
Suppose that F is a partially ordered field with a directed partial order and K is 

a non-archemedean totally ordered subfield of F with K+=F+∩KK+=F+∩K. In 

this note, directed partial orders are constructed for complex numbers and 

quaternions over F. It is also shown that real quaternions cannot be made into 

a directed algebra over the real field with the total order. 

Let T be a non-archimedean totally ordered field and CT=T+TiCT=T+Ti be 

the field of complex numbers over T, where i2=−1i2=−1, and 

HT=T+Ti+Tj+TkHT=T+Ti+Tj+Tk be the division algebra of quaternions 

over T. In [4], a general method of constructing directed partial orders on 

CTCT and HTHT has been developed. The purpose of this note is to generalize 

the results in [4] to complex numbers and quaternions over non-archimedean 

partially ordered fields with a directed partial order. 

We review a few definitions and the reader is referred to [2, 4] for undefined 

terminology and background on partially ordered rings and lattice-ordered 

rings (ℓℓ-rings). For a partially ordered ring R, the positive cone is defined as 

R+={r∈R|r≥0}R+={r∈R|r≥0}. The partial order on a partially ordered ring R 

is called directed if each element of R can be written as a difference of two 

positive elements of R. A partially ordered ring (algebra) with a directed 

partial order is called a directed ring (algebra). In the following, we always 

assume that F is a partially ordered field with a directed partial order and K is 

a non-archimedean totally ordered subfield of F, so F+∩K=K+F+∩K=K+. 

Following result will be used in the proof of main results in the paper. 

Lemma 1 

Suppose that R is a partially ordered ring with the property that for any 

r∈Rr∈R, 2r≥02r≥0 implies that r≥0r≥0. Then for any x,y∈R+x,y∈R+, and 

a,b∈Ra,b∈R, −x≤a≤x−x≤a≤x and −y≤b≤y−y≤b≤y implies that 

−xy≤ab≤xy−xy≤ab≤xy. 

Proof 

From −x≤a≤x−x≤a≤x and −y≤b≤y−y≤b≤y, we have 

(x+a)(y−b)≥0⇒xy+ay−xb−ab≥0,(x+a)(y−b)≥0⇒xy+ay−xb−ab≥0, 

(1) 

and 
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(x−a)(y+b)≥0⇒xy−ay+xb−ab≥0.(x−a)(y+b)≥0⇒xy−ay+xb−ab≥0. 

(2) 

Adding (1) and (2), we have 2(xy−ab)≥02(xy−ab)≥0, so xy−ab≥0xy−ab≥0 

and xy≥abxy≥ab. 

From −x≤a≤x−x≤a≤x and −y≤b≤y−y≤b≤y, we also have 

(x+a)(y+b)≥0⇒xy+ay+xb+ab≥0,(x+a)(y+b)≥0⇒xy+ay+xb+ab≥0, 

(3) 

and 

(x−a)(y−b)≥0⇒xy−ay−xb+ab≥0.(x−a)(y−b)≥0⇒xy−ay−xb+ab≥0. 

(4) 

Adding (3) and (4), we have 2(xy+ab)≥02(xy+ab)≥0, so xy+ab≥0xy+ab≥0, 

that is, ab≥−xyab≥−xy. □◻ 

We notice that since F contains a totally ordered subfield K, for any a∈Fa∈F, 

2a≥02a≥0 implies that a≥0a≥0. In fact, since 0<2∈K0<2∈K, 

0<12∈K0<12∈K, so a=12(2a)≥0a=12(2a)≥0. 

Theorem 1 

Take 0≤x,y≤10≤x,y≤1 in F with x≠0x≠0 or y≠0y≠0 such that x−1>0x−1>0 if 

x≠0x≠0 and y−1>0y−1>0 if y≠0y≠0, define the positive cone Px,yPx,y of 

CF=F+FiCF=F+Fi as follows. 

Px,y={a+bi|a∈F+,−xa≤nb≤ya in F for  all  positive  integers 

n}.Px,y={a+bi|a∈F+,−xa≤nb≤ya in F for  all  positive  integers n}. 

Then Px,yPx,y is a directed partial order on CFCF such that (CF,Px,y)(CF,Px,y) is 

a partially ordered algebra over F and Px,y∩F=F+Px,y∩F=F+. 

Proof 

It is clear that Px,y∩−Px,y={0}Px,y∩−Px,y={0}, Px,y+Px,y⊆Px,yPx,y+Px,y⊆Px,y 

and F+Px,y⊆Px,yF+Px,y⊆Px,y. Suppose that a+bi,c+di∈Px,ya+bi,c+di∈Px,y. 

Then a,c∈F+a,c∈F+, and for all positive integers n, 
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−a≤−xa≤nb≤ya≤a, −c≤−xc≤nd≤yc≤c.−a≤−xa≤nb≤ya≤a, 
−c≤−xc≤nd≤yc≤c. 

We show that 

(a+bi)(c+di)=(ac−bd)+(ad+bc)i∈Px,y(a+bi)(c+di)=(ac−bd)+(ad+bc)i∈Px,y
. 

From −a≤b≤a−a≤b≤a, −c≤d≤c−c≤d≤c and Lemma 1, we have bd≤acbd≤ac, 

that is, ac−bd∈F+ac−bd∈F+. 

For any positive integer n, 3nd≤yc,3nb≤ya3nd≤yc,3nb≤ya and a,c∈F+a,c∈F+ 

implies that 3nad≤y(ac),3nbc≤y(ac)3nad≤y(ac),3nbc≤y(ac). Since 

−a≤3b≤a−a≤3b≤a and −c≤d≤c−c≤d≤c, Lemma 1 implies that 

3bd≤ac3bd≤ac; so 3ybd≤y(ac)3ybd≤y(ac). Hence 

3nad+3nbc+3ybd≤y(ac)+y(ac)+y(ac)=3y(ac).3nad+3nbc+3ybd≤y(ac)+y(a
c)+y(ac)=3y(ac). 

Since 3∈K+3∈K+ and K is totally ordered, 13∈K+⊆F+13∈K+⊆F+, so 

3(nad+nbc+ybd)≤3y(ac)3(nad+nbc+ybd)≤3y(ac) implies that 

nad+nbc+ybd≤y(ac)nad+nbc+ybd≤y(ac). Therefore 

n(ad+bc)≤y(ac−bd)n(ad+bc)≤y(ac−bd) for all positive integers n. Similarly 

−x(ac−bd)≤n(ad+bc)−x(ac−bd)≤n(ad+bc). We have proved that 

(a+bi)(c+di)∈Px,y(a+bi)(c+di)∈Px,y. Thus Px,yPx,y is a partial order on CFCF 

with respect to which CFCF is a partially ordered algebra. Clearly 

Px,y∩F=F+Px,y∩F=F+. 

We verify that Px,yPx,y is a directed partial order on CFCF. Suppose that 

y≠0y≠0. A similar argument could be used in the case x≠0x≠0. Let 

a+bi∈CFa+bi∈CF. Since F is directed, a is a difference of two elements in 

F+F+, so a is a difference of two elements in Px,yPx,y since F+⊆Px,yF+⊆Px,y. 

Consider bi=b1i−b2ibi=b1i−b2i, where b1,b2>0b1,b2>0 in F. Since K is a 

non-archimedean totally ordered field, there exists z∈K+z∈K+ such that 

n1≤zn1≤z for all positive integers n. Let w=y−1b1w=y−1b1. Then 

w,wz∈F+w,wz∈F+ and for all positive integers n, 

−x(wz)≤0≤nb1≤b1z=y(wz)−x(wz)≤0≤nb1≤b1z=y(wz), that is, 

wz+b1i∈Px,ywz+b1i∈Px,y. Thus b1i=(wz+b1i)−wzb1i=(wz+b1i)−wz is a 

difference of two positive elements in CFCF. Similarly b2ib2i is a difference of 

two positive elements. Hence bi is a difference of two positive elements in 
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CFCF, so a+bia+bi is a difference of two positive elements. Therefore Px,yPx,y 

is directed. □◻ 

Remark 1 

If the partial order on F is a lattice order, then 0<x<10<x<1 implies that 

x−1>0x−1>0 since x<1x<1 implies that x is an f-element [3, Theroem 

1.20(2)]. 

Next we consider quaternions over F. Recall that 

HF=F+Fi+Fj+FkHF=F+Fi+Fj+Fk as a vector space over F with the 

multiplication as follows. 

=(a0+a1i+a2j+a3k)(b0+b1i+b2j+b3k)(a0b0−a1b1−a2b2−a3b3)+(a0b1+a1b0+a

2b3−a3b2)i+(a0b2+a2b0+a3b1−a1b3)j+(a0b3+a3b0+a1b2−a2b1)k,(a0+a1i+a2j
+a3k)(b0+b1i+b2j+b3k)=(a0b0−a1b1−a2b2−a3b3)+(a0b1+a1b0+a2b3−a3
b2)i+(a0b2+a2b0+a3b1−a1b3)j+(a0b3+a3b0+a1b2−a2b1)k, 

where ai,bi∈Fai,bi∈F. 

Theorem 2 

Take 0<x≤10<x≤1 in F such that x−1>0x−1>0, define the positive cone PxPx 

of HFHF as follows. 

Px={a0+a1i+a2j+a3k | a0∈F+ and −xa0≤na1≤xa0,−xa0≤na2≤xa0, 

−xa0≤na3≤xa0 in F for  all  positive  integers n}.Px={a0+a1i+a2j+a3k | 
a0∈F+ and −xa0≤na1≤xa0,−xa0≤na2≤xa0, −xa0≤na3≤xa0 in F for  all  
positive  integers n}. 

Then PxPx is a directed partial order on HFHF such that (HF,Px)(HF,Px) is a 

partially ordered algebra over F and Px∩F=F+Px∩F=F+. 

Proof 

It is clear that Px∩−Px={0}Px∩−Px={0}, Px+Px⊆PxPx+Px⊆Px and 

F+Px⊆PxF+Px⊆Px. We show that PxPx⊆PxPxPx⊆Px. Suppose that 

a0+a1i+a2j+a3k,b0+b1i+b2j+b3k∈Pxa0+a1i+a2j+a3k,b0+b1i+b2j+b3k∈Px. 

We check that 

(a0+a1i+a2j+a3k)(b0+b1i+b2j+b3k)∈Px(a0+a1i+a2j+a3k)(b0+b1i+b2j+b3k)
∈Px. Since 

a0+a1i+a2j+a3k,b0+b1i+b2j+b3k∈Pxa0+a1i+a2j+a3k,b0+b1i+b2j+b3k∈Px, 

we have for all positive integers n, 
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a0≥0, −xa0≤na1≤xa0, −xa0≤na2≤xa0, −xa0≤na3≤xa0,a0≥0, −xa0≤na1≤xa0, 
−xa0≤na2≤xa0, −xa0≤na3≤xa0, 

and 

b0≥0, −xb0≤nb1≤xb0, −xb0≤nb2≤xb0, −xb0≤nb3≤xb0.b0≥0, 
−xb0≤nb1≤xb0, −xb0≤nb2≤xb0, −xb0≤nb3≤xb0. 

We first check that a0b0−a1b1−a2b2−a3b3≥0a0b0−a1b1−a2b2−a3b3≥0 in F. 

From −a0≤−xa0≤3a1≤xa0≤a0−a0≤−xa0≤3a1≤xa0≤a0, 

−b0≤−xb0≤b1≤xb0≤b0−b0≤−xb0≤b1≤xb0≤b0 and Lemma 1, we have 

a0b0≥3a1b1a0b0≥3a1b1, that is, a0b0−3a1b1≥0a0b0−3a1b1≥0. Similarly, 

a0b0−3a2b2≥0a0b0−3a2b2≥0 and a0b0−3a3b3≥0a0b0−3a3b3≥0. Adding 

those three inequalities together, we obtain 

3a0b0−3a1b1−3a2b2−3a3b3≥03a0b0−3a1b1−3a2b2−3a3b3≥0. Then 

multiplying the both sides by 1313 we get 

a0b0−a1b1−a2b2−a3b3≥0a0b0−a1b1−a2b2−a3b3≥0. 

For simplicity, let 

w=x(a0b0−a1b1−a2b2−a3b3)w=x(a0b0−a1b1−a2b2−a3b3). We next show 

that for all positive integers n, 

−w≤n(a0b1+a1b0+a2b3−a3b2)≤w.−w≤n(a0b1+a1b0+a2b3−a3b2)≤w. 

Consider n(a0b1+a1b0+a2b3−a3b2)≤wn(a0b1+a1b0+a2b3−a3b2)≤w first. 

We divide the calculations into several steps. Let n be a positive integer. 

• 1. 

• Since 7nb1≤xb07nb1≤xb0 and a0≥0a0≥0, we have 

7na0b1≤xa0b07na0b1≤xa0b0. 

• 2. 

• Since 7na1≤xa07na1≤xa0 and b0≥0b0≥0, we have 

7na1b0≤xa0b07na1b0≤xa0b0. 

• 3. 

• Since −a0≤7na2≤a0−a0≤7na2≤a0 and −xb0≤b3≤xb0−xb0≤b3≤xb0, 

Lemma 1 implies that 7na2b3≤xa0b07na2b3≤xa0b0. 

• 4. 
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• Since −a0≤7na3≤a0−a0≤7na3≤a0 and −xb0≤b2≤xb0−xb0≤b2≤xb0, 

Lemma 1 implies that 7na3b2≥−xa0b07na3b2≥−xa0b0, so 

−7na3b2≤xa0b0−7na3b2≤xa0b0. 

• 5. 

• Since −a0≤7a1≤a0−a0≤7a1≤a0 and −b0≤b1≤b0−b0≤b1≤b0, Lemma 1 

implies that 7a1b1≤a0b07a1b1≤a0b0, so 7xa1b1≤xa0b07xa1b1≤xa0b0. 

Similarly, 7xa2b2≤xa0b07xa2b2≤xa0b0 and 

7xa3b3≤xa0b07xa3b3≤xa0b0. 

Adding inequalities in the above (1) to (5) together, we have 

7na0b1+7na1b0+7na2b3−7na3b2+7xa1b1+7xa2b2+7xa3b3≤7xa0b0,7na0b1+7
na1b0+7na2b3−7na3b2+7xa1b1+7xa2b2+7xa3b3≤7xa0b0, 

and hence, by multiplying both sides of this inequality by 1717, 

na0b1+na1b0+na2b3−na3b2+xa1b1+xa2b2+xa3b3≤xa0b0.na0b1+na1b0+na2
b3−na3b2+xa1b1+xa2b2+xa3b3≤xa0b0. 

It follows that 

n(a0b1+a1b0+a2b3−a3b2)≤x(a0b0−a1b1−a2b2−a3b3)n(a0b1+a1b0+a2b3−a3
b2)≤x(a0b0−a1b1−a2b2−a3b3). 

Similarly we prove 

−w≤n(a0b1+a1b0+a2b3−a3b2)−w≤n(a0b1+a1b0+a2b3−a3b2). Let n be a 

positive integer. 

• 1. 

• Since −xb0≤7nb1−xb0≤7nb1 and a0≥0a0≥0, we have that 

−xa0b0≤7na0b1−xa0b0≤7na0b1. 

• 2. 

• Since −xa0≤7na1−xa0≤7na1 and b0≥0b0≥0, we have that 

−xa0b0≤7na1b0−xa0b0≤7na1b0. 

• 3. 

• Since −a0≤7na2≤a0−a0≤7na2≤a0 and −xb0≤b3≤xb0−xb0≤b3≤xb0, 

Lemma 1 implies that −xa0b0≤7na2b3−xa0b0≤7na2b3. 

• 4. 
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• Since −a0≤7na3≤a0−a0≤7na3≤a0 and −xb0≤b2≤xb0−xb0≤b2≤xb0, 

Lemma 1 implies that 7na3b2≤xa0b07na3b2≤xa0b0, so 

−xa0b0≤−7na3b2−xa0b0≤−7na3b2. 

• 5. 

• Since −a0≤7a1≤a0−a0≤7a1≤a0 and −b0≤b1≤b0−b0≤b1≤b0, we have 

−a0≤7a1≤a0−a0≤7a1≤a0 and −b0≤−b1≤b0−b0≤−b1≤b0, so Lemma 1 

implies that −a0b0≤−7a1b1−a0b0≤−7a1b1, so 

−xa0b0≤−7xa1b1−xa0b0≤−7xa1b1. Similarly, 

−xa0b0≤−7xa2b2−xa0b0≤−7xa2b2 and 

−xa0b0≤−7xa3b3−xa0b0≤−7xa3b3. 

Adding up the above inequalities, we have 

−7xa0b0≤7na0b1+7na1b0+7na2b3−7na3b2−7xa1b1−7xa2b2−7xa3b3,−7xa0b0
≤7na0b1+7na1b0+7na2b3−7na3b2−7xa1b1−7xa2b2−7xa3b3, 

and hence 

−xa0b0≤na0b1+na1b0+na2b3−na3b2−xa1b1−7xa2b2−xa3b3,−xa0b0≤na0b1+
na1b0+na2b3−na3b2−xa1b1−7xa2b2−xa3b3, 

that is, 

−x(a0b0−a1b1−a2b2−a3b3)≤n(a0b1+a1b0+a2b3−a3b2)−x(a0b0−a1b1−a2b2−
a3b3)≤n(a0b1+a1b0+a2b3−a3b2). 

By similar calculations, we have 

−w≤n(a0b2+a2b0+a3b1−a1b3)≤w,−w≤n(a0b2+a2b0+a3b1−a1b3)≤w, 

and 

−w≤n(a0b3+a3b0+a1b2−a2b1)≤w.−w≤n(a0b3+a3b0+a1b2−a2b1)≤w. 

Therefore PxPx⊆PxPxPx⊆Px, so (HF,Px)(HF,Px) is a partially ordered algebra 

over F. It is straightforward to verify that Px∩F=F+Px∩F=F+. 

Finally we show that PxPx is a directed partial order on HFHF. Take a∈Fa∈F. 

Since F is directed, a=b−ca=b−c, where b,c∈F+b,c∈F+. Since F+⊆PxF+⊆Px, a 

is a difference of two positive elements in (HF,Px)(HF,Px). Consider 

ai=bi−ciai=bi−ci. Since K is a non-archimedean totally ordered field, there 

exists z∈K+z∈K+ such that n1≤zn1≤z for all positive integers n. Let 
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v=x−1bv=x−1b. Then v,vz∈F+v,vz∈F+ and for all positive integers n, 

nb≤bz=x(vz)nb≤bz=x(vz), that is, vz+bi∈Pxvz+bi∈Px. Thus 

bi=(vz+bi)−vzbi=(vz+bi)−vz is a difference of two positive elements in 

(HF,Px)(HF,Px). Similarly, ci is also a difference of two positive elements in 

(HF,Px)(HF,Px), and hence ai=bi−ciai=bi−ci is a difference of two positive 

elements in (HF,Px)(HF,Px). The same argument may be used to show that aj 

and ak are also a difference of two positive elements in (HF,Px)(HF,Px). It 

follows that each element in HFHF is a difference of two positive elements in 

(HF,Px)(HF,Px), that is, PxPx is directed. This completes the proof of Theorem 

2. □◻ 

In [1], Birkhoff asked if H=HRH=HR can be made into a directed algebra over 

RR with the usual total order, where RR is the field of real numbers. In the 

following, we show that the answer is no. More generally, for any totally 

ordered subfield T of RR, HTHT cannot be a directed algebra over T. 

Theorem 3 

HH cannot be a directed algebra over RR with the usual total order. 

Proof 

We will suppose that HH is a directed algebra over RR and derive a 

contradiction. 

We first show that if w=a0+a1i+a2j+a3k>0w=a0+a1i+a2j+a3k>0 in HH, 

then a0>0a0>0 in RR. Note that 

w2−2a0w=−(a20+a21+a22+a23)w2−2a0w=−(a02+a12+a22+a32) by direct 

calculation, and that if 0<a0<a in RR and 0<z0<z in HH, then 0<az0<az in 

HH because HH is a partially ordered algebra over RR that has no divisor of 

zero. 

Now suppose by the way of contradiction that a0≤0a0≤0 in RR. Then 

−a0≥0−a0≥0 in RR, and thus since w>0w>0 in HH, 

w2−2a0w≥0w2−2a0w≥0 in HH. That is, 

−(a20+a21+a22+a23)≥0−(a02+a12+a22+a32)≥0 in HH, and hence 

−(a20+a21+a22+a23)w>0−(a02+a12+a22+a32)w>0 in HH. But since 

(a20+a21+a22+a23)≥0(a02+a12+a22+a32)≥0 in RR, 

(a20+a21+a22+a23)w≥0(a02+a12+a22+a32)w≥0 in HH as well, and 

therefore (a20+a21+a22+a23)w=0(a02+a12+a22+a32)w=0. So since 
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w≠0w≠0 and HH is a division ring, we must have 

a20+a21+a22+a23=0a02+a12+a22+a32=0. But then 

a0=a1=a2=a3=0a0=a1=a2=a3=0 because a0,a1,a2a0,a1,a2, and a3a3 are all in 

RR, and hence w=a0+a1i+a2j+a3k=0w=a0+a1i+a2j+a3k=0, a contradiction. 

It follows that a0>0a0>0 in RR. 

Since the partial order on HH is directed, there exists 

z=a+bi+cj+dk>0z=a+bi+cj+dk>0 in HH with z∉Rz∉R. For instance, 

i=z1−z2i=z1−z2, where z1,z2z1,z2 are positive in HH. Clearly z1,z2z1,z2 cannot 

be both in RR. The argument above shows that a>0a>0 in RR. Then since RR 

is totally ordered, a−1>0a−1>0 in RR and hence 

a−1z=1+(a−1b)i+(a−1c)j+(a−1d)k>0a−1z=1+(a−1b)i+(a−1c)j+(a−1d)k>0 in 

HH. Suppose that a−1b=s,a−1c=t,a−1d=ua−1b=s,a−1c=t,a−1d=u. Then we 

have w=1+si+tj+uk>0w=1+si+tj+uk>0 in HH and w∉Rw∉R. For simplicity, 

let v=si+tj+ukv=si+tj+uk. Then v2=−(s2+t2+u2)v2=−(s2+t2+u2), so 

−v2∈R+−v2∈R+. Therefore −v2w≥0−v2w≥0 in HH, and hence 

w3−v2w>0w3−v2w>0 in HH. Since 

1+3v+2v2==(1+2v)(1+v)=(1+2v+v2−v2)w(w2−v2)w=w3−v2w,1+3v+2v2=(
1+2v)(1+v)=(1+2v+v2−v2)w=(w2−v2)w=w3−v2w, 

we have 1+3v+2v2>01+3v+2v2>0 in HH. Let w1=1+3v+2v2w1=1+3v+2v2. 

Then w1>0w1>0 in HH, and hence 

(w1−2v2)w=w1w−2v2w>0(w1−2v2)w=w1w−2v2w>0 in HH. Since 

1+4v+3v2=(1+3v)(1+v)=(1+3v+2v2−2v2)w=(w1−2v2)w1+4v+3v2=(1+3v)(
1+v)=(1+3v+2v2−2v2)w=(w1−2v2)w 

1+4v+3v2>01+4v+3v2>0 in HH. If we continue this procedure, we get that 

for any positive integer n, 

(1+nv)(1+v)=1+(n+1)v+nv2>0(1+nv)(1+v)=1+(n+1)v+nv2>0 in HH. 

Therefore since the real part of a positive element in HH must be positive in 

RR, we must have 0≤1+nv20≤1+nv2 for all positive integers n, so 

−nv2≤1−nv2≤1 for all positive integers n. Then −v2=0−v2=0, so v2=0v2=0 

since RR is archimedean with respect to the total order. Hence 

s=t=u=0s=t=u=0, and w∈Rw∈R, a contradiction of our observation above 

that w∉Rw∉R. 

Therefore HH cannot be a directed algebra over RR with the total order. 



  


