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ABSTRACT 

SWARM INTELLIGENCE APPLICATION IN SOLVING ROBOT INVERSE 

KINEMATICS PROBLEMS 

 

 

 

Hasan Danaci 

University of Houston-Clear Lake, 2021 

 

 

 

Thesis Chair: Luong Nguyen, PhD 

 

 

This dissertation aims to find the inverse kinematics(IK) solution for redundant serial 

manipulators using the meta-heuristic method, Particle Swarm Optimization algorithm 

(PSO). Primarily this paper focuses on moving the end-effector to any desired pose in 

cartesian space accurately by converging position and orientation with the PSO 

algorithm. In order to demonstrate the study's accuracy, the results were compared to 

some previous PSO studies that just examined converging the position. All 

demonstrations were performed using a humanoid human-sized with 7 degrees of 

freedom robot (DOF), the Research Baxter Robot of the University of Houston Clear 

Lake (UHCL) Robotics and Control Laboratory. First, the Denavit-Hartenberg(DH) table 

of Baxter's left arm is created. Then,  transformation matrices are calculated to calculate 

target position and orientation values according to several sets of joint angles. 
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Furthermore, joint angles are picked randomly for each particle, and the particles' pose is 

calculated by applying the forward kinematics formula. In order to obtain subsequent 

angle values, the PSO algorithm, conversion of quaternion to a rotation matrix, and 

Jacobian matrices are utilized. This research gives another perspective to solving inverse 

kinematics by using quaternions instead of Euler angles. The Euclidian function is used 

to compute the cost function, which estimates the distance between the target pose and 

the particles' pose. In this study, the algorithm is tested with several different concepts. 

Conclusively, the validity of the algorithm is verified via Gazebo simulation. The result 

confirms that the algorithm functions well in accuracy and merit of the swarm 

intelligence in solving the inverse kinematics problem for any serial robotic manipulators. 

  



 

 

viii 

TABLE OF CONTENTS 

 

LIST OF TABLES ............................................................................................................. X 

LIST OF FIGURES .......................................................................................................... XI 

CHAPTER I:  INTRODUCTION ....................................................................................... 1 

Background ............................................................................................................. 1 

Related Works ......................................................................................................... 2 

CHAPTER II: SWARM INTELLIGENCE ........................................................................ 5 

Methods of Swarm Intelligence .............................................................................. 6 

Particle Swarm Optimization ...................................................................... 6 

Inertia Weight ............................................................................................. 9 

Hybridization ............................................................................................ 10 

Alleviate Premature Point of Convergence............................................... 10 

Simplifications .......................................................................................... 11 

Discrete ..................................................................................................... 11 

Other Population-Based Swarm Intelligence Algorithms..................................... 12 

Ant Colony Optimization (ACO).............................................................. 12 

Genetic Algorithm .................................................................................... 13 

Bees Algorithm ......................................................................................... 14 

Usages of Swarm Intelligence .............................................................................. 15 

The General Application of Swarm Intelligence ...................................... 15 

The Robotic Application of Swarm Intelligence ...................................... 16 

CHAPTER III: BAXTER ROBOT ................................................................................... 20 

Introducing Baxter ................................................................................................ 20 

Baxter Arm................................................................................................ 23 

Denavit-Hartenberg............................................................................................... 24 



 

 

ix 

Forward Kinematics .............................................................................................. 27 

Jacobian................................................................................................................. 29 

Inverse Kinematics................................................................................................ 30 

Quaternion............................................................................................................. 31 

Gazebo Simulation in Brief .................................................................................. 32 

CHAPTER IV: PROPOSED ALGORITHM FOR SOLVING INVERSE 

KINEMATICS .................................................................................................................. 33 

Solving Inverse Kinematics with PSO .................................................................. 33 

Euclidian ................................................................................................... 34 

Quaternion conversion to Angular Velocity (𝝎) ...................................... 35 

Pseudo Inverse(𝒋 +) ................................................................................. 36 

CHAPTER V: RESULT AND ANALYSIS ..................................................................... 40 

Obtained Result For Scenario 1 ............................................................................ 40 

Result Obtained For Scenario 2 ............................................................................ 42 

Experiment – 2 .......................................................................................... 59 

Obtained Result For Scenario 3 ............................................................................ 63 

Experiment-1............................................................................................. 66 

Experiment-2............................................................................................. 80 

Test On Baxter in Real .......................................................................................... 82 

Conclusion ............................................................................................................ 83 

REFERENCES ................................................................................................................. 84 

 

  



 

 

x 

LIST OF TABLES 

Table 1:   Seven DOF Arm joints Naming Convention .................................................... 24 

Table 2:   Seven DOF left and right arm joint limits ........................................................ 24 

Table 3:  Seven DOF left arm DH table ........................................................................... 26 

Table 4:  Baxter's Arm Length .......................................................................................... 26 

Table 5: PSO Parameters .................................................................................................. 37 

Table 6:   Target and Obtained Angles Values ................................................................. 41 

Table 7:  Simulation Results for 6 DOF ........................................................................... 41 

Table 8:  Target and Obtained Angle Values for first setup joint angles ......................... 44 

Table 9:  Simulation Results for 7 DOF first setup joint angles ....................................... 44 

Table 10:  Target and Obtained Angle Values for first setup joint angles ....................... 60 

Table 11:  Simulation Results for 7 DOF first setup joint angles ..................................... 60 

Table 12:   DH Table for 8-DOF robot ............................................................................. 64 

Table 13:  8-DOF Baxter's Arm Length ........................................................................... 65 

Table 14:  8-DOF left and right arm joint limits ............................................................... 65 

Table 15:   Target and Obtained Angle Values for the first experiment ........................... 66 

Table 16:   Simulation result for the first experiment ....................................................... 67 

Table 17:  Target and Obtained Angle Values for the second experiment ....................... 80 

Table 18:   Simulation result for the second experiment .................................................. 81 

 

  



 

 

xi 

LIST OF FIGURES 

Figure 1: James Kennedy – Russel Elbert .......................................................................... 6 

Figure 2: State Diagram of Searching Food ..................................................................... 13 

Figure 3: Kilobot Robot .................................................................................................... 17 

Figure 4: Perdix Swarm Drones ........................................................................................ 19 

Figure 5: Baxter Robot...................................................................................................... 21 

Figure 6:  Baxter Left Arm ............................................................................................... 23 

Figure 7: Baxter's Left Arm Cartesian Frame Assignment ............................................... 25 

Figure 8: Forward Kinematics Expressions ...................................................................... 29 

Figure 9: The Inertial Frame ............................................................................................. 31 

Figure 10: Error's graphic for 6-DOF robot ...................................................................... 42 

Figure 11: How Baxter looks like with 1st  Setup Joint Angle ........................................ 43 

Figure 12: Pose errors of (a) first (b) second (c) third obtained angles for first 

setup joint angles............................................................................................................... 45 

Figure 13: Joint Angle (θ1) Graph in Scenario 2 - Experiment 1 .................................... 46 

Figure 14: Joint Angle (θ2) Graph in Scenario 2 - Experiment 1 .................................... 47 

Figure 15: Joint Angle (θ3) Graph in Scenario 2 - Experiment 1 .................................... 47 

Figure 16:Joint Angle (θ4) Graph in Scenario 2 - Experiment 1 ..................................... 48 

Figure 17: Joint Angle (θ5) Graph in Scenario 2 - Experiment 1 .................................... 48 

Figure 18: Joint Angle (θ6) Graph in Scenario 2 - Experiment 1 .................................... 49 

Figure 19: Joint Angle (θ7) Graph in Scenario 2 - Experiment 1 .................................... 49 

Figure 20: All Joint Angle Graph in Scenario 2 - Experiment 1 ...................................... 50 

Figure 21:Joint Velocity (deg/sec) for (θ1) in Scenario 2 - Experiment 1 ....................... 50 



 

 

xii 

Figure 22: Joint Velocity (deg/sec) for (θ2) in Scenario 2 - Experiment 1 ...................... 51 

Figure 23: Joint Velocity (deg/sec) for (θ3) in Scenario 2 - Experiment 1 ...................... 51 

Figure 24:Joint Velocity (deg/sec) for (θ4) in  Scenario 2 - Experiment 1 ...................... 52 

Figure 25: Joint Velocity (deg/sec) for (θ5) in Scenario 2 - Experiment 1 ...................... 52 

Figure 26: Joint Velocity (deg/sec) for (θ6)  in Scenario 2 - Experiment 1 ..................... 53 

Figure 27: Joint Velocity (deg/sec) for (θ7) in Scenario 2 - Experiment 1 ...................... 53 

Figure 28: Graph for Px (mm) in Scenario 2 - Experiment 1 ........................................... 54 

Figure 29: Graph for Py (mm) in Scenario 2 - Experiment 1 ........................................... 54 

Figure 30: Graph for Pz (mm) in Scenario 2 - Experiment 1 ........................................... 55 

Figure 31: Graph for q0 in Scenario 2 - Experiment 1 ..................................................... 55 

Figure 32: Graph for q1 in Scenario 2 - Experiment 1 ..................................................... 56 

Figure 33: Graph for q2 in Scenario 2 - Experiment 1 ..................................................... 56 

Figure 34: Graph for q3 in Scenario 2 - Experiment 1 ..................................................... 57 

Figure 35: Baxter with (a) first (b) second (c) third obtained angles and  (d) first 

target joint angles As shown in figure 13, we have the same pose, although each 

configuration is conspicuously different. .......................................................................... 58 

Figure 36: How Baxter looks like with 2nd  Setup Joint Angles ..................................... 59 

Figure 37: Error's graphic of  (a) first (b) second (c) third obtained angles for first 

setup joint angles............................................................................................................... 61 

Figure 38: Baxter with (a) first (b) second (c) third obtained angles and (d) second 

target joint angles .............................................................................................................. 62 

Figure 39: 8-DOF Baxter's Left Arm Cartesian Frame Assignment ................................ 63 

Figure 40:  Error graphic of the first experiment .............................................................. 67 

Figure 41: Joint Angle (θ1) Graph in Scenario 3 - Experiment 1 .................................... 68 



 

 

xiii 

Figure 42: Joint Angle (θ2) Graph in Scenario 3 - Experiment 1 .................................... 68 

Figure 43: Joint Angle (θ3) Graph in Scenario 3 - Experiment 1 .................................... 69 

Figure 44: Joint Angle (θ4) Graph in Scenario 3 - Experiment 1 .................................... 69 

Figure 45: Joint Angle (θ5) Graph in Scenario 3 - Experiment 1 .................................... 70 

Figure 46: Joint Angle (θ6) Graph in Scenario 3 - Experiment 1 .................................... 70 

Figure 47: Joint Angle (θ7) Graph in Scenario 3 - Experiment 1 .................................... 71 

Figure 48: Joint Angle (θ8) Graph in Scenario 3 - Experiment 1 .................................... 71 

Figure 49: All Joint Angle Graph in Scenario 3 - Experiment 1 ...................................... 72 

Figure 50: Joint Velocity (deg/sec) for θ1in Scenario 3 - Experiment 1 .......................... 72 

Figure 51: Joint Velocity (deg/sec) for θ2 in Scenario 3 - Experiment 1 ......................... 73 

Figure 52: Joint Velocity (deg/sec) for θ3 in Scenario 3 - Experiment 1 ......................... 73 

Figure 53: Joint Velocity (deg/sec) for θ4 in Scenario 3 - Experiment 1 ......................... 74 

Figure 54:Joint Velocity (deg/sec) for θ5 in Scenario 3 - Experiment 1 .......................... 74 

Figure 55: Joint Velocity (deg/sec) for θ6 in Scenario 3 - Experiment 1 ......................... 75 

Figure 56: Joint Velocity (deg/sec) for θ7 in Scenario 3 - Experiment 1 ......................... 75 

Figure 57: Joint Velocity (deg/sec) for θ8 in Scenario 3 - Experiment 1 ......................... 76 

Figure 58: Graph for Px (mm) in Scenario 3 - Experiment 1 ........................................... 76 

Figure 59: Graph for Py (mm) in Scenario 3 - Experiment 1 ........................................... 77 

Figure 60:Graph for Pz (mm) in Scenario 3 - Experiment 1 ............................................ 77 

Figure 61: Graph for q0 in Scenario 3 - Experiment 1 ..................................................... 78 

Figure 62: Graph for q1 in Scenario 3 - Experiment 1 ..................................................... 78 

Figure 63: Graph for q2 in Scenario 3 - Experiment 1 ..................................................... 79 

Figure 64: Graph for q3 in Scenario 3 - Experiment 1 ..................................................... 79 



 

 

xiv 

Figure 65: Error Graphic of the second experiment ......................................................... 81 

Figure 66: Demonstration in real -1 .................................................................................. 82 

Figure 67: Demonstration in real -2 .................................................................................. 82 



 

 

1 

CHAPTER I:  

INTRODUCTION 

Background 

These days, due to their dynamic and kinematic function, redundant serial 

manipulators draw both specialized researchers and industry leaders alike in the robot 

marketplace. Especially after the pandemic, robotic is captured companies' attention 

highly. Inverse kinematics has a significant role in robotics.  This study focuses on 

solving IK, which is one of the most critical processes in robotics. IK uses the kinematics 

equations to find the joint settings that give each robot's end-effector the required 

configuration (position and rotation) [1]. The kinematic design, which is considered in 

various parts, particularly as inverse and forward kinematics, refers to a scientific study 

that explores robot movements. However, forward kinematics, which works to decide the 

end effector's status away from the joint directions, is comparatively easy. 

On the other hand, the solution of the IK problem is computationally expensive 

and generally takes a very long time in real-time. Furthermore, singularities and 

nonlinearities complicate IK. As a result, numerous heuristic approaches were considered 

more appropriate for solving IK [2].  

In recent years, optimization approaches such as artificial neural networks, 

particle swarm optimization, genetic algorithms, artificial bee colonies, harmony search, 

and the firefly algorithm have gained much traction among researchers [3]. As a result, 

we can encounter several research projects that use meta-heuristic approaches to solve IK 

and many other problems. Our method for solving IK brings an unusual perspective and a 

more reliable solution. We use iterated PSO velocity values in Jacobian to find updated 

joint angle values. Therefore, in this study, we prove how swarm intelligence methods 
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such as particle swarm optimization are capable of furnishing an accurate solution 

orientally and positionally with the way we use in this research.  

Related Works 

Inverse kinematics is a fundamental challenge in robotics, requiring the 

calculation of a set of joint angles to operate the robot to the desired end-effector position 

and orientation. There are numerical methods such as Newton-Raphson, Jacobian 

inverse, analytical and other techniques using swarm intelligence developed for solving 

IK. However, recent investigations reveal that metaheuristic techniques for solving serial 

manipulator IK problems have piqued the interest of many researchers. 

In 2019, Authors Dereli & Köker [58] focused on the IK solution for 7-DOF 

serial robotic manipulators using quantum-behaved particle swarm optimization (QPSO). 

Besides, they compared with some other swarm optimization methods such as Artificial 

Bee Colony(ABC), Firefly algorithm(FA). Although the IK aims to manipulate the end-

effector to the desired pose, consisting of orientation and position, Dereli & Köker 

derived just position values using forward kinematics. In order to move the end-effector 

to an attempted location in cartesian space as accurately as possible, orientation and 

position must be the same. A similar endeavor was made by Huang[65] in 2012 via PSO 

in solving IK of 7-DOF robotic. The author's results were more adaptive and robust. The 

research resulted in hybridization, which is mainly inspired by the social behavior of an 

individual. The same results and highly supporting facts are also shown by Durmus et al. 

[66] on their investigation for an IK solution using particle swarm optimization. As per 

their results, even though slightly different from the other authors, the results must be 

used effectively for better performance. Mustafa Ayyildiz et al. [59] also proposed the 

comparison of four different optimization methods, Genetic Algorithm(GA), PSO, 

gravitational search algorithm (GSA), and QPSO for solving IK of real 4-DOF robot 
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positionally. One great example was demonstrated by Sancaktar et al. [60] in 2018. They 

adopted the PSO algorithm for the IK solution of the 6-DOF robot built for fracture 

therapy with an external fixator. The classic PSO algorithm employed ensured that all the 

particles were channeled to the searched target.  They used a finite number of iterations 

until a specified criterion was achieved. Rokbani [60] solved the IK of a 3-DOF biped 

robot during locomotion by using PSO in 2012. According to Rokbani [61], PSO for 

solving inverse kinematics delivers an IK solution that corresponds to the robot's Center 

Of Mass while maintaining joint restrictions. Collinsm and Shen [62] proposed that the 

stop criterion relies on achieving the optimal number of iterations or the fitness function. 

The swarm optimization procedure (IK-PSO) stops after the maximum possible iterations 

are attended. It can also stop after an error detection towards the target position appears to 

be less than the fixed amount. Hence, they solved the problem orientally for any DOF 

manipulator. 

Swarm intelligence comprises numerous optimization techniques. Hence, other 

methods were proved that are applicable for solving IK. Starke et al. [63] implemented 

the Genetic Algorithm (GA) technique to settle and solve IK on arbitrary joint chains. 

The approach was applicable since it ensures high accuracy and sure success rates can 

thoroughly pose the objective's solution finding in real-time. To achieve this, Starke et al. 

[63] incorporated joint constraints. 

Furthermore, evolutionary optimization ensured that the problem was solved since 

the genetic algorithms were merged with those relating to swarming intelligence. Finally, 

to solve the problem positionally, Starke optimized the problem to get the best parameter 

vector for reducing the objective function. Hsu-Chih Huang et al. [64] 

presented deoxyribonucleic acid (DNA) swarm intelligence to solve the IK redundancy 

problem of six-degree-of-freedom (DOF) humanoid robot arms.  
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Most of the earlier relevant works mainly interpret solving IK only positionally 

for robotic manipulators with seven and fewer DOF. This paper focuses on solving the 

complete (position and orientation) IK of any robotic manipulator. Quaternions will be 

used for the orientation part of the solution. 
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CHAPTER II: 

SWARM INTELLIGENCE 

Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized 

systems, whether natural or artificial. The idea is used in artificial intelligence research. 

In 1989, Gerardo Beni and Jing Wang used the concept in the context of cellular robotic 

systems [4]. SI is composed of a simple group of agents that interact locally in the same 

environment. Nature, particularly biological systems, is a frequent source of inspiration. 

The discipline focuses on the collective behaviors that emerge from individuals' local 

interactions with one another and their surroundings [5]. There are certain instances of 

swarm intelligence such as ant colonies and other social insect societies, hawks hunting, 

birds flocking, sheep herding, fish schooling, microbial intelligence, and bacterial 

growth.  

The ability of a swarm intelligence system to function in a coordinated manner 

without the existence of a coordinator or an external controller is its distinguishing 

feature. Many examples of swarms doing collective behavior without any individual 

controlling or being aware of the overall group behavior can be seen in nature [5]. 

Even though SI was first established more than 30 years ago, it is being studied, 

expanded, and used in various scientific and engineering studies. As a result, swarm 

intelligence became a popular way for solving one of the fundamental engineering 

problems such as robotics. Hence, numerous swarm behaviors observed in natural 

systems have inspired novel approaches to problem-solving employing robot swarms. 

This dissertation utilized a population-based stochastic optimization technique, Particle 

Swarm Optimization (PSO), to solve any robotic manipulator IK problem. 
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Methods of Swarm Intelligence 

Particle Swarm Optimization 

Particle swarm optimization (PSO) is a computational algorithm that solves 

various problems by improving a candidate solution iteratively regarding a provided 

quality measure [6]. It solves a problem by moving dubbed particles throughout the 

search space according to a simple mathematical formula for the particle's position and 

velocity. In order to move all the particles toward the best solutions, each particle uses its 

local best-known position and global best-known positions that are updated by other 

particles as a better position.  Particle Swarm Optimization is a population-based 

stochastic optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995 

[7], inspired by birds' social behavior.

 
Figure 1: 

James Kennedy – Russel Elbert 

The origins of particle swarm optimization may be traced back to two key 

component techniques. Its linkages to artificial life (A-life) in general, bird flocking, fish 

schooling, and swarming theory [8]. The basic version of particle swarm optimization is 
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based on a relatively simple concept, and therefore may be implemented in just a few 

lines of computer code. It merely uses primitive mathematical operations and is 

computationally inexpensive in terms of both memory and speed. The basic variation of 

the PSO algorithm employs a population of candidate solutions (called particles). A few 

simple equations (Equ 2.1 and Equ. 2.2) are used to move these particles about in the 

search space [9]. The particles' movements are controlled by their individual best-known 

position (Fitness) in the search space, as well as the best-known (𝐺𝑏𝑒𝑠𝑡) position of the 

entire swarm. When better positions are located, they will be used to steer the swarm's 

movements. The procedure is being repeated until either all iterations are completed, or 

𝐺𝑏𝑒𝑠𝑡 meets the solution's error criterion that satisfying the solution. The original PSO 

algorithm is as follows. 

Equation (2.1) 

𝑽𝒊𝒋
𝒕+𝟏 = 𝑽𝒊𝒋

𝒕 + 𝒄𝟏
𝒕 𝒓𝟏

𝒕  (𝑷𝒃𝒆𝒔𝒕𝒊𝒋 − 𝑿𝒊𝒋
𝒕 ) + 𝒄𝟐

𝒕 𝒓𝟐 
𝒕 (𝑮𝒃𝒆𝒔𝒕 − 𝑿𝒊𝒋

𝒕 ) 

 

Equation (2.2) 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑉𝑖𝑗
𝑡+1 

A particle in PSO can be defined as,  𝑃𝑖  ∈ [𝑎 𝑏 ] where j=1,2,3…  is for 

dimensions , i is for particle numbers [10]. Each particle has its velocity and position, 

which are randomly initialized at the start. Each particle must maintain its positions 

𝑃𝑏𝑒𝑠𝑡 known as the local best position and the 𝐺𝑏𝑒𝑠𝑡 known as the global best position 

among all the particles. Where 𝑣𝑖  is the velocity, 𝑥𝑖 is the position 𝑃𝑏𝑒𝑠𝑡 is the personal 

best position of the particle, and 𝐺𝑏𝑒𝑠𝑡 is the global best position for the PSO. 𝑟1 𝑎𝑛𝑑 𝑟2 , 

are two random numbers of ranges [0, 1) and 𝑐1 𝑎𝑛𝑑 𝑐2 are the leaning factors.  

  



 

 

8 

The pseudo-code of the original PSO is:  

Initialize the population randomly  

While (Population Size) 

{ 

Loop 

Calculate fitness  

If fitness value is better than the best fitness value (𝑃𝑏𝑒𝑠𝑡), Then Update 𝑃𝑏𝑒𝑠𝑡 

End Loop 

} 

Select Global Best ( 𝐺𝑏𝑒𝑠𝑡) from all particles' best fitness value 

While (max iterations or min error criteria is not attained) 

{ 

Calculate particle best velocity with equation 2.1 

Update particle position according to equation 2.2 

} 

Although the fundamental PSO algorithm is an outstanding tool for solving 

optimization problems, it still has the issue of being locked in local minima. The 

researchers proposed various PSO versions to increase the performance of PSO. Some 

academics attempted to improve it by optimizing the swarm's initialization. New 

parameters such as the constriction coefficient and inertia weight are introduced in some 

of them. Some academics specify the various approaches of inertia weighting in order to 

increase PSO performance. Some researchers use the mutation operators in the PSO to 

work on the global and local best particles. A set of standard executions has been 

devised, with the goal of showcasing PSO to a larger optimization community and 

evaluating the method's performance improvements. Having a reliable, well-defined 
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benchmark methodology provides a useful point of comparison that may be used across 

the research field to test the subsequent advances.  

Inertia Weight 

Shi and Eberhart [11] developed Inertia Weight in 1998 to better regulate 

exploration and exploitation. The goal was to do away with the necessity for velocity range 

(-Vmax, +Vmax). As a result, the velocity update equation is defined as Equation 4.1. 

Because beginning velocity has such a massive impact on the balancing of the swarm's 

exploration and exploitation processes, Inertia Weight (𝑤) is utilized to adjust the velocity. 

The Inertia Weight (Equation 4.1) plays a vital function in balancing the exploration and 

exploitation processes. The particle's initial velocity contribution to its velocity at the 

current time step is determined by the Inertia Weight. There is no Inertia Weight in the 

fundamental PSO described by Eberhart and Kennedy in 1995 [8]. Shi and Eberhart [11] 

introduced Constant Inertia Weight in 1998, which was the first time the notion of inertia 

weight was introduced. They claim that a large Inertia Weight makes a global search 

easier, whereas a small Inertia Weight makes a local search easier. 

Eberhart and Shi [11] suggested a Random Inertia Weight method, which they 

found to effectively improve PSO convergence in early iterations of the algorithm. PSO's 

efficiency and performance are improved by using the Linearly Decreasing approach 

[12].  Experiments have shown that inertia weights ranging from 0.9 to 0.4 produce 

outstanding results. Despite its ability to converge to an optimal solution, it ends up in the 

local optimum when increasing apices [13]. Random inertia weight as follows: 

 

Equation (2.3) 

𝑤 = 0.5 +
𝑟𝑎𝑛𝑑()

2
 

Fayek et al. [14] present an optimized Particle Swarm technique (PSOSA) that 

employs Simulated Annealing to optimize the Inertia Weight, and they evaluated the 
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method on an urban planning problem. The proposed methodology performs significantly 

better in terms of convergence speed and long-term stability as the number of blocks to 

be fitted in the urban planning problem grows. A Sigmoid Increasing Inertia Weight was 

presented by Malik et al. [15]. They discovered that the sigmoid function helped them get 

the lowest fitness function, while Linearly Increasing Inertia Weight helped them achieve 

rapid convergence. 

Various sorts of inertia weight techniques are introduced to handle various 

challenges to improve the PSO algorithm's effectiveness. In this study, we employ 

constant inertia weight and damping inertia weight with a constant value at each iteration 

until it falls below a particular value set in the program to solve any IK problems. Other 

inertia weight techniques could be investigated for comparison in future research.   

Hybridization 

In order to improve optimization output, first-hand and upgraded PSO variations 

are frequently offered. In such a study, there are clear trends or advancements. One of 

these ideas is to combine PSO with other optimizers to develop a hybrid optimization 

approach. In 2013, hybridization of particle swarm optimization with adaptive genetic 

algorithm (GPSO) operators was carried out by Masrom, S. et al. [16]. 

Alleviate Premature Point of Convergence 

Another research trend is to use multidimensional swarms to research with and 

improve premature convergence spots by blocking or reversing the PSO particles' 

movement and coping with local minimum. Multi-aim optimization can also be done 

using various swarm techniques. 

After carefully examining the PSO variant's operations, Zhan et al. [17] concluded 

that there are trends in altering PSO's attitudinal behavioral standards while optimizing. 
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Simplifications 

Another viewpoint is that PSO should be simplified to the greatest extent possible 

without compromising its results. The Occam's razor is the name given to this concept. 

According to Kennedy [18], it appears that optimization output was improved, standards 

were easier to alter, and they performed more consistently along with various 

optimization tasks. PSO is a metaheuristic that may or may not be correct, which 

increases the risk of making mistakes in its depiction and execution.  A notable example 

is Zhenguo Tu's work, which was later found to be defective because it was strongly 

prejudiced in its optimization search., However, he stated that the partiality was caused 

by a programming error that has been corrected [19]. Additional inputs may be required 

to jumpstart the speeds. The initiation of these speeds does not require any speed, 

according to the Bare Bones PSO Variant proposed by Kennedy James 2013 [20]. 

Another simpler variant is the Accelerated PSO (APSO), which does not require speed 

and can improve convergence in various applications. Also, a different easier variation is 

the Accelerated PSO (APSO), which does not need to use speed and can up the 

convergence in several usages.  

Discrete 

Because of PSO's tremendous efficiency, there has been much effort put towards 

expanding continuous PSO to discrete PSO. The binary PSO (BPSO) algorithm described 

by Kennedy and Eberhart [23] based on the binary coding scheme was the first test. 

Later, the angle modulated PSO, and the discrete multiphase PSO was used to improve 

the method. The mapping of the sequential space into discrete form is one direct 

technique to convert a continuous PSO to a discrete one. Many discrete PSO algorithms 

defined by space transformation techniques have been proposed based on this concept. 

Other approaches to redefine a particle's position and velocity, such as fuzzy matrix-
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based, swap-operator-based, crisp set-based, and so on, have been proposed in the 

literature. Although numerous discrete PSO algorithms have been suggested, their 

performance when applied to the community detection issue is often unsatisfactory[24]. 

Other Population-Based Swarm Intelligence Algorithms 

Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is a possible solution for problems involving 

discovering better routes via graphs that Dorigo proposed in 1992. When artificial ants, 

who serve as simulation agents, travel through a limited space that displays all possible 

solutions, they discover optimum solutions. As they explore their environment, natural 

ants produce pheromones that lead them to paths. Marco [25] noticed that his artificial 

ants keep track of their locations and the worth of their results in the same way as real 

ants do so that in future simulations, more ants can find them and get higher outcomes. 

Many similarities exist between PSO and ACO. Both start with a randomly generated 

population and update the solution every generation based on the fitness values. ACO and 

PSO, on the other hand, lack evolution operators such as crossover and mutation. Both, 

however, have memory, which is critical to the algorithms [26].  
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Figure 2: 

State Diagram of Searching Food 

Genetic Algorithm 

Genetic algorithm (GA) is an inspired metaheuristic method by Darwin's theory, 

the process of natural selection that belongs to the larger group of evolutionary 

algorithms (EA) in computer science. Genetic algorithms generate high-quality solutions 

to optimization problems using biologically inspired operators like mutation, crossover, 

and selection [27]. In order to develop better solutions for an optimization problem, a 

Genetic algorithm uses the power of a population which has multiply candidate solutions 

(individuals, creatures, or phenotypes). Each candidate solution consists of a set of 

parameters (its chromosomes or genotype) represented in the binary numerical system as 

strings of 1s and 0s, but other encodings are also possible [28]. 

The evolution usually begins from a population of haphazardly generated 

candidates, and the evolution is an iterative cycle, with the population in each iteration 

called a generation. In an optimization problem, fitness is generally the value of the 
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objective function. The fittest individuals are randomly chosen from the present 

population, and their genomes are transformed (recombined and maybe randomly altered) 

to create a new generation. In the following iteration of the algorithm, the new generation 

of candidate solutions is employed. Typically, the algorithm ends after a certain number 

of generations have been created, or the population has attained a suitable fitness level. 

[29] [30]. Five phases are considered in the basic genetic algorithm.  

1. Initial population 

2. Fitness function 

3. Selection 

4. Crossover 

5. Mutation 

Bees Algorithm 

The bees algorithm is a populace-based pursuit calculation created by Pham, 

Ghanbarzadeh et al. in 2005. The bees algorithm was inspired by the foraging behavior of 

honey bee colonies' food[31]. The basic algorithms can perform both combinational 

optimization and continuous optimization by executing a sort of neighborhood 

exploration. Also, the bees algorithm has proved its effectiveness and abilities in solving 

various problems. [31] [32] [33] [34]  

Pseudo-code of the bees algorithm as it follows. 

1. Initialize population with random solutions. 

2. Evaluate the fitness of the population.  

3. While (stopping criterion not met) / Forming new population.  

4. Select sites for neighborhood search. 

 5. Determine the patch size.  

6. Recruit bees for selected sites (more bees for best e sites) and evaluate fitness.  
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7. Select the fittest bee from each patch.  

8. Abandon sites without new information.  

9. Assign remaining bees to search randomly and evaluate their fitness.  

10. End While 

Usages of Swarm Intelligence 

Swarm intelligence-oriented methods may be utilized at several points in a variety 

of applications. Some of these are briefly expatiated upon below.  

The General Application of Swarm Intelligence 

These are tested and proved via diverse modes. They are as follows:  

Ant-oriented Routing 

In the telecoms industry, in the formula of ant-oriented routing, SI usage has also 

been researched. Simply speaking, this routing uses a probable routing table that reinforces 

the direction effectively traversed by every ant that floods the network. The reinforcement 

of the route in the reverse direction, forwards, and both concurrently have been examined. 

A backward reinforcement demands a symmetric network and brings together the two 

routes. On the other hand, a forward reinforcement recompenses a direction before the 

result is identified. As the system performs stochastically and cannot repeat itself, Whitaker 

[35] foresaw that there will always be considerable obstacles to commercial usage. 

Courtesy of SI, new technologies and mobile media can alter the benchmark for joint 

action. The setting of transmission substructure for wireless communication systems 

remains an essential engineering issue that involves competing goals. Ant-based routing 

has also been utilized by airlines in the assignment of arrivals of aircraft to airport gates.  
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Crowd Simulation 

As a medium of creating multifaceted interactive systems, artists are beginning to 

use S.I. Miller [36] cited some significant examples of movies that have utilized SI, 

including Lord of the Rings and Batman Returns. Airlines, too, have not hesitated in 

using swarm theory to feign passengers who are about to board a plane. 

Human Swarming 

The networks of decentralized users can also be arranged into human swarms via 

the execution of existing tight-loop control systems. As Rosenberg [37] remarked, such 

natural systems help collections of human participators act as a unitary combined 

intelligence that performs as a single entity to provoke opinions, proffer answers, and 

predict outcomes. Systems like this are also referred to as artificial SI. They have been 

revealed to greatly intensify human intelligence, ensuing in an array of prominent guesses 

of critical correctness. Critical high-profile research work has revealed the critical 

medical usefulness of human swarming. A recent publication from the Stanford 

University School of Medicine [57] showed that a collection of human doctors could 

carry out the diagnosis of medical conditions with significantly greater accuracy when 

they are linked to one another by actual swarming algorithms than individual medical 

practitioners who work as one making use of standard crowd-sourcing techniques. 

The Robotic Application of Swarm Intelligence 

Swarms are typically made up of many simple, homogeneous or heterogeneous 

agents [38]. They have typically cooperated without centralized control and acted in local 

and straightforward ways. Only by interacting with one another can they form a 

collective behavior capable of completing complicated tasks. Swarms' key advantages 

include adaptability, robustness, and scalability as a result of these features. In addition, 
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swarms are a type of quasi-organism that can adapt to changes in the environment by 

exhibiting specific characteristics [39].  

Swarm robotics is a relatively new topic of study that has yet to gain widespread 

acceptance in the industry. On the other hand, Swarm robotics researchers have devised 

several platforms for testing and analyzing swarm algorithms [40]. The authors 

consistently noted that the simplicity of swarm robotic research platforms allowed them 

to anticipate future industry applications [41]. For example, Radhika Nagpal and Michael 

Rubenstein of Harvard University developed the Kilobot (Figure 3) swarm robot. They 

can act in groups of up to a thousand to carry out directives programmed by users that 

individual robots would be unable to carry out [42]. Kilobot collaborates with others to 

complete tasks that would be impossible to complete on an individual level. In addition, 

the Kilobots are capable of collective transportation, such as searching for food and 

moving in a shape by cooperating. 

 

 
 

Figure 3: 

Kilobot Robot 

Space Agency is considering the utilization of the swarm technique for planetary 

exploration. So, Nasa is working on a swarm rover that will act as a mobile base, and 
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Marsbees that a swarm of robotic bees for more exploration and science missions on the 

Red Planet [43]. Moreover, like the US, advanced nations have sought to deploy robots 

using SI to war fronts to attack enemy militia. Other sets of usages of SI include micro air 

vehicles swarms that are widely researched these days. Many tasks on collective swarms 

of unguarded ground and aerial motors have focused on collaborative environment 

checking, convoy security, simultaneous localization, and plotting. An excellent example 

for military purpose swarm applications would be CARACAS (Contro Architecture for 

Robotic Agent Command and Sensing) which was developed by the Office of Naval 

Research (ONR), in collaboration with partners from industry, academia, and other 

government agencies were able to get a "swarm" of rigid hull inflatable boats (RHIBs) 

and other small boats to collectively perform patrol missions autonomously, rather than 

relying on direct human operation, using a unique combination of software, radar, and 

other sensors[44]. In addition, in 2013, the Strategic Capabilities Office of the United 

States Department of Defense conducted The Perdix drone (Figure 4) that is not 

controlled. Instead, it shares a collective, distributed "brain," traveling in leaderless 

"swarms," members of which can adapt to changes in drone numbers and remain 

coordinated with their counterparts [45][46][47]. 
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Figure 4: 

Perdix Swarm Drones 
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CHAPTER III: 

BAXTER ROBOT 

Introducing Baxter 

The Baxter (Figure 5) is a two-armed, industrial, humanoid robot with a stationary 

pedestal, torso, two DOF heads, a safety system, a robot control system,  a vision system, 

and an animated face. Rethink Robotics has created the Baxter as a kinematically 

redundant robot to operate fully in desired cartesian space. The Baxter has a research and 

education version to help numerous research and education programs such as human-

robot interaction, collaborative robotics, planning, object recognition, object 

manipulation, computer science, perception, neurosciences, and cognitive sciences. 

Although Baxter's research version is identical to the industrial version, these two 

versions come with different software. The research and education Baxter robot come 

with a ROS-compatible Robot Operating System. Software Development Kit (SDK), 

while the manufacturing version comes with a production software created by Rethink 

Robotics. This research employed the Baxter to simulate the exactness of results via 

Gazebo, the robot simulation program.  
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Figure 5: 

Baxter Robot 

Baxter remains an animated monitor for a human-like face that shows multiple 

facial postures as its present status determines. There are ranges of sensors all over its 

head, enabling it to sense people close by and offer the robot the chance of adjusting to its 

surroundings. As opposed to its other industrial robot counterparts, which either shut 

down or proceed to run inaccurately, their surroundings change. As a good instance, in a 

situation whereby Baxter drops a tool without which it may not continue with its job, 

Baxter will desist from working. However, most other robots try to continue their 

assignment without the appropriate tools, resulting in unsatisfactory results at the end of 

the day [48]. 

Interestingly, Baxter performs on the open-source ROS on a typical Personal 

Computer located in its chest. Users can place Baxter on 4-wheeled support to make them 

moveable. Also, Baxter possesses light sensors located in its hands which allow it to 

attend to details carefully.  
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In line with a model report from Leeds Robotic Commands as against 

commonplace robots, which are automated to follow a particular set of rules, users can 

automate Baxter by adjusting its hands to carry out some job whose signals the computer 

system will consequently commit to memory and be capable of repeating the job. Extra 

buttons, dials, and switches are also present on the arm of Baxter, making it suitable for 

features and precision. Furthermore, while many other industrial robots demand computer 

coders to program them over long hours, coding Baxter may be carried out by 

inexperienced staff in a short time. 

While other industrial robots are designed to carry out one job fast with many 

rapidly-moving components unsafe for humans working around, Baxter possesses sensors 

over grippers, enabling it to sense and adjust to its environment. It can perceive collision 

occurrences on time and work towards reducing the force before the impact. What makes 

this possible is the presence of a spring that controls Baxter's arm rather than just rigid 

actuators controlling its arms. Spare cameras and sensors within Baxter's hands enable it 

to focus on details while working with those hands. In short, these light sensors and 

capabilities cause Baxter to be less unsafe.  

Many colleges have adopted Baxter as part of their curriculum to offer students 

the familiarity of using present robotics tech to offer hands-on usages in the larger 

society. Several courses, such as computer sciences, mechanical engineering, and 

robotics, have allowed students to make the most of Baxter's benefits. This particular 

research was carried out perfectly with the help of Baxter. More specifically, we have 

used Baxter's arm to solve IK problems using PSO. 
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Baxter Arm 

 

 
Figure 6:  

Baxter Left Arm 
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Table 1:  

 

Seven DOF Arm joints Naming Convention 

Joint Name Joint Motion 

S0 Shoulder roll 

S1 Shoulder pitch 

E0 Elbow roll 

E1 Elbow pitch 

W0 Wrist roll 

W1 Wrist pitch 

W2 Wrist roll 

 

Table 2:  

 

Seven DOF left and right arm joint limits 

Joint Name Joint Variable i min i  max i  range 

S0 1 +51° -141° 192° 

S1 2 +60° -123° 183° 

E0 3 +173° -173° 346° 

E1 4 +150° -3° 153° 

W0 5 +175° -175° 350° 

W1 6 +120° -90° 210° 

W2 7 +175° -175° 350° 

Denavit-Hartenberg 

The Denavit–Hartenberg parameters (DH parameters) are presented by Jacques 

Denavit and Richard Hartenberg in 1955. DH has four parameters associated with a 

particular convention for attaching reference frames to a spatial kinematic chain or robot 

manipulator's links [48][49]. Richard Paul demonstrated the significance of this system 

on kinematic analysis of the robotic system in 1981. However, since many other 
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conventions for attaching reference frames have been developed, The DH convention has 

held the most popular approach [50].  The cartesian reference frame definitions for 

Baxter's 7-DOF left arm are shown in Figure 7. Table 3 gives the associated DH 

parameters for the 7-DOF left arm, and Table 4 provides the length of the 7-DOF arm. 

 
Figure 7: 

Baxter's Left Arm Cartesian Frame Assignment 

 

The following four transformation parameters are D–H parameters 

• d - the distance between the previous x-axis and the current x-axis along the 

previous z-axis. 

• θ - the angle around the z-axis between the previous x-axis and the current x-axis. 

• a - the length of the common normal, which is the distance between the previous 

z-axis and the current z-axis 

• α - the angle around the common normal between the previous z-axis and the 

current z-axis.  
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Table 3: 

 

Seven DOF left arm DH table 

 

i α i-1 a i-1 di i 

1 0 0 0 1 

2 -90 L1 0 2 +90 

3 90 0 L2 3 

4 -90 L3 0 4 

5 90 0 L4 5 

6 -90 L5 0 6 

7 90 0 L6 7 

Table 3 illustrates the Denavit-Hartenberg parameters for the Baxter. Although all lengths 

are given in mm, the lengths are used in meters in the algorithm. Also, the angles are used 

in radian in the algorithm. 

 

Table 4: 

 

Baxter's Arm Length 

 

Length Value (mm) 

L0 281.35 

L1 125.00 

L2 364.35 

L3 69.00 

L4 374.29 

L5 10.00 

L6 229.5 
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Forward Kinematics 

Forward kinematics refers to using the kinematic equations to compute the end-

effector position from specified values for the joint parameters [50]. In other words, 

given a kinematic chain composed of links and joints with multiple degrees of freedom, 

finding the end-effector's position and orientation in the functional workspace when all 

the joint parameters are known [51].  

The homogeneous transformation matrix from frame {i} to frame {i-1} is given as 

followed: 

 

Equation (3.1) 

 

[ 𝑇𝑖
𝑖−1 ] = [

cos 𝜃𝑖 −sin 𝜃𝑖 0 𝑎𝑖−1

  sin 𝜃𝑖 cos 𝛼𝑖−1 cos 𝜃𝑖 cos 𝛼𝑖−1 −sin𝛼𝑖−1 −𝑑𝑖  sin 𝛼𝑖−1

sin 𝜃𝑖 sin 𝛼𝑖−1 cos 𝜃𝑖 sin 𝛼𝑖−1 cos 𝛼𝑖−1 𝑑𝑖  cos 𝛼𝑖−1

0 0 0 1

   ] = 

[ [ 𝑅𝑖
𝑖−1 ] { 𝑃𝑖

𝑖_1
𝑖}

0 0 0 1
  ]  

The equation (3.1) represents the pose (position and orientation) of frame {i} 

concerning frame {i–1} by using a 4x4 homogeneous transformation matrix. The upper 

left 3x3 matrix is the rotation matrix giving [ 𝑅𝑖
𝑖−1 ]  the orientation of frame {i} with 

respect to frame {i–1}, expressed in { i–1} coordinates. The upper right 3x1 vector 

{ 𝑃𝑖
𝑖_1

𝑖} is the position vector from the origin of {i–1} to the origin of {i}, expressed in { 

i–1} coordinates. In this project, in order to find the end effector's pose, homogeneous 

transformation equations are used concerning the base reference frame [ 𝑇0
𝐵𝐿 ]  to complete 

the FK solution for each consecutive chain by substituting each row of the DH 
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parameters in Table 3.3 into the equation to obtain the seven neighboring homogeneous 

transformation matrices below as a function of the joint angles for the 7-DOF left arm. 

 

[ 𝑇1
0 ] = [

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 𝐿0

0 0 0 1

] [ 𝑇2
1 ] = [

𝑐2 −𝑠2 0 𝐿1

0 0 1 0
−𝑠2 𝑐2 0 0
0 0 0 1

]     [ 𝑇3
2 ] = [

𝑐3 −𝑠3 0 0
0 0 −1 −𝐿2

𝑠3 𝑐3 0 0
0 0 0 1

] 

 

[ 𝑇4
3 ] = [

𝑐4 −𝑠4 0 𝐿3

0 0 1 0
−𝑠4 −𝑐4 0 0
0 0 0 1

]       [ 𝑇5
4 ] = [

𝑐5 −𝑠5 0 0
0 0 −1 −𝐿4

𝑠5 𝑐5 0 0
0 0 0 1

]    

 

[ 𝑇6
5 ]=[

𝑐6 −𝑠6 0 𝐿5

0 0 1 0
−𝑠6 −𝑐6 0 0
0 0 0 1

]         [ 𝑇7
6 ] = [

𝑐7 −𝑠7 0 0
0 0 −1 −𝐿6

𝑠7 𝑐7 0 0
0 0 0 1

] 

 

Where the following abbreviations are used:  𝑠𝑖 = sin 𝜃𝑖    , 𝑐𝑖 = cos 𝜃𝑖 

We derive the FK result by substituting seven neighboring homogeneous transformation 

matrices through the homogeneous transform equation below. 

 

(Equation 3.2) 

[ 𝑇7
0 ] =[ 𝑇(𝜃1)1

0 ] [ 𝑇 (𝜃2)2
1 ] [ 𝑇3

2 (𝜃3)] [ 𝑇(𝜃4)4
3 ] [ 𝑇5

4 (𝜃5)] [ 𝑇6
5 (𝜃6)] [ 𝑇7

6 (𝜃7)] 

Since we need Baxter's pose in the base frame, we multiply forward kinematics solution 

[ 𝑇7
0 ] with the transformation matrix [ 𝑇0

𝐵𝐿 ] below. 
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    [ 𝑇0
𝐵𝐿 ] = [

0.707106 −0.707106 0 0.026
0.707106 0.707106 0 0.219

0 0 1 0.108
0 0 0 1

] 

 

(Equation 3.3) 

[ 𝑇7
𝐵𝐿 ]   =  [ 𝑇0

𝐵𝐿 ]  *  [ 𝑇7
0 ] 

 

 

 

[ 𝑇7
𝐵𝐿 ] = [   

𝑟11 𝑟12 𝑟13 𝑝𝑥   
𝑟21 𝑟22 𝑟23 𝑝𝑦   

𝑟31 𝑟32 𝑟33 𝑃𝑧   
0 0 0 1   

] 

Figure 8: 

Forward Kinematics Expressions  

Jacobian 

Jacobian matrices are a helpful tool and are heavily used throughout robotics 

[52][53]. Jacobian is the matrix in robotics that provides the relation between joint 

velocities (�̇�) & end-effector velocities (�̇�) of a robot manipulator. 

(Equation 3.4) 

�̇� = 𝐽 �̇� 

where, �̇�, the column matrix is representing the joint velocities. The size of this matrix is 

𝑛𝑥1. '𝑛' is the number of joints of the robot. �̇�, the column matrix is representing the end-

effector's velocities. The size of this matrix is 𝑚𝑥1. 𝐽  is the Jacobian matrix which is a 

function of the current pose. Size of Jacobian matrix is 𝑚𝑥𝑛. The expanded matrix form 

of the above equation (3.4) is given as follows. 

 

Orientation 
Position 
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[
 
 
 
 
 
�̇�
�̇�
�̇�
𝛼  ̇
�̇�
�̇�

 

]
 
 
 
 
 

  =  

[
 
 
 
 
 
𝑗11 𝑗12 . . . 𝑗1𝑛

𝑗21 𝑗22 . . . 𝑗2𝑛

. . . . . .

. . . . . .

. . . . . .
𝑗61 𝑗62 . . . 𝑗6𝑛]

 
 
 
 
 

6𝑥𝑛

  *      

[
 
 
 
 
 
 

   

�̇�1

�̇�2

�̇�3

.

.

.
�̇�𝑛

   

]
 
 
 
 
 
 

 𝑛𝑥1

 

Each column is related to each joint of the manipulator. Jacobian matrix 

represents the effect on end-effector velocities due to variation in each joint velocity. 

Hence the number of columns in the Jacobian matrix is equal to the number of joints in 

the manipulator. The first three elements of the end-effector velocity matrix (�̇�) are linear 

[�̇� �̇� �̇�]  velocities [rate of change of position] and the last three elements [�̇� �̇� �̇�] 

are the angular velocities [rate of change of orientation] in [�̇� �̇� �̇�] direction, 

respectively.  

Inverse Kinematics 

In computer animation and robotics, IK is the method of measuring the variable 

joint parameters required to place the end of a kinematic chain, such as a robot 

manipulator, in a specified location and orientation relative to the chain's start. With 

Given joint parameters, the position and orientation of a manipulator can typically be 

calculated directly using multiple applications of trigonometric formulas, with the 

forward kinematics method has been explained above. The reverse operation, on the other 

hand, is even more complex [54]. 

IK is a technique for determining the inverse of a W to Q mapping: 

(Equation 3.5) 

𝑄𝑖𝑛𝑣=  𝐹 
−1(𝑊) 

Modeling and solving IK problems can be done in a variety of ways.  Due to the 

complexity of inverting the forward kinematics equation and the probability of an empty 
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solution space, the most versatile approaches usually use iterative optimization to find an 

approximate solution. Heuristic methods can also be used to estimate the IK problem. 

These methods use basic iterative operations to arrive at a solution approximation 

eventually. Heuristic algorithms are simple to use (they return the final pose quickly) and 

typically support joint constraints. 

Quaternion  

A quaternion is a four-element vector in a three-dimensional coordinate system 

that can be used to encode any rotation. A quaternion is a mathematical construct made 

up of one real and three complex elements that can be used for much more than rotations. 

Quaternions are simpler than Euler Angles, avoid ambiguity, are numerically stable, and 

are more efficient in terms of computing implementations [55] 

 
Figure 9: 

The Inertial Frame 

As shown in Figure 9, the inertial frame is an Earth-fixed coordinate frame with 

the x-axis pointing north, the y-axis pointing east, and the z-axis pointing down. Any 

rotation or series of rigid body rotations about a fixed point is equivalent to a single 
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rotation by a given angle about a fixed axis moving through the fixed point, like Euler's 

rotation theorem shows. Quaternions are a four-number representation of rotation that 

uses three numbers to represent the axis vector and one number representing the angle.  

Identifying individual objects in an image and determining their location and 

orientation relative to any coordinate system is common in computer vision and robotics. 

This knowledge can then be used to allow a robot to control an object or prevent a robot 

from colliding. A rotation and translation transformation can be used to define the pose. 

A rotation and translation transformation that takes the object from a reference pose to 

the observed pose may define the pose. This rotation transformation can be modeled in a 

variety of ways. For example, Baxter uses the quaternion representation. 

Gazebo Simulation in Brief 

The Gazebo is a 3D robotics simulator that is free and open source. From 2004 

through 2011, the Gazebo was an essential part of the Player Project. The ODE physics 

engine, OpenGL rendering, and support code for sensor simulation and actuator control 

were incorporated into Gazebo. Gazebo became a self-contained project with Willow 

Garage's assistance in 2011. The Gazebo project was stewarded by the Open Source 

Robotics Foundation (OSRF) in 2012. In 2018, the Open Robotics Research Foundation 

(OSRF) changed its name to Open Robotics[21]. Gazebo promotes a variety of high-

performance physics engines, including ODE, Bullet, and others. It gives realistic 

rendering environments, including high-quality lighting, shadows, and textures. It can 

model sensors that "see" the simulated environment, such as laser range finders, cameras 

(including wide-angle), Kinect style sensors.[22] In Addition, Gazebo provides 

exceptional conveniences for studying industrial and research robots such as Baxter. In 

this study, we have verified the accuracy of our result thanks to Gazebo. 
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CHAPTER IV: 

PROPOSED ALGORITHM FOR SOLVING INVERSE KINEMATICS 

This chapter introduces the swarm intelligence algorithm to solve any robotic 

manipulator IK problems by moving the particles at each iteration to perceive a better 

solution. If there is no improvement after several iterations, the re-hope portion code is 

performed for more iterations. 

Solving Inverse Kinematics with PSO 

The PSO that has been advanced for a long time now got its inspiration from a 

drove of birds and has become reckoned as having a robust search algorithm. First, it 

refers to a method utilized by researchers [56]. Many benefits are tied to using this 

algorithm. For instance, it can be applied seamlessly, and it has robust control 

benchmarks compared with most other meta-heuristic methods. Essentially, the PSO is 

chosen concertedly for non-linear issues, which form one of the main challenges with the 

search space and offer improved results. In PSO, particles get optimal results alongside 

making use of the neighborhood as well as experience.  However, just two equations are 

used to get on to the aim of the particles in particle swarm optimization.  

The goal of an optimization problem is to determine a variable represented by a 

vector  

𝑋 = [𝑥1 𝑥2 ……𝑥𝑛] that minimizes or maximizes depending on the proposed 

optimization formulation of the function 𝑓(𝑋). The variable vector X is known as the 

position vector; this vector represents a variable model. It is n dimensions vector, where n 

represents the number of variables that may be determined in a problem. In this problem, 

n is determined seven [𝑃𝑥  𝑃𝑦 𝑃𝑧] as the position and [𝑞0 𝑞1 𝑞2 𝑞3] as the orientation, 

which also representing quaternion values. In order to derive  [𝑞0 𝑞1 𝑞2 𝑞3] orientation 
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from the upper left 3x3 (rotm) matrix of Baxter's forward kinematics matrix, we used the 

conversion of the rotational matrix to quaternion with the MATLAB code below;  

 

Code 4.1 

𝑞𝑢𝑎𝑡 =  𝑟𝑜𝑡𝑚2𝑞𝑢𝑎𝑡(𝑟𝑜𝑡𝑚) 

Regarding a swarm with particles, there is a position vector 𝑋𝑖𝑗
𝑡  and a velocity vector 𝑉𝑖𝑗

𝑡  

at iteration(t) for each one of the i particle that composes it. These vectors are updated 

through the dimension j according to the following equations: 

 

(Equation 4.1) 

𝑉𝑖𝑗
𝑡+1 = 𝑤𝑉𝑖𝑗

𝑡 + 𝑐1
𝑡𝑟1

𝑡 (𝑃𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑋𝑖𝑗
𝑡 ) + 𝑐2

𝑡𝑟2 
𝑡 (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑗

𝑡 ) 

(Equation 4.2) 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑉𝑖𝑗
𝑡+1 

Taking 𝑗 = 1,2, …., n as the dimension while 𝑖 = 1, 2…, P refers to the swarm size even 

as 𝑐1  alongside 𝑐2 refers to the weight of personal best and global best, respectively. In 

the same vein, 𝑟1 and 𝑟2 are merely random figures that spread equally (0, 1).  

Euclidian 

In this research work, the objective of the optimization challenge is to discover 

the ideal angle value (θ) for every joint. At the end of it all, the robot arm's end-effector 

will be taken to the desired destination by θ. Therefore, the correct computations of θ 

values are highly essential.  
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Equation (4.3)  

√(𝑃𝑞3
2 − 𝑇𝑞3

2 ) + (𝑃𝑞2
2 − 𝑇𝑞2

2 ) + (𝑃𝑞1
2 − 𝑇𝑞1

2 ) + (𝑃𝑞0
2 − 𝑇𝑞0

2 ) + (𝑃𝑝𝑥
2 − 𝑇𝑝𝑥

2 ) + (𝑃𝑝𝑦
2 − 𝑇𝑝𝑦

2 ) + (𝑃𝑝𝑧
2 − 𝑇𝑝𝑧

2 ) 

The major objective of this research is to bring a solution to the optimization 

problem by working out the PSO. For this reason, we implemented a cost function that is 

dependent on Euclidian distance with particular reference to the equation above, which is 

between the target pose  [ 𝑇𝑝𝑥 𝑇𝑝𝑦 𝑇𝑝𝑧  𝑇𝑞0 𝑇𝑞1 𝑇𝑞2 𝑇𝑞3  ] and the particles' pose 

[ 𝑃𝑝𝑥 𝑃𝑝𝑦 𝑃𝑝𝑧  𝑃𝑞0 𝑃𝑞1 𝑃𝑞2 𝑞𝑃3  ].  

Quaternion conversion to Angular Velocity (𝝎) 

A quaternion q is a set of four parameters, a real value 𝑞0 and three imaginary 

values 𝑞1i, 𝑞2𝑗, 𝑞3𝑘 with 𝑞0, 𝑞1, 𝑞2 ∈ 𝑅 ∈ R; it may be written as follows. 

 
Equation (4.4)  

𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 

Euler angles are more human-friendly and can decompose rotations into individual 

degrees of freedom (for kinematic joints and the like). However, they have drawbacks 

such as ambiguity and gimbal lock, which can cause a problem at specific end effector 

orientations, causing the solution to failing to converge. However, Quaternions do not 

suffer from this ambiguity since they only represent a single rotation with a well-defined 

axis. Therefore, using quaternion values makes our result exactly accurate and reliable. In 

order to derive each joint velocity, we have to use the conversion of quaternion velocity 

(Equation 4.5) to the angular velocity. (Equation 3.4).  

  



 

 

36 

Equation (4.5) 

𝜔 = 2 ∗ [

−𝑞1 𝑞0 −𝑞3 𝑞2

−𝑞2 𝑞3 𝑞0 −𝑞1

−𝑞3 −𝑞2 𝑞1 𝑞0

] ∗ [

𝑞0̇

𝑞1̇

𝑞2̇

𝑞3̇

]  

 

 

or 

𝜔 =  2 ∗ 𝐸 ∗ 𝑞 ̇  

Pseudo Inverse(𝒋 
+) 

As we said in chapter three, Jacobian is the matrix in robotics that provides the 

relation between joint velocities (�̇�) and end-effector velocities (�̇�) of a robot 

manipulator (Equation 3.4). Hence the Jacobian velocities equation cannot be used 

directly for Baxter. So we have to make a relation between end-effector displacement and 

joint positions instead of their velocities. In order to calculate each joint angle, we have to 

use Pseudo Inverse (𝑗 
+) as it is shown: 

 

(Equation 4.6) 

𝒋 
𝑻 ∗ �̇� = 𝒋 

𝑻 ∗ 𝒋 ∗ �̇� 

= 

(𝑗 
𝑇 ∗ 𝑗) 

−1 ∗ 𝑗 
𝑇 ∗ �̇� = (𝑗 

𝑇 ∗ 𝑗) 
−1 ∗ 𝑗 

𝑇 ∗ �̇� 

= 

𝑗 
+ ∗  �̇�= �̇� 

 

E 
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The parameters for the proposed PSO algorithm are shown below (Table 5) 

Table 5: 

PSO Parameters 

 

Parameter Description 

j Number of dimensions  

𝑖 Number of particles 

t Number of iterations 

𝑋𝑖𝑗
𝑡+1 Next angle. 

𝑉𝑖𝑗
𝑡+1 Next velocity 

𝜔 Inertia coefficient 

𝑐1, 𝑐2 Personal acceleration(𝑐1), Global acceleration(𝑐2) 

𝑟 Random number (0-1) 

𝜔𝑑𝑎𝑚𝑝 Damping inertia  

 
Global Best Pose 

𝑃𝑏𝑒𝑠𝑡 Personal best pose 

𝑋𝑖𝑗
𝑡  Current particle pose 

𝑉𝑖𝑗
𝑡  Current particle velocity 

𝑄𝑗 Angle  

Rh Re-hope 
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The pseudo-code for the PSO algorithm is given below: 

Step 1:  Set number of joints = 7 or any number of joints. 

Step 2: Set PSO parameters (Max Iteration, Population, Inertia Coefficient (𝜔),  

𝜔𝑑𝑎𝑚𝑝=0.973, Personal acceleration(𝑐1), Global acceleration(𝑐2), 𝑅𝐻 = 0)  

Step 3: Set target joint angle.  

Step 4: Compute transformation matrix [ 𝑇𝑖
𝑖−1 ] according to Equations (3.2 and 3.3) 

Step 5: Convert rotation matrix [ 𝑇𝑖
𝑖−1 ]

𝟑∗𝟑
 to quaternion [𝑞1 𝑞2 𝑞3 𝑞4] according to code 

(4.1 

Step 6: Derive target Pose  [ 𝑝𝑥 𝑝𝑦 𝑝𝑧  𝑞0 𝑞1 𝑞2 𝑞3  ] 

Step 7: Initialize particles ( 𝑝𝑖) angle randomly in the limit of angles (Table 2)  

Step 8: Initialize  𝑝𝑖 ' velocity (𝑣𝑖) as  0,000001; 

Step 9: Compute 𝑝𝑖’ transformation matrix [ 𝑇𝑖
𝑖−1 ] according to Equations (3.2 and 3.3) 

Step 10: Convert rotation matrix [ 𝑇𝑖
𝑖−1 ]

𝟑∗𝟑
 to quaternion [𝑞1 𝑞2 𝑞3 𝑞4] code (4.1) 

Step 11: Derivate  𝑝𝑖 ' pose  [ 𝑝𝑥 𝑝𝑦 𝑝𝑧  𝑞0 𝑞1 𝑞2 𝑞3  ]= (𝑋𝑖𝑗
𝑡 )  

Step 12:  Calculate Cost function for 𝑝𝑖 with Euclidean (4.3)  

Step 13: If particle fitness < Global best cost then global  = 𝑃𝑏𝑒𝑠𝑡 

Step 14: If i < Population then go to step 7 , 𝑖 = i + 1 

Step 15: Update the  𝑝𝑖 velocity (𝑣𝑖) according to equation (4.1)  

Step 16: The next step is to compute the particle velocity (translational velocity + 

rotational velocity) using the equation Equation (4.5) 

Step 17:  Convert quaternion to angular velocity as shown in equation (4.5) 

Step 18 Then, the particle' joint velocities are computed using the Moore-Penrose pseudo 

inverse of the Jacobian matrix. 

Step 19: derive the each angle joint according to Equation (3.4 and 4.6) 
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Step 20: if end effector’s velocity > error*10-1 then end- effector= error*10-1 if else < 

end effector’s velocity > error*10-2 then end- effector = error*10-2 . 

Step 21: Update joint angles according to equation (4.2) 

Step 22: If 𝑄𝑖𝑗
𝑡+1 exceeds the angle limits, keep previous 𝑄𝑖𝑗

𝑡  angle value. 

Step 23: Compute 𝑃𝑖
𝑡 transformation matrix [ 𝑇𝑖

𝑖−1 ] according to Equations (3.1) 

Step 23: Convert rotation matrix [ 𝑇𝑖
𝑖−1 ]

𝟑∗𝟑
 to quaternion [𝑞1 𝑞2 𝑞3 𝑞4] according to code 

(4.1) 

Step 23: Compute pose [ 𝑝𝑥 𝑝𝑦 𝑝𝑧  𝑞1 𝑞2 𝑞3 𝑞4 ] = (𝑋𝑖𝑗
𝑡 ) for updated angle 

Step 24:  Calculate Cost function for 𝑝𝑖 with Euclidean (4.3)  

Step 25: If particle fitness < Global best cost then  = 𝑃𝑏𝑒𝑠𝑡, 𝑅𝐻=0 

Step 26: If 𝑖 < Population then go to step 15, 𝑖 = i + 1 

Step 27: damping the inertia value each iteration 𝑤 = 𝜔𝑑𝑎𝑚𝑝 ∗ 𝑤 

Step 28: if 𝑅𝐻 > 5 then randomly picked 20 Particles = Global Best Angle, set 𝑅𝐻 = 0  

Step 27: If 𝐸𝑟𝑟𝑜𝑟 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 <  then go to step 15, 𝑡 = t + 1 otherwise end 
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CHAPTER V: 

RESULT AND ANALYSIS 

This research aims to examine the effectiveness of the PSO algorithm to proffer a 

solution to any robotic manipulator's IK problems. These simulations are carried out with 

the following parameters: Iteration = 500-2000 and the particle = 50-80. The proposed 

algorithm was tested under three different scenarios, which consist of 6 DOF, 7 DOF, and 

8 DOF manipulators. Our work has shown the possibility of finding infinite solutions 

which lead the manipulator to the exact pose in the cartesian space. The first scenario is 

aimed to find the exact target angles. The second scenario is proposed to obtain different 

joint angles for the 7-DOF robot Baxter. Lastly, we have found a solution for 8 DOF 

manipulators beneath the third scenario. All scenarios are carried out via MATLAB 

coding on a MacBook with 2.6 GHz Intel Core i7. 

Obtained Result For Scenario 1 

In this scenario, we kept the first angle constant 𝜃1=0.7850(rad) to compute the 

optimal configurations of 6 DOF manipulators. Then, randomly generated six dimension 

particles' were used to get the end-effector desired pose (position and orientation). In 

order to increase the efficiency of PSO, we have accelerated the first velocity as 0.00001 

rad/sec Fig. 10 shows the proposed algorithm can converge to less than 1 mm after 750 

iterations. As shown in table 7,  we obtained the lowest error value at the 2314th 

iteration. As shown in Fig 10, the last 200 iterations errors graph is stagnated.  As 

expected, the algorithm proved its accuracy over the test run, whose results are presented 

in Table 6. 
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Table 6:  

 

Target and Obtained Angles Values 

 
 𝜃1 (rad) 𝜃2 (rad) 𝜃3 (rad) 𝜃4 (rad) 𝜃5 (rad) 𝜃6 (rad) 𝜃7 (rad) 

Target Angles -0.7850 -0.7850 0 1.5710 0 -0.7850 0 

Obtained Angles -0.7850 -0.7850 -2.78e-05 1.5710 -4.98e-05 -0.7850 6.19e-05 

 

 

 

Table 7: 

 

Simulation Results for 6 DOF 
 

Parameters 

 

Euclidian Distance (Meter) 1.2925e-05 

Number Of Iteration 2314 

Number of Particles 60 
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Figure 10: 

Error's graphic for 6-DOF robot 

Result Obtained For Scenario 2 

We use two different setup joint angles as goals in this scenario. The inverse 

kinematics solution was performed with 60 particles that have seven dimensions which 

represent pose [ 𝑃𝑝𝑥 𝑃𝑝𝑦 𝑃𝑝𝑧  𝑃𝑞0 𝑃𝑞1 𝑃𝑞2 𝑞𝑃3  ] of Baxter and first angle values are 

randomly chosen within the minimum and maximum angle values (Table 3.2). we 

applied the algorithm with different initial parameters. 

 

 𝑖 = 60, 𝑤𝑑𝑎𝑚𝑝 = 0.973,   𝑐1 = 1,   𝑐2 = 1,   𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.00001 𝑟𝑎𝑑/𝑠𝑒𝑐,   𝑤 = 0.90. 

We found three different alternative solutions (Table 6 and Table 7) for each 

setup joint angle that move Baxter's end-effector to the same point in cartesian space. The 

accuracy of the results is demonstrated using gazebo simulation. 
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Experiment-1 Untucking Setup Joint Angles 

 

 
Figure 11: 

How Baxter looks like with 1st  Setup Joint Angle 

Figure 11 shows how Baxter's left arm corresponds to the angles listed in Table 8. 

As there is randomness picking up initial angles, there is a chance of ending up at 

different angles to attain the same pose. As listed in table 8, we obtained three different 

solutions that move Baxter's end-effector to the same place in cartesian space with 

different joint angles. Table 9 depicts how many iterations later the distance decreased to 

less than 1 micrometer(μm) for each solution with sixty particles. 

  

https://www.google.com/search?biw=1920&bih=947&sxsrf=ALeKk03qTG74NSIHrkF8DN4I71LFwh8poQ:1626652166724&q=micrometres+1+%CE%BCm+in&sa=X&ved=2ahUKEwijssfE5-3xAhVOaM0KHVMvAD4Q6BMoADApegQIKxAC
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Table 8: 

 

Target and Obtained Angle Values for first setup joint angles 
 

Angle First Setup 

Joint Angles 

First Obtained 

Angles 

Second Obtained 

Angles 

Third Obtained 

Angles 

𝜃1(rad)    -  0.08  -1.1938  -1.7632           -0.0992  

 𝜃2 (rad) - 1.00 -1.3554  -0.3839  0.3053 

𝜃3(rad) - 1.19  0.4464  1.5796  -2.0289 

𝜃4(rad) + 1.94  2.1104  1.9317  1.9728 

𝜃5(rad) + 0.67  3.0312  1.9006  1.7649 

𝜃6(rad) + 1.03  -0.7850  -1.4011  2.0944 

𝜃7(rad) 

 

    - 0.50  -2.7564 -1.9215 -0.8646 

     

 

 

Table 9: 

 

Simulation Results for 7 DOF first setup joint angles 

 
Solutions Euclidian Distance 

(Meter)  
Number Of 

Iteration 
Number of 

Particles 

1st Solution  7.8634e-08  619  60  

2nd Solution 8.4836e-08  989  60  

3rd Solution 8.8069e-08  1241  60  
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(a)                                                                                 (b) 

 

(c) 

Figure 12: 

Pose errors of (a) first (b) second (c) third obtained angles for first setup joint angles 

The pose error graph of the three optimum solutions is shown in Figure 12. The 

developed PSO method effectively searched for distinct three configurations of the 

robotic manipulator, as illustrated in Fig. 13(a, b, c). The differences can be seen clearly 

among target Fig.13(d) and obtained solutions. These simulations show that the 

suggested PSO method effectively solves the IK problem for the 7-DOF robotic 
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manipulator. Even though the derived solutions varied, they all lead the end-effector to 

the same place as the setup joint angle. 

 

 

Figure 13:  

Joint Angle (θ1) Graph in Scenario 2 - Experiment 1 

 



 

 

47 

 

Figure 14:  

Joint Angle (θ2) Graph in Scenario 2 - Experiment 1 

 

 

Figure 15:  

Joint Angle (θ3) Graph in Scenario 2 - Experiment 1 
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Figure 16: 

Joint Angle (θ4) Graph in Scenario 2 - Experiment 1 

 

 

Figure 17:  

Joint Angle (θ5) Graph in Scenario 2 - Experiment 1 
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Figure 18:  

Joint Angle (θ6) Graph in Scenario 2 - Experiment 1 

 

 

Figure 19:  

Joint Angle (θ7) Graph in Scenario 2 - Experiment 1 
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Figure 20:  

All Joint Angle Graph in Scenario 2 - Experiment 1 

 

 

Figure 21: 

Joint Velocity (deg/sec) for (θ1) in Scenario 2 - Experiment 1 
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Figure 22:  

Joint Velocity (deg/sec) for (θ2) in Scenario 2 - Experiment 1 

 

 

Figure 23:  

Joint Velocity (deg/sec) for (θ3) in Scenario 2 - Experiment 1 
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Figure 24: 

Joint Velocity (deg/sec) for (θ4) in  Scenario 2 - Experiment 1 

 

 

Figure 25:  

Joint Velocity (deg/sec) for (θ5) in Scenario 2 - Experiment 1 
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Figure 26:  

Joint Velocity (deg/sec) for (θ6)  in Scenario 2 - Experiment 1 

 

 

 

Figure 27:  

Joint Velocity (deg/sec) for (θ7) in Scenario 2 - Experiment 1 
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Figure 28:  

Graph for Px (mm) in Scenario 2 - Experiment 1 

 

 

Figure 29:  

Graph for Py (mm) in Scenario 2 - Experiment 1 
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Figure 30:  

Graph for Pz (mm) in Scenario 2 - Experiment 1 

 

 

Figure 31:  

Graph for q0 in Scenario 2 - Experiment 1 
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Figure 32:  

Graph for q1 in Scenario 2 - Experiment 1 

 

 

Figure 33:  

Graph for q2 in Scenario 2 - Experiment 1 
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Figure 34:  

Graph for q3 in Scenario 2 - Experiment 1 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 35: 

Baxter with (a) first (b) second (c) third obtained angles and  (d) first target joint angles 

As shown in figure 13, we have the same pose, although each configuration is 

conspicuously different. 
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Experiment – 2  

 

 
Figure 36: 

How Baxter looks like with 2nd  Setup Joint Angles 

We used the same procedure with different target joint angles to validate the 

exactness and accuracy of the PSO method 𝑖 = 60, 𝑤𝑑𝑎𝑚𝑝 = 0.973,   𝑐1 = 1,   𝑐2 =

1,   𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.00001 𝑟𝑎𝑑/𝑠𝑒𝑐   𝑤 = 0.90.  

Joint angle values for three alternative solutions are shown in Table 10. The cost 

of derived solutions and the number of iterations are shown in Table 11. Figure 15 

depicts the pose error graph of the three best options. As shown in Fig. 16, the proposed 

PSO approach efficiently searched for three unique robotic manipulator setups (a, b, c). 

The disparities between goal Fig.16(d) and achieved solutions are apparent. 
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Table 10: 

 

Target and Obtained Angle Values for first setup joint angles 

Angle Second  Setup 

Joint Angles 

First Obtained 

Angles 

Second Obtained 

Angles 

Third Obtained 

Angles 

 𝜃1(rad) - 0.7850 -1.0380 -0.6763  -1.0380  

 𝜃2(rad) - 0.7850 -0.7300  -0.7753  -0.7300  

𝜃3(rad) 0.0 0.3989  --0.1691  0.3989  

𝜃4(rad) + 1.5710 1.5510  1.5673  1.5510  

𝜃5(rad) 0.0 0.0287  -0.0145  0.0287  

𝜃6(rad) - 0.7850 -0.7856  -0.7851  -0.7856  

𝜃7(rad) 

 

0.0 -0.3140 0.1308 -0.3140 

     

 

Table 11: 

 

Simulation Results for 7 DOF first setup joint angles 

 
Solution Euclidian Distance 

(Meter)  
Number Of 

Iteration 
Number of 

Particles 

Solution 1 8.9193e-08 1036  60  

Solution 2 8.7761e-08  862  60  

Solution 3 8.6224e-08  902  60  
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(a)                                                                         (b) 

 

(c) 

Figure 37:  

Error's graphic of  (a) first (b) second (c) third obtained angles for first setup joint angles 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 38: 

Baxter with (a) first (b) second (c) third obtained angles and (d) second target joint angles 
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As shown in figure 16, we obtained three configurations that satisfy pose and lead the end 

effector to the exact location.  

Obtained Result For Scenario 3 

In this scenario, we added another joint to the continuation of Baxter's second 

wrist to demonstrate the efficacy of our method in solving the IK of an 8-DOF robot 

manipulator, as shown in Figure 17.  

 

 
Figure 39: 

8-DOF Baxter's Left Arm Cartesian Frame Assignment 

 

According to the cartesian frame assignment (figure 17), we derive the DH table as 

follows. 
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Table 12:  

 

DH Table for 8-DOF robot 

 

i α i-1 a i-1 di i 

1 0 0 0 1 

2 -90 L1 0 2 +90 

3 90 0 L2 3 

4 -90 L3 0 4 

5 90 0 L4 5 

6 -90 L5 0 6 

7 90 0 L6 7 

8 -90  L7  0  8 

Hence, we derived the DH table as follows. First, the length of the added joint is defined 

as 15mm. 
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Table 13: 

 

8-DOF Baxter's Arm Length 

 

Length Value (mm) 

L0 281.35 

L1 125.00 

L2 364.35 

L3 69.00 

L4 374.29 

L5 10.00 

L6 229.5 

L7 15.00  

 

The joint limit for the last attached joint is shown in table 12. 

 

 

Table 14: 

 

8-DOF left and right arm joint limits 

 

Joint Name Joint Variable i min i  max i  range 

S0 1 +51° -141° 192° 

S1 2 +60° -123° 183° 

E0 3 +173° -173° 346° 

E1 4 +150° -3° 153° 

W0 5 +175° -175° 350° 

W1 6 +120° -90° 210° 

W2 7 +175° -175° 350° 

W3 8 +120° -90° 210° 
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We practiced  the algorithm with two different start settings to validate the exactness and 

accuracy in solving 8-DOF robot manipulator inverse kinematics 𝑖 = 60,

𝜔
𝑑𝑎𝑚𝑝=0.973,   𝑐1=1,   𝑐2=1,   𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙=0.00001 (

𝑚

𝑟𝑎𝑑
),   𝑤=0.90

.  

Obtained joint angle values for two setup angles are shown in Table 13 and Table 15. The 

cost of derived solutions and the number of iterations are shown in Table 14 and Table 

16. Figures 18 and 19 depict the pose error graph of the experiments.  

Experiment-1 

 

Table 15:  

 

Target and Obtained Angle Values for the first experiment 

 

Angle First Experiment Setup 

Joint Angles  

Obtained Angles  

𝜃1(rad) -1.5497 0.6483  

 𝜃2 (rad) -0.2269 0.2798  

𝜃3(rad) 1.3677 0.0859  

𝜃4(rad) 1.3381 1.6575  

𝜃5(rad) -0.6322 2.3326  

𝜃6(rad) 1.9947 -1.5090  

𝜃7(rad) 

 

0.9017 -2.2079  

𝜃8(rad) 0.1212 1.1826 

   

Once we derive the pose for both angles, we get the same solution as  

[0.1607 0.3693 -0.0854 0.2302 -0.2514 -0.8489 0.4040] 
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Figure 40:  

Error graphic of the first experiment 

 

 

Table 16: 

 

 Simulation result for the first experiment 

 
Solution   Euclidian Distance 

(Meter)   
Number Of 
Iteration  

Number of 
Particles  

Solution    7.4475-08  910  80 
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Figure 41:  

Joint Angle (θ1) Graph in Scenario 3 - Experiment 1 

 

 

Figure 42:  

Joint Angle (θ2) Graph in Scenario 3 - Experiment 1 
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Figure 43:  

Joint Angle (θ3) Graph in Scenario 3 - Experiment 1 

 

 

Figure 44:  

Joint Angle (θ4) Graph in Scenario 3 - Experiment 1 
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Figure 45:  

Joint Angle (θ5) Graph in Scenario 3 - Experiment 1 

 

 

Figure 46:  

Joint Angle (θ6) Graph in Scenario 3 - Experiment 1 
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Figure 47:  

Joint Angle (θ7) Graph in Scenario 3 - Experiment 1 

 

 

Figure 48:  

Joint Angle (θ8) Graph in Scenario 3 - Experiment 1 
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Figure 49:  

All Joint Angle Graph in Scenario 3 - Experiment 1 

 

 

Figure 50:  

Joint Velocity (deg/sec) for θ1in Scenario 3 - Experiment 1 
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Figure 51:  

Joint Velocity (deg/sec) for θ2 in Scenario 3 - Experiment 1 

 

 

 

Figure 52:  

Joint Velocity (deg/sec) for θ3 in Scenario 3 - Experiment 1 
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Figure 53:  

Joint Velocity (deg/sec) for θ4 in Scenario 3 - Experiment 1 

 

 

Figure 54: 

Joint Velocity (deg/sec) for θ5 in Scenario 3 - Experiment 1 
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Figure 55:  

Joint Velocity (deg/sec) for θ6 in Scenario 3 - Experiment 1 

 

 

 

Figure 56:  

Joint Velocity (deg/sec) for θ7 in Scenario 3 - Experiment 1 
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Figure 57:  

Joint Velocity (deg/sec) for θ8 in Scenario 3 - Experiment 1 

 

 

 

Figure 58:  

Graph for Px (mm) in Scenario 3 - Experiment 1 

 



 

 

77 

 

Figure 59:  

Graph for Py (mm) in Scenario 3 - Experiment 1 

 

 

 

Figure 60: 

Graph for Pz (mm) in Scenario 3 - Experiment 1 
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Figure 61:  

Graph for q0 in Scenario 3 - Experiment 1 

 

 

Figure 62:  

Graph for q1 in Scenario 3 - Experiment 1 
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Figure 63:  

Graph for q2 in Scenario 3 - Experiment 1 

 

 

Figure 64:  

Graph for q3 in Scenario 3 - Experiment 1 
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Experiment-2 

 

Table 17: 

 

Target and Obtained Angle Values for the second experiment 

Angle First Experiment Setup 

Joint Angles  

Obtained Angles  

𝜃1(rad)   -0.08 -1.5497 

 𝜃2 (rad) -1.00 -0.2269  

𝜃3(rad) -1.19 1.3677  

𝜃4(rad) +1.94 1.3381 

𝜃5(rad) +0.67 -0.6322  

𝜃6(rad) +1.03 1.9947  

𝜃7(rad) 

 

    - 0.50 0.9017 

𝜃8(rad)   -0.08 0.1212 

   

Once we derive pose for both angles by using forward kinematics, we get the same 

solution as [0.5614 0.1812 0.2598 0.2464 -0.4116 -0.5617 -0.6741] 
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Figure 65: 

Error Graphic of the second experiment 

 

Table 18:  

 

Simulation result for the second experiment 

 
Solution  Euclidian Distance 

(Meter)   
Number Of 
Iteration  

Number of 
Particles  

Solution   8.1868e-08 941 80 
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Test On Baxter in Real 

 

 

Figure 66:  

Demonstration in real -1 

 

 

Figure 67:  

Demonstration in real -2 
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Conclusion 

In this study, the meta-heuristic method, the Particle Swarm Optimization 

algorithm, proved its effectiveness in solving the inverse kinematics of any serial robot 

manipulator. The algorithm has been tested under several different concepts and 

demonstrated on the actual Baxter robot and the simulation using gazebo robot 

simulation. Each run ended up with a solution that moves the end-effector accurately to 

any desired pose in cartesian space by converging position and orientation with the PSO 

algorithm. The utility of quaternion representation for manipulators demonstrates that 

solving IK using quaternion results in a definite pose solution with no ambiguity neither 

gimbal lock. Our approach to solving the IK problem for any serial manipulator always 

gives a possibility of attaining a different set of joint angles that satisfy error criteria. IK 

calculations of 6DOF, 7DOF, and 8DOF serial robot manipulators have been performed 

successfully. The result confirms that PSO is highly effective in getting the optimal IK 

solution for any serial robotic manipulators. 
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