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ABSTRACT
Oa! and Oa? RADIATIVE CORRECTIONS FOR W-BOSON PRODUCTION
AT THE TEVATRON AND ATLAS EXPERIMENT

Matthew Teel
University of Houston-Clear Lake, 2022

Thesis Chair: Samina Masood, PhD

In this thesis we propose an approach for calculating W-Boson Transverse
Momentum Dependent (TMD) distributions using the LHAPDF library with
nCTEQ15, MSTW2008 and CT10 Parton Distribution Functions (PDF). We
utilize ManeParse as a PDF reader in the Mathematica framework for im-
porting and computing relevant cross sections, luminosity functions and er-
ror analysis, and additionally allow cross check with a number of sum rules.
A proper description of TMD distributions requires resummation of large
logarithms responsible for divergence of the perturbation series in the strong
coupling a;. Our proposed calculation is for next-to-leading-order (Oa!) and
next-to-next-to-leading-order (Oa?) large logarithmic perturbative correc-
tions for the differential W* pr partonic cross-sections for processes of the
form pp — W= + X. The goal of large logarithmic corrections with thresh-
old resummation is to improve accuracy of the pr distribution thus reducing
dependence of the cross-section on renormalization (yg) and factorization
(pr) scales, and plays a role in Higgs searches, precision measurement of the

W-boson mass, as well as for testing perturbative QCD.
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This is a general fact of life, in theoretical physics, when I use the
word dumb, it is not a pejorative, dumb is good, okay, clever and
ingenious is bad, dumb is good. And this is a deep fact about
our field, when you're too clever and too ingenious, its you as a
human being who's entering the fray, you as a human being suck,
whats really great is the universe and the structure of the laws out
there. You might go some distance because you're very clever and
ingenious and smart, but trust me, youre nothing compared to the
vast greatness of the laws that are out there, and at some point,
your cleverness and ingenuity will fail you. That’s not the point
of physics, to be clever and ingenious, the point of physics is to
discover simple and deep laws, and to exploit simple and deep
laws, so simple and deep, and dumb is good. And you always
learn something when you do the dumbest thing first, because
80% of the time it works, and 20% of the time it doesn’t work, and
you learn something very valuable, which is why the dumbest
thing didn’t work, so then you know what the second dumbest
thing is, and typically you dont have to go past the second or

third dumbest thing until something actually works. ..

-Nima Arkani-Hamed



Chapter 1

Introduction

Determining the underlying mechanism for the W-boson mass is essen-
tial in our understanding of the Standard Model (SM), as well as its validity.
Implications surrounding ongoing efforts for a more precise measurement
either extends our understanding, or breaks it entirely potentially revealing
new physics and sending theoreticians back to the drawing board. Perturba-
tion theory in QCD, being the theory of the strong interaction of the hadrons,
becomes extremely limited in the light quark sector due to their nonpertur-
batively acquired mass as a consequence of spontaneous chiral symmetry
breaking [1-3]. This manifests through quark (g) antiquark (7) vacuum fluc-
tuations [4]. In doing so, various conservation laws for the strong and elec-
tromagnetic interaction become spontaneously broken during weak decay
processes. Furthermore, it is due to the weak interaction that stable mat-
ter contains up (#) and down (d) flavour quarks, whereas heavier quark
families are energetically unfavorable. The 7 — < transition undergoes
SU(2), ® SU(2)r chiral symmetry breaking in the electroweak sector of the
SM in which we naively expect three resulting massless bosons in the pro-
cess, however, long range vector fields present in the theory have identical
quantum numbers as the otherwise would be observable Goldstone bosons
[5]. The massless Goldstone bosons contribute additional longitudinal de-
grees of freedom rendering the vector fields massive [6,7]. An introduction
in name of brevity introduces a quadratic vector field for the Lagrangian den-

sity, L,
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Lu = | (8aW) — guBu) (W — g, B) +28%0W, WH| (1)

where g;v is the U(1) gauge coupling, and gy is the SU(2) gauge coupling.
The propagator for the B and W? fields are not diagonal, so new fields, Ay,

and Z,, are introduced to propagate independently

w3 cosf —sind Z
= v R (1.2)
By sinfy  cosOyy Ay

B is the Weinberg electroweak mixing angle by which the spontaneous sym-
metry breaking process rotates the original W and B vector boson plane, thus
producing the weak neutral current (nc), Z°, and . 6y becomes fixed by rel-
ative coupling strengths of the coupling constants, additionally, it is worth

noting this value can vary slightly dependent on the particles momentum

/

sin®0y = SN ~ 0.23. (1.3)
gW + ng

We rotate the quadratic terms in the vector boson fields arriving at

2
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and find that the W and Z bosons have acquired their masses

1

with Z in terms of W

_1 2 T Mw
Mz = ivy/gwjtgw = Costry (1.6)




We additionally obtain the Fermi constant, Gr,

2
Sw _ 1 _ Gr (1.7)

T

SM%V 2v

Gr = 1.166x10°GeV 2,

which determines the coupling strength during the weak interaction [6].

Where v is the Higgs vacuum expectation value (vev) and

> 1

0 = .
V2Gr

(1.8)

This implies the vev of the Higgs field, v, is 246 GeV, corresponding to the
electroweak scale, while the Higgs mass is measured as 125.15 £0.17 GeV per
the Particle Data Group (PDG) [8]. We can from here show W™ coupling to
quarks and leptons, this becomes relevant when calculating its cross section

in chapters to come. The coupling

8w ypr— 73 7
oL = 2= dy*Pru 4+ 64*Prv) + h.c., 1.9
N (dy"PLu + £4"Prv) (1.9)
where P; = #, is the left-handed projector, with g, the gauge coupling,

and h.c. the hermitian conjugate. The W™ additionally is responsible for gen-
erating the W™ field. The associated Goldstone longitudinal polarization
vector fields are identified as the t*, 77— and 7, being responsible for medi-
ating the Yukawa interaction during weak nuclear scale processes [6,7,9].
The pions are addressed in context of matrix elements representing inter-
mediate states. This provides an opportunity for studying interplay between
hard and soft QCD processes. Additionally, the m — v transition con-
firmed the colour structure of QCD, and its decay width is directly related to

the mentioned chiral anomaly.



Starting with the QCD condensate, we can represent hadrons as interpo-
lating currents and employ the operator product expansion (OPE) to separate
long and short distance quark and gluon interactions. In Drell-Yan [10,11]
scattering processes at low energy, for example, the hadronic tensor Wy,
characterizes the non-perturbative nature of the long and short distance in-
terplay. The results of the OPE become expressed as nucleon matrix elements
with two current operators sandwiched to then become related structure
functions. Relevant PDF’s are extracted from the Dokshitser-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations that will use these structures
functions [12]. The Oa! calculation serves to describe production of longi-
tudinally polarized massive vector bosons plus a jet. Combining an extra
parton gives a final state result which includes contributions from the Oa/!
expression. To complicate things further, obtaining accurate measurement
of the W mass requires knowledge of its pr spectrum and requires a differ-
ent approach. Calorimeter towers partially responsible for detecting events
at hadron colliders register the contribution in the transverse plane of the
center of mass collision region, /s, rather than pertinent information regis-
tering longitudinally down the beam pipe [13]. With more accurate measure-
ments of the W mass the better we are able to constrain global electroweak
parameters [14], thus further constraining CKM quark mixing matrix ele-
ments, and in turn helps to further constrain SM parameters. A review of
the first calculations for the pr W-hadroproduction cross section at Oa! can
be seen in [15,16].

We can state with confidence, with the exception of what is partially
known about the mass, that we have not yet been able to fully provide an ex-
planation for any of the mentioned quantities from first principles. Why this
fundamentally is the case is due to confinement [17]. Understanding QCD
and confinement requires intensive study of the inner workings and struc-

ture of the nucleon. The gluons are massless, however the strong nuclear



force takes place at short range extending its influence 10~'°m. The photons
are massless with influence extending an infinite range. This proved quite
puzzling early on. Consider simple wave mechanics, being that if all plane
waves are traveling with the same velocity while exhibiting constructive in-
terference behavior within a small region, their group velocity continues this
behavior uniformly as the system evolves in time. The only varying param-
eter being spatial locations with respect to the group velocity. Varying mode
velocities cause the wave packet to disperse. In a modern field theory con-
text, the dispersion term represents mass. When considering a mass param-
eter, m, of a field in question, m determines its correlation length, 7 ~ % The
correlation length loosely speaking encodes how far a field can spread its in-
fluence [18]. It is suffice to say that gluon exchange by this criteria should
be long range as well. However, this is not the case, and confinement is es-
sential to explain why the nuclear force has the short range that it does [19].
The gluon is the gauge boson in QCD analogous with the electric charge in
quantum electrodynamics (QED), except, in this case, the gluon consists of
what is referred to as "colour" charge. Additionally, unlike QED, the gluon
self interacts. A more accurate description being the eight resultant gener-
ators via spontaneously broken SU(3) ® SU(3) gauge symmetry permute
through r, g, and b available states The quark-gluon interaction transfers
color charge from one quark to another, necessitating gluons carry two color
indices, which are parameterized to rows and columns in the Gell-Mann ma-
trices, seen in A.3, and will be addressed further in Chapter 2. The gluons
mix in the adjoint representation of this SU(3), gauge group, which is ab-
sorbed into the gluon field strength tensor G, G* present in the Lagrangian
describing QCD (Lgcp).- This characteristic non-linear dynamical evolution
defines the non-abelian nature of QCD. A true self interaction would imply

r mixing with r, and so-forth, however, it is the case that each color repre-

sents a separate charge, and not states of one charge present in the theory.



Moreover, the quarks exchange color charge indices with the gluon field due
to carrying colour charge of their own. In subsequent chapters we construct
these terms through defining a gauge invariant local theory via the Locp
through the work of C.N. Yang and Robert Mills.

Both the perturbative and non-perturbative regime can be seen in the be-
havior of the running coupling «s. Techniques requiring large logarithmic
corrections become necessary in regions of space where we no longer have
reliable expansion of as [20]. QCD’s coupling energy spans a range from
asymptotic freedom to confinement. The "running" is referring to the cou-
pling strengths variability at different energy scales. To consider its depen-
dence on the energy range probed, we use renormalization schemes, which
can be thought of as an argument for a;. Separate consideration of scattering
processes require separate approaches, some of which are not accessible with
the path integral. In high energy pp collisions, the colliding hadrons involved
in the process are not amenable to perturbative techniques in times when it
becomes necessary to calculate the distribution of quarks and gluons. One
solution is to use the factorization theorem, which introduces methods for
dealing with high energy cross sections. This leads us to the implications of
the DGLAP equations for PDF’s and Efremov and Radyushkin-Brodsky and
Lepage (ERBL) kernels for transversity distributions. With the DGLAP equa-
tions we can relate different processes at different scales. For example, we
can use the evolution equations phenomenologically to predict what partons
might look like at any scale when thinking about future experiments [13].

Since the 2015 the Large Hadron Colliders (LHC) 13 TeV run, we have
acquired greater detail and measure of new physics, notably, a more exten-
sive study of the Higgs boson, which was discovered on July 4, 2012. Neither
Lattice QCD (LQCD) nor perturbative QCD (pQCD) offers full solutions for
QCD at the colliders. What the community has settled on is pQCD inputs

plus non-perturbative modeling and factorization from various frameworks



that serve as specific tools and constraints. Meaningful calculations require
accurate contributions from both. We discuss event shapes and the impor-
tance for infrared safe observables in QCD [21-23] as they describe the en-
ergy and momentum flow of final state events. One of the best event shapes is
the energy-energy correlation (EEC), which is used quite extensively in e*e™
annihilation. The determination of inclusive (integrating over all possible fi-
nal states) ete~ — hadrons total cross-section measurements has enabled the
first three terms in the QCD perturbation expansion to be known to quite an

accurate measure [6].

1.0.1 Relevant Insights

Efforts were met with the need to develop a theory properly describing
the dynamics of the newly introduced quarks. A necessary condition for the
accuracy of the theory was that the interaction amongst the quarks become
increasingly weaker at shorter distances. This in part led to asymptotic free-
dom, later discovered in 1973 by David Gross and Frank Wilczek, as well
as by David Politzer in this same year earning them the 2004 Nobel Prize
in Physics [24]. This property is responsible for interactions amongst the
particles to become asymptotically weaker as the coupling strength increases
while the corresponding length scale decreases. The strength of interaction in
the IR region is responsible for the confinement of quarks and gluons within
hadron bound states, becoming colourless singlets. It is energetically favor-
able to create quark antiquark pairs from the condensate rather than to con-
tinue the elongation of what is refereed to as the color "flux tubes". Instead
of detecting individual quarks in detectors, scientists see Jets composed of
color-neutral ground states resulting from hadronization, also called frag-
mentation, and string breaking. The confining phase can be defined by the

action using the Wilson loop, which is the path in spacetime that is traced



out by a quark-antiquark pair that follow the creation and annihilation se-
quence [25]. There is a running scale that characterizes QCD in terms of its
coupling parameter. The coupling parameter «; also is dependent on choice
of renormalization scheme. In the MS scheme at 4-loop in the running of as,

the world average in the 3-flavour case is given by

3) _
Asge = (332 £17)MeV, (1.10)

as verified in the e"e™ — hadrons. A is an energy scale used in QCD, and is
accessible in the PDG [8].

Being that the SU(3) symmetry group is a non Abelian gauge theory, due
to the "self interacting" gluons giving rise to non-commuting matrices, the
theory as a result is highly non-linear. Solving QCD directly in an analyti-
cal manner has proven difficult. One powerful non-perturbative tool is the
LQCD Monte Carlo simulations carrying out first-principle calculation of the
strong interaction. The results in some cases remarkably reflect experimental
data. Computational interest has found its way to developing jet algorithms
to generate events in the interest of phenomenology as well.

Form factors (FF) are powerful tools when probing the structure of the
nucleon. They carry direct information regarding substructure and shape.
This is analyzed by charge distribution and the magnetization of the quarks
within the nucleon. Hadron FF’s are defined as Lorentz-invariant functions
that serve to parameterize the matrix elements. We referred to the Lorentz-
invariant functions as being sandwiched between the operators we obtained
from expanding the products of the hadronic tensor. Furthermore, the FF’s
depend on the flavors of the quarks taking part in the electromagnetic or
weak transition. To develop a general conceptual sense early on, the hadron

FF’s that we will be interested in can be described by any transition between



the initial and final states of a hadron in which is initiated by an electromag-
netic or weak interaction of quarks. Moreover, once this quantity is reached,
it enters a probability amplitude to quantify the strong interactions contri-
bution while in the transition process. This we discuss in terms of the pion
FF [4]. The parton distribution amplitudes play an important role in de-
scribing a number of hard processes (high energy scattering) of bound state
hadrons by way of the factorization theorem, which lie at the heart of pertur-
bative QCD [26-28]. The distribution amplitudes (DA’s) are complementary
to the parton distribution functions (PDFs) associated with these inclusive
processes, the DA’s are longitudinal projections of hadronic wave functions.
They are obtained by integrating out the transverse momenta contribution of
the partons. TMD in Fig.1.1 are a separate class of PDFs, they are incorpo-

rated when calculating Oa! W mass production involving pr [27].

== F'm\,‘lr underlying
gl event

underlying ...
event B
beam
pipe

FIGURE 1.1: Transverse momentum is in the direction of the

muon line, while the beam pipe represents an example of the

longitudinal direction. Er represents transverse Energy. Un-

derlying events and jets will be discussed in upcoming sections.
Image courtesy of [29].

The TMD’s produce important results about the QCD bound states. When
dealing with large logarithms at Oa! this information will play a pertinent

role. Soft gluon resummation techniques become implemented allowing us



to obtain a finite result. It is to be noted that beyond Oa/, the theoretical cal-
culation of the vector boson spectrum is still unclear, and the (’)ocg result is
still to be determined. In the absence of this result. We can still improve the
Ou! result by adding higher order contributions that still remain incomplete.
In the low p realm, this becomes critical. Resummation of large logarithms
of the form In(LL) are done to obtain agreement with data. In cases such
as inclusive Drell-Yan and Higgs production, where the Oa? corrections are
known, it was shown that even in cases such as Higgs production a high
percentage of perturbative corrections are influenced through the threshold,
giving a good approximation in the result [30]. The resummation at low pr
to next-to-next-to-leading logarithmic level (NNLL) can be seen in this re-
view [31].

This thesis is organized as follows. In Chapter 2, we review quantum field
theory to distinguish the contributions of C.N. Yang and R. Mills with con-
nection to the applicability of QCD. This theory was adopted by the physics
community after Gerard 't Hooft, in 1972, had placed its renormalization on
tirm footing [32,33]. This leads naturally to reviewing the SM, followed by
renormalization schemes that becomes manifest at infinitely large momenta.
We calculate loop diagrams in ultraviolet (UV) divergent calculations, and in-
troduce concepts relevant to jet production, where non-perturbative higher
order radiative corrections are required for Wt + 1 calculated in the soft IR
(infrared) region, . In Chapter 3, we incorporate the development of EW the-
ory while drawing from it additional insights on W boson production. In
Chapter 4 we introduce the parton model beginning with the historical de-
velopments that led to its modern implementation. Additionally, the DGLAP
evolution equations used for evolving variations of parton distribution func-
tions at their varying process dependent energy scales are motivated here
as well. DGLAP evolution equations will be put to use in the context of

PDF’s. Chapter 5 contains relevant experiments at CERN and Fermilab’s

10



CDF collaboration bringing together in clearer focus the development from
Chapters 2 through 4. In Chapter 6, we move to phenomenological inputs
and experimental procedure in relevant calculations with resummation of
large logarithms concerning high transverse momentum W mass determi-
nations, which include factorization theorems and treating higher order soft

gluon contributions.
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Chapter 2

Yang-Mills & The Quantum Theory of Fields

"...The difference between a neutron and a proton is then a purely ar-
bitrary process. As usually conceived, however, this arbitrariness is subject
to the following limitations: once one chooses what to call a proton, what a
neutron, at one space time point, one is then not free to make any choices at
other space time points.

It seems, that this is not consistent with the localized field concept that un-
derlies the usual physical theories. In the present paper we wish to explore
the possibility of requiring all interaction to be invariant under independent

rotations of the isotopic spin at all space time points" [7].

-Yang and Mills (1954)

2.1 Introduction

We have in part taken the title of this chapter from that of Steven Wein-
berg’s "The Quantum Theory of Fields”, and to which we refer for a more
in-depth study of QFT. [9]. To begin, the traditional formulation of QFT is
premised on locality and unitarity, followed by the standard approach of
constructing Lagrangians and computing scattering amplitudes via path in-
tegrals that rely on the properties of locality and unitarity. Yang-Mills theory

was born out of necessity and was needed to establish a local symmetry for

12



hadronic isospin. This was needed to establish conservation of isotopic spin,
which eventually led to non-abelian gauge theory. Robert Mills and Chen
Yang developed a foundational paper in 1954 [34] and is known today as a
fundamental framework for describing interaction theories, resting upon the
axioms developed from Lie groups and associated algebras. The Yang-Mills
gauge theories provide a foundation for the SM which gives accurate de-
scription for the strong, electromagnetic, and weak interactions [35]. We can
refer to U(1)y as the gauge invariant symmetry group of quantum electro-
dynamics. The quantum field theory SU(2); ® U(1)y describes Electroweak
and semileptonic processes and are of particular interest for W boson pro-
duction, additionally involving the SU(3). symmetry group for the strong
interaction. The U(1)y group is abelian, however, the symmetry groups that
represent nuclear interaction theories in the real world are all non-abelian.
The Locp is expressed in terms of the spinor fields that make up the mat-
ter fields of fermions. The quark fields form the fundamental representation
of the symmetry group SU(3)., while the gluon fields are in the adjoint rep-
resentation of this same group. When we impose gauge invariance to the

Dirac Lagrangian, we stumble upon our classical QCD Lagrangian [36].

Lpirae = E(i’)fﬂa}l - m)EL’ (2.1)

Where ¢ = 'Y with 7Y being the zeroth Dirac matrix. We will in addition
show the formulation of the parton model first from the field theoretic point
of view, this will be in order to better facilitate for a time when we do in fact
discuss PDFs and the very large role they play in subsequent chapters.

The quarks possess Fermi statistics to account for the spins of the low-
mass baryons. These fermions are in a symmetrical state-space, following

spin and SU(3) s degrees of freedom [6]. We have a colour index a with three
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possible values running over red, green and blue with a = 1,2,3 to be car-
ried by each quark. This new index forces the baryon wave function into a
totally antisymmetric regime, thus rendering an important mechanical detail
defining the representation theory. g, transforms according to the fundamen-
tal 3 x 3 unitary matrix representation while the antiquarks, g%, do so under

the complex conjugate representation. The basic colour singlet states are the

abc abc

mesons, 4,4", and the baryons, €*°°q,4,4., where €°° is the total antisymmet-

ric tensor [6,37].

2.2 The Standard Model and £ Gauge Invariance

We have entered an era of precision tests of the SM, and one objective is
the search of new physics. One of central motivation in which tutors this en-
deavor is to seek out the mechanism of the spontaneous symmetry breaking,
which is observed in weak interactions. Ongoing efforts will necessitate aims
at future 100TeV pp and e"e™ colliders [38].

The SM, is a gauge field theory based on the symmetry group
SUB)c®SU(2),@U(1)y. (2.2)

Transformations act on the SU(2); ® U(1)y fields, which become sponta-
neously broken down to U(1)., being induced by the Higgs vev. The SM
contains an SU(2) Higgs doublet [39]

. .
9T _ [ (er+ig2)/V2 23)

¢’ (¢3 +idy)/ /2
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after SSB, ¢ acquires a vev through ¢3 = v and ¢; = ¢ = ¢4 = 0, and now

with

¢ = — , (2.4)
v v+h

resulting in

G+
H= ) (2.5)

V2(0+h-+iG)’
The Higgs is an electroweak doublet and the charge components G* and
neutral component written GY are the goldstone bosons that get "eaten" by
the W+ and ‘Z° after electroweak symmetry breaking. The & is the physical
Higgs with mass ~ 126 GeV, as observed [40]. The gw term representing
the SU(2) doublet is the same doublet scalar field expressed in equation, 1.5,

reading

1

The Lagrangian comes with global phase invariance preserving quantities
such as conserved chargers via Noether’s theorem [13]. The gauge principle
introduces Lagrangian interactions demanding that the Lagrangian remain
invariant under space-time phase changes locally. A consequence is we now
have to compensate for an additional term in the derivative. An example
being a transformation parameterizing a single real phase 6 in Dirac matter
fields [7],

Jp' = "Iy + (130 (x))p # Wy, (2.7)

Equation 2.21 shows the extra derivative showing up and that invariance is
not yet established, when constructing gauge invariance the gauge invariant

derivative becomes compensated by

D, =0, —ieAy,(x), (2.8)
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where A, (x) is the new field that now transforms as
1
Ap(x) — Ay (x) = Ap(x) + 28749(9(). (2.9)

These new fields A, are the gauge fields and as a result (By) = Py, with
P = Yot = vy %. And now a kinematic term needs to be added in order to

represent dynamics in our new gauge field A, and is of the form
Lgauge = [Dy/ Dv] = (ay - avAy)(ayAv - avAy) (2.10)

and without any additional fields present, we generate mass terms that vio-
late the gauge invariance [13]
)

Lom = = AuAl. (2.11)

Many of the nineteen parameters and the relations between the parameters
involve quantities that participate in the strong interaction. The nineteen pa-
rameters in the SM include three generations of leptons containing the elec-
tron, muon, tau, and their corresponding neutrinos. These are present in the
electroweak interaction, which involves the strong force in many processes.
The quark family is amongst these coming in three flavours, and is directly
involved for the strong force along with twelve gauge bosons, not includ-
ing gravity, includes the gauge bosons. Every particle falls into some rep-
resentation of the groups SU(3)., SU(2)r, U(1)y. Whereas SU(2); ® U(1)y
describes the EW interaction and electric charge Q. The electron is a spinor
in spacetime, acting as a singlet under the strong interaction and the role as
part of a doublet when participating in the weak interaction, and carries an
electromagnetic charge. The quark is a spinor in the fermion field and partic-
ipates in a triplet representation under the strong interaction and a doublet

under the weak interaction, as well as carries electric charge. It turns out
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that the gauge fields are spin one fields, fulfilling the Proca equation. The
matter particles obey Fermi-Dirac statistics and the Pauli exclusion principle
tulfilling the Dirac equation. The Higgs is a spin 0 scalar field fulfilling the
Klein-Gordon equation. All gauge bosons generated from gauge fields under
local symmetry must be massless. The weak interaction treats fermions with
left-handed chirality differently from those with right-handed chirality. The
Fermions are, in fact, not massless, and adding the mass terms of the small
u and d masses spontaneously breaks the symmetry leading to the Higgs
mechanism as demonstrated [9].

The theory of the SM contains a Klein-Gordon component due to the
Higgs scalar field, and Dirac components for the fermion field, and the Proca
equation for the gauge fields and interactions. The Dirac equation in 1928
was a major breakthrough and was followed by the discovery of neutron by
Chadwick in 1932. The realization was that the proton and electron model

for the nucleus would need to be replaced [41].

2.2.1 Feynman Rules for Non-Abelian Gauge Theories and

Greens Functions

Green’s theorem relates a line integral along a closed curve with the dou-
ble integral of a vector field in the plane [42]. It is well known that scattering
cross-sections at tree level have classical correspondence to classical theory
cross-sections. One effective example being that tree level cross-sections in
electron-electron scattering in QED correspond to scattering of the classically
represented point charges as represented in classical field theory. The naive
explanation for this is that the power of 1 in terms of its perturbative expan-
sion corresponds to the number of loops in the diagram. In QFT, we cal-
culate the expectation value of the time-ordered product by way of Green's

function. This is done over the vacuum fields [43]. They cannot be written
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in terms of the standard Feynman diagrams, due to Green functions being

more complex than the vacuum.

2.2.2 The QCD Lagrangian

The usual approach is to define a model by writing down its Lagrangian.
Each Lagrangian consists of interaction terms as well as the terms that de-
scribe the behavior of the fields as they are without including interactions
[18]. The QCD Lagrangian has a simple structure while also possessing
the dense dynamical interactions responsible for bound states observed. [7].
Additionally, it comes with a highly non trivial topological vacuum struc-

ture. [44]. Under further examination, consider the quark fields, i = ()

a=d,us,cbt Nf=6« SU(N)f
(2.12)

i=1,23 N, =3 ¢ SU(3).

where 1,; is a 4-component Dirac-spinor. Consider Quark fields with color

degree of freedom and their free Lagrangian [45]

(U}
b= |yp,| L= Pl o — mly. (2.13)

Y3

Local SU(3). gauge transformations

P(x) — d(x) = U(x)y(x) (2.14)

with
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Physics of strong interaction of quarks is invariant under gauge transforma-
tion ¢P(x) — U(x)yp(x) SU(3). is a non abelian gauge group. The gauge

covariant derivative is defined as
where g is a dimensionless coupling strength analogous to e in QED
Ag

Au(x) = E5_1t, AG(x), to= o (2.16)

Introducing Aj(x) as gauge fields of "gluons" in SU,(3),
L1 = () iny D" — mly (). 217)
The above Lagrangian is gauge invariant if we define

Drp = o' — igAtp = U(DMU). (2.18)

Infinitesimal gauge transformation
U = exp[—i0,(x)t;] = 1 —i6,(x)t, + ..., (2.19)
of gauge field linear in 6, (x) become
ML) = A0 = A() — 00,0 + ()AL x). @20)

Gluons have to be massless, otherwise a mass term mgAZl Afl would not re-
main gauge invariant. Gluonic field tensors can take the form analogous to

QED of the form [19,46]
Fiy(x) = 0, A7 (x) — 9y Ay, (x). (2.21)

19



Equation 2.21 is not gauge invariant in QCD, so we have to introduce an
additional term to obtain gauge invariance. For this purpose Gluonic field

tensor is written as
Giy (x) = 0, AY(x) — 9y AL (x) + & fape Al (x) A (x) (2.22)

with

i
ny E ta GZV — § [Dy, Dy], (2.23)
the gluonic contribution to the Lagrangian becomes

1 1
Loe = —7G(¥)GI" () = —5tr{GuG" Y, (2.24)

and now in context of the full QCD Lagrangian,
1 3 _
Laocp = —5Tr[FuwE"] +f§(¢’f(X)(iﬂ— mp)py(x), B = [0 — igAu(x)].
(2.25)
This looks similar to the QED Lagrangian, except that there are additional
color index terms, and the minus sign indicating the self interacting gauge
tield giving rise to the nonabelian nature of QCD dynamics. Gluonic field
tensors of Locp generates non-linear gluon interactions:
The last term in Equation 2.22 corresponds to 3-gluon interaction, and can

be seen in Figure 2.1
£ = =L fuc (0" A% — ) A} A%, (2.26)

8
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FIGURE 2.1: 3-gluon interaction, denoted g.

the 4-gluon interaction, seen in Figure 2.2 in which the diagrams that rep-
resent higher order gluon contributions become increasingly complicated to
compute

2
£4 = - ngubcfcdeAayAva?Ag (2-27)

FIGURE 2.2: 4-gluon interaction, denoted g2.

We now have gauge invariance in the QCD Lagrangian. Since the quarks
have three basic color-charge states, they can be labeled as a that can take
on red, green, and blue, or assigned 1, 2 and 3. Three color states form a
basis in a 3-dimensional vector space being a colorless bound state. A gen-
eral color state of a quark is then a vector in this space. The color state is
rotated by the 3 x 3 unitary matrices, notably the Gell-Man matrices. All of
the unitary transformations have a unit determinant that form a Lie group
SU(3) [47]. Gluons are self contained sources of the color field, and are not
only color-charged, but additionally produce strong color fields. The quartic
terms are proportional to ¢ for Non-Abelian Fields [46,48]. Furthermore,
the Higgs mass ratio to the W mass is the quartic coupling of the Higgs, the
mass squared term is the term found in the Lagrangian and determines the

vev, which determines the W mass.
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2.2.3 Quantization of the Path Integral

We an define the quantization for the path integral by beginning with a

generating functional [49]
Z[]] = /D¢eifd4X(E+Ia(X)¢a(X)) (2.28)
where J;(x) can be an arbitrary external source,
Dy = Iy ,dg(x). (2.29)

A quantum field theory is completely determined by its Green’s functions.

These are defined as

GZ i (xl,..., xn) = (0|T[q3,-1(x1)...<ﬁm(xn)]|0> . (2.30)

.....

We compute the Green’s functions by differentiating with respect to these

external sources [49],

N N 1 oz
< Pia(31)--Pinlxn) >= i"Z|]] 5]i1(x1)---f[5]]]z'n(xn) =0 231
and now the vacuum expectation value becomes [49]
A A 1 A is
< 471'1(.')(1)...471'”()(”) >= m/l)(p(gbil(xl...(pﬂ(xn))e . (232)

We are showing here that the Green’s function is obtained after comput-
ing a weighted average over all of configurations the system can possibly
go through. The generating functional involves the integral over the gauge
fields Af(x). For any field configuration A, we can define a gauge orbit
to be the set of all fields related to the first by a gauge transformation a.

Making a note that all the configurations have the same contribution to the
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functional integral giving infinite contributions. We will turn to Faddeev-
Popov to achieve a gauge fixing condition of the form F/[A] — C%(x) = 0°.
This isolates the contribution over repeated configurations by factorizing it

as [ Da [ DAyexp'Sl4], being eliminated by the normalization [49].

2.2.4 Propagators and Vertices

The correlation functions come by way of Green’s function, which are
used to calculate scattering matrices pertaining to observables. This allows
us to deal with time ordered products in the context of vev’s. We cannot
compute the correlation functions completely in an analytic way. With per-
turbation theory we can extract some insightful information regarding the
form of the functions however [36]. The gluon propagator comes from the
quadratic terms in the gluon fields, which are also to be found in the La-
grangian. We adopt Landau gauge, which corresponds to the limit § — 0
and directs the weight aspect of the weight-function on the gauge copy, the
key point being that it does not change the result of the physical outcome of
the system. This is done through the form of the covariant derivative 0/ A,,.

Following this treatment, the propagator in momentum space looks like

ab
d 1P

DY (p*) = ?[&w + (& - e (2.33)

with ¢ = 0 the Landau gauge as discussed. The ghost fields also have associ-

ated Feynman rules. In the Landau gauge the functional derivative obtained

Al = A%+ U ALNE 4+ 9,07, (2.34)
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and now takes on the form 0D, giving the Lagrangian contribution now

taking on the form [49]
Latost = =190 " + gf" 0~ 9" (Aun). (2.35)

In a non-perturbative framework, we wish to have complete correlation func-
tions with tensor structure that differs from the simple bare vertices that we
encounter in zeroth order perturbation theory [50]. We use the Slavnov-
Taylor identity to define the tensor structure that represents the gluon prop-

agator associated with the gauge condition. This identity reads
dkay < T[A(x)A}(y)] >=0, (2.36)

this gives the propagator the orthogonal property needed and using the Lan-

dau gauge we have

pﬂpV].

. (2.37)

Dy (p) = 6D (p?) (g —

We are then able to extend to higher point correlation functions for the pur-
pose of constructing tensor structures with the established symmetries of the
system. This becomes especially important in cases when discretizing the
theory for use when frameworks such as Lattice gauge theory become neces-

sary [51].

2.3 Renormalization

2.3.1 Overview

The QCD B function blows up at the Landau pole, and UV divergences at

tirst seems to invalidate our theories. The divergences may be removed for
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a renomalizable theory, which requires all couplings to have non-negative
energy dimensions, giving finite numbers of divergent amplitudes, thus al-
lowing UV divergent cancellations by a finite set of counterterms, with the
caveat of cancellations be done order-by-order in perturbation theory at all
orders [52]. For this purpose QFT parameters are redefined and a UV cut-off.
Renormalizability is vital to the success of the SM [35,53].

We begin with a bare electron mass m( and associate it to its classical
scale down to a radius a. We can consider the observed quantity the bare
mass plus the energy in the field, of course divided by c?. Lets say we have a
field energy of 0.7MeV when a = 10~ '°m, and it diverges in the limit a — 0.
The observed mass of the electron ~ 0.5MeV and is the sum of the large (or
infinite) field contribution compensated by the negative and large bare mass.
We would need to replace this by a more precise version when going to short

distances, but this can serve as a foundation of motivation [53].

2.3.2 Faddeev-Popov and Ghosts

In general, QFT’s come with divergences other than ones that can be
solved by the Faddeev-Popov method. Calculating radiative corrections in
any four dimensional theory will lead you to diverging integrals. We can
make a theory finite by means of a technique named as dimensional regular-
ization. We do so by absorbing these divergences that show up in the theory
with cleverly chosen parameters. In the perturbative approach we can ob-
tain similar results using techniques for ultraviolet momentum cut-offs or
dimensional regularization.

The Slavnov-Taylor identities relate the correlation functions in our path
integral to ensure gauge invariance. The integral in our effective Lagrangian
remains gauge independent under gauge transformations achieved by adding

the Faddeev-Popov ghost fields to the Lagrangian.
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2.3.3 The Renormalization Group

The renormalization group came from a need to remedy the problem of
infinities in QFT in the quest for finite physical quantities. It was first solved
for QED by Julian Schwinger, Richard Feynman, and Shin’ichird Tomonaga,
earning them the Nobel Prize in physics in 1965, for more dedicated reviews
consult [51, 54-57]. When referring to the mass of a particular hadron or
quark, we need to know what renormalization scheme we are working in.
For example, it is common to use the Minimal Subtraction (MS) scheme,
and the renormalization scale is defined through The Lagrangian has terms
that are not necessarily related to what is found experimentally regarding
coupling strengths in particular. We are working with couplings between
particles in the first order approximation. We are interested in the experi-
mental results to choose an appropriate scale. The renormalization group

flow of the QCD coupling is governed by

3

d
X ple) = 5 T(C):E 2.39)

with what is dubbed "the all critical minus sign" [35].
T>(G)dg = 7 4 (2:39)

being the structure constants we had seen before. When fermions are in-

cluded in this relation

d 3
% — p(g) =[5 Ta(C) + 3 Ta(P) (240)
where
T,(F)6"" = tr[T*(F)T"(F)] (2.41)
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S O

FIGURE 2.3: The Feynman diagram below denotes the leading
quantum corrections to the running of the QCD coupling «a:
gluon self energy at one loop order with the ghost diagrams
ignored. The left diagram pertains to both QED and QCD ren-
dering the interaction stronger at shorter distance referred to as
screening. The second diagram is resultant from nonlinear in-
teraction taking place amongst the gluon field, and this contrar-
ily undergoes an anti-screening effect, thus rendering coupling
strength weaker at short distance scales [47].

For SU(N)T»(F) = 1 and this stands for each fermion in the fundamental
representation of our gauge group.
We can now show in analogy with QED for reference, that as(u) = g(p)?4m,

which is showing the strong coupling at a momentum scale . Now we can

show

_ “S(l/‘)
Q) = WA (11 = Zn)s () log (027 ) 242

This explicitly shows that a5(Q) — 0 logarithmically as Q — oo [35].

2.3.4 The Running Coupling, a;

The varying scale known as the renormalization scale, pg, include these

corrections, and denote all couplings in QED as well as QCD in the process

2
with « = 2. that varies with
(fr)

on(p%)
o

Hr = B(a). (2.43)
It is convenient to have the B function to expand B(«) in a perturbative series

and it goes as

o0

— Bla) = Ebbn«x”” = f—;_)[oc? + (46;)2“2 +.... (2.44)
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In SU(N) gauge theories, the first coefficients of B; in the expansion are as

follows [13]

11 4
Po= 5 Ca—3Trng
34 20
2857 205 1415
,82 — 5_4C;°’4 + 2C12:TRnf — —9 CFCATRnf — —27 CiTRnf ce-y

ns is the number of active fermions, the Casimir operators come from the
gauge group out of the structure constants we computed in Chapter 2 and
reside in both the fundamental and adjoint representations. We would like
to emphasize that the first two coefficients, By and B; are renormalization
scheme-independent. All of the further terms that contribute to the series
beginning with B, depend on renormalization scheme. We get B, from the
MS scheme. The running coupling as(Q?) determines the quark and gluon
interactions strength dependent on momentum transfer Q [58]. This depen-
dence (Q?) of the coupling is needed in order to describe the interactions
of the hadrons at long and short distance scales. This high Q? dependence
becomes specific to the renormalization group equation (RGE) in the per-
turbative approach. The behavior of the QCD coupling especially at low
momentum transfers Q is main focus in hadron physics. Schwinger-Dyson
equations and light-front holography each uses varying definitions of the
coupling strength and effective charges in the IR domain. A further recent
review in Reference [58, 59] can be seen. Matching the high and low Q?
regimes that determines the scale Qg allows the setting of the proper inter-
face between perturbative and non-perturbative hadron dynamics. We use
Qo to set the factorization scale for the DGLAP evolution equations [58]. The
hadronic decay rate of the T lepton additionally serves as one of the most
precise determinations of the QCD coupling as. The QCD coupling, being

dependent on the momentum scale Q?, exhibits a large coupling at small Q,
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being the energy region where quarks and gluons are considered nearly free
due to asymptotic freedom. Conversely, at small coupling it thus increases
and perturbation theory fails. Protons have an energy m;, ~ 0.94GeV, so
their coupling is very large. When "new physics" is probed at the colliders,

for example, at scales Q ~ p; ~ 50GeV — 5TeV, the coupling is very small.
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Chapter 3

Electroweak Theory & the Strong Interaction

This serves as a brief introduction to the Electroweak sector of the SM.
Its description is given by a broken SU(2); ® U(1)y gauge group in which
represents the massive weak gauge bosons, W* and Z°, and U(1)oep. These
gauge bosons are the longitudinally polarized vector bosons associated with
SSB that we had introduced at the beginning of Chapter 1 beginning with
Equation 1.1, where we had arrived at their mass terms, Gr, the vacuum
expectation value as well as the value of the Higgs as observed. One conse-
quence of local gauge invariance is an exact symmetry of the Locp. If we

restrict the Lagrangian to the quark sector

L= ) §;(i+m)yg; (3.1)

j=u,d
which dynamically describes quarks of mass m with spin 3, and consider
only first generation light quarks in the u and d fields, we are able to perform
a global phase definition of the up and down fields separately while the La-
grangian remains invariant. This is in correspondence with quark number

conservation [6,37]. Matrix notation for the quark field is

q= , (3.2)
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and referring back to Equation 3.1, where

m 0
m=| " ) (3.3)

0 mg

leads to Lagrangian invariance under 2 x 2 unitary transformations. Pro-
ceeding under the assumption that m, — m,; is much smaller than the hadronic
mass scale, we can represent transformations acting on the quark fields via
Pauli matrices. The importance being that an approximate symmetry SU(2)y
is the isospin symmetry in the limit of degenerate mass [6]. Chiral symmetry
is not a feature observed in QCD, the u and d quark masses acquired during
spontaneous symmetry breaking leads to additional mass terms in the £. The
quark condensate in this context, has a non-zero vacuum expectation value
of the light-quark operator g7, and is not invariant under group transforma-
tions. the quark condensate connects the left and right-handed fields and
eluding to prior becomes spontaneously broken with the small mass terms,
u and d, that the quarks in nature do in fact possess [6,7]. The pions have
a very small mass compared to the hadron scale ~ 1 GeV, additionally, the
value of the quark masses are deduced from the pions. This is referred to as
chiral perturbation theory and it leads to a consistent picture of strong inter-
actions. As we restrict ourselves to the first generation of matter, we will not

go into the implications for the heavy quark masses at this time.

3.1 Glashow-Salam-Weinberg Theory of the Elec-
troweak Interaction

The goal of this chapter is to study global spontaneous symmetry break-
ing. We will at a later time extrapolate some implications of such to situa-

tions of physical interest in hadron physics. The Goldstone theorem states
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that physical particles in a given theory generate one zero mass term and
zero spin for each broken symmetry [9]. Most importantly we begin with
Locp which describes the theory as symmetric in its degrees of freedom.
This however does not represent the real situation in our physical world. Lo-
cal gauge invariance is a feature which enables the theory to be renormaliz-
able. The QCD vacuum can have non-trivial topological structure. The Ward
identities describe the correlation between the global and gauge symmetries.
These symmetries are retained after renormalization, and are fundamental
to. It would not be possible without the implications of these identities, the

QCD equivalent of the Ward ID’s are the SlavnovTaylor identities
L= 0y d"p —m*¢"9 — M¢"¢)" (3.4)
This Lagrangian is invariant under global U(1) transformation

¢, (3.5)

where « is an arbitrary real constant. The chiral symmetry present involves
hadrons at low energies taking place in the nonperturbative region of QCD.
This will carry large implications surrounding global symmetry breaking
and the Goldstone bosons. Chiral symmetry breaking provides insight into
interactions at low momentum transfer. The chiral perturbation theories that
cover some of this ground effectively use the Lagrangian for low energy in-
teractions of the light pseudo-scalars. This effective Lagrangian can then be
used as the basis of approach in studying these Nambu-Goldstone modes as
a result. Ignoring renormalizability, the mass of the ¢ is adjusted by mak-
ing the walls of the double potential well tighter further restricting oscilla-
tions, when in the limit of infinitely fast oscillations you end up restricting

the 7t fields to a sphere. This limit is the non-renormalizable non-linear sigma
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model in Gell-Mann and Levy’s paper [60]. In the nonlinear sigma model, a
tield theory was constructed where the field values were restricted to a man-
ifold. The term "current algebra" is also sometimes used for a special case
when the manifold is a group. The modern version of the current algebra
is Chiral Perturbation Theory, (xPT). Naturally, we will start with the chiral
anomaly showing up in the Tz, namely 7 — 7. The verification of colour
charge had been realized by this process as well. Due to the methods of cur-
rent algebra, the decay rate for 7° — 7y calculated with the small masses of
the u and d quarks. It comes into an agreement with the observed decay rate
only when each individual flavour quark exists with the possibility to obtain

any of the three colour states [44].

3.2 V-A Theory of Charged Currents

It was discovered by Wu in 1957 that helped to discover and establish a
parity violation in the weak interaction, namely processes that undergo nu-
clear B-decay involving a sample of ®*Co (] = 5) at 0.01 K in a solenoid [7].
The experiment established that the conservation of parity is violated in the
weak interaction. The alignment of the ®*°Co had measurements taken from
angular distribution of y-rays from a sample of ®*Ni. A way to measure rela-
tive intensities of the emitted electrons interacting with the present magnetic

tield direction was measured, showing consistency via

1) =1-<]>-p/E
(3.6)
=1— P,cosb

v, p and E are the speed of the electron, momentum and energy, with P being
the polarizations magnitude, while 0 is angle of emission of electron with

respect to < | > . We have to note the angular momentum, J being an axial
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vector operating under the transformation < J >— < J > under P, while P is
a polar vector under transformation going as p — p. This gives the result in

the now parity transformed system [7]
Ip(0) = 1+ Pycos®. (3.7)

When compared to the result in equation (3.10) it shows a sign difference
distinguishing separate coordinate systems. We have a pseudoscalar quan-

tity <J > -p as well as a scalar quantity 1" [7].

3.3 Spontaneous Symmetry Breaking

3.3.1 The 1 — 7+ Transition

FIGURE 3.1: 7’ — <7 decay additionally is where observed

spontaneous symmetry breaking from the chiral anomaly takes

place. The goldstone bosons giving rise to vector boson masses
as well as the Higgs mechanism are observed in this process

[61].

Consider a hadronic process mediated by two local quark currents, we
can consider the separation from each other by an average long distance of
O L, and this is where we lose the notion of locality [4]. 7r° decay problem

Qcop
proved to unravel a great deal of physics contributing to the SM puzzle. One

0

implication being the decay rate for 7° — 27 was only in good agreement

with theoretical results <= N, = 3. This was the first evidence for colour
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in quarks [9]. We proceed to obtain the decay rate of the pion from first
principles and compare it to the latest experimental data and take note of the
accuracy when compared with experimental results. The rate for the above

process in 3.1 is determined by

(01 Ja(x)Jp(y)9(0) 0) = ]%m% (01 Ja(x)Jp(y)9, A*(0) [0),  (3.8)

J« being is the electromagnetic current and is represented by A on the right

hand side, giving f, ~ 93 MeV

~

~ r?T/

as measured from 71~ — pvy,

(01 A%(0) [7t(p)) = ifrp". (3.9)

The rate for the decay is calculable using the diagram shown above in Fig.

3.1. We obtain from this an absolute prediction for the decay rate,

v, 1 m

_ 2
o 7 =7.602eV. (3.10)

I'(7® = yy) = X

{ is the color factor for three colours of the fractionally charged quarks. Re-

markably the experimentally measured value reads 7.7 + 0.6eV [4,6].

3.3.2 The Yukawa Interaction

The Klein-Gordon equation describes the pion electromagnetic Form Fac-
tor where we need to take into account its electromagnetic potential energy.

We can calculate matrix elements between states by the following,

(Pl e = Tsp) 1), O] U = J3p) [07) (3.11)
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Ju and J5, being two currents that transform as a Lorentz vector, and axial
vector respectively. This corresponds to three semi-leptonic decay processes
[35]

n—pte +v
T —e +V (3.12)
o= no—l—e_—|—17_n—>p—|—e_+?.

It was the neutron B decay process n — p + e~ + v from which Fermi ini-
tially began to construct his theory. He initially added a term in the original
Lagrangian as

L = Gley" (1 = ys)v][(pr)nl, (3.13)

where 7 is a neutron field annihilating a neutron, p a proton field annihi-
lating a proton, v a neutrino field annihilating a neutrino, and e an electron
field annihilating an electron [35]. The strong interaction must be treated
to all orders in the strong coupling, the calculation of the matrix elements
that we need in this approach introduces a problem in the strong interac-
tion [14]. Fermi did not go on to write separate Lagranians for each nucleus
at play. Nuclear theorists at the time proceeded to calculate the matrix el-
ement (Z + 1, A| [pyu(1 — 75)n] |Z, A) . This is for the weak interaction, for
the strong interaction the theorist calculate the matrix elements that look like
(n| (Ju — J5u) [n). We think of ], and J5, as the quantum operators, and as

mentioned are the two currents transforming as Lorentz vectors [4, 35].

3.4 Non-local Vacuum Condensates

Quark anti-quark and gluon fields fluctuate giving way to a nonvanish-
ing average density vacuum st [4]. Correlation functions interact with the

QCD vacuum fields allowing insight to be gained regarding its dynamical
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behavior. The distribution amplitude is the fundamental gauge invariant
wavefunction which describes the fractional longitudinal momentum distri-
butions of the valence quarks in a hadron integrated over transverse momen-

tum up to the scale Q. The pions electromagnetic FF can be written as [62]

1 1 1
Fr(Q@) = [ dx [ dypi(s, QTu(xy, Qon(x, Q1+ 0(5)). (14

In other words the DA’s in our case represent the momentum fraction distri-
butions of partons in the meson that is in a particular Fock state [63,64]. Hard
exclusive processes producing pions in the final state with sufficient energy
are sensitive to momentum fraction distributions of the valence quarks. This
occurs at small transverse separations and is more specifically a descriptor
of the pion DA. With this we can define the matrix elements of a non-local
light-ray quark anti-quark operator [64,65]. The distribution amplitude in
view of its minimal number of constituents is related to the Bethe-Salpeter
wave function. This equation essentially arises from the Dyson-Schwinger

equation, and describes the bound states of a two-body system [64]. ¢ps by

‘kL<y‘ 2
px [ dkogns(a k). (3.15)

¢(x) represents the DA as a function of the parton, integrated over the par-
ton distribution and the transverse momentum of the constituents. The stan-
dard approach to DAs, which is due to Brodsky and Lepage, considers the
hadron’s parton decomposition in the infinite momentum frame, in other
words, very close to c. There is also a mathematically equivalent formalism
that requires a differed approach which is the light-cone quantization [66].
Either way, power suppressed contributions to exclusive processes in QCD,
which are commonly referred to higher twist corrections, are thought to orig-

inate from three different sources, with the list given from [63],
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* When bad components in the wave function effect the distribution such

as wrong spin projections;

* Quark antiquark pr contributions in the leading twist components that

cause integrals to have additional factors of k3 .

* Higher Fock states that contain a greater number of quark/anti-quark

pairs and/or gluons than needed.

The pion DA can be represented as the series in the eigenfunctions of the
leading order evolution equation, which is in the form of Gegenbauer poly-
nomials [67], and where we will see a bit more on the resulting Mellin space
in Chapter 4. It is usually assumed that the series is convergent and doing so
necessitates the use of only a finite number of terms to be considered in the
series. The pion DA is not directly measurable and has to be calculated from
the data or additionally be constructed from nonperturbative models. When
analyzing theoretically insights are gained and constructed from the first few

moments, [68,69].
1
<>, = / dx(2x — 1)N¢? (x, 12), (3.16)
0

where N = 2,4,...,{ = 2x —1 = x — X,Xx = 1 — x, with x being the partial
longitudinal momentum of the valence quark in the pion. Lattice results
gave a measurement for the second moment < &2 >, as can be seen in [70,
71]. There does not seem to be yet enough data obtained from experiment to
constrain the moments above N = 6 These techniques are further discussed
in [72,73].

PDFs tell us about the partonic content of hadrons, but as single-particle
probabilities they tell us nothing about correlations between quarks and glu-
ons. We can obtain the correlation function in terms of interpolating fields

constructed from the quark and gluon fields, and the correlation function

38



is computed by Wilson’s OPE. DAs tell us about hadronic structure at am-
plitude level. We can expand DAs in Gegenbauer polynomials, and their
coefficients are the moments. The main tool for studying DAs is QCD light
cone sum rules. The pion DA can be defined through the matrix element of

a non-local axial current on the light cone

< () 5B (2, O)u(O) (P) > 2oy = faPy [ dxe (1),

(3.17)
We achieve gauge invariance for the pion DA expressed in Equation 3.18
through the Fock-Schwinger E(z,0) = Pes Jo An(0d™ [74] " The physical
meaning of the light cone object is that it is the amplitude for the transition
of the physical pion to a pair of valence quarks u and d, separated at light
cone. It has momentum fractions xP and xP. This object includes nonper-
turbative information about the physical pion. It is important to note and
introduce that it obeys the Efremov and Radyushikin-Brodsky and Lepage
(ER-BL) evolution equation with respect to 2. This ties in with that it is con-
venient to represent the pion DA as an expansion in terms of Gegenbauer
polynomials C5/2(2x — 1), being the 1-loop eigenfunctions of the ERBL ker-
nel [64,74],

r(x; ;42) =¢™(x)[1+ az(yZ)Cg’/z(Zx -1) +a4(y2)C2/2(2x —1)+..]. (3.18)

This means to transfer all the 4% dependence of the pion DA into the Gegen-
bauer coefficients a;(4?), as(4?), ... We are confined to using the non pertur-
bative approach if we wish to obtain the pion DA in the theory. And the first
nontrivial model [75] was constructed using the standard QCD sum rule ap-

proach to estimate the first two moments of the pion DA [76]

<P>pand < >,. (3.19)
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The first five moments were obtained for the pion DA from NLC QCD sum

rules. < ¢?N >, with N = 1,..5.

Correlation Functions

In upcoming chapters we will discuss an accurate way to calculate how
correlation functions are influenced by vacuum-field contributions. At Q% >>
A%QC p- the distance between the § becomes smaller than the scale of the vac-
uum fluctuations and treat them as static for the purpose of obtaining the
average characteristic of the quark fields. Vacuum gluons are emitted and
absorbed virtually interchanging with their vacuum counterparts leading to
quark-gluon interactions [19]. We can expand the product of the two currents

in a series of local operators as follows

i / dxe M T{P(x) 7, (x), (0) 1 (0)} = (9uqv — T°uv) ;Cd(qz)Od,
(3.20)

representing the vacuum condensates with

(%) = Y, Ca(q%) (0] O410) . (3.21)
d

with d = 0 being a representation of the unit operator attributed to QCD
vacuum fields taking place of quark and gluon fields, ¥, ¢ and G- The op-
erators are ordered according to their dimension d, with perturbative contri-

bution corresponding to the Wilson coefficient, this is given as
Ca(q®) = T17*"(4%), (0] O 0) = 1. (3.22)

Further making the point that QCD vacuum condensates violate chiral sym-

metry and its contribution vanishes in the chiral limit, m = 0.
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The Wilson coefficient receives dominant contributions from regions un-
dergoing short distance interactions, and we need to take into consideration
of the product of the quark currents present concerning their quantum num-
ber properties. The interactions dependence is encoded within the Wilson
coefficient seen in Equation 3.22. The OPE is an invaluable tool used in high
energy QCD phenomenology, it is used to define PDF’s that have been ex-
tracted from experiments, and the OPE with its renormalization group is an
operative part in analyzing DIS experiments in which involve lepton-nucleon
scattering. When considering a total cross section for the scattering of a lep-
ton, for instance, by an initial hadron, we rely on unitarity occurring as a

linear combination of the amplitude components [4, 6],

[ dixe e (1|00 (0) |H) (3.23)

k represents the four-momentum that transfers from lepton to the hadrons,
with H being the hadron in the process. This is seen in DIS experiments
where we allow the momentum k to approach infinity while setting the high
momentum limit of the Fourier transform. One can derive spectral function
sum rules in this high momentum limit when replacing the hadron state |H)
replaced with the vacuum. A point to make is when taking a simple case
of the operator product, j#(x);V(0), and analytic in x#, the Fourier transform
would exponentially decay as the Fourier variable k approaches infinity. This
description represents Wilson’s attempt to bypass quantum field theory and
attempt to formulate additional approaches, while not being a full replace-
ment, the approach led to general results that benefited the understanding
of QFT properties [9]. The OPE with regard to spectral function sum rules

places constraints on the spectral functions of applicable currents.
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3.4.1 Pion Two-Point Correlation Function

The pion two-point correlation function is often used to calculate the
pion-nucleon coupling, ¢,n, in QCD sum rules. We view a correlation func-
tion in terms of interpolating field operators by way of its quark and gluon
interpolators, and what follows is the employment of Wilson’s OPE to com-
pute corresponding correlation functions [64]. Physical quantity of interest
match the two descriptions in the deep Euclidean region (g?) = —co via the

dispersion relations, the pion two-point correlation function is as follows

(g, p) = i [ dxe™ (0] T[Jn(x)Tn (0)] [7(p)) (324

and with it can calculate pion-nucleon coupling, g,n in QCD sum rules [64,
77,78].

General correlations between PDFs and physical observables can be com-
puted within the Monte Carlo approach, and can compute the correlation

coefficient

Nrgp < AB >rep - < A >rep< B >rgp
(Nrep - 1) UAOB

p[A, B] = (3.25)

which computes averages over an ensemble of the Ny, values correspond-
ing to observables. ¢4 p are the standard deviations of the ensembles. The
quantity p characterizes whether two observables (or PDFs) are correlated

(p ~ 1), anti-correlated (p ~ —1), or uncorrelated (p ~ 0) [79].

3.4.2 Form Factors

Electroproduction is one of the main ways to access FF using the "pion
cloud" of the proton via the p(e, e 71) process. Furthermore, the FF play an
important role due to being the most convenient link between experimental

observation and theoretical analysis, they also serve as the matrix elements
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[80]. The pion electromagnetic FF, F;S in the time-like region g> = s > 4m?
is directly accessible measuring the e"e™ — 7™ 7~ cross section at a given
center of mass energy +/s of the collision. It can be seen from perturbative

QCD the pion FF, Fy, is [81-84]

Fu(Q% pk = F27(Q) + B~V (Q% iR)- (3.26)

The kinematics probed in the CELLO and the CLEO experiments involves a
quasi-real photon with qz — 0[85,86]. The method of Light-Cone QCD sum
rules allows the problem of preventing a straightforward QCD calculation
of the FF to be avoided by performing the means of QCD calculations at
sufficiently large g*(7*). It is then sufficient to use dispersion relations to
approach the mass-shell photon with zero virtuality. This calculation scheme
was proposed by [87]. Processes with two photons in the initial state, and

one far off-shell with the other quasi real is
Y+ — o (3.27)

This provides a useful tool to access (after their fusion) the partonic structure
of the produced hadronic states, the pseudoscalar mesons. Experimentally
the photon-to-pion transition FF of this kind has been measured by CLEO
with high precision extending the range of Q2 up to 9 GeV, as compared to
the previous low-momentum CELLO data [88]. To see where both pertur-
bative and non-perturbative QCD play roles in the process, we can look at
highly energetic photons, where perturbative QCD works well because of
factorization being applicable at some factorization scale yi%, so the process

can be put into the form of a convolution as follows,

FIYT(Q% ¢%) = C(Q% 4% pE ) © fa(x, piE) + O(Q7Y) (328)
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which contains the hard part C, which is calculable within perturbation the-
ory, and a wave-function part ¢ that is the (leading) second order pion
distribution amplitude and has to be modeled within some nonperturbative
framework, or extracted from experiment.

The standard definition of the pion electromagnetic FF in the spacelike
region is

ot (p2) 5" |t (p1) >= (p1+ p2)uFr(q) (3.29)

where ji" = (1/2)(Fyuu — dy,d) is the isovector component of the quark
electromagnetic current, and g = pp — p; is the momentum transfer. The
FF obeys the normalization condition F;(0) = 1, and represents the electric

charge of 7t". The standard dispersion relation [84].

/ ds Sli” ;: ) L (3.30)
50

connect the spacelike pion FF Fr(g?) at |g> < 0 with the imaginary part of the
time-like FF F(s) integrated over s above the two-pion threshold sy = 4m?
[4,84].
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Chapter 4

The Parton Model & Theory of Calculation

4.0.1 Introduction

In this chapter, having now at this point introduced background and tools
relevant to the physics in question, it perhaps is appropriate to introduce the
calculations in theory before heading into Chapters five and six. Perturba-
tive QCD predicts the evolution of the structure functions, accompanied by
factorization theorems along with remedies for sources of uncertainty will
also be topics of study. TMD distributions are an extension of the concept
of PDFs, and provide initial state conditions to make predictions for hadron
processes. Introduction to Wigner distributions which when integrated over,
and considering all coordinates, will allow us to obtain the TMD distribu-
tions. Essentially, we end up with three-dimensional densities in momentum
space [17] with the distribution functions are obtained from experiment and
theory. Beginning with an example for if we wish to compute the Higgs pro-

duction cross section () at the LHC, we would then employ

UPP%H:Zfa/p(X)fb/p@wab—)H (4.1)
ab

where PDFs f,,p and f;,p provide probability densities for partons a and b
in the process, and w,, — H is the probability density for partons a2 and b

producing the Higgs [89]. Techniques have been and are continuing to be
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developed for obtaining information on the dynamical character of the con-
fined dynamics of quarks and gluons within the hadron. They provide ad-
ditional information for hadrons that complements the accompanying PDFs
and GPDs. One small example being the gluons carrying away transverse
momentum in a process, more information regarding these details provides
a glimpse into this nonperturbative realm. Dedicated studies for low Pr re-
summation have been carried out [90-93]. To continue, a short introduction

to the parton model and the PDF

41 An Introduction to The Parton Model

The parton model is scaled with DGLAP evolution equations while leav-
ing room for higher-order corrections to hard scattering processes to be im-
plemented [44]. The parton model applies to any process involving hadronic
cross sections with large momentum transfer. The parton model was first
introduced by Richard Feynman in 1969 as a way to analyze in more detail
the constituents of high-energy collisions. This was additionally applied to
electron-proton DIS by Bjorken and Paschos. At high energies hadrons look
like they are point-like and nearly free objects that are dubbed partons. The
high-energy interactions with the initial state hadrons can be described in
terms of these point-like partons. The flux of the incoming partons has to be
known, and these can be expressed in terms of PDFs. The PDF is the number
density of partons carrying a fraction of the parent hadron momentum. The
QCD-improved parton model relies on factorization theorems and provides
the framework in which almost all cross sections at current high energy col-
liders are computed. The PDFs are non-perturbative objects and have to be
tixed by experimental information. Additionally, PDFs are determined by
a global analysis of all available experimental information. Since the PDFs

are connected to each other by evolution equations, leaving out certain data
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may bias the PDFs towards a specific experiment leading to inaccurate esti-
mations. Here is a quick primer on a global analysis. First, we should choose
suitable input functions such as f;(x, Qo; i, 1, pi, 2, ...) for the x-dependence
of the various partons (i = u,d, s, ..., ) at some initial scale Qp, where Q has
to lie in the perturbative regime such that the perturbatively known evolu-
tion equations are applicable. Typically Qp = 1 —2GeV is used. For each
point denoted by k, we run the PDFs up an appropriate scale Qi by using the
DGLAP evolution equations. The corresponding theory value is computed
in the parton model using the PDFs at the scale Q; combined with the hard
scattering cross sections for the process to which the data point belongs. For
each data point k the x7 between theoretical and the experimental value is
calculated. By summing up all x? one obtains the x*[p;, 1,p;,2,..] = L x?
for a given set of parameters pq, 1, p;, 2, ... These parameters are used to find
a global minimum of the x? function is found. The optimal fit parameters fi-
nally determine the best-fit PDE. A review of some pion PDFs is highlighted
with references to associated work [94-98].

In 1984, the idea of pionic global analysis came up to summarize data
from several Drell-Yan experiments. It turns out the DY data makes no pre-
diction for momentum fraction x < 0.2 which leads to large uncertainties
for small x. Additionally, it was not sensitive to the gluon or the sea quarks
because the DY process is not dominated by gluon and sea contributions.
In 1989, the collaborators used prompt photon production, which is partly
dominated by gg scattering. The data was taken from 7p or 7~ p scat-
tering experiment helping to constrain better PDFs. The notorious issue of
ambiguous sea distributions were still not resolved. In 1991, two new ap-
proaches were developed using NLO, while the previous pion PDFs were
determined in LO calculations. One approach [94] made good assumption of
a valence like parton structure at a low resolution scale Q? that determines

the gluon and sea distribution. Sea and valence distribution were generated
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radiatively from this data evaluated out of the valence distribution from DY
data. From [95,96], a new idea came up to constrain the pion PDFs based on
nucleonic PDFs while using a constituent quark model. One could determine
the valence distribution by DY data, which when combined with nucleonic
PDFs shed light to new quark and gluon distributions. Mellin moments are
a tool used in describing PDFs. PDFs can be either described directly in the

x-space or in the Mellin momentum space. It is defined by the transformation

1
F(N) = /O dxxN=1f(x), NeC. 4.2)

Convolution integrals can now be changed into a simple product. The Mellin
space evolution equations can be solved analytically, and to get back to x-

Space we use

Fx) = —— [aNx V) 43)

Where C is an arbitrary contour in the complex plane which has to lie right

of all singularities and extend from —ico to ico.

Early SLAC and Bjorkin Scaling Success of Parton Model

The evidence for quarks as constituents of the nucleon emerged from the
pursuit and development of hadron spectroscopy. Confinement, which for-
bids us from observing free quarks in nature was the hurdle preventing wide
acceptance of quarks existing in nature. The Stanford Linear Accelerator
Centre (SLAC) in DIS experiments eventually observed Bjorken scaling, and
so began the success of Feynman’s parton model, in which states quarks are
the basis fields describing nucleon structure, and consequently was verified
and accepted by the community.

Factorization and evolution equations allow us to derive the parton model
in ways enabling computation of scale-breaking effects [6,14]. From the field

theory realization of the parton model, factorization permits the separation
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of short from long distance dependence, essentially separating perturbative

from non-perturbative regions [14,44,99].

4.1.1 Parton Distribution Functions

Starting with Deeply Inelastic Scattering, unpolarized and longitudinally-
polarization quark densities have simple relations to structure functions, struc-
ture functions encase important properties of cross sections in experiments,
and rely only on elementary properties of electroweak interactions in order
to define them. The parton densities can be defined definitively as solely re-
lated to the experiment through factorization theorems we derive in terms of
said structure functions and other cross sections available to parton the den-
sities [44]. This becomes necessary in the calculation of particle cross-sections

at collider experiments. The master formula for PDF’s is given as [13].

2 A2
Oy = / dx1dxy fa(x1, UE) fo (%2, uE) X 0 pn (X1, X2, a5 (%), = & 9 =).
]/lF UR
(4.4)
Oap—Xx = 09 + as0q + 0457;(72 + ... 4.5)

Equation 4.4 describes the PDF in terms of the scattering cross section, ¢, and
summing over the constituents of the parton showers in scattering experi-
ments with x,; and x;, representing the outgoing partons. pr is the factoriza-
tion scale where the DGLAP evolution equations enter, which we discuss in
more detail in the next subsection. ppg is the renormalization scale respec-
tively. In Equation 4.5, 0y is leading order, as01 next to leading order, and

2

w507 is the next-to-next-to leading order contribution in QCD’s coupling ex-

pansion. The unpolarized cross-section for DIS with single photon exchange

is [100]
do? 27t
7.0t = 5,0 | (1P @) -y )] @e
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The longitudinally polarized cross-section is

dépov(A)  4ma?
dXAdQ2 N XAQ4

=22 (1= (1 =) xg] (v, Q) + 8] (%, Q)| 47)

The Bjorkin limit, Q%, v — oo | x = fixed comes from J.D. Bjorken’s argument
in 1968 that in the limit of photons interacting with the target constituents

(partons,x) will involve no dimension scale, and so then
F(x,Q%) — FJ(x) (4.8)

This was confirmed at SLAC in 1968 and gave the first evidence toward par-
tons being an object of interest [100].

We can choose a frame with g, = 0 and arriving to the photon moment

g = [1/, 0,0, —\/m} —qg= [v, 0,0, —v — xMpy (4.9)

, with light cone coordinates

1 —
+ +1,— -t _ o7
=——— —sa-b=a"b +ab"—al-b,. 4.10
q NI 1-by (4.10)
With the Bjorken limit
g~ — coqgT — —xMy/V2 (4.11)
and
2 + 4= +
x:Q—:—__‘Zq+_%—q—+. (4.12)
2p qapT+arp P
With lightcone dispersion relation
_>
_ om?+ k?
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This is only satisfied for k' = k + g if K * = 0 implying k* = —g* x has no
a physical meaning in terms of lightcone momentum fraction carried by a
struck quark prior to photon collision. giving, [100]

k-l—

=5 (4.14)

4.1.2 DGLAP Evolution of Hadronic Structure Functions

The evolution equations describing the parton distribution function dis-
cussed in the previous subsection contain amplitudes that rely on evolution
kernels on a renormalization scale, a5 [13]. The distributions in the proton are
changing from one value of Q to another. We first find the proton wave func-
tion, obtain a valence distribution including gluon distribution as a function
of x, and a sea distribution for quarks and anti-quarks. We then integrate
the DGLAP equations from low to high Q. The valence quarks emit gluons
with their distributions vary at the varying Q’s, and eventually split into ad-
ditional gluons and is where splitting functions are employed. We arrive at
tc, and s5 represent the initial state of the hard processes. Gluons can split
substantially to b quarks, these are considered a substantially heavier third
generation quark when compared to the light quarks, d, 1, s. It may be inter-
esting to ponder LHC processes using the b partons in the proton to initiate
reactions that might occur in the third generation, having said this there is a
future planned 100 TeV collider with plans to include ¢t quarks as partons in
the proton generated by these evolution equations [38]. This of course is the
intuitive way that we might do it. In practice, we make a free model of the
PDF, and introduce five or six parameters per distribution. Next we write a
paramaterized set of equations that represent the PDF at one value of Q, and
use the DGLAP equations to evolve this PDF to any number of values of Q

appropriate to a number of experiments we are interested in as seen in the
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pion example in subsection 4.1.1, and will define further in coming subsec-
tions. One example of flexibility in a sense is we can choose Q at of order
one, or three, if we wish to represent the old SLAC data, or order of thirty
to represent the muon-proton, or muon-nucleus scattering data at CERN in
the 1980’s. We could also, for example, scale Q of order one hundred, or
even hundred’s to represent e~ p data that was generated at the HERA col-
lider. For each data set you would then fit these same parameters, and by
doing a global fit we arrive at an understanding of the shape of the parton
distributions, which now have to be dynamical in Q>. What we see with
this phenomenological approach is the inputs for what we see in the LHC
beam to initiate a hard reaction, and serves as a powerful phenomenological
tool [38,101].

We cannot fully trust calculations of f(x, Q) at low Q in the nonpertur-
bative IR regime, we can however trust large Q calculations of changes in
f(x,Q) from Q to Q + 5Q. This translates to us being able to trust evolution
equations, which necessitates our returning to experiment for information re-
garding relevant initial conditions. The LQCD community has many promis-
ing insights and approaches to nonperturbative aspects of this approach, and
is working at providing more accurate descriptions.

In application of DGLAP equations, the PDFs acquire a factorization scale,
uF, being that when momentum is carried away by secondary partons, the
scale evolution of the partons are described by the equations and is given

as [83,102-104]

d K
QEfi(er) =

Qmsfix, @) = = /xldz(qu(Z)fi(g,Q)+qu(2)fg(§,Q)) @15
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A challenge presented being the self interaction of the colour fields adds a
contribution due to their non-linear behavior. We split one gluon into a gluon
pair ¢ — g¢g, and then contributes to the splitting function as Pge. The split-
ting functions give the colour factors associated with one gluon splitting into

additional gluons, and is addressed as

r 2
Pr(e) = 5 (11+_Z) 2601 z)]
Py (z) = % 1+(1Z——z)2} (4.16)

Pyg(z) = % {22 +(1- 2)2}

Pee(z) = 6 1;Z+(1iz) +z(1—z)+(%—%)5(1—z)].

As Q increases, additional splitting occurs necessitating the functions to op-

erate in the lower x region. [101]. s

4.1.3 Luminosity Functions

Luminosities provide the link between experimental and theoretical cross
section measurements. ManeParse [105] is used through the Mathematica
framework to calculate integrated luminosities, which have been written as
a convolution of PDFs for this task. Once we have these distributions, we
can then try to compile luminosity functions which can be used to estimate
reaction rates at the LHC. That is, we can use these equations to describe
collisions in terms of luminosity. Luminosity is the proton count per area
beam and is obtained from the geometry and number of particles flowing per
unit area. Given two protons colliding at a certain energy, we have resultant
outgoing quark, gluon and anti-quark jets, we can describe the partons in

terms of the luminosity, such as g, g collisions, or g g collisions in that process.
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Cross-section for link between experimental and theoretical measurements

LdLj
S) = ——0;i(8)dT. 417
79 =% J—=—0L 417)
This is written as a convolution of PDFs and is easily calculable in ManeParse
[105]. One advantage of ManeParse being the speed of the interpolation rou-
tine for numerical integration, giving the example from [105]

iﬁun”):5ﬁ11/f%[ﬂﬂ4”ﬂ<£ﬂ)+f%%uﬁ(£¢0}h (4.18)

This can be used to reproduce results and compare to other collaborations’
PDF sets. Luminosity at the collider goes by the rate N describing events of
any type is determined by the luminosity factor, denoted L, and we multiply

L by the scattering process cross section .
N = Lo (4.19)

L is fixed in the machines parameters, for pp we can consider

N,N;
A S (4.20)
N T

f is the revolution frequency, n; is the number of bunches, and v = E/m

is the relativistic factor. N, (N is the number of protons and (antiprotons),
with E}/, E; the transverse emittance of the beams, and 5, is the betatron
oscillations of the beams [6]. We can factorize the cross-section for multiple
jet emission in the collinear limit. The production of additional partons in
juxtaposition to a jet direction can be described in a time-ordered probabilis-
tic fashion such as a series of 1 — 2 splittings, which occur successively one

after another [106].
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4.1.4 Toy Model cross-sections for ¢®% and ¢ in the sub-

traction Formalism

In the next chapter, analysis from data sets containing the data from se-

. 0 1
lected LHC runs, we analyze the cross-section at c©% and ¢©%.

7O = / dppBn(Ps; HE, HR)
08 Z/dfPB [Bn(¢8} HE R, ) + Va9 e, i) + T (GDB/'P‘F/}”R)} (4.21)

—|—/d4)5 [RH(QDB;‘M}:,‘MR,) +Sn(47B}VF/VR)}

¢ and ¢r represent the Born and real-emission phase space, with the ac-
companying matrix elements for the Born, renormalized virtual, integrated
subtraction, real-emission, and real subtraction contributions. With the real

and integrated subtractions

b dx
/

which are combined with the virtual correction VmF,L/ € [13]. We will see
how the subtraction method works when looking at W production at NLO

in Chapter 6.

4.1.5 Jets

In colliders, the production of vector bosons constrains many of the pro-
cesses in the SM. It also assists with bench marking parton luminosities. We
use these to improve parton shower predictions as reconstruction of events
and more accurate data becomes available [13]. We additionally have to deal
with missing energy in the transverse plane (Et), and a better understand-

ing of the formation of the observed final states improves predictions and
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searches for new physics. In Chapter 6, we will make use of these descrip-
tions when reconstructing jet contributions, as well as needing to account
for the missing ET and P_L. At lowest order, a parton is identified with a jet.
When situations occur with additional radiation that is liable to fall inside
or outside the cone, we have to consider theoretical cross sections taking into
account the cone size [6]. We also have to take into account various renormal-
ization and factorization scales, . Jet Et, has the profile zp(r, R,ET), and we
define this as the average fraction of jet energy in the transverse plane. Figure

4.1 shows V+ jet processes. V denotes vector boson. We leverage fragmenta-

7/z/w:|: — ’}’/Z/W:t
\
029000 A——
Y

Y
’}/Z/V[f’i

FIGURE 4.1: Feynman diagrams for V 4 jet processes
[107].
tion functions, one way is to incorporate DGLAP as well as modified leading
logarithms (MLL). This requires the Mellin transforms of the hadron distri-
bution to be expressed in terms of anomalous dimension, being a factor from
the interaction, and leads to a perturbative expansion in half powers of «;.
Integer powers of a; are related to fixed-order corrections. The half integer

terms accuracy relies on resummation of soft and collinear logarithms [108].
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4.2 QCD Sum Rules

Asymptotic freedom is realized when summing whole classes of higher
order contributions [7]. QCD sum rules is a nonperturbative method to solv-
ing QCD, and is used to test the validity of interpolations, and the sum of the
momentum fractions of the partons in question must equal one. We do this
to as accurately as we can account for total momentum of the hadron. Sum
rules in our context serve to validate routines that become assigned for the
interpolation steps in calculations, in which considers the full momentum
range, x for energy, Q [105]. PDF groups that are dedicated to PDF tech-
nology use different forms for paramaterization, an example being the CT14
tit, which we encounter in subsequent chapters in calculation, uses 28 free
parameters, some of them fixed at reasonable values, or alternatively con-
strained by sum rules [13]. Broadly speaking, we work to establish a link
between the condensate and phenomenology, and we construct sum rules
from the information computed via correlation functions. The first applica-
tion that employed the QCD sum rules to the pion wave function ¢, (x) was
to calculate its decay constant, which we have seen in 3.3.1. This was the
process in which Shifman, Vainschtein, and Zakharov pioneered their initial
paper when developing the sum rule where they calculated ¢ (x) within 5%
accuracy [109]. The OPE is the starting point for QCD analysis. An impor-
tant note for our process is that depending on whether x is large or small,
we will need to modify how we proceed with the expansion, and may need
some modification.

Integrals over certain combinations of parton distributions hold certain
values in the parton model. These integrals additionally go by the name sum
rules. We can employ these sum rules up to perturbative corrections, and the
limit with which we can access these perturbative methods with respect to

the sum rule approach is constrained by the vanishing of the first moment
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of the non-singlet anomalous dimensions to all orders when working in per-
turbation theory [6]. When we need to determine an unknown parameter
regarding the hadrons, QCD sum rules have become a reliable prediction
tool. There lies the issue of unknown structures of the hadronic dispersion
integrals and this makes this particular approach difficult. Additionally, the
accuracy is limited by approximations in the OPE of the correlation function.

Quark and gluon confinement in QCD is not attainable via direct exper-
imental measurements of the fundamental QCD parameters. We need ex-
perimental based measurements since we rely on these to determine the pa-
rameters analytically. Once established lattice simulation provide accurate
results. This however is still in a "black box" kind of way considering little
is still known about their origins [110]. The latter may be obtained from an
analytical approach which relying on the relation between Green'’s function,
more specifically, when the OPE is carried out beyond perturbation theory
and their hadronic counterparts. This relation follows from Cauchys theorem
in the complex (squared) energy plane (quark-hadron duality), and is collec-
tively known as the QCD sum rule [111]. There had not been analytic proof
for confinement, and we are restricted to inference by way of parameteriz-
ing quark and gluon propagator corrections from what we can learn about
the vacuum condensates [111]. The OPE comes in handy when needing to
calculate correlation functions. [112]. ¢,n was calculated retaining the first
nonperturbative terms in the OPE. the calculation was later improved in [78]
using higher ordered terms in the OPE. The pion two-point correlation func-
tion was considered and evaluation of the OPE was done in the soft-pion
limit (p,, — 0), considered the sum rule beyond the soft-pion limit [87,113],
however it was noted that another source pointed out in reference [114] that
there may be a mistake in their calculation, which can invalidate the conclu-
sions based on the sum rule beyond the soft-pion limit. QCD sum rules could

depend on a specific Dirac structure, as pointed out in reference [114, 115],

58



where baryon sum rules were investigated. They found the chiral odd sum
rule to be more reliable due to partial cancellation of the positive and neg-
ative parity excited baryons in the continuum. In the interest of this work,
the QCD sum rules for the two-point correlation function are used [114], and
three different sum rules were constructed starting with the correlation func-

tion with a charged pion [87]

(g p) =i [ dxe™ <OTOTO)]l7" (p) > @23)

The ], is the proton interpolating field [116]

Tp = €apeltid Cyutup)ysytde (4.24)

we obtain the neutron interpolating field J, by replacing (ucd) — (d,u). In
the OPE, this leaves only the pion wave functions diquark moment [117].
The calculation of the correlator in the coordinate space contains the follow-

ing diquark component of the pion wave function [117],
D, =< 0jut(x)d F(0)|7* (p) > (4.25)

We have Dirac indices denoted by « and f with a and 4 taking the range of
the color indices. The additional quarks are contracted subsequently forming
quark propagators, which is written in the form of the following three Dirac

structures

6
D = 2 (y5)F < 0ld(O)prsu()|mt(p) > . (426)
§ﬂﬂ/ . ap —= . +
=5 (i5)™ < 0[d(0)irsulx) [ (p) > ...

O =
= g (rs0™)™ < 0ld(0)ysopu(x) | (p) >
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The Dirac structure corresponding to each matrix element is written in terms
of relatively well known pion wave functions. The calculation has been car-

ried out up to first order in p, [64].

421 The QCD Vacuum with Introduction to the SVZ Method

When introducing the OPE, we needed to incorporate the effects of the
condensate somehow to account for its contributions being responsible for
revealing what was once a missing component in QCD. The color dynam-
ics described by QCD gives rise to complications that needed a solution in a
non-abelian gauge theory and higher ordered contributions. The anitscreen-
ing phenomenon is generally associated with the counter intuitive coupling
strength at long and short distance scales. The gluon starts branching at long
distances by way of the Coulomb interaction, which is what causes the anti-
screening effects, also known as asymptotic freedom. Within distances that
do not permit the coupling expansion to blow up we can apply perturba-
tion theory to quantify this gluon branching. We arrive at the formula for
asymptotic freedom

as =k/ lnr7° (4.27)

1o is a scaling parameter of QCD, ryp ~ 1fm. In perturbation theory, the cou-
pling is evaluated order by order, and is known up to three loops. When
taken at long distances we now need to think in terms of chromoelectric and
chromomagnetic fields, it is conjectured that a specific configuration of the
condensate makes dispersed quantities, as they appear in QED energetically
and out favoured [118]. We deal with logarithmic gluon exchanges on the
perturbative level. In fact it is this gluon branching that is responsible for the
logarithmic running of the effective gauge coupling in pQCD, in the form of

loop diagrams.
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The QCD vacuum consists of a variety of condensates, it is stated in [118]

2

that about a half dozen of them are known, being the gluon condensate GW,

the quark condensate g7, the mixed condensate 7, and so on. We use the SVZ

sum rules in this situation.

4.2.2 Light Cone Sum Rules

Previously in this chapter we had seen lightcone coordinates in the Bjorken
limit, leading to the dispersion relations and showing physical meaning asso-
ciated with the lightcone momentum fraction. The light cone wave function
(LCWEF) is a representation of the distribution of LCSR. Insight and use cases
for Fock state, light cone wave functions, as well as light front holography
are developed for consideration . These serve as one of the tools in our every
growing tool box to tackle QCD. By far the simplest and most intuitive rep-
resentation of relativistic bound state wavefunctions is the light-cone Fock
expansion. Light-cone wave functions are the distribution amplitudes of
hadrons, and have been introduced in QCD to define the long-distance part
of exclusive processes that contain large momentum transfer [62,77,119].

This same wave function serves as input in QCD light-cone sum rules that
are based on the light-cone operator product expansion, of vacuum-hadron
correlators. An example of a simple processes that can be determined in
this way is 7*(q1)7*(q?) — 7°(p), where two virtual photons transition
into a neutral pion [77]. Recently, the CLEO collaboration has measured
the photon-pion transition FF where one of the photons is nearly on-shell
and the other highly off-shell [64,77]. For a more in depth view of Light-
cone decomposition, see 6.6.1. The method of QCD sum rules based on
two-point correlation function was pioneered for the calculation of Gegen-
bauer moments [84]. We can reference several available measurements of the

v*y — 71° process. The Light cone sum rules (LCSR) for the pion e.m. FF is
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derived from the correlation function:

Fllp—9)72 Q) = 2EnFr(Q%) +/(°° dsph(s’—Qz) (4.28)

mi—(p—0)?  Jemp s—(p—q)
where the lowest pole corresponds to the intermediate one-pion state inter-
polated by the axial-vector current. The residue of the pion pole contains a
product of the pion decay constant and the FF we are interested in [84].

The most widely studied hadronic distribution amplitude is the twist-2
DA of the pion. This gives the probability amplitude for g9 Fock state with

the g carrying x(1 — x) of the total momentum carried by the pion [120].
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Chapter 5

Collider Physics: An Overview of Experiment,

Procedure, and Results

CERN's Accelerator Complex

LHC

North Area
2008 (27 km) <N
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FIGURE 5.1: CERN's accelerator complex showing the produc-

tion of the proton/ion beam at the LINAC/LEIR and its pro-

gressive acceleration towards the LHC. Figure courtesy of the
Science and Technology Facilities Council, UK

[121,122].
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5.1 Introduction

The goal of this chapter is to examine experimental results of W boson
production from ATLAS, CMS and the Tevatron and connect them to our
work in Chapter 6. At the LHC, the basic idea is to bring together two beams
of particles and have them collide at a definite point within the detector, be-
ing /s. The "particle showers" produced in the collider are detected are by
the detector. This information is then processed in such a way that it becomes
readable by programs and analysis devices [6,7]. The readout of these events
is a subject that deserves a robust study on its own. Most of the photons at
the LHC are coming from 71° decays. When thinking about the collider detec-
tors from the inside out, the center of the apparatus can be thought of as the
collision point and the basic idea is that the particles have to go through all
the of the layers that have various functions and is discussed later. The center
design has to be thought out to where it interferes minimally with the outer
layers with some unavoidable interference. Typically, in the center we will
have some kind of volume that acts as an ionization detector, which then is
set up to detect the path of the tracks post collision. Additionally, a solenoidal
magnetic field bends the tracks, and either a gas chamber, or some layers of
silicon to trace out space points for these tracks. The curvature of the path
in addition to knowing the value of the magnetic field strength, gives read
out of the momentum, and that takes care of the charged particles. The next
thing we want to do is to measure the electromagnetic component using an
electromagnetic calorimeter [19]. More specifically, what is actually detected
in particle experiments are the hadrons, leptons, photons as well as weak
bosons. No quarks or gluons are readable directly, this is why it is important
to leverage jet reconstruction simulation and other numerical methods. The
importance of form factors and QCD sum rules has been expressed in abun-

dance. The pion and kaon form factors are of particular interest in hadron
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studies, and serves as the cleanest test for the transition from the perturba-

tive regime to the non-perturbative.

5.2 ATLAS

5.2.1 Detector Anatomy

Barrel Inner T!Ie
Toroid Delector Calorlmeter L|quid Argon

Solenoid
Calorimeter

End-cap
| — L LS Toroid

FIGURE 5.2: The ATLAS Detector

Image courtesy of [29].

Information regarding ATLAS detector anatomy is partially paired with
Figure 5.2 to supplement our discussion with experimental results and pro-
cedure to then follow. The information with respect to detector anatomy is

based on ATLAS Fact Sheets that can be reviewed in [123]. A beam lumi-

2.,—1

nosity of 103 cm~2s! corresponds to about 20 collisions per bunch crossing,
with 40 million bunch crossings per second, yields about 1. This gets filtered

down to about 75,000 events per second by the trigger filters at level 1, while
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level 2 reduces it down to 2, 000. Based on the set parameters this gets filtered
down to about 200 "interesting" events per second [123].

In a very basic sense, the calorimeters measure the energy carried by the
events, a bit more specifically the positions of charged and neutral particles.
A liquid argon calorimeter supplies a barrel that is 6.4 m long, and 53 cm
thick, with 110,000 channels. The Large end-cap consists of the forward
calorimeter, electromagnetic and hadronic end-caps. EM end-caps each have
thickness 0.632 m and radius of 2.077 m. The tile calorimeter barrel is made of
64 wedges that are each 5.6 m long and weigh 20 tons, and makes for 500, 000
plastic scintillator tiles. The muon system monitor drift tubes (MDTs) in Fig-
ure 5.2.1 has gap chambers for triggering and a second measurement system
for the coordinates located in the central region. The MDT’s measure the
curves of the muon tracks and carry a tube resolution of 80 um [123,124].
The inner detector consists of the pixel detector, a transition radiation tracker
(TRT), and a semiconductor tracker (SCT). The pixel detector is an incredible
feat being equipped with 80 million channels, meaning it is capable of pick-
ing up and detecting on the order of 80 million pixels as the name suggests.
The barrel has 1744 modules with 46080 readout channels per module. Three
pixel disks in each end-cap have 6.6 million channels, with 3 disks in each
end-cap equipped with 288 modules. The semiconductor tracker has a silicon
micro-strip tracker consisting of 4088 two-sided modules and over 6 million
implanted readout strips. 60 m? of silicon is distributed over 4 cylindrical
barrel layers and 18 planar end cap discs. Readout strips every 80 um on
the silicon, we are then able to accurately capture the position of the charged
particles at 17 um per layer which is in the transverse direction to the strips.
The TRT has 350, 000 readout channels, the basic detector elements are straw
tube 4 mm in diameter, and in the center a 0.03 mm diameter gold-plated
tungsten wire. Capable of precision measurement of 0.17 mm particle track

to wire [125]. This helps us understand better the details of what particle has
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been detected [123,124].

Front end Readout Switching  Processor Permanent
pipelines buffers networks farms Storage

@ ms sec

FIGURE 5.3: Flowchart of the CMS trigger systems, both L1 and
HLT from detector digitization to permanent storage. Image
Courtesy of Roland:2009wc [122,126]

Detectors Digitizers

5.3 The Drell-Yan Cross Section

The primary function of DIS is to study the proton structure in greater de-
tail. The result of electron proton scattering depends strongly on the wave-

length A = % and r,, which denotes the rapidity, with

* A > r, - Very low electron energies. Scattering is equivalent to that

from a point like object.

* A =~ rp - Low electron energies. Scattering with an extended charged

object.

* A < rp - High electron energy. Scattering resolved sub-structure show-

ing the existence of quarks.

* A < rp - Very high energy. Proton appears as a sea of quarks and

gluons [13].

In addition to DIS, semi-inclusive-deep inelastic scattering (SDIS) is an al-
ternative providing access to flavor, transverse motion, and transverse spin
of the quarks. Inclusive DIS relies on PDF tables that are dependent on and

encoded with longitudinal momentum fractions obtained in prior runs. One
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FIGURE 5.4: The simplest tree-level diagram for electron-
proton DIS. Including the 4-momentum of the incident lepton,
k, with outgoing 4-momentum of the scattered lepton, k. Ad-
ditionally depicted is the 4-momentum of the exchanged boson
denoted here as g, and takes on 7*, W*, or Z° respectively. The
4-momentum of the incident proton, p, is shown in terms of its
three legs representing the uud quark constituent outgoing as
parton showers, X. It is worth noting an extra leg branching
from the xp q lines that represents jet emission.

notable difference with SDIS is that it probes additional information for trans-
verse distribution in the nucleon. Due to the electromagnetic interactions of
electrons being well defined and understood, they become a useful probe of
the structure of mesons and baryons. We will look at two very important
examples, the production of hadrons in e*e™ scattering, and deep inelastic
scattering of electrons and protons [14,127]. These two processes have been
critical in the development of the color/flavor model for the quarks [127],
and DIS lepton scattering plays a central role in factorization. DIS is the first
process where point-like partons were "observed" in the hadron in the 1960’s
era of experimentation. Additionally, high volumes of data determine PDFs
that subsequently become extracted from these processes for phenomenolog-
ical use.

Consider the process e + A — e + X, which proceeds by exchange of a

virtual photon with momentum g*. Once the cross section is measured, we
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can use it to extract the standard hadronic tensor W*" (g#, p*),

WH = 4% /d4yei‘7'3/2X < Alj*(y)IX >< X[j*(0)|A >

HAaV
= B Q) (=" +1 1) (5.1)
+ Fy(r, @) P P/ )P "0/ 1)
p-4a
where Q> = —gq,9%, x = %, and p" is the hadron A’s incoming momentum,

while j, (x) is the electromagnetic current [6,99]. It is important to provide in-
sight regarding the implications of hard and soft QCD processes. Hard QCD
takes place in the high Q range, while soft QCD is in connection with low
energy fragmentation and jets and associated with soft gluon resummation
in soft collinear effective theory (SCET) and hadronization. In hard QCD,
we are dealing with perturbation theory and constructing PDFs which in-
cludes initial and final state radiation through parton showers resulting in
hadronization. The kind of measurements obtained in hard QCD are PDFs
and perturbative QCD with jets, measurements of a5, measurements with
photons, and measurements with vector bosons and jets. Soft QCD involves
multi-parton scattering as well as fragmentation accompanied by underlying
events (UE). A hard proton-proton collision at the LHC carries implications
of both center of mass energy /s and its subsequent partons and UE’s. The
resultant beam-beam remnants along with multiple (soft) parton interactions

are not able to be separated out experimentally.

5.3.1 Cross Section

The amplitude corresponding to a basic DIS diagram is

A = ea(k w“u(k)q% (X1 a(0) |P) (5:2)
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Several structure functions are available to study in the form F;(x, Q?) and
is carried through various beams and fixed targets at various polarization
states. Outgoing electron distributions of the form e~ + H — ¢~ + X, where
H is a hadron usually consists of a proton, neutron or deuteron. The X in
the final state indicates that we do not keep track of the final state. The in-
teraction consists of a photon exchange between the electron and a parton,
which is a constituent of a proton. The incoming and outgoing electrons
have energy E and E’. We make the choice for the four momentum to orient
the incoming electron to propagate in the z direction, k = E(1,0,0,1), with
its outgoing direction, k' = E' (1, sinfcos¢, sinbsing, cosd). A choice of an
xy axes ensures the ¢ = 0 orientation with respect to the hadron rest-frame
P = M(1,0,0,0). The photon carries momentum g = k — k’. We can define

two dimensionless variables

2
_ 1 _2P-q
*=72pq YT ¥ (3)
computing
qg-P=M(E' —E),q*> = —2k-kK = —2EE'(1 — cos#). (5.4)

5.3.2 Kinematics

Reconstructing the collision kinematics is key. To take a neutral current
DIS event into consideration, being those with an electron in the final state we
can demonstrate kinematics by reconstruction of the four-momentum trans-

ferred to the hadronic system

@P=-7-FT=—(K-¥) (55)
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and Bjorken scaling variable

Q2
X=—— (5.6)
2P -7

An example using DIS lepton-proton scattering

QZ _ QZ (57)

The energy variables are in reference to the rest from of the target with M

denoting the proton mass [6].

HADRON PRODUCTION PLANE

z—axis

LEPTON SCATTERING PLANE

FIGURE 5.5: Kinematics of the SIDIS process Ip — ['hX and
the definitions of the azimuthal angles in the lab frame. The
S inclusion in the DIS process is to denote semi-inclusive DIS,
which takes into account a hadron interaction with the standard
DIS process. In DIS, only the scattered lepton is detected while
the remnants of the shattered nucleon are ignored. The "high
momentum" hadron is detected in addition to this in the SDIS
case, high momentum referring to the leading hadron

[53].

Structure Functions

F;(x, Q%) parametrize the structure of the target as seen by the virtual pho-

ton. We can define this in terms of the lepton scattering cross sections, using
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I, — IX, for example,

d?c*™  8ma’ME [<1 +(1—y)?

dxdy Q4 2 > } 2xH"

(5.8)
+ (1= y)(F" — 2xF™) — (M/2E)ay ",

With Bjorken x, the limit noted in eq 5.6, with x fixed, we get the structure
functions to obey a scaling law that is approximate allowing it to only de-
pend on the dimensionless variable. We most conveniently formulate the
parton model of DIS in the infinite momentum frame, meaning near c, be-
ing the speed of light. The proton is moving quickly p* ~ (P,0,0,P) with
P >> M. The Bjorken scaling implies the virtual photon scatters off point
like constituent in the process and depend on the ratio Q/Qp, with 1/Q

characterizing the constituents [6].

5.3.3 Drell-Yan at Fermilab

FIGURE 5.6: Feynman diagrams for Drell-Yan pair production
at Oa? and O«!
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Basically after Feynman had introduced the parton model with DIS ex-
periments, it had been said the very next day Drell and Yan exclaimed "lets
make this application of it" with what is to referred to as today as Drell-Yan.
The Drell-Yan experiment was originally designed to search for intermediate
weak bosons, i.e. the W* and the Z bosons. The Drell-Yan process became
an extended analysis scattering process in reach of DIS experiments. Hadron-
hadron inelastic collisions, s — o0, Q%/s — 1, Q% with s the the square of its
invariant masses with respect to the lepton pair accompanying the hadrons.
We will be able to draw distinctions between scaling properties and connec-
tions with deep inelastic electron scattering in this discussion [128]. The pro-
cess below depicts the Drell-Yan mechanism of a dielectron pair showing
extra gluon emissions of unintegrated parton distribution functions from in-

coming beam P, and target P; [6,13].

FIGURE 5.7: Drell-Yan mechanism with Z° or 7* exchange pro-
ceeding the outgoing dilepton observable. Soft gluon radiation
off the quark lines which influence non-perturbatively the final
state outcomes are also shown in this depiction
Image courtesy of [129].

5.3.4 Drell-Yan — W=* and Z Production

The discovery of the W and Z gauge bosons at CERN with the pp collider

was a huge triumph for the Electroweak Model. The W and Z widths are not
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very big, I'y = 2.08 GeV and I'; = 2.50 GeV in the SM. The production cross
sections from the g9 — W, Z sub process cross section are obtained from the

couplings of these vector bosons to the fermions
G W = %\/EGFM%VWW/ 26(5 — M2) (5.9)

6 s 7 = %\/EGFM%(V; + A2)8(5 — M3),

where qu/ is the CKM matrix element. The agreement with experiment and

theory is relatively good for these values [6].

5.3.5 ud — W Cross section

The coupling of the W™ to quarks and leptons is

8w x— /5 7
0L = &= dy*Pru + Iy Prv) + h.c. 5.10
/2 (A PLu+ Iy PLy) (5.10)

with h.c. the hermitian conjugate. where P, = (1 — ) /2 is the left-handed

projector, and g, is the weak interaction coupling,

2
8w 1
= 4 T 296 G-11)

The W~ field appears due to the field that creates the WT.

g*/2

iM(ud — vIit) =i
< ) S12 — m%v + impyI'w

()0 (2)1(3)7,u(4)

and we find,
1

512 — m%/\/ + 1mWFW

= ig2 (5.12)

We can obtain a broad mass distribution for the leptons by integrating over

phase space where W+ appears as a resonance, or we can compute ampli-

tudes for the W for a real W on its mass shell. It is shown in [130] that
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W+

d u

FIGURE 5.8: Feynman Diagram for ud — viI™.

we can obtain a formulae if we retain the final-state lepton spinors instead of
summing over the W+ polarization vectors, plus retaining the spinors pre-
serves information regarding the W polarization. The matrix element for
W™ coupling to leptons needs to be squared and integrated over the direc-

tion of the leptons in the W™ rest frame [131].

40
= [ <192 <291] (5.13)

if g% is the W+ momentum, g = 1+ 2, then g, "=, "V = 0. and

0
Il = / Tr<12>[12) = 202 = -2y (5.14)
and from this
2 q9"q"
= 22 (g 1T (5.15)
3 ma,

We can represent the sum over on-shell W+ polarization vectors as

3 dw4
H * _
Zi el (9)ef" (q) = o, ] A T 19/2] < 29"1] (5.16)

This is shown to be a simple procedure to compute cross sections with fi-
nal on-shell W™ also seen in We can start the process with the internal W+

propagator and final state v(1)/*(2). Then remove the factor (s /v/2)/ (s12 —
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m?, + imyT'w) putting the W momentum (1 + 2) on shell. Next is to evalu-
ate the spinor product amplitude, and then square and integrate over phase
space including the on-shell W+, and integrate over the lepton direction in

the W™ rest frame [130].

3 (@)
/ i = / Ay [ 5 (5.17)

We can use the matrix element to show an example of the cross section cal-

culation, we begin with our matrix element [24] in the form of
iM(WHdi) = g—\/“’i < 1712) < 39#4] = V2g, < 31 > [24]. (5.18)
where the phase space integral [ dIly, contains 1-body phase space.
/ AT, = 276 (s — my). (5.19)

we average over initial color and spins

3 1dQ,

1 8
- O B2, (520)

U(uﬁ—>W+):3 TRF

2718 (s — miy) -

2
2my, 47

We implement the angular decay of the lepton with respect to the u quark di-
rection, this lets us know that a W with left-handed polarization is present.

When we evaluate this integral we find

20y,

oc(ud - WH) = 3

5(s —m3), (5.21)

and we arrive at the expression for the Drell-Yan cross section.
We need to be sure that we can compute amplitudes if we wish to com-

pute WT production cross sections.
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5.3.6 TEVATRON W* Mass Measurement

At the Tevatron, W and Z bosons are produced through qﬁ/ annihila-
tion [132]. The cleanest signatures are involved with high-Pr electrons or
muons, W — ev,uv, and Z — ete”,utu~, and this is mostly due to the
presence of small background contamination, providing a more distinctive
signal analysis and study.

The most accurate measurement of the W boson mass measured by [133]
using 200 pb~! of CDF run II data, and as well an improved measurement

from 2.4 fb_1 CDF run II.

5.3.7 Forward Backward Asymmetry

In proton anti-proton collisions, it has been found that the W and W~
bosons have the same cross-section. One difference noted is that it has been
found that the W' bosons fly in the direction of the protons during scat-
tering with a higher probability distribution than the W™~ bosons, which fly
more in the direction of the anti-protons [13]. This has to do with the up
and down type quarks influencing the direction in what is referred to as a
"kick" into the directions that they have the likelihood to be found. A more
important implication that follows this logic is that this is not the case at the
LHC, where proton-proton collisions are involved. Here, it is found that the
cross-sections for the W production is larger than the cross-section for the
W™ . There are higher contributions from additional sea quarks involved with
higher ordered gluons that become incident in the process that contribute as
well [134]. The measurement of these asymmetries has become an important

way to put tighter constraints on high-x valence quark measurements.
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Collinear Factorization

The idea of factorization is at the heart of pQCD at hadron colliders. One
primary goal is to ensure that the partons are treated as quasi-free particles.
Having already reviewed the DGLAP equations in section 4.1.2, the PDFs
evolution with the factorization scale is governed by these. This is impor-
tant for the evaluation of cross sections that rely on the PDFs. The quantum
fluctuations that populate the Fock state additionally are governed by the
DGLAP equations [13].

We need to to make predictions for hard scattering processes and matrix
elements in the IR region, in which carry universal properties available for
this purpose. At LO these properties are obtained using factorization formu-
lae for tree level and one loop amplitudes which provide insight into per-
turbative QCD.Leading logarithmic (LL) parton showers that are simulated
in the event generators aid descriptions of exclusive hadronic final states and
their structure. Resummation relies on the factorization properties associated
with soft and collinear emission, which become improved deeper insight and
theoretical understanding is achieved. This requires deeper knowledge re-

garding infrared factorization at the next order in a; [135].

5.3.8 CDF Run II pp data on W Boson Mass

The Tevatron CDF and DY have a lot of experience with taking mea-
surements of the W boson mass, which is determined at tree level by the
relations to other electroweak parameters. However, it remains as one of
the least precisely measured parameters in the electroweak interaction [133].
The published measurements can be seen here based on Run — I data (1992-
1996) [136]. The CDF collects W — ev decays with a trigger that is set to
select high-Et central e~ candidates with specific set parameters and keeps

the matched tracks while discarding background sources. QCD dijet events
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contribute to the background, many of these events and anticipation of po-
tential background contamination sources are predicted in Monte Carlo sim-

ulations [137].

5.3.9 Jet Algorithms

“Flavor
MC Calibrated
Jets

Applied to simulation ——

FIGURE 5.9: Schematic representation of the correction factors
applied to the jet transverse momenta in data (top row) and MC
(bottom row) and their meaning
[126].

Most of QCD occurs dynamically non-perturbatively via the condensate
of high order. When we calculate the cross section for a process, we need
to evaluate an integral over phase space and this is usually done through
Monte Carlo algorithms. Then, for each phase-space point that represents
incoming and outgoing momenta, the square of the matrix element is also
evaluated with integration over its phase space. Summing over initial state

and averaging over final states allows incorporation of unobserved quantum

numbers required for phase space inputs [138].

Monte Carlo Jet Reconstruction

Jets at the CMS detector and determination of their energy scale needs
energy corrections to the outgoing jets in the experiments. Using the simu-
lations to correct for detectors and event overlaps is an integral part of the
process. As the jets propagate through the CMS detector, they leave small
signals behind in the electromagnetic and hadronic calorimeters. These get

combined using the jet algorithms to form a reconstructed jet. An important
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note is that jet reproduction is to be used as an approximate form. The true
particle level energy is independent of the detector response, and so the jet
energy corrections will relate these two values. This plays a role in systematic

uncertainty calculations to be had and will be discussed in the next chapter.
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Chapter 6

Calculation & Procedure

6.1 Setup and Introduction

Many processes at the LHC are sensitive to higher order corrections that
extend beyond fixed order [20]. Monte Carlo techniques have been devel-
oped for the purpose of modeling nonperturbative dynamics, and choice of
PDF tables to obtain fits for Wp, data are crucial in this step. Pythia [139],
and MATRIX [140] are widely employed in the community to run Monte
Carlo event generation and parton shower simulations, this requires the in-
put of data sets inclusive of jet production. PDFs from LHAPDF [141] are
integrated into the ManeParse [89,105] PDF reader for calculating and plot-
ting within the Wolfram Mathematica framework [142]. It contains built=in
Mathematica interpolation, and particularly performs well at small x values.
Additionally it is leveraged to compute integrated luminosity linking theo-
retical and experimental cross sections, where the integrated luminosity can
be written as a convolution of PDFs for easy calculation within ManeParse
[89], as we had seen in subsection 4.1.3. Madgraph 5 [143] in conjunction
with Pythia provides a graphing utility for plotting results. Additionally,
OpenLoops [144], along with Sherpa enables us to generate pure NLO re-
sults [20]. In a previous chapter we discussed implications of hadroniza-
tion, taking place just after hard scattering at center of mass collision energy

\/s. What follows is decays into hard jet tails, then jet structure consisting of
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soft/collinear bremstrahlung gluon radiation. This proceeds into hadroniza-
tion as it interacts with the condensate. The final states that interact the de-
tector show as hadron decays to colorless singlets. Event generator programs
become important in tandem with clever ways to connect these two regions.
The CT10 PDF is of interest [145] as well as fits using the standard CTEQ
PDF [146] evolution and HOPPIT a5 running solutions. NNPDF30 NLO
from ATLAS runs are considered as well [147], which merges data sets from
LHC run II, with production from both ATLAS and CMS, additional vector
boson rapidity and TMDs data from ATLAS, CMS, LHCb, as wellas W + ¢
event data from the CMS detector [147]. Merging schemes are important in
that many LHC final states benefit from algorithm Reconstruction, as this
leads to hard jet identification. Several scales play a role in the determination
of the evolution of these events, and we need as accurate as possible inputs
to obtain multi scale results [148]. We can compare PDF data with varying
transverse momentum, «s scale evolution and order of soft gluon contribu-
tions. The idea is to plot various scenarios tutoring our decision for best fit

PDF’s.

6.2 Analytic Resummation Technique

Large logarithms are a consequence of of multiple scales present. Re-
summation of the large logs as we’ve discussed occur in the perturbative
coupling expansion, and when done correctly, enhances sensitivity to small
gluon momenta. TMD's of W bosons require detailed analysis in order to ob-
tain accurate reconstruction, and accurate predictions for both the low and
high-pr realms carry equal importance. The dynamics responsible for gener-
ating pr in the W do not depend heavily on the contribution from the proton
momentum interacting amongst the partons and can additionally be gener-

ated by gluon radiation in the process [30, 38, 149]. Recent estimates show
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experimental data being consistent with Gaussian distributions with a pr
width at about 0.6 GeV at energy scale 2 GeV. And it is thought that roughly
half comes from primordial pr of quarks and the other half generated by
quark gluon radiation. Moreover, flavor mixing in the process is not known
in terms of the distributions in processes that have varying flavors, the best
present estimates come from LQCD with insights on down quark distribu-
tions a bit larger than the up quark. This plays a role when averaging over
nucleon spin orientation, for instance [17, 150].

W-boson decay distributions are sensitive to the order of resummation in
these calculations [151]. Kinematics become addressed where pr values are
considerably less than that of the invariant mass scale of bosons. The frac-
tion of transverse momentum Q ; is merely a result of recoil when coming
into contact with soft gluons, which have been omitted by incident parton
interactions [13,44]. This necessitates "soft-gluon resummation", and is inter-
changeably known as "transverse-momentum resummation". An example
of resumming double-differential cross-sections including these logarithms
m > 2n — 2 is what is referred to as next-to-leading logarithmic (NLL) accu-
racy. With this it follows that all terms with m > 2n — 3 will be next-to-next-
to-next-to-leading logarithmic (NNLL) accuracy. The Collins-Soper kernal

relating TMDPDFs is used in this context, and is as follows,

do ) d’b . x
dydAQBi _ le:mfi(jLo) [/ ﬁ [exp(sz -QU)Wii(b1;Q, xA,xB)]] (6.1)

+Yij(QJ_/ Q/ XA, XB)]

Two Bjorken parameters x4 and xp are fixed by the invariant mass of the
hadrons, Q?, with rapidity v. Wij denotes resummation while Yj; is the hard
remainder in the process at factorization scale yr [13]. The result of the func-

tions with respect to the resummed quantities are then expanded in «;. The
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dependence of the first terms in the function generated are incoming par-
ticles that are not exclusive to the original system, this is a consequence of
condensate interaction. It is to be noted that the initial hard terms in this pro-
cess are considered process dependent. The calculation involves the impact
parameter going to infinity, contributing to the Q | , X spectrum at all values.
The remedy is to employ a nonperturbative FF in order to dampen b, . This
is the impact parameter’s influence on the transverse plane. The exponential
in the integrand in Equation 6.1 is responsible for oscillations, which become
problematic with numerical calculation techniques due to producing Bessel
functions of the form jy (b, Q | ). The Bessel functions are addressed by reduc-
ing them to Hankel functions, thus rendering the system finite at all finite
values of v, as well as z. This then allows for the deformation of two contours
in complex space, one for each of the hadrons, rendering us free of the Lan-
dau pole. This procedure yields the same result as the original integral at all
finite orders in normal perturbation theory. This solution often is used in Qr
resummation, where the numerical results can now be carried forward for
additional consideration, now that we have available newly "tamed’ expan-
sions in as [13]. It is to be noted that resummation takes place using Mellin
transforms as well. Packages in Wolfram’s Mathematica are well equipped

to handle this once carried out to a form ready for numerical input.

6.3 TMD Plotting and PDF Selection for Analysis

We are attempting to use a TMD plotting tool with the use of CT14-
NL [152], which is a 2-loop PDF evolution using DGLAP, and CT14-NNLO
PDF [153], being a 3-loop PDF evolution with HOPPET a; running solutions.
We are to consider CTEQ6 PDF’s [146]. We choose soft gluon contributions
as a function of k7, as well as vs. X and Vs. overall P. The first scenario is to

compare soft gluon contribution accuracy as preliminary consideration. We
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are free to choose PDF inputs from the library built on site with this plotting
tool, or import PDF’s from various other libraries available. We additionally
have parameters to evolve the energy scale akin to that of the DGLAP evolu-
tion formalism to run up the coupling scale and consider various outcomes.
This was intended to be used as a benchmark tool to plot various situations
against one another serving the purpose of tutoring our decision to use one
PDF over another. The contribution of these processes depend on outcome
and available data [154]. Here is an example of Pythia, Herwig and Sherpa jet
reconstruction data plotted against CMS data. We aim to generate our own
jet reconstruction outputs in the same way, using data from CERN open data
based on ATLAS 8 TeV and 13 TeV runs, to then plot against ATLAS runs

after error analysis and large logarithmic summation analysis.

E} Hermg?@ CMS_2013 11224539 WJET

5[ =P Taﬁélf) g‘ Herwig 7.1.4, Pythia 6.428, Pythia 8.235, Sherpa 2{2.6
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FIGURE 6.1: Jet mass with anti-kt reconstructed from Herwig
7.1.4, Pythia 6.428, Pythia.235, and Sherpa comparing correc-
tions to CMS data for W +jet production

[?].
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6.3.1 Probing PDF Uncertainty

Meta PDF’s are a great way in certain cases to reduce total uncertainty
for processes at certain energies. An example of this is to re-paramaterize
the error PDF’s from multiple PDF groups. The uncertainty error becomes
transformed into a Hessian basis, and one can choose to retain a number of
eigenvectors, thus reducing the ensemble to a range of PDF and +«; of in-
terest, making it easier to calculate the desired PDF(+a;) for any observable
at the LHC. It is known that parton uncertainties decrease in general as the
factorization scales increases along the energy scale, namely DGLAP evolu-
tion. A working example is the implementation of data sets to decrease the
number of error PDFs required for accurate descriptions of uncertainties.
This process is used for all Higgs production processes for all LHC ener-
gies [13,155].

The PDF error master equations read as

N
AXS = 2 1[max(X;" — Xo, X — Xo,0)]? (6.2)
i

N
AX, .. = Z 1[max(Xo — X", Xo — X;7,0)]?

i

AX™ adds the PDF error that lead to an increase in the observable X and AX ™
the PDF error that lead to the decrease in the observable X [13]. When intro-
ducing new PDF’S certain parameter space directions can change leading to

higher sensitivity in certain cross-sections [156].
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6.4 Calculation Pipeline and Event Generators

We are set up to run the CERN Root [157] framework in a Jupyter note-
book, and integrates both C++ and Python libraries in a combined environ-
ment. The Pythia directory is an interface to the C++ version of Pythia.1 event
generators, written by T.Sjostrand [158]. Interfacing its functions and classes
with direct calls from a compiled C++ script in a straight forward way is very
valuable [139]. Additionally it supports embedding these jet algorithm and
MC event generators to run directly in the script as subroutines while still
maintaining the robust capabilities needed by the HEP community. In figure
6.2 we demonstrate how this is done from the beginning of a new session,
and includes relevant particle databases with the graphing utility TCanuvas.

We have parameter control over pseudorapidity, as well as transverse mo-

root > .x pythia8.C

#include "TSystem.h"
#include "TH1F.h"
#include "TClonesArray.h"
#include "TPythia8.h"
#include "TParticle.h"
#include "TDatabasePDG.h"
#include "TCanvas.h"

void pythia8(Int_t nev = 100, Int t ndeb = 1)

// Load libraries
gSystem->Load("1ibEG");
gSystem->Load ("1ibEGPythia8");

// Histograms
TH1F* etaH
TH1F* ptH

new TH1F("etaH", "Pseudorapidity", 120, -12.,
new THI1F("ptH", "pt", 50, 0.,

// Array of particles

12.);
10.);

TClonesArray* particles = new TClonesArray("TParticle", 1000);

// Create pythia8 object
TPythia8* pythia8 = new TPythia8();

FIGURE 6.2: Calling Pythia from Root. Packages and libraries
are called and graphing utilities implemented for processing
once the data crunch has completed
[139,157].

mentum parameters, Figure 6.2 provides a basic example.

General run settings are set up first in Figure 6.3
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process_class

E

coll_choice
photon_induced
switch_off_shell
enhance_tails

pp-emmumepmup+X # process id

6500. # energy per beam

1 # (1) PP collider; (2) PPbar collider

# switch to turn on (1) and off (0) photon-induced contributions

# switch for effective integration for off-shell Z bosons (eg. Higgs analysis)
# suitch to improve statistics in tail of distributions (factor of two slower)

1
0
0

FIGURE 6.3: Input parameters for the general run settings be-
fore proceeding to the scale setting step [157].

6.4.1 MadGraph 5

MadGraph5 is a framework containing all the elements necessary for SM
and BSM phenomenology. We are able to utilize its resources to compute
relevant cross sections, with the additional ability to generate hard events to
then match the results with other event generators in the pipeline. Pythia
and Herwig along with Sherpa are the main Monte Carlo based event gen-
erators for this work, with Pythia thus far as the primary. We are setting up
MATRIX to run processes can be simulated to LO as well as NLO accuracy
for any user-defined Lagrangian. See for example a portion of the code given
in Figure 6.3. QCD and EW corrections to the events and PDF analysis are
the main feature for these generators, being that this is not detectable as final

states in the colliders but still need to be accounted for to obtain accurate fits.

6.4.2 Scale Setting and Order-Dependent Run Settings

We have a range of parameters available to make changes to the code to
the desired scale. This acts as one parameter available for "tuning" or mod-
eling efforts. In Figure 6.4 an example of an options menu is available for

beginning the initial set up.
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4.1.1.2 Scale settings

91.1876
91.1876
0

renormalization (muR) scale

factorization (muF) scale

dynamic ren./fac. scale

0: fixed scale above

1: invariant mass (Q) of system (of colourless final states)

2: transverse mass (mT"2=Q"2+pT~2) of system (of colourless final states)
3: geometric average of Z-boson transverse masses:

scale_ren #
#
#
#
#
#
#
# sqrt(mT_Z1 * mT_Z2)
#
#
#
#
#
#
#

scale_fact
dynamic_scale

4: sum of Z-boson transverse masses computed with their pole masses:
sqrt (M_Z"2+pT_ee"2) +sqrt (M_Z"2+pT_mumu~2)
5: sum of Z-boson transverse masses:
sqrt (M_Z1"2+pT_Z172)+sqrt(M_Z1"2+pT_Z2°2)
relative factor for central scale (important for dynamic scales)
switch for muR/muF variation (0) off; (1) 7-point (default); (2) 9-point
symmetric variation factor; usually a factor of 2 up and down (default)

factor_central_scale 1
scale_variation

1
variation_factor 2

FIGURE 6.4: |
Scale setting in the MATRIX event generator program. This allows the
parameters of our model simulation to be tuned dependent on experimental
data used, PDF choice, as well as the renormalization and factorization
scales.|Scale setting in the MATRIX event generator program. This allows
the parameters of our model simulation to be tuned dependent on
experimental data used, PDF choice, as well as the renormalization and
factorization scales [159].

6.4.3 ResBos

The ResBos program fully computes the differential cross section

d(o)
6.3
1QdyaQr(0) )
for processes
hl 11
T (V) — EX (6.4)

h1 and h2 are the hadrons respectively (primarily decaying to pions or nu-
cleons), V is a virtual electroweak boson in this case, with I1 and [2 on shell
becoming the observed electroweak particles (leptons, prompt photons, or Z
bosons). Q, Qr, and y are invariant mass terms being transverse momentum
and rapidity of the intermediate state V respectively. Omega being the solid

angle of the 3 — momentum associated with /1 in the Collins-Soper rest frame.
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LHAPDF_LO NNPDF31_nlo_as_0118_luxqed # LO LHAPDF set

PDFsubset_LO = 0 # member of LO PDF set

precision_LO = l.e-2 # precision of LD cross section

# NLO-run

run_NLO_QCD = 0 # switch for NLO QCD cross section (1) om; (0) off

run_NLO_EW = 0 # switch for NLO EW cross section (1) on; (0) off

LHAPDF_NLO = NNPDF31_nlo_as_0118_luxqed # NLO LHAPDF set

PDFsubset_NLO = 0 # member of NLO PDF set

precision NLO_QCD = 1.e-2 # precision of NLO QCD cross section

precision_NLO_EW = 1l.e-2 # precision of NLO EW correction

NLO_subtraction_method = 1 # switch to use (2) qT subtraction (1) Catani-Seymour at NLO

# NNLO-run

run_NNLO_QCD = 0 # switch for NNLO QCD cross section (1) om; (0) off

add_NLO_EW = 0 # switch to add NLO EW cross section to NNLO run (1) om; (0) off
# note: can be added only if also running NNLO

LHAPDF_NNLO NNPDF31_nnlo_as_0118_luxqged # NNLO LHAPDF set

(1) LO [NNLO contributiomn]; (2) NLO [N3LO contribution]
(-1) only loop-induced gg LD; (-2) only loop-induced gg NLO

PDFsubset_NNLO = 0 # member of NNLO PDF set

precision NNLO_QCD = 1.e-2 # precision of NNLO QCD cross section

precision_added EW = 1.e-2 # precision of NLO EW correction in NNLO run

loop_induced = 2 # switch for loop-induced gg (with NNLO settings): (0) off;
#
#

FIGURE 6.5: This is an order of execution as the program runs.

We are able to have control over EW corrections as well as the

subtraction methods called. The calls are sent to pre-build li-
braries and ran as subroutines. [141].

The production and subsequent decay’s of are evaluated with the use of ex-
act matrix elements. Electroweak corrections to the width of V and calcu-
lated spin correlation between initial and final-state observables become in-
troduced ad-hoc. ResBos is ran through HepForge, which additionally hosts
a variety of tools and calculation packages. Code was obtained from Fast]Jet
on the HepForge page to run jet clustering algorithms that allow the varia-
tion in angular distribution as well as energy range using pr data, specifically
longitudinally invariant kt algorithms for simulations of the beam direction,
including parameters constraining the rapidity and azimuth of transversely
distributed shower particles, as well as including jet-radius parameters. The
idea is that for every parton i, we should be equipped to make calculations
regarding appropriate beam distance. For this we take into consideration

dig = p%i, which reveals the minimum d,,;,, of all the d;;, d;g. If d,,;;,, isa d

ijr ijr
then i and j become merged into a single particle. A technique by the name
E-Scheme Recombination is then employed. Summation of states is done

considering the individual parton four momentum taken into consideration.
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FIGURE 6.6: MATRIX provides built in integrated cross sec-
tions for various processes, this is a variety of the available val-
ues, including those of interest to our calculations [159].

Furthermore, if it is a d;p particle, then declare particle i to be a final jet, and

we can now remove it from the list [160].

6.5 Data Acquisition

We are using data from CERN Open Data, and data sets from HepData
[161], which is intended for photoproduction results that will correspond to
future light cone gauge calculations that become mandatory when consid-
ering production from highly virtual photons interaction with partons and
effecting the outcome of final state observables. The hadronization “epoch”
consist of mainly pions and kaons, and the pions have a high branching ratio
for decay into 7<y. These photons incidentally come into contact with partons
x at momentum p. We have to make the simulations as accurate as possible.
There is not a scenario where a single generator is able to describe all ob-
served distributions. We have to consider what is referred to as the interface

to the parton shower.
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For this step, we start from a MATRIX and Pythia combination and ap-
ply the corrections using the jet simulation software generators. We refer to
ancillary measurements of Drell-Yan production to validate (and tune) the

model and assess systematic uncertainties.

6.6 Conclusion

Resummation serves as a powerful tool for both theory and phenomeno-
logical interest that takes place in the perturbative expansion of the strong
coupling. Non-perturbative correlations and interactions are modeled both
from available data and theoretical predictions in combination with MC sim-
ulators at various energy scale and PDF choices. The large logarithmic cor-
rection and soft gluon resummation has been referred to as a mandatory tool
for the era of precision phenomenology. It relies heavily on the factoriza-
tion theorems as well as evolution equations. Soft-gluon resummation is
mainly treated as a soft collinear effective theory, (SCET), to be applied to
QCD processes. A primary goal in our approach of resummation via radia-
tive corrections is to better understand the all-order structure of the pertur-
bative exponent in the running coupling as. Top quark production is not
discussed in our work, however it is worth mentioning that large log re-
summation methods are valuable in regard to top resonance distributions
via computational tools. The approach lends unprecedented theoretical pre-
cision, and will be saved for future work consideration. A lot of progress is
made up to Oa? and NNLL accuracy, however, once beyond three and four
loop calculations, many PDF’s do not work correctly, and a lot research and
data is required to accurately compute the higher order corrections. More-
over, the strong coupling can be precisely determined from the resummed

event shapes, and phenomenologically speaking, electroweak annihilation
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processes can be known to high logarithmic accuracy as well with more pre-
cise knowledge from these corrections when successful. We have presented
a proposal to generate our own jet reconstruction outputs using the meth-
ods and tools outlined in this chapter, as well as the theoretical background
provided in the rest of the thesis along the way. Data sets from CERN open
data based on ATLAS at 8 TeV and 13 TeV runs, are stored and ready to be
called. ManeParse as a PDF reader in the Mathematica framework serves as
a valuable tool for plotting and computing cross-sections. We will plot our
calculations against ATLAS and Tevatron runs following our error analysis
along with large logarithmic correction and soft gluon resummation analy-
sis. The master equations are ready to be called up for these various logarith-
mic correction along with the graphing utilities provided both in Root, and
the callable Madgraph 5 for charting these results once executed. All of this
to take place in the Root framework, ManeParse, as well as various parton

shower generators running as subroutines for various tasks as inputs.

6.6.1 Existing Results and Future Calculation

The graphs in 6.7, 6.9, 6.10, and 6.8 for W, W 41 jet, W+ 2 Jets, and W,
with missing transverse energy distributions, due to the physical limitations
of the calorimeter detectors in ATLAS, are for the comparisons to our cal-
culations of interest when carried out with the proposed process elucidated
in this chapter. The example in figure 6.7 shows predictions for the differ-
ential cross sections as a function of the boson transverse momentum for
n — jets greater or equal to 0, (left) and n —jets greater or equal to 1, (right)
from Sherpa 2.2 (red) and MG5 — aMC at NLO with Pythia using CKKW — L
(blue). The orange band includes PDF and scale uncertainties estimated with
Sherpa 2.2, while the size of the statistical uncertainty components are in-

dicated by the size of the error bars. Figure 6.9 shows predictions for the
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differential cross sections as a function of the lepton transverse momentum
and the missing transverse energy from Sherpa 2.2 (red) and 4MG5 — aMC
at NLO, plus Pythia using CKKW — L (blue). The orange band includes PDF
and scale uncertainties estimated with Sherpa 2.2, while the size of the sta-
tistical uncertainty components are indicated by the size of the error bars. In
tigure 6.10, we show predictions for the differential cross sections as a func-
tion of the leading and sub-leading jet transverse momentum from Sherpa
2.2 (red) and MG5 — aMC at NLO plus Pythia using CKKW — L (blue). The
orange band includes PDF and scale uncertainties estimated withSherpa 2.2,
while the size of the statistical uncertainty components are indicated by the
size of the error bars. Figure 6.8, is a prediction for the differential cross sec-
tions as a function of the leading and sub-leading jet transverse momentum
from Sherpa 2.2 (red) and MG5 — aMC at NLO plus Pythia using CKKW — L
(blue). The orange band includes PDF and scale uncertainties estimated with
Sherpa 2.2, while the size of the statistical uncertainty components are indi-
cated by the size of the error bars. When we analyze this data, we will be
using simulations from Pythia using Madgraph 5, along with our choice of
PDF'’s for fitting, and compare against these runs as well. Approaching to-
wards the above mentioned direction, we expect to find a better fit between
experimental data and theoretical calculation. We expect to improve the cur-

rent results.
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Exclusive jet multiplicity in W+ jets
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FIGURE 6.7: Predictions for the differential cross sections as a
function of the boson transverse momentum. This is plotted
using MG5 Monte Carlo plus inputs from Pythia and plotted
against uncertainty results from Sherpa 2.2. As the number of
jet contributions are considered, we notice a slight divergence
in the ratio comparison between the generated uncertainty

[162].
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FIGURE 6.10: In this greater than or equal to 2-jet correction

case, and with the same W process considered, we continue to

notice additional information becoming relevant on the plot at

larger pr considerations in the Sherpa, Madgraph5 and Pythia

simulation runs, providing more accurate representations of

the actual process between collision and detector readout to fi-
nal state production

[162].
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Appendix A
Appendices

A.1 Mandelstam Variables

s, u, and t are related to three different reaction channels. s represents
the invariant mass related to initial and final particles, t is the momentum
transfer, and u is the crossed momentum transfer.

These variables describe scattering kinematics in an invariant way due
to the development of these invariant variables, for Compton scattering we

define them by
s=(p+q9)?=( +49)>%

t=(p—pP=@-1) (A
u=(p—q)=@-p)>

A general paramaterization of the 4-momenta is

p=(Ep)
/ _ (E/’ /)’

§ § (A2)
q=(wq),

7 =(w,q),

where E' and ' are the initial-(final) state target particle and photon energies

in a given frame. In all frames, the energy-momentum conservation is

pt gt = pt gt (A.3)
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Due to on shell condition for external particles, the Mandelstam variables are

constrained by the relation
s+t+u=Yy mi=2M (A.4)
i

[163]

A.2 Light-cone decomposition

Showing the transition to light-cone variables, we begin by defining two
momenta PT and P~ in hadronic collisions, this is given by the incoming
beams. We work with z-axis orientation and assume symmetric collisions
[13]

P, = (E,0,0,%E), (A.5)

we are neglecting the projectiles mass. Total hadronic centre-of-mass energy

squared can now be expressed as
S=2P,P_. (A.6)
Then any momentum p# can be decomposed as
p" = aP + gP! + 7N, (A7)

where & and B are the plus and minus components of the momentum. The

rapidity of p is given by
1 E+tp. 1. py 1«
y 210 E—p. 2 — = 2log‘B. (A.8)
In addition,
p* =apS—pl, (A9)
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together with p?> = m? allows a or B to be eliminated through

§ = ng-spi :mz—skpiew or ﬁ:ﬁ:mzzpzl :ngpie_y
o

(A.10)
In a scattering process p; + p2 — p3 + ... + pu, four-momenta conservation

then translates into
n
a1+ =0 = Z“i
i=3
n
Br+Br=p2=) Bi (A.11)
i=3

n
P+ Pi2=0=Y 714
=3

where it has been assumed the two incident partons p, » move along the pos-
itive and negative z axis, this implies they have zero transverse momentum
and that ap = B; = 0. This allows the identification of a; and B, as the light-
cone momentum fractions the partons carry with respect to the incoming

hadrons. We can identify these with Bjorken — x,

x1 = wjandx; = Bo. (A12)

A.3 Gell-Mann Matrices

th =224 (A.13)
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The normalization over two was done by Gell-Mann as it incorporates the

Pauli matrices within the 3x3 Gell-Mann matrices [6],

010 0 —i 0 1 0 0
M=1100[r=|i 0 o]A=|0 =10
000 00 0 0 0 0

01 1 00 —i 000
M=looo|[rAr=]oo of[r=|0o0 1 (A.14)
100 i 0 0 010

00 O 10 O

MN=]oo —i|A= 01 0

Si=

0171 O 0 0 -2
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