) e -(v-1) e lQ'TN—lel‘I'(TN_R)

3kgT
-B 21;32 |7’N—1—TN+1|2

Xe



The equations for the Dirac delta term as well as the Fourier transform are
displayed below for convenience. The first term below corresponds to the Fourier
transform displayed previously. Beneath this equation are the integrals for the Dirac delta
equations §(ry —ry — R) and § (ry_; — 1y — R) respectively.

. m\3/2  _lql®_.
jdre—ah‘—clze—lq-r — (_) e aq lac
a

6(TN - T‘O - R) j dqelq (TN To~ R)

(2 )3

6(ry-1 —1o—R) = j dge'®rn-1T0=R)

(2 )?
With the use of the equations given above for the Fourier transform and the Dirac

Delta terms §(ry — 1y — R) and 6 (ry_; — 1y — R) the integral P(R) is reduced to the

following equation below. The calculations for P(R) will be continued on the following

pages along with the computation for the classical conformational entropy S, (R).

P®) = iy )32 j y

In order to compute the classical conformational entropy S, (R) it is necessary to

3(N—-1)/2
2 b2 WDzl laPan?
e /743 e 4-3 e—lQ'Requ‘N

make use of the equations for both Z, and P(R). These equations, along with S,(R) are
displayed beneath the calculations for P(R).

1 . 2mb2\*N? _ lai?2p? R i

P(R) = ———— R — 4-3 - N
(R) (2n)3ZOJ Ty e e e
3/2

3
1 6m\*/? _IRPs 1 6 __3 2
PR =G ipr) © ™ PO =Goml)

As stated in the previous pages P(R) is the probability for the end to end vector of

the polymer chain to have a value of R. Likewise, Z is the total number of
conformations for the polymer chain when the constraint P(R) is not taken into account.

Below are the calculations for Z,, P(R) and Sy (R).

anz 3N/2
zo=v< . ) o P®=(

5 )3/2 W’ sR) = i [22x P(R
2nNbz)  © S _"[vx ()]



This in turn gives us the following calculations for the conformational entropy.
The term C(N) is a constant that is given in terms of the number of amino acids. b is the
average length of the sub chain. The number of sub chains is given by the term N. As
stated previously R is the end to end vector of the polymer chain. kg is Boltzmann’s

constant and S, (R) is the classical conformational entropy.

2mb?\3N? 3 V7% __3 ep
< 3 ) (2 Nb2> e
T

IRI? + C(N)

S,(R) = In [% x p(R)], So(R) = In

3k
2N b2

Hence the length of the end to end vector R decreases the conformational entropy

SO=

as expected. While the bead spring model appears relatively simple it has its limits. First
of all, it only applies when the number of sub chains is large. More importantly however
it cannot be used to incorporate the effects due to Hydrogen bonds. This is due to the fact
that the entropy is described in terms of the vectors corresponding to the amino acid
segments instead of the vectors corresponding to the peptide bonds, otherwise known as
the bond vectors. The lattice model however does describe the conformational entropy in

terms of the bond vectors. This is the model that will be discussed in the following pages.

10



The Lattice Model

Since the Perturbation term corresponding to the Hydrogen bonds is in terms of
the bond vectors the bead spring model, which treats the sub chains as single units, is
insufficient for taking into account the quantum mechanical effects due to hydrogen
bonds. Among these effects are the breaking of hydrogen bonds due to quantum
tunneling. In order to incorporate quantum mechanical effects, a different model will be
used. This model is referred to as the lattice model and it is equivalent to the bead spring
model when the number of amino acids is large. Below is the formula for P(R) where

P(R) is the probability for the end to end vector to have a value of R.

N-1

P(R) = jdu0 j duy_, 6 (R — Z ul-) Py({u;})

i=0
Likewise, Py ({u;}) is the probability of finding a certain chain conformation. u;
is the bond vector for the ith peptide bond, where the peptide bonds are the bonds
between each amino acid in the polymer chain. The equation P(R) is equal to the product
of the probabilities for each of the N bond vectors b to take on a certain value. These
bond vectors correspond to the peptide bonds between the amino acids. Hence the

formula for Py ({u;}) is given below.
N-1
Py({u;}) = nPl(uj)
j=0

In the equation above P; (u]-) is the likelihood for the bond vector of the jth amino
acid to take on a specific value. Since it is assumed that the peptide units do not interact
the probabilities associated with each value of the jth bond vector are all equal, where the
peptide units are the amino acids. When the number of amino acids is sufficiently large

the probabilities for the directions of the bond vectors are all equal. Since there are six

total directions that the bond vector a can take on the value of P; (u]-) is equal to %. The

set corresponding to these bond vectors is given by b = {ibx, +b,, ibz}.

11



Within the set b = {ibx, +b,, ibz}, by, by, b, and —b,, —b,,, —b, are the positive
and negative values of the bond vector. The bond vectors are the directions for the
peptide bonds between each peptide unit. As mentioned earlier each peptide unit is an

amino acid in the Cas9 polymer chain.

Since the calculations for P(R) are computationally intensive, the Dirac Delta
term within P(R) for the lattice model must be rewritten as an integral. Since the Dirac
Delta equation within P(R) is given in three dimensions, the integral formula for the
Dirac Delta must also be written in three dimensions. The integral formulation for the

Dirac Delta function is given below. The formula for P(R) is also given below for

convenience.
1 +o00 N-1
6(r) = Wj dge'dr, P(R) = jduo j duy_, 6 (R — Z ul-) Py ({u;})
- i=0

In the equation for P(R) above, the term Py ({u;}) is the product of the
probabilities for each bond vector b to take on a specific value out of the set of the bond
vectors b = {ibx, +b,, ibz}. The equation for Py ({u;}) is given below where Py ({u;})

is the joint probability distribution for the N bonds.

Py ({u;}) = Py (uo)Py(uy) ... Py (uy—1)

Likewise the terms P; (ug), P;(u;) ... P; (uy_1) are the probability distributions for

a single bond corresponding to the bond vectors u,, u; and uy_q.

Since the polymer in the lattice model is treated as an ideal chain, the probabilities
for each bond vector to take on a specific value are all equal to each other, where there
are a total of six bond vectors. This in turn leads to the following equation for P; (u)

where P; (u) is the probability distribution for any of the bond vectors.

1
P,(w) =16 (u € nearest neighbor vectors)

0 (otherwise)

12



Since the cas9 polymer is going to be treated as an ideal chain, the terms

P; (uy), Py (uy) ... P;(uy_,) are all equal to P, (u), whereas stated previously P; (u) is the
probability distribution for any of the bond vectors. This in turn leads to the following

formula for Py ({u;}) below.

Py () = (PLw)"

This in turn makes it possible to rewrite the formula for P(R) as the following equation.

1 N-1
P(R) = ) j dq elaRr HJ duje—lqujPl(uj)
]=

The formulas for P, (uj) and Py ({u;}) are also given below for convenience along

with §(r).

N-1

P(R) = jduo j duy_, 6 (R — Z ul-) Pyv(fw}),  Pi(w)=P(w)

i=0

1 N-1
P(R) = ) j dq elar HJ duje—lqujPl(uj)
]=

1 oo .
6(r) = W j_oo dqe'?”
The equation for P(R) above is really just the inverse Fourier transforms of many
Fourier transforms. The equations corresponding to these Fourier transforms are given

below. P, (q) is the Fourier transform for a single probability distribution P; (u).

Likewise, [P;(q)]" is the product of N such transforms.
A0 = [ aun e, B@I jdu, -iaup, (u;)

This leads to the following equation for P(R) given below.

P(R) = j dq e [, (]

(2m)?
The formulas for [P;(q)]" and P, (q) are both given below for convenience. The

computations for P(R) will be continued in the following pages.

13



P = [awn@er,  P@ =] | [ dyeun(w)
j=0

As was stated in the previous page the formula for P(R) is given in the following

form.

1 N-1
P(R) = ) j dq elaRr HJ duje—lqujPl(uj)
]=

Next the equation for P; (u) will be computed along with the formulas for P, (q) .

As stated previously the formula for P; (1) is given by the following equation.

1
P (u) = IE (u € nearest neighbor vectors)

0 (otherwise)

This in turn can be rewritten as the following series where a sums through the set

of the nearest neighboring vectors b.

- 1
PG =2 6u—a),  b={th, th, +h}
a

In order to streamline the calculations for [P; (¢)]", approximation techniques
will need to be employed. The approximations that follow in these pages hold so long as
N> 1.

In order to make use of such approximations, the following series for e* will be deployed
for the purposes of calculating P(R). The calculations for P, (q) are also given beneath
the series for e* below and will be continued in the following pages.
x" x? x3
eX = Zﬁz T+x+—rtogr+

n=0

Pi(q) = j dupP(w)e ",  Pi(q) = j du [%Z S(u— a)] eiau

14



The equations for P, (q) that were stated in the bottom of the previous page are

restated below for convenience.
- . - 1 .
Pi(q) = j duP;(u)e™%, Pi(q) = j du [gz d(u— a)] e lau
a

These integrals in turn lead to the following equation for the Fourier transform P, (q). As
stated previously the function P, (q) is the Fourier transform of the probability

distribution P; (u) where P; (u) is the probability distribution for a single bond vector a.

- 1 .
OB
a
Nb3lql?

Since it is assumed that N > 1, [P; (q)]" can be reduced to the result e 6

with the use of the following approximation scheme given below.

IAOIK [ Z 1-iq- a——(q a)® + ]

N

1 1 b?
~ [g (6 - E{Zqﬁbé +2q2b3 + 2q§b§}>] ~ (1 - g‘) (q2b3 + q2b3 + qzb§)>

1 belql?]"  _nbdla?
~|1= ~ 6
e e
Hence [P; (q)]" is given by the following equation for N > 1.

Nbélql?

[Pi(]V =e™ 6

Just like in the previous case for the lattice model the Fourier Transform of a

Gaussian will be employed to streamline calculations. The formulas corresponding to this

transform are given below. The calculations for P(R) will be carried out in the next page.

As stated previously P(R) is the probability for the end to end vector to have a value R.

catr—cl? geigr — (T2 A4 i ~alrl? g-iqr — (T)/? -4
dre e~ =(—) e 4a , dre "¢ “”=(—) e 4a
a a

3/2

2 iq- T _lql? , . m\3/2 _lql?
dre T eldT = (—) e 4a, dre~alrl®elar = (—) e 4a
a a
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The calculations for the term P(R) are given below.

wp2lal? 1 [ 6m \/* -8l

P(R) = iq'R 6 R 4NDb?
®)=Gx )3j dqe™Te (2n)3<Nb§> ¢
_Nb3lgl? 1 (6m\/? -l

P(R) = iq'R 6 = 4ANDb?
®)=Gx )3j dqeTe o =omen <Nbg> ¢

3 > _3IRPE
P(R) = <2ang> e

While both the bead spring model and the lattice model have their uses, they are
not without limits. The partition function Z in the bead spring model is not written in
terms of the position vectors of the amino acids. Since the hydrogen bonds are
interactions between these amino acids any model that incorporates hydrogen bonds must
be in terms of these position vectors. While The lattice model is written in terms of these
position vectors it fails to account for the energies due to the peptide bonds. Since the
quantum mechanical interaction is a sum of the energies of the hydrogen bonds, the
lattice model is not sufficient either. Another model must be obtained for incorporating
the quantum mechanical perturbation. In order to construct such a model, the strengths of
both the bead spring model as well as the lattice model must be combined into a single
model. This model will be written in terms of the position vectors of the amino acids;
however, it will also account for the potential energy of the peptide bonds. In order to
achieve such a model, the partition function Z, will be rewritten in terms of the position
vectors of the amino acids 1y, ..., 7y as well as the potential energy for the peptide bonds
H,'. Below are the equations for position vectors of the amino acids u;,i = 0, ..., N — 1

as well as the partition function Z,. The Hamiltonian H is also given below.

N-1
3
ZO = jdro j drNe_'B:H‘O(TO""'TN) y :7'[0 = _Z_bzz |Tl - Ti+1|2
i=0

_ ’ !
Ui =Ty — 1
In order to convert from one model to the other a coordinate transformation must

be performed on the integral Z,. This will be done in the following page.
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The coordinate transformation from the coordinates 7y ... 1y to the coordinates

U, ... Uy_q 1S given below.

d(ry, ., Ty)
0(ry, Ug, - Uy_1)

dTO dTN = drodu,o duN_l = droduo duN_1

In order to convert the bead spring model to the lattice model the Hamiltonian H,
must be rewritten in terms of the bond vectors u, ..., uy_4. This is due to the fact that the
Hamiltonian H, is in terms of the position vectors for the ends of the sub chains. The
calculations below correspond to the conversions of H, from the bead spring model to
the lattice model where the indices i’ and N’ are dummy indices. As stated previously R

is the end to end vector. These calculations are continued on the next page.

3
Hy =— szzm Tipal? = ZbZZMH =_2_b2|7”N_T0|2

3 3 3 ,
_Z_bzer - To|2 = —2—b2|TN' - To'|2, —Z—bZ|TN' - To'|2 = _2_b22|ri+1 - Ti' z
i=0
3 3
7'[o=—2—bZZ|Ti'+1—Ti'|Z, Hy =_2_sz|ui|2
0 = 2b22|_u |2 ‘7-[0 = 2b22|rl rl+1

Next the partition function Z; is rewritten in terms of the position vectors of the
amino acids 1y, ..., 7y'. The following Jacobian is given below along with the following
equation for u;.

a(rOJ Ug,) - ruN—l)

=1
o(ry’,ry's s my’)

j— ! —
U =Tipqg — 1

This in turn leads to the following equations for Z, and H, where Z, and H,, are

rewritten in terms of the position vectors for the amino acids rg, 7y, ..., Ty.

Zy = jdro ---jdrzve_m{o(ro""’r”)' Ho = “op2 Zh’z Tiv1'
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Hence when the number of sub chains is large the two models have the same
formalism. The main difference is that one model sums over sub chains while the other
sums over the position vectors of the amino acids. Since the number of amino acids is
very large for each protein it is necessary to break it down into sub structures in order to
understand it, this is especially the case for Cas9 which contains 1368 amino acids. These
substructures are referred to as the primary structure, secondary structure and primary

structure respectively. These structures will be discussed in the following pages below.
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Protein Structure

The primary structure is the sequence of the amino acids in the polymer chain.
The secondary structures are referred to as beta strands and alpha helices respectively.
The tertiary structure is the structure of an entire conformation.

Every amino acid can be broken up into two sections. These sections are the
backbone and the sidechain. Another name for the sidechain is the R group. The
backbone of every amino acid is identical. The sidechains, however, are different for
every amino acid.

There are three different cases in which hydrogen bonds can form. In the first
case, hydrogen bonds form between the backbones of two different amino acids. This is
possible for each and every pair of amino acids. In the second case hydrogen bonds form
between the sidechains of two different amino acids. In the third case side chains form
hydrogen bonds with a solvent. In each of these cases certain requirements need to be met
in order for a hydrogen bond to form.

In order for two backbones to form a hydrogen bond there are two conditions that
must be met. In the first condition the vectors pertaining to the side chains of each amino
acid must be parallel to each other. In the second condition, the sequence of amino acids
containing the two amino acids that are adjacent to each other must be in a strand state.
This will be explained in detail later.

While the hydrogen bonds pertaining to backbones can occur between each amino
acid, this is not the case for sidechains. Only certain combinations of sidechains are
capable of forming hydrogen bonds. Even when two such sidechains are in contact it is
not guaranteed that a hydrogen bond will form. Depending on the form of the sidechain, a
hydrogen bond may or may not form. If the sidechain only comes in one form, then the
probability is equal to one. The same cases hold if the form of the sidechain is irrelevant.
If the form of the side chain of an amino acid determines whether or not a hydrogen bond
will form, then the probability that a hydrogen bond will form is less than one. So long as

the number of amino acids is sufficiently large these probability terms hold.
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Just like for the sidechain interactions there are only certain amino acids that can
interact with solvents. In addition, the only component of an amino acid that can interact
with the solvent is the side chain. The sidechains must also be pointing towards an empty
lattice site within the lattice model. In order to streamline calculations, the system will be
constrained so that the only solvent interacting with the side chains will be water.

In a nutshell there are three different forms of hydrogen bonds. These are referred
to as backbone interactions, side chain interactions and solvent interactions. The
backbone interactions occur between the backbones of the amino acids. The side chain
interactions occur between sidechains of the amino acids. Likewise, the solvent
interactions occur between the side chains of the amino acids and a corresponding
solvent. In this case study the solvent will be water. These terms together make up a
correction that will be referred to as the quantum mechanical perturbation and it accounts
for the effects due to the hydrogen bonds. Among these effects are the effects due to
quantum tunneling. These corrections will be discussed in the following pages. Then the

quantum mechanical correction computed.
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CHAPTER II:
QUANTUM MECHANICAL PERTURBATION

Quantum Mechanical Interactions

The term that accounts for the quantum mechanical interactions is given by Ggp,
where Gg) 1s the Gibbs free energy corresponding to the hydrogen bonds. This includes
both the potential energy of the peptide bonds as well as the total energy pertaining to the
hydrogen bonds. There are three different forms of hydrogen bonds that will be discussed
in more detail later on. These are the hydrogen bonds due to the backbone interactions,
sidechain interactions and solvent interactions. In addition to these interactions are steric
interactions which will be explained in detail later. The equation for the Gibbs free
energy Ggy 1s given below.

Gom = b AGsopy + € - AGsoppp + d - AGyp + € - AGrpona + 9 * AGion
+h-TAS,,c + k-TASs. + a-AGygy + f - AGy + 1 - AGygsn

In the equation above AGgeric = @ AGygyw + [ AGe + L AGygsn 18 the
contribution to the free energy due to steric effects. a - AG,4,, 1s the Gibbs free energy
due to the Van der Waals forces, f - AG,, is the Gibbs free energy due to the electrostatic
interactions and [ - AG 4y, 1s the Gibbs free energy due to steric clashes. The equation
Gou 1s rewritten below in terms of the substitution AGgeric = @ - AGygy, + f - DGy + 1+
AG 45, for convenience.

Gom = b " AGsowy + € " AGsorpp +d - AGyp + € * AGhpong + g * AGron
+h-TAS,,c + k-TASs. + AGgperic

The terms h - TAS,,,. and k - TAS,, are the contributions to the free energy due to

the hydrogen bonds between the backbones of the amino acids as well as the sidechains

of the amino acids.

21



The substitutions TASy;, = h - TAS,,., and TAS;. = k - TAS,, are included below
in the term corresponding to the free energy Gy, for convenience.

Gom = AGsteric + b - AGsopy + ¢ * AGsoppp + d - AGyp + € - AGrpona
+9g - AGyon + TASp, + TAS,

In the equation above TASy, is the entropic penalty due to backbone interactions.
TAS,. likewise, is the entropic penalty due to the sidechain interactions, where the
constant k has been absorbed into the equation for S;..

The terms b * AGgypy and ¢ - AGg,p,p together account for the interactions
between the amino acid side chains as well as the solvent. This in turn gives us the
following equation below, where AGgoipent = b * AGgo1py + € AGgoppp. In order to
constrain the model even further it is assumed that the only amino acids that interact with
water are the polar amino acids. Therefore b * AGg,1,y = 0. The modifications for Ggy

are given below.

GQM = AGsteric + AGsorent + d- AGyp + € AGppong + g * AGyon + TASp, + TAS,,
Since the term g - AGy,,, 1s only applicable for interactions between different
polypeptide chains it is set to 0. The term Gy can then be rewritten in the following

form below.

Gom = AGsteric + AGsowent +d - AGyy
+e * AGppong + TASy, + TAS,

The model will now be further constrained so as to assume that the water
molecules form up to one bond each with the cas9 protein. The term that accounts for
multiple hydrogen bonds (see the paper The FoldX web server: an online force field) with
water is given by d - AG,,;,. Since the model is constrained so as to assume that the water
molecules form up to one bond each with the cas9 protein the term d - AG,,, is set to zero
such that d - AG,,;, = 0. This leads to the following equation below.

Gom = AGsteric T AGsorvent
+e * AGppong + TASy, + TAS,
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The model will be further constrained so as to assume that the amino acids each
only form one hydrogen bond with each other. The term that accounts for such
interaction is given by AGppona- AGhpona 18 therefore set to zero. Therefore AGypona = 0.
This leads to the following equation below for AGgy. As stated previously AGgy, is the
difference in the free energy due to the quantum mechanical interactions.

AGom = AGsteric + AGsorpent + h - TASp, + k - TAS,

In the equation for AGgy above, AGgieric 1s the free energy due to steric
hinderance, AGg,pent 18 the free energy due to the solvent interactions and TAS,;, and
TAS, are the free energy penalties due to the backbone-backbone and sidechain-
sidechain interactions respectively. In the following pages the quantum mechanical

perturbation AS,), will be obtained from AGg .
This leads to the following equations below for AG gy and ASy .

AGQM = AGStBTiC + AGsolvent + TASbb + TASSC' AGQM = _TASQM

1 1 1
ASQM = _?AGsteric - ?AGsolvent — ASpp — AS,e, _?AGsolvent = ASsowent
1
ASQM = ASsteric T ASsowent — ASpp — ASse, _?AGsteric = AHgtoric — ASsteric

The calculations for the total conformational entropy S;,:q; are given below.
Stotat = So + SQM: Stotat = So — Spp — Ssc T Swater + Ssterics
Samino = Spb + Ssc» Stotal = S0 = Samino T Swater T Ssteric,

Gamino = Hpp — TSs¢, Gamino = —TSamino

G i be
- ar’;mo == T + Sse) Gamino = _kBTln(Qamino): ln(Qamino) = =B Gamino
Qamino = e_ﬁGamino' Qamino = e_ﬁbe+ﬁTSSC' TSamino = —Gamino
—G.o:
Samino = $' Samino = kBln(Qamino)

Z
Stotal(R) = kgln [?O X P(R)] —kp ln(Qamino) + Swater T Ssterics

Z
Stoal (R) = kB ln [?0 X P(R) ] + Swater + SSteric

Qamino
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As stated previously the formula for the total conformational entropy S;y¢q; 18

given by the equation below.
Stotar = So = Spp — Ssc T Swater T Ssteric

In the term S;,:4; above, Sy 1s the entropy corresponding to the backbone penalty
and S, is the entropy corresponding to the sidechain penalty. The sum S,,,in0 = Spp +
S, 1s a function of the partition function Qgmino- The entropy Sgmino 18 derived from the
free energy equation Ggmine, and Gamino 18 the free energy corresponding to the
backbone and sidechain interactions. Likewise, Hp,, 1s the potential energy corresponding
to the backbone conformation. As we will see later, when quantum mechanical effects are
taken into account a kinetic energy term KE is added to the potential energy Hy, such
that H,, = KE + Hp,. In the following pages the equations for Sg., Spp, Ssowen: and
Ssteric Will be calculated in order to derive the formula for the total entropy S¢pqr =

Sprotein + Swater-

Below are the calculations for the side chain conformational entropy Sg..

:BESC,l
Ssc = —kg Zipilnpi' bi = m t=0,..,1367
ﬁESCL e_ﬁESC.i
Ssc = _kBZ Z e—BEsci <Zie_ﬁESC'i>
ﬁESCL e_ﬁESC.i
Ssc = _kBZ Z e—BEsci <Zie_ﬁESC'i>

e‘ﬁEsc,i e‘ﬁEsci
SSC = —kB —ln(e—BEsc,i) + kB —In (Z.e—ﬁEsc,i>
l

iZi e_BEsc,i Zl :BESCL
1 ESC l.e_ﬁEsc,i e_BEsc,i
—- — Pt — _ _.BE c,i
SSC T i Zl e_ﬁESC,i + kB 121 e_ﬁEsC,i ln (Zle ’ )

1 ESC l.e_ﬁEsc,i
—_— - _.BE c,i
Sse T i Zi e~ PEsci +kgln (Zie ’ )

In the calculations above the term E ; is the hydrogen bonding energy

corresponding to the ith amino acid.
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When the E;’s are all very small this equation reduces to the following

approximation below.

1 Zi Esc,ie_ﬁESC'i 1_

i e

Assuming that E. ; is small the entropy S, reduces to the following equation

below. The formula for the total energy due to the sidechain interactions E,, is also given

1 _ 1
Ssc = _TZiEsc,i ’ Es = TZiEsc,i

This in turn leads to the following equation for S, below.

below.

1
Ss¢ = — T Es
The free energy Gamino = Hpp — TSsc Wwhere Gy, = —TS,. can then be rewritten
in the following form below.

Gamino = Hpp + Esc

—BE;
In the equation for G,,in, above, Ss. and p; = ;e——ﬁlEi both sum over all of the
i

1367 amino acids of the cas9 protein, S,,4¢er- The calculations pertaining to the S,,4¢er
term will be given in the following pages.

As stated previously the solvent interaction term S, ;4. 1S constrainted so as to
assume that the only solvent that interacts with the amino acids is water. In the
calculations below, AG,_,, is the change in the Gibbs free energy due to the water
interactions. Likewise, @, and @, are the partition functions corresponding to the terms
Gp, and G, respectively. The Hamiltonians for the partition functions Q, and Q, are given
by both H,, and H,. The calculations for the entropy contribution for the solvent

interactions S, ¢ are given below. These calculations will be continued in the following
pages.

AGyp =G, —G,,  AGyp = —kgTIn (%) AGg_,, = —kgTIn(e=Wp=Ha)/ksT)
a

_Hp Hq _Hp _Hq
AG,., = —kgTIln <e kBTekBT> = —kgTIln <e keT /e kBT>
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The calculations corresponding to the free energy are continued below.

_Hp _Hq
AG,,, = —kgT [ln <e kBT> + In <1/e kﬂ)l

_Hp _Ha
AG,., = —kgT [ln <e kBT> —In <e kﬂ)l
_Hp _Ha
Gy, = —kgTIln <e kBT>, G, = —kgTIn <e kBT>

Where AG,_,;, is the change in the binding energy between a given molecule and
amino acid. This is the energy required to break a bond with a water molecule. The
formulas pertaining to the entropy due to the hydrogen bonds with water are given below.

Gyater Hyater

Swater - = T Gwater = Hwater' Swater - = T

In the equations above, H,, ¢ 1s the Hamiltonian corresponding to the hydrogen
bonds between the sidechains and water.

The partition function Q,, ¢ 18 given by the following equation below, where
Qwater 18 the partition function corresponding to the energies between the sidechains and

water.

_Hwater
= kpT
Qwater =e€ B

This in turn gives leads to the following calculations for the total conformational

entropy S¢otqr below, which will be continued in the following page.

Stotat = So (R) + kg ln(Qamino) + kp ln(Qwater) + Ssteric

7
Stotal = In [?O X P(R)] —kp ln(Qamino) + kp ln(Qwater) + Ssteric

Qwater

Z
Stotar = In [?0 X P(R)] - kBln< ) + Ssteric

amino
Z
Stotar = In [70 X P(R)eﬁEbb-'-ﬁEsc_ﬁEwater] + Ssteric

e _ﬁEwater

eEbp—Esc

Z
Stotal = In [70 x P(R) l + Ssteric
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For the purposes of this paper the value of Sg;.,;. Will be set to some unknown

constant C(N). This in turn leads to the following equation for S;,;4;-

e _.BEwater

Zy
Stotal = ln 7 X P(R) eEbb_ESC

+ C(N).

Where E,, ;ter 1S the quantum mechanical energy due to the interactions with
water. E}, 1s the correction due the interactions between the backbones and Ej, is the
correction due to the interactions between the sidechains. Only certain sidechains are
allowed to interact with each other and are different for every amino acid. The backbones
however are the same for every amino acid and the backbone interactions can take place
between any amino acid pair. Likewise, for the water interactions only some of the amino
acids are capable of interacting with water. In order to streamline calculations, the system
will be constrained so that the only solvent that will be interacting with the amino acids
will be water. The first term that will be discussed will be the energy due to the backbone
interactions Epj,. Then the energy corresponding to the side chain interactions E, will be
evaluated. Afterwards the energy corresponding to the interactions between the amino
acids with water E,, 4., Will be computed. Then the entropies for the cases corresponding
to the quantum mechanical corrections with and without tunneling will be computed and
the extent effects will be determined on the total conformational entropy of the Cas9
protein. In the following pages the energy due to the backbone interactions E;;, will be

computed and its overall influence on the conformational entropy of Cas9 determined.
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Backbone-Backbone Interactions

The Hamiltonian corresponding to the interactions between the amino acids is

given below.
Hamino = Epp + Esc

Where E, is the energy corresponding to the hydrogen bonds between the
backbones and E, is the energy corresponding to the hydrogen bonds between the
sidechains. Each term is a linear combination of tensor elements. These tensor elements
determine whether or not a hydrogen bond will form based upon the factors that where
discussed earlier. The following series was obtained from the research paper “A Simple

Model that Captures Protein Folding, Aggregation and Amyloid Formation™.

1 N N
Epp = EZ Z €npH;jCij
i J

In the equation above, H;; = 1 if the ith and jth amino acids have formed a
hydrogen bond, otherwise H;; = 0. Likewise, the term C;; = 1 if, the ith and jth amino
acids are in contact, and the ith and jth amino acids are not adjacent to each other on the
polymer chain. If on the other hand the ith and jth amino acids are not in contact, then

C;j = 0. Both of these matrix elements are given below.

H.. = {1 if s;,5; = strand and d; = d;
Y 0 otherwise

C ={1if|5i—15,-| =land|i—j|>1
/ 0 otherwise

Within the definitions for the matrix elements H;; and C;; above, the terms d; and
&j are the vectors for the ith and jth side chain. Likewise, p; and p; are the position
vectors for the ith and jth amino acids. The terms s; and s; are elements within the set
Agecs = {strand, coil} such that s, s; € {strand, coil}, where A is the set of
secondary structures. The elements strand and coil are the beta strands and alpha
helices respectively. Likewise, the terms s; and s; are the states containing the ith and jth

amino acid respectively. Each state corresponds to a secondary structure. These

secondary structures are the beta strand and the alpha helix respectively.
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v+ + = hydrogen bond

® =amino acid side chain

Figure 3: The structure of an Alpha helix

Likewise, a diagram for the structure of a beta strand is given below.

Parallel p Sheet

C-terminus __ s ” I

Ce ML C F=n M. C, _ N-terminus
1 TN Ty o TN el e W]
| | | | |
) ) i ) ) "
[} 1 ) "
C-termnus . _La | N B | ‘Il o N-terminus
"N Cx NT “C” N e N
l | | l l |
0 - (] - 0 H

Figure 4: The structure of a Beta strand

While the model for the energy Ejj, is simple it is limited. It is only useful when
one can take into account the directions in which the side chains are pointing. This is

computationally intensive. In order to streamline calculations an approximation will be

employed that allows for the directions d;, dj of the bond vectors to be ignored. So long
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as the number of amino acids is sufficiently large this approximation holds, as the

directions of the bond vectors which are assumed to be random cancel each other out.
The Energy corresponding to the hydrogen bonds between the backbones is

rewritten below as the series Epp,. The terms B;;, X Y and Y; ; are also displayed below for

convenience and will be discussed in detail in the following paragraph.

E =1 AYUB.. XUy, Fox
bb =5 ij i

o= ij =
By 2 T T e 4 67'i+2—rj+o,u

’ Oifi=j+1lorj=i+1
ij — -
X = 5”“”’”' Y { 1 otherwise

The term AY B; ; accounts for whether or not the sub chain containing the ith and
jth amino acid is in a strand state. Together with the fraction % these terms replace the
matrix element H;; given in the previous page. Likewise the terms V;; and é}i_rj,u, both

take the place of the matrix element C;;. In order for the sub chain containing the ith and
jth amino acid to be in a strand state there must be at least two or three consecutive pairs
of amino acids that are in contact. Below are diagrams corresponding to the term
AYB;; XY

Tivo = Tix1 — Tip2 " N, Ti+0 — Tj41 — Tipp ** N

Tis+z € Tj41 € Tipo = ¥, Tivz = Tip1 — Tigo " ¢

In both of these diagrams, the position vectors 1;,, and 1;,, are both adjacent to

each other. The position vectors ;1 and 77, are adjacent to each other. The same case
holds for the position vectors 7;,, and 7;,, which are also adjacent to each other. This is
the structure of a beta strand.

The equation for the term B;; is stated below for convenience.

1
B =6

J = 9 it Tjrtt
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Within the term B;; above the fraction accounts for the likelihood that the bond
vectors will be parallel to each other and oriented in the same direction. If the sub chain is

in a strand state then AYB;;X" is equal to one, otherwise it is equal to zero.

Within the term AijBinij, AV =1ifr,, — Ti+o = U. Likewise if
Tit2 — Tj4o # U then AY = 0. This leads to the following relation below.

Al’j _ {1 l’f Tit2 _T}'+0 =u
Oif rigz —Tjpo #u

Just like the matrix element A”, the term B;; = % if 744 — 1341 = w. Likewise if

Tit+1 — Tj4+1 # u then B;; = 0. This leads to the following relation below for B;;.

_ {1 if g1 —Tje1=U
v Oif riga —Tjpo #u
Within the term AY B; X Y the matrix element X/ = 1 ifr; — i = u. Likewise if

r; —1; # u then X" = 0. This leads to the following relation below.
XU={

In order to account for double counting a term % was introduced in the equation

for Epp,. The equation E,, is restated below for convenience.

1 N—-2N-2
Epp =3 Z Z AYB; XYY, ;E%*
i=1 j=1

As stated previously the matrix element Y;; is given by the following relation

below.
Yuz{Oifi=j+1orj=i+1
Y 1 otherwise

The term Y;; = 0 when the ith and jth amino acids are adjacent to each other on the
polymer chain, otherwise the term Y;; = 1. The term Y;; was introduced in the summation
E,;, because amino acids that are adjacent to each other on the polymer chain do not

interact with each other. Hence even if AYB;; X" is equal to % a hydrogen bond may not
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be present between the ith and jth amino acids. This is precisely the case for Y;; = 0.
This corresponds to the case where the ith and jth amino acids are adjacent on the
polymer chain.

If all of these conditions mentioned above are met, then the likelihood of a
hydrogen bond forming is equal to 1/2. For a large number of amino acids, the energy for
a single hydrogen bond can be set to the average of all of the eigenstates. These
eigenstates correspond to the different possible energies of the O—H bond between the
ith and jth backbone. The average energy for these eigenstates is given by the equation
for E%* below.

Yr=o Er?xe_ﬁng

EOx —
2 _ EOx
Z e Pin

Where OY = 1 if the hydrogen bond pertaining to the ith and jth amino acid
contains an Oxygen atom and equals zero otherwise. Likewise, N/ = 1 if the hydrogen
bond pertaining to the ith and jth amino acid contains a Nitrogen atom and equals zero
otherwise.

In summary there are two different types of interactions between the amino acids.
These are referred to as backbone interactions and sidechain interactions. In the case of
backbone interactions, the sidechains corresponding to the pair of amino acids in a
hydrogen bond must be pointing in the same direction. The term that accounts for this is
given by the fraction 1/2. Also, the sequences of amino acids containing the hydrogen
bond must be in the form of a beta strand. The term that accounts for this is given by

AYB; - Likewise the term that accounts for whether or not the ith and jth amino acid are
adjacent to each other is given by X%/ In order to ensure that the ith an jth amino acids
are not adjacent to each other in the polymer chain the term Y;; is included in the
summation Ej;, where E,;, is the equation for the sum of the backbone interactions. A
similar term holds for the side chain interactions and is given by the following equation

below.
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1 N N
Es = EZ Z CinijMaiaj
2 ]

This equation will be discussed in the following pages and the energy E. will be

evaluated.
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Sidechain-Sidechain Interactions

The Energy corresponding to the hydrogen bonds between the sidechains is given

1 N N
Es = EZ Z CinijMaiaj
i

The term C;; determines for whether or not the ith and jth amino acid are in

by the following equation.

contact. The matrix K;; determines whether or not the ith and jth amino acid are facing
each other or parallel to each other. The matrix elements C;; and K;; are both given
below.

C ={1if|5i—15,-| =land|i—j|>1
/ 0 otherwise

lifd;=—djand |(p; +d;) — (; —d;)| = 1
Kij=41ifd; = dj and |(p; + d;) — (p; — d;)| = 1
0 otherwise

In the equations above, term K;; accounts for whether or not the sidechains are
pointing in the same direction or are parallel to each other. If the ith and jth side chains
are parallel to each other then d; = d; and |(p; + d;) — (p; — d;)| = 1 and the term
K;; = 1. Likewise if the ith and jth side chains are pointing towards each other then d; =
d and |(5; +d;) - (3, — d;)| = Land Ky, = 1.

Just like the term C;; within the summation for E},;, the matrix element C;; within
E. accounts for whether or not the ith and jth amino acids are adjacent to each other on
the amino acid chain. If this is the case, then C;; = 0. Otherwise |p; — p;| = 1 and
|i — j| > 1 thereby setting C;; = 1.

Lastly, the matrix element Mal.a]. corresponds to the binding energies between the

ith and jth amino acid.
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Since this model accounts for the directions of the bond vectors for each of the ith
and jth amino acids, this model is insufficient for the purposes of this study which ignore
such effects. In order to create a less computationally intensive model these effects must
be ignored. This approximation holds so long as the number of amino acids is large. The
equation corresponding E. corresponding to this approximation where the directions of

the amino acids are ignored is given below.

1 N-1
Ese =3 Z R;iMYY;;HY
j=0

Where the terms R;;, Y;; and 7'V are given below. M;; is the probability that a

ijr
hydrogen bond will form between the ith and jth amino acid. The matrices ¥ and MY
were both calculated in the python interpreter. The matrix elements corresponding to the
summation E, are given below. These matrices will be discussed in detail later.
Riy = 1366”_”’”' Yy = {O T =1]o:-h;r(1)/:i]se= T
U = QU FOx 4 NUEN
In the equation for the term '/ above, OY is equal to one if an O—H bond can

form between the ith and jth amino acid and is equal to zero otherwise. Likewise, the

term N is equal to one if an N—H bond can form between the ith and jth amino acid
and is equal to zero otherwise. The fraction % accounts for double counting. The

equations for E°* and EN' are both given below.

2 0x ,—BES*
—ox _ Xn=0En”e BEn

1 Ni_—BENt
Zn:O En e BEn
EOx

Y2_ e~BER"

ENi — _
)] Ni
2711=0 e_ﬁEn

In the relations above the term E 9% is the average value for the O—H bonds and
the term EN' is the average value for the N—H bonds. So long as the number of
hydrogen bonds is sufficiently high these approximations hold. There are three
eigenvalues corresponding to the O—H bond and two eigenvalues corresponding to the

N—H bond. The term E°* sums through the energy eigenstates for the O—H bond,
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meanwhile the term EV! sums through the energy eigenstates for the N—H bond. These

eigenstates will be discussed later in the section “Energy Eigenstates™.
The term R;; is equal to 116 when the amino acids are one-unit vector apart and is

equal to 0 otherwise. This is due to the fact that there are three different combinations for
the directions of the adjacent side-chain vectors to arrange themselves in order for the
hydrogen bond to form. These correspond to the two cases where the side chains of the
ith and jth amino acids are parallel along with the case where the side chains are pointing
towards each other. There are 16 total different combinations of arrangements for these
side chain vectors assuming they are adjacent to each other, where the side chain vectors
are the vectors corresponding to the side chains discussed previously. Likewise, MY is
the likelihood that a hydrogen bond will form between the ith and jth amino acid. This is
due to the fact that just because two sidechains are in contact does not mean a hydrogen
bond will form between them. This is due to the following reasons. First of all, in order
for a hydrogen bond to form between two sidechains the hydrogen atom in one of the
sidechains must be in contact with either the nitrogen atom or the oxygen atom in the
other sidechain. In some cases, only the hydrogen atom in the ith sidechain can form a
hydrogen bond with the nitrogen or oxygen atom within the jth side chain. There are
other cases in which only the nitrogen atom or oxygen atom in the jth chain can form a
hydrogen bond with the hydrogen atom within the ith side chain. In order to account for
these facts, probabilities are assigned to each of the elements within the MY matrix
element given in the summation E.. Also, there are cases where the amino acids need to
come in specific forms in order to form hydrogen bonds at all. The matrix element MY

accounts for this fact as well. So long as the number of amino acids is large this
approximation holds. Likewise, the term 116 accounts for the probability that the side

chains will either be facing each other or be parallel to each other. For more information

consult the tables in the appendix.
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In summary the hydrogen bonds between the side chains must meet certain
requirements in order to form. First of all, the amino acids must either be pointing
towards each other or be parallel to each other. Second of all, the amino acids in question
must be capable of forming hydrogen bonds. Third of all, if necessary, the amino acid(s)
that are in contact must be in the right form, the matrix that accounts for this is given by
M;;. The matrix M i accounts for whether or not the ith and jth amino acid can form a

hydrogen bond. If they can then the matrix is equal to the probability that that hydrogen

bond will form for the reasons discussed earlier. The matrix R;; is equal to 116 when the

amino acids are in contact and is equal to 0 otherwise. The fraction 136 is the probability

that the side chains corresponding to the ith and jth amino acid will either be parallel or
facing each other. Likewise, the matrix H'¥ is equal to the hydrogen bonding energy
between the ith and jth amino acids. Lastly the series E; is the total energy
corresponding to the hydrogen bonds between the sidechains. I order to account for all of
the interactions due to hydrogen bonds, the interactions between the amino acids with
water must be computed along with the backbone interactions and side chain interactions.
Just like with the side chain interactions there are only certain side chains that can

interact with water. This term will be computed in the following pages.
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Solvent Interactions
The Eypent term accounts for the interactions of the side chains of the amino
acids with water. These amino acids are referred to as hydrophilic amino acids. There are
three different types of hydrophilic amino acids each corresponding to three different
types of R groups. These are positively charged side chains, negatively charged
sidechains and side chains with alcohol groups. These groups of amino acids correspond

to the sets E, E_ and Ep and are displayed below.

Ep = {Eser, Ernry, Ev = {Erys Earg, Enish,  E— = {Easp, Eguu}
Epy = {Easn, Ecin}

Where E, and E_ are sets containing the energies for the positively and
negatively charged R groups. Likewise, the term Ejp is the set containing the amino acids
with beta-hydroxyl groups. Lastly the term Ep; is the set containing the energies of the
amino acids with polar uncharged groups. Since Serine and Threonine contain Hydrogen,
Carbon and Oxygen atoms in their sidechains the only hydrogen bond that can form
between them and water is the O—H bond. Hence the energy Ep is given by the
following equation.

Yo nge—ﬁE,Q"

2 _ EOx
Yi_oe BER

Eg

Likewise, Lysine, Arginine and Histidine are positively charged. Therefore, the
Hydrogen atoms and only the hydrogen atoms on these sidechains can interact with
water. Hence the energy corresponding to the set E, is given by the following equation.

2 0x ,—BES*
_Zn=0En e AEn

2 _ EOx
n=oe ﬁ n

E,

Since Aspartate and Glutamate are negatively charged, only the Oxygen atoms are

going to interact with water. Hence the energy for E4, are Eg,, corresponds to the O—H
bond and only the O—H bond.

2 0x ,—BES*
_Zn=0En e AEn

2 _ EOx
n=oe ﬁ n

E
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The calculations for these terms will be continued in the following pages along
with the energy E,pent corresponding to the solvent interactions

Asparagine and Glutamine both contain a N—H dipole and an O—H dipole. Both
of these dipoles can interact with water. Because of this, the energy for Ep;; must be set
to the likelihood that an N—H bond will form plus the likelihood that an O—H bond will
form. This is the average energy corresponding to the amino acids Eyg, and E¢;p,
respectively.

The equation corresponding to this energy is given below

1 pU _—-pBEFU
E _Zn=0El e'gl
PU =

1 _ﬁEPU
n=0 e L

In the term for Epy; above the energies EfVand EFY are given by the following

equations below.

2 0x ,—BEJ* 2 Ni,—BEN
EPU _ Zn:O En e BEn SPU Zn:O ETl e BEn
0 - 2 Ox 4 1 - Ni
—pPE. 2 —[BE

These relations are the same as those for the energies E%* and EN'. These
equations are restated below for convenience.

2 0x ,—BES* 2 Ni_—BENt
O _Zn=0En e BEn —Ni_2n=0Ene BEn

EOx
2 —_BEO9x 2 _gENi
anoe BEn Y e BEn

)

The equation pertaining to the energy Egypent 1S given below. The calculations

for this term will be completed in the following page.

Nsov N

1
Esowent = 2 Z Z Mai,solv " Ki sow

solv i

In the summation Eg,ppene above, the term My, 501, 18 the energy between the
solvent and the ith amino acid a;. Likewise, the term K; ¢, indicates whether or not an

interaction between the solvent and the ith amino acid a; occurs.
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The equation for the matrix element K; ¢, 1s given below.

K som = {1 if (ﬁl + Czl) = ﬁsolv
' 0 otherwise

In the matrix element K; s, above the term p; is the position vector for the ith

amino acid. Likewise, d; is the vector for the sidechain of the ith amino acid.

N-1 N-1N-1

solven Z El Z Y’jWijEi
J:

i=0 i=
In the equation above, E; is the energy for the hydrogen bonds with water. WY
accounts for how many amino acids are touching the ith amino acid. These terms along
with the usual Y;; term are given below.
) E°*if E; € EgUE, UE_
wy = —Sri—rj,u' Ei = EHb lf Ei € EPU
0 otherwise
Yl_z{Oifi=j+1orj=i+1
Y E otherwise ’

In the set of equations above the term WY = i if the ith and jth amino acids are

in contact otherwise W% = 0. This accounts for how many empty lattice sites are
adjacent to the ith amino acid. If there are 4 amino acids adjacent to the ith amino acid,
then the likelihood that a hydrogen bond will form is zero. If there are 3 adjacent amino
acids, then the likelihood that a hydrogen bond will form is equal to 1/4. Likewise, if
there are 2 adjacent amino acids then the likelihood that a hydrogen bond will form is
equal to 2/4. If there are 3 adjacent amino acids, then the likelihood that a hydrogen bond
will form is equal to 3/4. Lastly if there are 4 adjacent amino acids, then the likelihood

that a hydrogen bond will form is equal to 4/4.
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In summary there are four different sets of amino acids that can form hydrogen
bonds. These sets are the positively charged amino acids E, negatively charged amino
acids E_, polar uncharged amino acids Ep;; as well as the set of amino acids containing
beta hydroxyl groups Eg. In order for a hydrogen bond to form between the ith amino
acid and water, there must be an empty lattice site adjacent to ith amino acid. This is
accounted for by the term WY, The term WY accounts for the probability that the
sidechain will be facing an empty lattice site. So long as the number of amino acids is
large this approximation holds. Lastly the term E,;pen: 1S the total energy for the
hydrogen bonds between the amino acid side chain and water, where water is the solvent
of choice for this system.

You may have noticed that there were terms E%* and EV' that were given in
Epp, Esc and Eypner When computing the quantum tunneling correction. The terms E%*

and EN! are displayed below for convenience.

2 0x ,—BES* 2 Ni_—BENt
E—.ox _ 271:0 ETl € 'B n ENl‘ _ ZTL=0 ETl € 'B n
Y2 e-BEY o y2 o-pEN
n=0 n=Oe

These terms correspond to the average energies of the eigenstates. In order to make sense
of the terms E%* and EM' it is necessary to compute the energies of these eigenstates.
These eigenstates correspond to the different possible energies that the hydrogen bonds
can take on. These energy eigenstates are given by integrals and these integrals are
written in terms of a potential referred to as the Morse potential. The Morse potential
accounts for the breaking of the hydrogen bonds. However, it does not account for the
effects due to quantum tunneling. Another set of equations must be employed for these
purposes. This will be discussed in the following pages. Afterwards the quantum
mechanical perturbation will be added to the term given by S, (R). This term was
discussed in the previous sections of this text and it corresponds to the classical
conformational entropy due to the peptide bonds. These corrections will be discussed in

the following section “Energy Eigenstates™.
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Energy Eigenstates
In order to evaluate the energy corresponding to the hydrogen bonds it is
necessary to evaluate the eigenstates pertaining to them. These are referred to as the
energy eigenstates. The equation for the nth eigenstate of a hydrogen bond is given by the

equation E,, below.

YMax 11« 75
L gy Wy
ymax .
Jymin ¥n¥ndy

E, =

Within the term E,, above, ¥,, and ¥}, are the wavefunction and conjugate
wavefunction and H,, is the Hamiltonian for the hydrogen bond. The Hamiltonian H,, for
the hydrogen bonds is given below. This is the Hamiltonian corresponding to the Morse

potential which accounts for the breaking of the hydrogen bonds.

_ p?h? 92 ol (o
A, =- T a_yz+De(e 2(y-veq) — 2¢~(-veq))

In the equation for H,, above, D, is the disassociation energy, A is the planck
constant, Yoq = Bx.q Where x,, is the internuclear equilibrium distance and u is the
reduced mass of the system. The internuclear equilibrium distance x,, is the distance
between the nuclei of the two atoms engaged in a hydrogen bond. The term S is an
arbitrary constant related to the width of the potential well. Below is the wavefunction
‘P(y)n(l) for the nth state.

w(y),® = ! P 0)-eomrvay
Vi1 () = €D

In the term for ‘P(y)n(l) above, V,,.1(¥) and €,V are the potential and total

energies for the nth excited state. The equations for these formulas are given below.

Va1 (y) = A? (e—Z(y—yeq) - Ze‘(y‘yeq)) + 2nhe—(v=veq)

2
£, M+ = _(A_2n+ 1)

2
In the following pages the terms Py,:q; ({r;}) and Pyy1q; (R) will finally be

computed and their corresponding values determined.
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. Below is the equation P;,.4; ({r;}) for the probability of finding a certain
conformation. This term takes into account the quantum mechanical corrections Ej,,, E.

and Esolvent-

1
Piotar ({TL}) = m e ~BHo(ro,...TN)=BEsolvent
0

Likewise the equation for P;,4;(R) is given by the following integral below.
1
Ptotal(R) = j dry j dry6(ry — To — R)Z_e—[;g-[o
0

Just like in the previous case for Py,;q;(R) in order to compute Pyyrq; (R) it is
necessary to deploy the equations for the Dirac delta and the Fourier transform. The
familiar equations for the Dirac delta as well as the Fourier transform for a Gaussian are
displayed below for convenience.

+oo > _(la?,,
j dge'?* = 215 (x), jdre‘alr‘blze‘i‘?'r = (Z)Z e_(ﬁﬂq'b)

Whereupon the terms Z, and P;,;,;(R) are combined to produce the following
calculations for the total conformational entropy S;,¢q;(R). As stated previously C(N) is

an arbitrary constant in terms of N.

Z
Stotal(R) = kpln [?0 X Ptotal(R)]

e_.BEbb_ﬁEsc

ZO e_37{0(TO'---rTN)—ﬁEsolvent
Stotal(R) = kgln [? x P(R) l

Z
Stotal(R) = kBln [70 X P(R)] - .BkBEsolvent + .BkBEbb + .BkBEsc + C(N)

E E, E
Siotat(R) = (0.00057922750 kgs~2K~1)|R|? — % + % + 25+ CV)

In a summary the hydrogen bonds do in fact influence the conformational entropy
of the Cas9 protein. In the following pages the effects due to quantum tunneling will be
computed along with the effects due to the hydrogen bonds. The effects due to quantum
tunneling are a further approximation on the effects due to the hydrogen bonds. Both

interactions are quantum mechanical in nature and the tunneling correction is a correction
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to the effects due to the hydrogen bonds. Both of these interactions will be calculated in
the following pages for a specific case in which the Cas9 protein is in the form of a giant

beta strand.
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CHAPTER III:
COMPARISON OF THE CLASSICAL AND SEMI-CLASSICAL ENTROPIES

Conformational Entropy Correction
The equations for the total conformational entropy S;,:q; (R) are given below. The
constants for b and kj are also displayed.

Esor Epp  E
Stotal(R) = SO(R) - %ent + T + % + Ssteric + C(N)

Z E E E
Stotal(R) = kBln [?O X P(R)] - % + % + % + Ssteric + C(N)

b=132-10"10m, kg = 1.38064852-10723] - K1
This leads to the following formula below.

Siorat(R) = (0.00057922750 kgs~2K~1)|R|?

Esowent  Epp  E
50’11167’1 +T+%+Ssteric+C(N)

Seotar(R) = 1.0092377196 - 10723

Esowent  Epp  E
_% T+%+Ssteric+C(N)

The terms Ey,, Esc and E,;pene are the energies of the hydrogen bonds due to
backbone interactions, sidechain interactions and solvent interactions. Eg.ric 1S the steric
energy penalty. For the purposes of this paper water will be the only solvent that interacts
with the Cas9 protein. The steric energy accounts for those cases where the sidechains of
adjacent amino acids on the sidechain clash. For the purposes of this paper the steric term
Ssteric Will be absorbed into the constant C(N). The following pages contain the
corrections due to both the hydrogen bonds as well as the tunneling corrections. These
terms are given by the equations F,,, » and Hypy, 7. Where 3y, 4 1s the correction due
to the Morse potential and H,, 7 is the correction duet to quantum tunneling. These

terms will be computed in the following pages.
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Tunneling Corrections

Below are the equations for the energy corresponding to the backbone hydrogen
bonds.

1N 1N-1
Epp = 2 AijBininij E

i=0 j=0

~.

1 iy
L= — U =
BU 2 é‘7"z‘+1—7"j—1'u’ A 67'i—1—7‘j+1,u

Xl] = ari_rj’u’ Y .

_{Oifi=j+1orj=i+1
ij —

E otherwise
Where the equation for E%% is given below. The average energies of the hydrogen

bonds for the O—H and N—H pairs are given at the end of this study.

1 0x ,—BES*
on _ Zn:OEn e BER

2 _ EOx
Z o€ BER

In the equation for E%* above EQ* is the equation for the nth energy eigenstate for

the O—H bond. The calculations for the term E;;, /T are given below where Eob — g bb 18

the entropic penalty for the backbone interactions. These values are given below along
with the value for E°%,

N-1N-1

_ Ox
11 Y2_oEQ¥e~PEn
- _TE 5r1+1 —Tj—u rl 1=Tj+1U 57’1 JuYij 2 e ‘Bng
i=0 j=0 =0

bb

-

E%* = —6.66101 x 10719

This leads to the following summations for

%0 helow.
1 1N 1N-1
bb —
22 = (~6.66101 X 10 19])ﬁiz Y S S
i=0 j=0
N—-1N-1
Epp _19,1 ij
2 = ~1.66525 % 10 ]?Z Brirmry aure sorjian Orioryu¥iy O
i=0 j=0
E N-1N-1
7‘1” = —5.58810 x 10722] K1 5

. 0Y
Ti+1—7'j—1'u67'i—1—7'j+1'u Sri—rj,uyl] 0

i=0 0

—.
I

The following pages contain the calculations for the side chain contribution E,
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Below is the summation for the energy corresponding to the sidechain hydrogen

bonds.

-1N-1

1 - -
=0 ]:O
R--=i(5 5..=35 Y,_z{Oifi=j+1orj=i+1
Yoo T Yo1e T Y 1 otherwise

Whereupon substituting the equation for 'Y/ one obtains the following equation

for where — = S, 1s the entropic penalty for the side chain interactions.
N-1N-1
Boe (13 5 MUY, ;04 E9*
T - 51_6 Ti—Tju ij n
i=0 j=0
N-1N-1
13 ij ij FNi
+§1_6 Sri—rj,uM YijN En
i=0 j=0

This in turn leads to the following summations below. The values for ES* and

=Ni . . E.
ENU are also given beneath the summations for %C

N-1N-1 0x g~ BES"
&zliz 8r iy uMIY;;0Y Liizo En .
2 — X
T 216 = = Y2_,e BEY
N-1N-1 Nl ﬁENi
22 8prr MUY, i Znzo b o
216 i=0 j=0 Yh=oe PEn
N-1N-1
& — 11 S Ml’jy OijEOx
T - 2 16 Ti—'rj,u l_] n
i=0 j=0
-1N-1
1 3 ij ijNi
+57¢ Bpmr MUYy N ED
i=0 j=0

E%* = —6.66101 x 10719,  ENi = —-521342 x 10719/

The calculations for < will be continued in the pages below.
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Given the values for E°* and EN' in the previous page the equation for % is

equal to the following summation below.

Ese _ —6.66101 x 10-19]li 5 MUy, 09
T ' 216 TimTy
i=0 j=0
N-1N-1
1 3
+ —5.21342 x 10719 I >Ter 8ryer uMIY; N
i=0 j=0

The values for E9* and EV! are restated below for convenience.

E%* = —6.66101 x 10719], ENt = —521342 x 10719
With the computation of basic arithmetic, the above equation % above is distilled

to the following summation below.

E N—-1N-1
% = —2.09554 x 10722 ] - K1 Z SrimruMYY;;0U
i=0 j=0
N-1N-1
—1.64013 x 10722 ] - K1 ) __Tj,uMinl-jNij

i=0 0

-
1l

The calculations for the energy E,, 4+ Will be carried out in the following pages.
The calculations corresponding to the E,, ;;0r term are given below along with the

matrices Ej, ¥;; and WY,

E N-1 N—-1N-1
t P
W; er _ El _ YUWUEl
i=0 i=0 j=0
_(Oifi=j+1lorj=i+1 ij_ 1 _ moxpy 4 FHbp.
Yy = { E otherwise ' we = 46Ti‘ri'”’ Ei=E70; + ET0H;

The calculations for E,;yen: Will be continued on the
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This leads to the following expansion for the summation Es ;0 given above.

The values for E%* and E*? are also given below.

E 1N—l 1N—1 1N—1 N-1
water = = = b
- _TZ; E0%0; + OEHle—iZ; EO%y,wW 01——2; EHb Y, Wi H
i= i= i= i=

E%% = —6.66101 x 10719, EHb = —521342 x 10719
Given the values for E%* and EN! above the equation for < is equal to the

following summation below.

N-— N-—
Esolvent 1 1
—_— 101 x 10719] = i —5.21342 % 10719 =
T —6.6610 0~ T _EO T _EO

N-1

—6.66101 X 10-19]——2 8r—r;u0; — 521342 X 10~ 19]——2 EHYY,;8, y uH

i=

This in turn leads to the following quantum mechanical perturbation term for

—ES"IT"W below, whereas stated previously T = 298 K.

Esolvent

—2.2354 x 1072

x|~

N_
%Z 0; — 1.74947 x 10~21
i=0

N-1
Z H
i=0
N-1
—5.58810 x 10-22%2 Y;;WY0; — 4.37367 x 10-2%2 EHPY, ;WY H;
i i=0

These calculations will be continued on the next page.
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Summing up all of the terms E},, Es; and Egypene such that Hyy = Epp + Egc +

Esotvent leads to the following summation for H,, r below.

N-1N-1
Hym v = —5.58810 X 10722 K1 Z Z OriprrjoatuOria—r sy OrmrjuYij oy
i=0 j=0
N-1N-1
—2.09554 x 1022 ] - K~ 12 8ricr MY 01
i=0 j=0
N—-1N-1
—1.64013 x 10722 ] - K1 é}i_rj,uMinijNij
i=0 j=0
N-1 N-1

(—2.2354 x 10721)) Z 0; — (1.74947 x 10~21)) Z H,
i=0 i=0

N-1 N-1
—(5.58810 x 1072%]) Z Y;;WY0; — (4.37367 x 1072%]) Z EfPY, ;WY H;
i=0 i=0
Where the equation above Hy,, 1 corresponds to the tunneling correction for the
energies of the hydrogen bonds within the Cas9 protein. As stated previously the term
corresponding the Morse potential is given by #,,, » and its energies are lower than

those corresponding to the correction Hyg,, 7. The perturbation Hy,, » corresponding to

the Morse potential will be discussed in the next pages.
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Corrections due to the Morse Potential
Below are the calculations for all of the different possible energies corresponding
to the E};, term for the quantum corrections that ignore tunneling. Just like in the case for
tunneling it is is assumed that T = 298 K
The equation corresponding to the energy of the backbone hydrogen bonds is
given below. The equation for E%* is also given below where E°* is the average energy
for the O—H bonds. This equation holds so long as the number of amino acids is large.

1 N N
Ep, = EZZAUBUXUYUEO"

i=1 j=1
1 i
Bij - E Ti41~Tj-1,W AV = 67'i—1—7‘j+1,u

(i Oifi=j+1orj=i+1
lj — g—

XY= Orirj Yy { E otherwise
2}1:0 ET?xe_ﬁE‘r?x

EOx
2 _ EOx
Yi e BER

In the set of equations above, E°*is the average energy eigenvalue corresponding
to the nth energy state. Its value is given at the end of this study.

Below are the calculations for the Hydrogen bonding energies where the equation

=Lb i5 the entropic

penalty for the backbone interactions. The value for the constant E%* is also given below.

N-1N-1 Ox
Ew_ 117N S 5y, ou ShoBRYe P
T ~ 2T2 Ti41 =T j—pU ST -1 =T j1U joutij 2 —BEO*
i=0 j=0 n=0€
E%% = —6.66651 x 10719

This leads to the following summation for %

N-1N-1
Evb _ 666651 x 1019) — = B B B Y,
T_ - 0. X ]ﬁi Tip1—Tj—p U1~ u Ori—rjulij

i=0 j=0

These calculations will be continued in the following pages below.
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After the computation of basic arithmetic, the following summation is obtained for @

1N-
Eyp
T = —5.59271x 1072*] - K~ Z Z Tit1=Tj-1U TL 17T+l 67’1 J'uYU
i=0 j=0

Below are the calculations for all of the different possible energies corresponding
to the E, term for the case where the effects due to tunneling are ignored. The equation

for ¥ is also displayed below.

3 3 Oifi=j+1lorj=i+1
Yu={ fi=] J

R.. Sij = = Orpr .
¢ b= 1 otherwise

— 6w
i~ 16
HY = OUET?" + NYUEN
Next the term Ej, is expanded by substituting the value for the matrix element

HU into 2 where —£ is the entropic penalty for the side chain interactions.

N-1

2

-1
SC

31 . L
= = _6_T Sri—rj,uMUYijOUon
i=0

~.
[
I}
[=}

N—-1N-
1 ij ijNi
_T (Sri—rj,uM Yl]N E

i=0

3
162

j=0

—~.

C

In the following pages the term E% will be expanded even further to include the

equations for E9* and EYN. These equations are given below, along with the values for
E9* and ENY.

2 Ox ,—BES* 2 Nip- ENI
E—.Ox _ Zn:O ETl e BE ENl‘ _ ZTL OE BEn
- 2 —BE9* ’ - 2 _BEN
n=0¢€ n 0€

E%% = —6.66651 x 1071°],  EN' = —521342 x 1079

The calculations for < will be continued in the following pages.
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Below is the expansions for the term €. The values for the average energies E°*

and EN are also inserted into the bottom equation for %, where the values for E%* and

ENtare E%* = —6.66651 x 1071°] and EN' = —6.66651 x 10~1°] respectively.

E. 3 11\]2:11\]2:15 MUY o Zn Oon —BE9*
Jse _ =~ o °
T 16T2 ey o Y2_,e BEO*
N—-1N-1
31 Zn OENl —,BE
- MUY Nl]
+16T2. , Or;- 2_ egENl
=0 j=0
N—-1N-
Ese = —6.66651 x 10~ 19]——2 Z R;iMYY;;0Y
T 16T 2 o & Y
1N 1N-1

i=0 0

-
1l

With the computation of basic arithmetic, the term < is rewritten as the following

equation below. As stated previously it is assumed that T = 298 K.

N-1N-1

E,.
T = —2.09727 X 10722 ] - K~ Z Z 8y uMUY;;0Y

2 1--
O
;_n
\.

N-1
—1.64013 x 10722 ] - K1 8y j,uMinl-jNij
i=0

-
Il
o

Below are the calculations corresponding to the Eg,,ens term. The formula for

Esovent 18 given by the equation below.

N-1 N-1N-1
Eyater = Z E; — YijWijEi
i=0 i=0 _]=0
_(Oifi=j+1lorj=i+1 ij_ 1  —ox —Hb
Yy = { E otherwise o W=t E=ETO+ BT,

The calculations for E,;pen: Will be continued in the following pages.

53



Below are the calculations for % below, where E; = E°*0; + EMP H; has been

substituted into % The values for E®* and EN' are also given below.

E 1N 1N N- 11N—1

water = — ..

s - _ EHbH __Z xy ij __Z EHbY" UH.

T TZ; TZ; * ’ wo Oit7T3, y yWH,
= = 1= 1=

Oifi=j+1lorj=i+1

Y., = Wi ==5 __ E. = EOx0. + EHP Y.
Y { E otherwise 4 TiTTpU i it i

1 1if E; €E E E
Wl]_—srl o Olz{ lf ! .BU + UL

0 otherwise
E%% = —6.66651 x 1071°],  EN! = —521342 x 1079

This in turn leads to the following equations below where the values for E%% =

—6.66651 x 1071°] and EN' = —5.21342 x 10~'°] have both been substituted into the

formula for 2247 where 22ater jg the entropic penalty for the interactions with water.
E 1 N-1 1 N-1
WaLer — _6.66651 X 10—19]—2 0; — 5.21342 x 10-19]—2 H
T T ¢ T
=0 =0
N-1N-1
—6.66651 x 10-1°] — A
' 4T i
i=0 j=0
N-1N-1
—5.21342 x 10719 1 Yij6r,m
4T v
i=0 j=0

With the computation of basic arithmetic, the above equation is reduced to the

following summation below.

N-1 N-1
E
%“” = —2.23708 x 10721 - K1 Z 0; — 1.74947 x 10721] - K1 Z H;
i=0 i=0
N-1 N-1

+5.59271 x 10722] - K1 Z Yirr;u0; + 437367 x 10722 - K~ Z Vi aH;

i=0
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This in turn leads to the following equation for the quantum mechanical

correction below.

—-1N-1
,
’;m = —5.59271 x 10722] - K1 Z N T SN 7
i=0 j=0
N-1N-1

—2.09727 x 10722 ] - K1

(N

ii ii
STL'—T]',UM JYUO 1

i=0 j=0
N-1N-1
—-1.64013 x 10722 ] - K1 5T'i—7‘j,uMinijNij

i=0 j=0

N-1 N-1

—2.23708 x 10721] - K1 Z 0; —1.74947 x 10721J - K1 Z H,
i=0 i=0
N-1 N-1

+5.59271 x 10722] - K1 Z Yijdrl._rj,uOi +4.37367 x 10722] - K1 Z Yl-j(Sri_rj,uHi
i=0 i=0

It is important to note that the formula for the conformational entropy provides
entropy values for specific protein geometries. Depending upon the conformation that the
protein takes on, certain hydrogen bonds will form while other hydrogen bonds will fail
to form. The hydrogen bonds between the amino acids correspond to specific values for
the Kronecker Delta matrix elements in the E,,ter, Epp and E. terms respectively. In
order to allow the data in this model to be compared to experimental results the model
will be constrained so as to assume that the conformation that the protein assumes is that
of a beta strand. This means that backbone, sidechain and solvent interactions will all be
at play. Since the shape of the protein is that of a beta strand, all the backbone
interactions are present between every adjacent amino acid. The same holds for both the
sidechain interactions as well as the solvent interactions. The entropy formulas

corresponding to these geometries are given below.
E E E
Som(R) = (0.00057922750 kgs~2K~1)|R|? — %ﬁer + % + %
Sr(R) = (0.00057922750 kgs2K-V)|R|? — ater 4 Pov | Fe
! g T T T
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The equations Syy (R) and Sy (R) are restated below for convenience.

E Ey, E

Som(R) = (0.00057922750 kgs>K~)|R|* — %ﬁer + % + %
E E,, E

Sr(R) = (0.00057922750 kgs~2K~)|R|* — %ﬁer + % + %

In the set of equations above Sgy (R) is the entropy corresponding to the Morse
potential and S (R) is the entropy corresponding to the tunneling correction.
Likewise, Hpy,o,r 1s the perturbation corresponding to tunneling and Hp;0,on 1 the

perturbation corresponding to the Morse potential. In order to determine the impact of
both the quantum mechanical effects as well as the tunneling corrections, it is necessary

to compare the two results. As stated previously these results are given by both H,, 1 as

well as Hgpm -
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Comparison of the two quantum mechanical corrections
Below are the expansions corresponding to the Sy (R) term and the Sy (R) term
respectively.

Som(R) = (0.00057922750 kgs~>K~1)|R|?

2

-1N-1

—5.59271 x 10722] - K1 5 5 Y,

1
? Tit1—Tj—1 U rl 1=Tj+pu “ri—riulij
j=
N-—

HO

—2.09727 x 10722 ] - K1 5Ti_rj,uMifYU0if

DME ;M

i=0 j=0
N—-1N-1
—1.64013 x 10722 ] - K1 é}i_rj,uMinijNij

i=0 j=0

N-1 N-1

—2.23708 x 10721] - K1 Z 0; — 1.74947 x 10721 - K1 Z H;
i=0 i=0
N-1 N-1
+5.59271 x 10722 - K1 Z YijSr—r,u0; +4.37367 X 10722] - K1 Z YijSrimruHi
i=0 i=0

With the use of the Python interpreter the calculations of the entropies for
ASyp, ASge and AS,,,;,, for the quantum mechanical and tunneling corrections are given

below.
Spp.m = —7.65083-107° J/K
Ssem = —1.67133-107° J /K
Swater v = —1.17391-10718 J /K

Sppr = —7.64451 1071 J/K

Seer = 1.67133-1071° J /K
Swater. 7 = —1.17767 - 10718 J /K
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Likewise, the calculations for the entropies from the experimental data are given

below.
kcal kcal kcal
be = —48.3()%, Gsc = —18.4()%, Gsolv—polar =73.62 ﬂ
Gamino = Gpp + G, Gwater = Hwaters Gamino = Hpp + Esc

1 _ _ _
Gse = —TSse, Ssc = _?Esc: Ese = =TS, Gse = Esc

Gamino = Gpp + Esc: Gpp + Gsc = Hpp + Esc' Gpp + Gsc = Hpp + Gy
This leads us to the following equations for the free energy.

Gpp = Hpp, Gse = Esc' Gwater = Hwater
The Hamiltonians corresponding to the experimental data are therefore given by

the following equations below.

Ho = —ag30% g igao®d g3 Y
bb = " mol’ se " mol’ water = T2 ol

This leads to the following values for the Hamiltonians for 1 hydrogen bond.

H,, = —4830 % mol 1 particle = —8.020 - 10~23kcal
bb = O ol 6.02214076 - 1022 particles PO T TS @

4184 ]
H,, = —8.020 - 10~23kcal - = —3.356-10"1°
bp = —8.020- 10 keal - T5—7 = —3.356- 107

mol

E,. = —18.4 : -1 particle = —3.055 - 10~23kcal
sc 840 ol " 6.02214076 - 107 particles - PATticle ca

_ 4184 ]
= —3.055 - 10~ 23kcal - =—-1.278-1071°
Eqc = =3.055 - 10 % keal - -5 — 7810719

kcal mol

o2 ' -1 particle = 1.223 - 10722 ] kcal
730 ol 602214076 - 107 particles Pl J kea

Y 4184 ] 1o
Huater = 122310722 ] keal - - — = 5117032107 ]
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In order to make sure that the calculations for Sy}, v, Ssc m> Swater m» Spb 10 Ssc.T
and Sy, q¢er 7 have any validity they must be compared to results from the FoldX model.
In order to accomplish this the values for Hpy, Eg. and H,, 4., must be inserted into the
equations for E,;, Es. and Ejpens Tespectively. Remember that Hyy, Eg. and H,,,4¢0, are
the constants for the energies pertaining to the backbone, side chain and solvent
interactions respectively. The values for these constants are given below along with the

summations Epy, Es. and Egoppene-

11 N N N-1 N-1N-1
= EEZZAijBininijgox'Esolvent = Z E; — Y
i=1j=1 i=0 i=0 j=0
N-1N-1 N—-1N-1
12 Ry MUY, 0% + 12 R;jMYY;;NYEN
Ese =3 16 iy MYy *t5716 i MY
i=0 j=0 i=0 j=0

Hppr = —3.356-10719
Hep = —1.278-10719
Hyaterr = 5.117 - 10710

This in turn leads to the following equations for E},p, pand Hg, g below.

Eppr = —3.356 10‘19]— ZAI By XUy
i=1j
1N—1 N-1
ESCF = _1278 ) 10_1915 Rl]Ml]Y'UOl]
i=0 j=0
N-1N-1
~19 1 ij ij
—1.278-10 ]E RijM YijN
i=0 j=0

Remember that since the experimental data was taken for a large volume of

hydrogen bonds, the effects due to the directions of the side chains, which are
incorporated into Ep, and E;. by means of the fractions % and 136 respectively are included

within the values for Hy,,  and Hy, g.

59



In other words, the terms Hp, ; and Hg. g are roughly equal to the following

values below for N >> 1 hydrogen bonds, as is the case when using reduced units.

1 L Ox 3 Ox ~ 3 Ni
Hypg = 5E7,  Hyeg = 72E7,  Hppp =70 E
For convenience a comparison between the equations for Ey,j, g, Epp, p and Epy, 7,

as well as E; g, Epp, y and Eg. 7 1s given below.

N N
1
Eppr = —3.356 10‘19]—ZZA”BUXUY
i=1j=1
1 N N
Eppy = —3.333 - 10-19]ﬁ AYB;XYY;;
i=1 j=1
1 N N
Eppr = —3.333 - 10‘19]ﬁZZAUBUXUYU
i=1 j=1
N-1N-1

R;iMYY;;0Y

~
1l
=)
~.
I
o

Egp = —1.278-10719]

=2
N
T
=

R;iMYY;;NY

N =

—-1.278-1071%]

i

Il
[=)
-
Il
,_. =)

=
=
A

R;iMYY;;0Y

D]

1
Egepy = —1.250 - 10-1915

i

)—L
1l
"‘ =}
~.
Il
o

N—-1N-

—10.00-1071° R;iMYY;;NY

NI»—\

i=0 j=0

Z

N-1N-1

1 o
Eqer = —1.250- 107 5 R;jMYY,;0Y
i=0 j

Il
o

=
;_n

—10.00-1071? RUMUYUNU

N =

...
I
o
~.
I
o
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Likewise, the average energies corresponding to a single hydrogen bond are given

below. Keep in mind that these estimations hold so long as the number of amino acids is

hydrogen bonds is sufficiently large.
6.242-10% eV 1

— . -197. —= =2
Hypr = —6.66101 - 10719 1] > 079 eV
H..r = —6.66101-10"1° 6242107 eV 3 = —0.780 eV
scT — . ] 1] 16 = . e
6.242-1018 eV 3
HwaterT = —6.66101 - 10_19] ' -—=-=-3.123¢eV
1] 4
6.242-108 eV 1
Hypy = —6.66651-10719] - -—=—-2.080¢eV
1] 2
H = —6.66651-10"1° 6242107 eV 3 = —0.780 eV
scM — ' ] 1] 16 = . e
6.242-10% eV 3
Hyaterm = —6.66651 - 10_19] : 1J . Z = —3.123 eV

For convenience the equations above are distilled to the following formulas

below. The values from the FoldX model are also displayed below.

Hypr = —2.095eV,  Hppy = —2.080eV,  Hypr = —2.079 eV
Hye r = —0.798 eV,  Hyy =—0.780eV,  Hyp = —0.780 eV

Hyater 7 = 3192 €V,  Hygrerm = —3.121€V,  Hygeerr = —3.121 eV
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The following values for the entropy where obtained from the python interpreter

corresponding to the value for the energy obtained from the FoldX model.

eV
Sppr = —4.8078554?,

eV
Sscr = —1.1659347,

eV

Swaterr = —5.85547 —~

For convenience the values for the entropies Sppum, Sppr) Ssems Ssers Swaterm and

Swaterr are all given below.

eV
Sppm = —4.77527 —,

eV
Sppr = —4.77133—,

K SSCM

K

eV
Ssep = —1.0432 —,

eV eV
= —1.0432 a Swater v = —7.356—

K

The tables corresponding to the results are given below.

eV
Swater T = —7.3504 —

K

K

Table 1: Entropies for the FoldX model, the Morse Potential, and the quantum tunneling

model.

FoldX Model

Morse Potential

Tunneling

Backbone Entropy

—7.70303-1071%J /K

—7.65083-1071%J /K

—7.64451-10"1%J/K

Sidechain Entropy

—9.38828- 10719/ /K

—~1.67133-10"19 /K

—~1.67133-10"19/K

Solvent Entropy

—9.38828- 10719 /K

—1.17391-1078J/K

—1.17767 - 10718 /K

Table 2: Total energies for the FoldX model, the Morse Potential, and the quantum

tunneling model.

FoldX Model Morse Potential Tunneling
Backbone Energy —3.356-1071% —3.333-10719y —3.331-10719
Sidechain Energy —1.278-1071% —1.250-10719 —1.250-1071%)
Solvent Energy —5.117-10719 —5.000-10719 —5.000-1071%)
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CHAPTER IV:

Conclusion
Below are the percent changes corresponding to the entropic corrections for the backbone

interactions, side chain interactions and solvent corrections respectively.

(—4.8078554 + 4.77527)

X 100% = —0.677753%

—4.8078554
(—1.165934 + 1.0432)
116435 X 100% = 10.5409885%
(—5.85547 + 7.356)
—5.85547 X 100% = —25.626123949%

When the effects due to quantum tunneling are taken into account one obtains an increase
in the conformational entropy. This is to be expected since quantum tunneling has the
potential to break hydrogen bonds. This has already been shown to be the case with water
molecules. Not only does quantum tunneling have an influence on the breaking of
hydrogen bonds but the more hydrogen bonds form, the greater the influence of quantum
tunneling effects. It must be stated however that steric interactions were not taken into
account. When the effects due to steric interactions are accounted for it may very well be
the case that tunneling ceases to have an influence. What we do know however is that in
certain cases the effects due to quantum tunneling have more of an influence than the
effects due to the potential energy between the peptide bonds. It is thus still inconclusive
whether or not quantum tunneling overall has any significant impact. Further advances in
the research could take into account the effects of quantum tunneling on the Van der
Waals forces as well as the electrostatic forces if any are present. This would be a way of
establishing whether or not quantum tunneling has an overall impact on the total
conformational entropy. The results however still hold that quantum mechanical effects
still have an overall positive impact on the total conformational entropy. Again, however
this is only the case when the Van der Waals interactions are set to zero. The benefits of
this research are that the algorithms for calculating the conformational entropy may be

further optimized by taking into account the effects due to quantum tunneling.
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APPENDIX A:

AMINO ACID TABLES

0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0

RIH|K|G

0(0|1]1

0/0]0|0
0/0]0|0
0(0|1]1

0/0]0]|0

0/0]0]|0
0/0]0|0

0({0|1]08]|0

0(0|1]1

0({0|1]08]|0

0(0|1]1

0(0|1]1

0(0|1]1

0(0|1]1

0/0]0]|0
0/0]0]|0
0(0]|2]1

0(0|1]0

0/0]0|0

0
0

0

0
0

2
0
0

1
0

D
1
0
0
1
0

0
0
1
1
1
1
1
2
1
0
0
1

0

T

1

1
1
1
1
2

1
1

1

S

2

clQ

1

0
0
0
0
0

0
0

0

0
0

0
0
0

0

WI|Y|N
0
0
0

0
0

0 |0|06|0|06]|1|1]05|05|0|0(|1]|1

0
0

0

0
0

0
0
0

0 |0/{08]|1]08|1|1]|1

0

01

0/06|0 |0]2

0|0

0/06|0 |01

01

01

0/05/0 |01

0/05/0 |01

01

01

M|V]|F

L

0/|0|0]0 |O]O

0/|0|0]0 |O]O

1/0{0|0 |0]2

1/0{0]|1
1/0{0]|1

0/|0|0]1

1/0{0]|1
1/0{0]|1
1/0{0]|1

0/|0|0]O0 |O]O

1/0{0]|1
1/0{0]|1

0/|0|0]O0 |O]O

Table Al: Hydrogen bond probabilities.

A|l0]|0|0]1

L

M[1]0[0]|0 |O0|O
vV ]|0/0/0|0 |O]|O

F

W[{0|0|0O|O0O |O]|O
Y |[0]0|0O|0 |O|O

N
C

Q|1]/0]|0]1

S
T

D
E

R

H|0|0|0]|0O |0]O

K
G
P

Table Alcontains the probability that a Hydrogen bond will form between the

sidechains of two amino acids. The top row and the left column contain all 20 amino

acids. The elements in each cell correspond to the probability that a hydrogen bond will

form between the two amino acids when their sidechains are in contact.
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P

P

P

RIH|K |G

0|0

E

P

P

0o/0|0O]jO]JO|O|O|O]O]|O]O]O O
0o/|0|0O]jO]O|O|O|O]|O]|O]O]O O
0o/|0|0O]jO]O|O|O|O]|O]|O]O]O O
0/0Oj|0OjO]JO|O|O|O]|0]|O0O]O]O |0
0o/|0|0]O]O|O|O|O]O]|O]O]O O

0o/0|0O]jO]JO|O|O|O]|O]O]O]O O
0o/0|0O]jO]JO|O|O|O]O]|O]O]O O
ON|N|N|N|N|IN|INJO|O|N|N|O
0/0Oj|0OjO0O]JO|O|O|O]|0]|O0O]O]O]|O
ON|N|N|N|N|IN|INJO|O|N|N|O
0/0Oj|0O]jO]JO|O|O|O]|0|O0]O]O]|O
0/0O|]0OjO0O]JO|O|O|O|0]|O0O]O]O]|O
0/0Oj|0OjO0O]JO|O|O|O|0]|O0O]O]O]|O
0/0Oj]0OjO0O]JO|O|O|O]|0|O0O]O]O]|O
0o/0|0|jO|JO|O|O|O|O|O]|O]O|O
0o/0|0O]jO]JO|O|O|O]O]|O]O]O O
ON|N|N|N|N|IN|INJO|O|N|N|O
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0
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N
0
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0
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0
0

0
0
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0
0
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L
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0(0]0]O
0(0]0]O

P

0(0]0]O

0|00 |0

0|00 |0

0|00 |0
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N|O[O]|O
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Table A2: Hydrogen acceptors.

A |0 0|0 ]O

L

M|O|O0O|O]|O
V| 0[0]|0]O0

F

W|0 |0 0|0

Y

N[ N|O|O]|O
Cc |0O|0]|0]O0
Q|N|O|O]O

S
T

D|O|0|0]|O0

E

R

H|O0O|O0|O]|O

K

G |O0O|0]|0]O

P

Table A2 contains the hydrogen acceptors for each amino acid pair. Both the top

row and the left column contain all 20 amino acids. Each cell corresponds to the

hydrogen bond acceptors where N, O and P stand for the nitrogen bond, hydrogen bond

and (Pi bond?) respectively.
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Table A3: Sidechain vector combinations.

0 > v <
0 v X X X
> X X X v
v X X v X
< X X X X

Table A3 lists the sidechain vector combinations that permit a hydrogen bond.
The up and down arrows correspond to side chains pointing up and down respectively.
The x’s correspond to side chains pointing into the page. The *’s correspond to the side
chains pointing out of the page. In order to remove the conformations with the sidechains
pointing in the same direction for the consecutive side chains, a steric penalty is applied.

This corresponds to the cases where the sidechains are pointing in the same direction.
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