Suppose that Fis a partially ordered field with a directed partial order and K is
a non-archemedean totally ordered subfield of F with K+=F+NKK+=F+nNK. In
this note, directed partial orders are constructed for complex numbers and
quaternions over F. It is also shown that real quaternions cannot be made into
a directed algebra over the real field with the total order.

Let T be a non-archimedean totally ordered field and Cr=T+TiC7T=T+Tibe
the field of complex numbers over T, where i2=—1/2=—1, and
H1=T+Ti+Tj+TKkHT=T+Ti+Tj+Tkbe the division algebra of quaternions
over T. In [4], a general method of constructing directed partial orders on
CrcTand HTHT has been developed. The purpose of this note is to generalize
the results in [4] to complex numbers and quaternions over non-archimedean
partially ordered fields with a directed partial order.

We review a few definitions and the reader is referred to [2, 4] for undefined
terminology and background on partially ordered rings and lattice-ordered
rings ({Zrings). For a partially ordered ring R, the positive cone is defined as
R+={reR|r=>0}R+={reR/r=0}. The partial order on a partially ordered ring R
is called directed if each element of R can be written as a difference of two
positive elements of R. A partially ordered ring (algebra) with a directed
partial order is called a directed ring (algebra). In the following, we always
assume that F'is a partially ordered field with a directed partial order and K is
a non-archimedean totally ordered subfield of F, so F+NK=K+F+NnK=K+.

Following result will be used in the proof of main results in the paper.
Lemma 1

Suppose that R is a partially ordered ring with the property that for any
reRrer, 2r=02r>0implies that r>0r>0. Then for any xX,yER+x,yeR+, and
a,bERa bER, —x<a<x—x<a<xand —-y<b<y—y<b<yimplies that
—xy<abs<xy-—xy<ab<xy.

Proof
From —x<a<x—x<a<xand -y<b<y-—y<bh<y, we have
(x+a)(y-b)=0=xy+ay—-xb-ab=0, (x+a)(y—b)=>0=xy+ay—xb—ab=>0,

(1)

and
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(x—a)(y+b)=0=xy—-ay+xb-ab>0.(x—a)(y+b)=>0=xy—ay+xb—ab=0.
(2)

Adding (1) and (2), we have 2(xy—ab)>02(xy—ab)=>0, so xy—ab>=0xy—ab=>0
and xy>abxy>ab.

From —x<as<x—x<a<xand —y<b<y-y<bh<y, we also have
(x+a)(y+b)=0=xy+ay+xb+ab>0, (x+a)(y+b)=>0=>xy+ay+xb+ab=0,

(3)
and
(x—a)(y—b)=0=xy-ay—-xb+ab=>0.x—a)(y—b)>0=>xy—ay—xb+ab=>0.

4)

Adding (3) and (4), we have 2(xy+ab)>02(xy+ab)>0, so xy+ab=0xy+ab=>0,
that is, ab>—xyab>—xy. 0O

We notice that since F contains a totally ordered subfield K, for any acFa€F,
2a>02a=>0implies that a>0a=>0. In fact, since 0<2eK0<2€K,
0<12€K0<12€K, so a=12(2a)=0a=12(2a)>0.

Theorem 1

Take 0<X,y<10<x,y<1in F with x+0x#0 or y#0 y#0 such that x-1>0x—171>0if
x#+0x#0and y-1>0y—1>0if y+0y=0, define the positive cone PxyPx,y of
Cr=F+FiCF=F+Fias follows.

Pxy={a+bi|a€F+,—xa<nb<ya in F for all positive integers
n}.Px,y={a+bilacF+—xa<nb<yain F for all positive integers n}.

Then PxyPx,yis a directed partial order on CrCFsuch that (CF,Pxy) (CEPx,y) is
a partially ordered algebra over F and PxyNF=F+Px,ynF=F+.

Proof

It is clear that Px;yN —Px,y={O}PX,y/7 —PX,_V:{ 0 }, Px,y+PxyC Px,yPX,y-/-PX,y_CPX,y
and F+PxyCPxyF+Px,yCPx,y. Suppose that a+bi,c+di€Px;ya+bic+di€Px,y.
Then a,ceF+a,ceF+, and for all positive integers n,
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—a<-xas<nb<ya<a, —c<-xc<nd<yc<c.—as—xa<nb<ya<a,
—c<—xc<nd<yc<c.

We show that
(a+bi)(c+di)=(ac—-bd)+(ad+bc)i€Pxy@+bi)(c+di)=(ac—bd)+(ad+bc)i€Px,y

From —as<b<a—a<b<a, —csd<c—c<d<cand Lemma 1, we have bd<achd<ac,
that is, ac—bd€F+ac—bdeF+.

For any positive integer n, 3nd<yc,3nb<ya3nd<yc3nb<yaand a,c€F+aceF+
implies that 3nad<y(ac),3nbc<y(ac) 3nad<y(ac),3nbc<y(ac). Since
—a<3b<a—a<3b<aand —c<d<c—c<d<c, Lemma 1 implies that
3bd<ac3bd<ac; so 3ybd<y(ac) 3ybd<y(ac). Hence

3nad+3nbc+3ybd<y(ac)+y(ac)+y(ac)=3y(ac). 3nad+3nbc+3ybd<y(ac)+y(a
c)+y(ac)=3y(ac).

Since 3€K+3€K+ and K is totally ordered, 13€K+CSF+ 13€K+CF+, so
3(nad+nbc+ybd)<3y(ac) 3(nad+nbc+ybd)<3y(ac) implies that
nad+nbc+ybd<y(ac) nad+nbc+ybd<y(ac). Therefore

n(ad+bc)<y(ac—bd) n(ad+bc)<y(ac—bd) for all positive integers n. Similarly
—x(ac—bd)<n(ad+bc) —x(ac—bd)<n(ad+bc). We have proved that
(a+bi)(c+di)€EPx,y(a+bi)(c+di)EPx,y. Thus Px;yPx,yis a partial order on CFCF
with respect to which CFCFis a partially ordered algebra. Clearly
PxyNF=F+Px,ynF=F+.

We verify that PxyPx,yis a directed partial order on CrCF. Suppose that
y#0y#0. A similar argument could be used in the case x+¥0x=0. Let
a+bieCra+bieCF. Since F is directed, a is a difference of two elements in
F+ F+, so a is a difference of two elements in PxyPx,y since F+EPx,yF+C<Px,y.
Consider bi=bii—b2ibi=b1i—b2i, where b1,b2>051,62>01in F. Since K is a
non-archimedean totally ordered field, there exists zEK+z€K+ such that
ni<znli<zfor all positive integers n. Let w=y-1biw=y—1b1. Then
w,wzEF+w,wzeF+ and for all positive integers n,
—x(wz)<o<nbi<biz=y(wz) —x(wz)<0<nbi1<b1lz=y(wz), that is,
wz+bi1i€Pxywz+b1i€Px,y. Thus bii=(wWz+bil)-wzbli=(wz+bli)—wzis a
difference of two positive elements in CFCF. Similarly b2i4271s a difference of
two positive elements. Hence bi is a difference of two positive elements in
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CFCF, so a+bia+biis a difference of two positive elements. Therefore PxyPx,y
is directed. o

Remark 1

If the partial order on F'is a lattice order, then 0<x<10<x<7 implies that
X-1>0x—1>0since x<1x<7 implies that x is an f-element [3, Theroem
1.20(2)].

Next we consider quaternions over F. Recall that
Hr=F+Fi+Fj+FKkHF=F+Fi+Fj+Fkas a vector space over F with the
multiplication as follows.

=(ao+a1i+a2j +a3k)(bo+b1i+b2j +b3k)(aobo—a1b1—a2b2—a3b3)+(aob1+a1bo+a
abs—asbz2)i+(aobz2+azbo+asbi—aibs)j+(aobs+asbo+aib2—azb1)k, (@0+azi+azj
+a3k)(b0+b1i+b2j+b3k)=(a0b0—albl—a2b2—a3b3)+(a0bl+alb0+aZ2b3—a3
b2)i+(a0b2+a2b0+a3b1—alb3)j+(a0b3+a3b0+alb2—aZbl)k,

where ai,bi€FaibieF.
Theorem 2

Take 0<x<10<x<7 in F such that x-1>0x—7>0, define the positive cone PxPx
of HFHF as follows.

Px={ao+aii+azj+ask | ao€F+ and —xao<nai<xao,—Xao<naz<xao,
—xao<nas<xao in F for all positive integers n}.Px={a0+ali+aZj+a3k/
aOeF+ and —xaO<nal<xa0,—xaO<nalZ<xa0, —xaO<na3<xa0 in F for all
positive integers nj.

Then PxPxis a directed partial order on HF #F such that (HF,Px) (HFEPx)is a
partially ordered algebra over F and PxNF=F+PxnF=F+.

Proof

It is clear that PxN—Px={0} Pxn—Px={0}, Px+PxSPxPx+Px<SPxand
F+PxCSPxF+PxSPx. We show that PxPxCPx PxPxCSPx. Suppose that
ao+a1i+a2j+a3k,bo+b1i+b2j +bske€Pxa0+ali+aZj+a3kb0+b1i+b2j+b3keEPx.
We check that
(ao+aii+azj+ask)(bo+bii+b2j+bsk)EPx(@0+ali+azj+a3k)(b0+b1i+b2j+b3k)
€Px. Since

ao+aii+azj+ask,bo+bii+bzj+bskePxa0+ali+azj+a3k b0+b1i+b2j+b3kEPx,
we have for all positive integers n,
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20=0, —Xao<nai<xao, —Xao<na2<xao, —Xao<nasg<xao,al0=>0, —xaO<nal<xa0,
—xal0<na’l<xal, —xaO<na3<xa0l,

and

bo>0, —xbo<nbi<xbo, —xbo<nb2<xbo, —xbo<nbs<xbo.5s0>0,
—xb0<nbl1<xb0, —xb0<nb2<xb0, —xb0<nb3<xb0.

We first check that aobo—aibi—azb2—asbs3>0a0b0—-a1b1—a2b2—a3b3>0in F.

From —ao<—Xxao<3ai<xao<ao—al<—xal<3al<xalO<al,
—bo<—xbo<bi<xbo<bo—-b0<—xb0<b1<xb0<b0and Lemma 1, we have
aobo=3aib1a0b0>3a1b1, that is, aobo—3aib1>0a0b0—3a1b1>0. Similarly,
aobo—3a2b2>0a0b0—-3a2b2>0 and aobo—3asb3>0a0b0—3a3b3>0. Adding
those three inequalities together, we obtain
3aobo—3aibi1—3azb2—3asb3>03a0b0—3a1b1—3a2b2—3a3b3>0. Then
multiplying the both sides by 13 7.3 we get
aobo—aibi—azb2—asbs>0a0b0—aibi1—azb2—a3b3>0.

For simplicity, let
w=x(aobo—aibi—azb2—asbs) w=x@0b0—aib1—-a2b2—a3b3). We next show
that for all positive integers n,

—w<n(aobi+aibo+azbs—asb2)<w.—w<n@a0b1+alb0+aZb3—a3b2)<w.

Consider n(aobi+aibo+azbs—asb2)<wn(@0bi+aib0+azb3—a3b2)<wfirst.
We divide the calculations into several steps. Let n be a positive integer.

o 1.
e Since 7nbi<xbo/nb1<xb0and ao=0a0=>0, we have
7naobi<xaobo 7na0b1<xa0bo0.
o 2
e Since 7nai<xao/nal<xa0and bo>0b0>0, we have
7naibo<xaobo 7nalb0<xa0bo0.
o 3.

e Since —ao<7naz<ao—al<’naZ<a0and —xbo<bs<xbo—xb0<b3<xb0,
Lemma 1 implies that 7nazbs<xaobo 7na2b3<xa0b0.
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e Since —ao<7nas<ao—al<’7na3<a0and —xbo<bz2<xbo—-xb0<b2<xb0,
Lemma 1 implies that 7nasb2>—xaobo 7na3b2>—xa0b0, so
—7nasba2<xaobo —7na3b2<xa0b0.

o 5.
e Since —ao<7ai<ao—al<7al<a0and —bo<bi<bo—-b0<b1<b0, Lemma 1
implies that 7aibi<aobo 7a1b1<a0b0, so 7xaibi1<xaobo 7xalb1<xa0bO0.

Similarly, 7xazb2<xaobo 7xaZb2<xa0b0 and
7xasbs<xaobo 7xa3b3<xa0b0.

Adding inequalities in the above (1) to (5) together, we have

7naobi+7naibo+7naszbs—7nasbz2+7xaibi+7xazb2+7xasbs<7xaobo, 7naob1+7
nalb0+7na2b3—7na3b2+7xalbl1+7xaZ2b2+7xa3b3<7xa0b0,

and hence, by multiplying both sides of this inequality by 1777,

naobi+naibo+nazbs—nasbz+xaibi+xazb2+xasbs<xaobo.na0bi+naib0+na2
b3—na3b2+xalbl+xalb2+xa3b3<xa0b0.

It follows that
n(aobi+aibo+azbs—asbz2)<x(aobo—aibi—azba2—asbs)n@obi+aib0+a2b3—a3
b2)<x(aOb0—albl—-a2b2—-a3b3).

Similarly we prove
—w<n(aobi+aibo+azbs—asb2) —w<n@0b1+aib0+a2b3—a3b2). Let n be a
positive integer.

o 1.
e Since —xbo<7nb1—xb0<7nb1 and ao=>0a0>0, we have that
—xaobo<7naobi1—xa0b0<7na0b1.
o 2,
e Since —xao<7nai—xa0<7nal and bo>0b0>0, we have that
—xaobo<7naibo—xa0b0<7nalb0.
e 3.

e Since —ao<7naz<ao—al<’naZ<aland —xbo<bs<xbo—xb0<b3<xb0,
Lemma 1 implies that —xaobo<7nasbs—xa0b0<7naZb3.
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e Since —ao<7nas<ao—al<’na3<aland —xbo<bz2<xbo—xb0<b2<xb0,
Lemma 1 implies that 7nasbz2<xaobo 7na3b2<xa0b0, so
—xaobo<—7nasbz —xa0b0<—7na3b2.

[} 5,
e Since —ao<7ai<ao—al<7al<a0and —bo<bi<bo—-b0<b1<b0, we have
—ao<7ai<ao—al<7al<a0and —bo<—-bi<bo—-b0<—b1<h0, so Lemma 1
implies that —aobo<—7aib1—a0b0<—7a1b1, so
—xaobo<—7xaib1—xa0b0<—7xalb1. Similarly,
—xaobo<—7xa2b2 —xa0b0<—7xa2b2 and
—xaobo<—7xasbs —xa0b0<—7xa3b3.

Adding up the above inequalities, we have

—7xaobo<7naobi+7naibo+7nazbs—7nasb2—7xaibi—7xazb2—"7xasbs, —7xa0b0
<7naObl+7nalb0+7naZb3—7na3b2—7xalbl1—7xaZb2—7xa3b3,

and hence

—Xaobo<naobi+naibo+nazbs—nasbz2—xaibi—7xa2b2—xasbs, —xa0b0<naob1+
nalb0+naZb3—na3b2—xalbl—7xaZb2—xa3b3,

that is,
—x(aobo—aibi—azb2—asbs)<n(aobi+aibo+asbs—asb2) —x(@0b0—aibi—azb2—
a3b3)<n(aObl+alb0+aZb3—a3b2).

By similar calculations, we have

—w<n(aobz+azbo+asbi—aibs)<w, —-w<n@a0b2+a2b0+a3b1—alb3)<w,
and

—w<n(aobs+asbo+aibz2—azb1)<w. —w<n(a0b3+a3b0+alb2—aZb1)<w.

Therefore PxPxSPxPxPx<Px, so (HF,Px) (HE Px) is a partially ordered algebra
over F. It is straightforward to verify that PxNF=F+PxnF=F+.

Finally we show that PxPxis a directed partial order on HFHF. Take a€EFa€eF.
Since Fis directed, a=b—ca=b—c, where b,c€F+b,ceF+. Since F+EPxF+CSPx, a
is a difference of two positive elements in (HF,Px) (HE Px). Consider
ai=bi-ciai=bi—ci. Since K is a non-archimedean totally ordered field, there
exists zEK+z€K+ such that n1<zni<zfor all positive integers n. Let
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v=X-1bv=x—1b. Then v,vzEF+v,vz€F+ and for all positive integers n,
nb<bz=x(vz) nb<bz=x(vz), that is, vz+bi€Pxvz+bicPx. Thus
bi=(vz+bi)-vzbi=(vz+bi)—vzis a difference of two positive elements in
(HF,Px) (HE, Px). Similarly, ci is also a difference of two positive elements in
(HF,Px) (HF, Px), and hence ai=bi—ciai=bi—ci1is a difference of two positive
elements in (HF,Px) (HF, Px). The same argument may be used to show that aj
and ak are also a difference of two positive elements in (HF,Px) (HE Px). It
follows that each element in HFAFis a difference of two positive elements in
(HF,Px) (HE, Px), that is, PxPx s directed. This completes the proof of Theorem
2.00

In [1], Birkhoff asked if H=HRA=HR can be made into a directed algebra over
R R with the usual total order, where RRis the field of real numbers. In the
following, we show that the answer is no. More generally, for any totally
ordered subfield T of RR, HTHT cannot be a directed algebra over T.

Theorem 3
H A cannot be a directed algebra over R R with the usual total order.
Proof

We will suppose that HAis a directed algebra over RR and derive a
contradiction.

We first show that if w=ao+aii+azj+ask>0w=a0+ali+aZj+a3k>0in HH,
then ao>0a0>01in RR. Note that

wa—2aow=—(az20+az1+az2+a23) w2—2a0w=—(a02+al2+a22+a32) by direct
calculation, and that if 0<af0<ain RRand 0<z0<zin HH, then 0<az0<azin
H Hbecause HHis a partially ordered algebra over R R that has no divisor of
ZEero.

Now suppose by the way of contradiction that ao<0a20<0in RR. Then
—a0=>0—a0=>01in RR, and thus since w>0w>01in HH,
w2—2aow=0wZ2—2a0w=>0in HH. That is,

—(az2o0+az1+az2+a23)>0 —(a02+al2+a22+a32)>0in HH, and hence
—(az0+azi+az2+a23)w>0—(a02+al2+a22+a32)w>01in HH. But since
(azo+az1+az2+a23)>0 (a02+al2+a22+a32)=>0in RR,
(a20+a21+az2+a23)wW=0 (a02+al2+a22+a32)w=0in HH as well, and
therefore (azo+az1+az22+a23)w=0 (a02+al2+a22+a32)w=0. So since
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w#0w=0and HHis a division ring, we must have
a20+az1+az2+a23=0a02+al’2+a22+a32=0. But then
ao=ai=az=as=0al0=al=aZ=a3=0because ao,a1,a2a0,al,aZ, and asa3are all in
RR, and hence w=ao+aii+azj+ask=0w=a0+ali+a2j+a3k=0, a contradiction.
It follows that ao>0a0>01in RR.

Since the partial order on H A is directed, there exists
z=a+bi+cj+dk>0z=a+bi+c+dk>0in HHwith z€Rz¢&R. For instance,
1=71—272/=z1—22, where 71,7Z2z1,z2 are positive in HHA. Clearly z1,z2z1,z2 cannot
be both in RR. The argument above shows that a>0a>0in RR. Then since RR
is totally ordered, a-1>0a—7>0in RR and hence
a-1z=1+(a-1b)i+(a-1c)j+(a-1d)k>0a—1z=1+(a—1b)i+(a—1c)j+(a—1d)k>0in
HH. Suppose that a-1b=s,a-1c=t,a-id=ua—1b=sa—I1c=ta—1d=u. Then we
have w=1+si+tj+uk>0 w=1+si+tj+uk>0in HH and wg¢R w¢&R. For simplicity,
let v=si+tj+ukv=si+tj+uk. Then ve=—(S2+t2+u2) v2=—(s2+t2+u2), SO
—v2ER+—v2€R+. Therefore —vow>0 —vZw>0in HH, and hence
w3—Vvaw>0w3—v2w>01n HH. Since

1+3v+2ve==(1+2V)(1+V)=(1+2v+Vva—v2)W(W2—V2 )W=W3—Vaw, 1 +3v+2v2=(
1+2v)(1+v)=(1+2v+v2—v2)w=(w2—v2)w=w3—v2Zw,

we have 1+3v+2v2>01+3v+2v2>0in HH. Let wi=1+3v+2vewil=1+3v+2v2.
Then wi>0w7>0in HH, and hence
(W1—2V2)W=w1w—2Vvaw>0 (wI1—2v2)w=wilw—2v2w>0in HH. Since

1+4v+3ve=(1+3V)(1+V)=(1+3V+2va—2V2)W=(W1—2V2)W I +4v+3v2=(1+3v)(
1+v)=(1+3v+2v2-2v2)w=(wl—-2v2)w

1+4v+3v2>0 1+4v+3v2>0in HH. If we continue this procedure, we get that
for any positive integer n,

(1+nv)(1+v)=1+(m+1)v+nvz>0 (1+nv)(1+v)=1+(n+1)v+nv2>0in HAH.
Therefore since the real part of a positive element in HA must be positive in
R R, we must have 0<1+nv20<7+nvZ2for all positive integers n, so
—nvz<1—nv2<1 for all positive integers n. Then —v2=0—-v2=0, so v2=0v2=0
since RRis archimedean with respect to the total order. Hence
s=t=u=0s=t=u=0, and WER weER, a contradiction of our observation above
that wgRwgR.

Therefore HAH cannot be a directed algebra over R R with the total order.






